UNIVERSIDAD PERUANA LOS ANDES

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

TESIS

"ESTABILIZACIÓN DE SUBRASANTES CON CENIZAS DE EUCALIPTO Y CAL EN CAMINOS VECINALES, CARRETERA MALLAN BAJO, PASCO 2022"

PARA OPTAR TÍTULO PROFESIONAL DE:

INGENIERA CIVIL **Presentado por:**

Bach. FLORES JURADO, MAYRA NISIDA

Asesores:

Dr. Ing. Abel Alberto Muñiz Paucarmayta

Ing. Alfredo Miguel Otañe Rodríguez

Línea de Investigación Institucional:

TRANSPORTE Y URBANISMO

HUANCAYO – PERÚ 2022

UNIVERSIDAD PERUANA LOS ANDES

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

TESIS

"ESTABILIZACIÓN DE SUBRASANTES CON CENIZAS DE EUCALIPTO Y CAL EN CAMINOS VECINALES, CARRETERA MALLAN BAJO, PASCO 2022"

PARA OPTAR TÍTULO PROFESIONAL DE:

INGENIERA CIVIL
Presentado por:

Bach. FLORES JURADO, MAYRA NISIDA

Asesores:

Dr. Ing. Abel Alberto Muñiz Paucarmayta

Ing. Alfredo Miguel Otañe Rodríguez

Línea de Investigación Institucional:

TRANSPORTE Y URBANISMO

HUANCAYO – PERÚ 2022

HOJA DE CONFORMIDAD DE LOS JURADOS

DR. RUBEN DARÍO TAPIA SILGUERA **PRESIDENTE** MG. MAURO WILFREDO TAZZA CHAUPIS **JURADO** MG. ALCIDES LUIS FABIAN BRAÑEZ **JURADO** ING. NATALY LUCIA CORDOVA ZORRILLA **JURADO** ING. LEONEL UNTIVEROS PEÑALOZA

SECRETARIO DOCENTE

ASESORES

Dr. Ing. Abel Alberto Muñiz Paucarmayta

Ing. Alfredo Miguel Otañe Rodríguez

DEDICATORIA

A Nisida Jurado y Oscar Flores, mis padres, por brindarme su continuo y crucial apoyo a lo largo de mi vida. Al cuerpo docente, personal y estudiantes de la Universidad Peruana Los Andes por su ayuda en el fomento de mi desarrollo académico.

AGRADECIMIENTO

A Dios, que me ha guiado en todos los aspectos de mi trabajo y me ha proporcionado fuerza y bondad cuando las cosas se ponían difíciles.

A mis hermanos por su inquebrantable apoyo y aliento en esta investigación, así como a mis padres Oscar Flores y Nisida Jurado por su amor.

CONSTANCIA 060

DE SIMILITUD DE TRABAJOS DE INVESTIGACIÓN POR EL SOFTWARE DE PREVENCIÓN DE PLAGIO TURNITIN

La Dirección de Unidad de Investigación de la Facultad de Ingeniería, hace constar por la presente, que el informe final de tesis titulado:

"ESTABILIZACIÓN DE SUBRASANTES CON CENIZAS DE EUCALIPTO Y CAL EN CAMINOS VECINALES, CARRETERA MALLAN BAJO, PASCO 2022"

Cuyo autor (a) (es) : Mayra Nisida, Flores Jurado.

Facultad : Ingeniería

Escuela Profesional : Ingeniería Civil

Asesor (a) (es) : Dr. Ing. Abel Alberto Muñiz Paucarmayta

Ing. Alfredo Miguel Otañe Rodríguez

Que, fue presentado con fecha 02.02.2023 y después de realizado el análisis correspondiente en el software de prevención de plagio Turnitin con fecha 03.02.2023; con la siguiente configuración de software de prevención de plagio Turnitin:

Excluye bibliografía.

X Excluye citas.

X Excluye cadenas menores de a 20 palabras.

Otro criterio (especificar)

Dicho documento presenta un porcentaje de similitud de 23%. En tal sentido, de acuerdo a los criterios de porcentajes establecidos en el artículo N°11 del Reglamento de uso de software de prevención de plagio, el cual indica que no se debe superar el 30%. Se declara, que el trabajo de investigación: si contiene un porcentaje aceptable de similitud. Observaciones: ninguna.

En señal de conformidad y verificación se firma y sella la presenta constancia.

Huancayo 06 de febrero del 2023

UNICAD DE INVESTIGAC ON

Dr. Santiago Zevallos Salinas Director de la Unidad de Investigación

CONTENIDO

DEDICATO	RIA	v
AGRADECI	IMIENTO	vi
CONTENID	O	vii
CONTEN	IDO DE TABLAS	xii
CONTEN	IDO DE FIGURAS	xiv
RESUMEN.		xv
ABSTRACT		xvi
INTRODUC	CCIÓN	17
CAPITULO	I: PLANTEAMIENTO DEL PROBLEMA	19
1.1. Des	scripción de la realidad problemática	19
1.2. Del	limitación del problema	21
1.2.1.	Espacial	21
1.2.2.	Temporal	21
1.2.3.	Conceptual	21
1.3. For	mulación del problema	21
1.3.1.	Problema general	21
1.3.2.	Problemas específicos	22
1.4. Just	tificación	22
1.4.1.	Social	22
1.4.2.	Teórica	22
1.4.3.	Metodológica	22
1.5. Obj	jetivos	23
1.5.1.	Objetivo general	23
1.5.2.	Objetivos específicos	23
CAPITULO	II: MARCO TEÓRICO	24
2.1. Ant	tecedentes	24
2.1.1.	Antecedentes internacionales	24

2.1.2. An	tecedentes nacionales	27
2.2. Bases T	eóricas	30
2.2.1. Cer	niza de eucalipto y cal	30
2.2.1.1.	Características de la ceniza de eucalipto y cal	30
2.2.1.1.1.	Peso específico (ASTM C-128)	30
2.2.1.1.2.	Granulometría Por Medio del Hidrómetro (MTC E 109)	30
2.2.1.1.3.	Dosificación	31
2.2.2. Est	abilización de Subrasantes	32
2.2.2.1.	Características de la estabilización de subrasantes	33
2.2.2.1.1.	Capacidad de soporte (CBR)	33
2.2.2.1.1.1.	Expansión	33
2.2.2.1.1.2.	Penetración	34
2.2.2.1.1.3.	Módulo de resiliencia	34
2.2.2.1.2.	Límites de Consistencia	34
2.2.2.1.2.1.	Límite Líquido (MTC E 110 – ASTM D 4318)	34
2.2.2.1.2.2.	Límite Plástico (MTC E 111 - ASTM D 4318)	35
2.2.2.1.2.3.	Índice de Plasticidad (MTC E 111 - ASTM D 4318)	36
2.2.2.1.3.	Máxima Densidad Seca	36
2.2.2.1.3.1.	Densidad	37
2.2.2.1.3.2.	Optimo contenido de humedad	37
2.3. Definic	ión de Términos	38
CAPITULO III:	HIPÓTESIS	39
3.1 Hipótes	is general	39
3.2 Hipótes	is específicas	39
3.3 Variable	es	40
3.3.1 De	finición conceptual de las variables	40
3.3.2 De	finición operacional de las variables	40

3.3.3	Operacionalizacion de variables	41
CAPITULC	IV: METODOLOGÍA	42
4.1 Me	étodo de investigación: Científico	42
4.2 Tij	po de investigación: Aplicada	42
4.3 Ni	vel de investigación: Explicativo	43
4.4 Di	seño de la investigación: Experimental	43
4.5 Po	blación y muestra	43
4.5.1	Población	43
4.5.2	Muestra	44
4.5.3	Muestreo	44
4.6 Té	cnicas e instrumentos de recolección de datos	44
4.6.1	Técnica: Observación directa	44
4.6.2	Instrumento de recolección de datos: Ficha de recopilación de datos	44
4.7 Té	cnicas de procesamiento y análisis de datos	46
4.8 As	pectos éticos de la investigación	46
CAPITULC	V: RESULTADOS	47
5.1 De	escripción de la zona de estudio	47
5.1.1	Ubicación	47
5.1.2	Características de la zona de estudio	47
5.2 Es	tudios previos	48
5.2.1	Obtención de la ceniza de eucalipto	48
5.2.2	Estudios de campo	48
5.2.3	Estudios de laboratorio	49
5.3 De	escripción de resultados	49
5.3.1 con cer	Calculo de la variación de la capacidad de soporte (CBR) de las subrasan nizas de eucalipto y cal.	
5.3.2 con cei	Cuantificación de la variacion de los límites de consistencia de las subrasan	

5.3.3 Determinación de la variación de la compactación de suelo de las subrasantes
con cenizas de eucalipto y cal
5.3.4 Determinación de la variación de la estabilización de subrasantes con cenizas
de eucalipto y cal
5.4 Resultados de la investigación
5.4.1 Resultados del cálculo de la variación de la capacidad de soporte (CBR) de las
subrasantes con cenizas de eucalipto y cal
5.4.2 Resultados de la cuantificación de la variación de los límites de consistencia
de las subrasantes con cenizas de eucalipto y cal
5.4.3 Resultados de la determinación de la variación de la compactación de suelo de
las subrasantes con cenizas de eucalipto y cal
5.4.4 Resultados de la determinación de la variación de la estabilización de
subrasantes con cenizas de eucalipto y cal
5.5 Contrastación de hipótesis
5.5.1 Contraste de hipótesis para capacidad de soporte (CBR)
5.5.2 Contraste de hipótesis para los limites de consistencia
5.5.3 Contraste de hipótesis para la compactación de suelos
6.1 Discusión 1:
6.2 Discusión 2:
6.3 Discusión 3:
6.4 Discusión 4:
CONCLUSIONES76
RECOMENDACIONES
REFERENCIAS BIBLIOGRÁFICAS79
ANEXOS83
ANEXO 1: MATRIZ DE CONSISTENCIA
ANEXO 2: INSTRUMENTO DE INVESTIGACIÓN VALIDADO
ANEXO 3: CERTIFICADOS DE LABORATORIO90

ANEXO 4: CERTIFICADOS DE CALIBRACIÓN DE EQUIPOS	129
ANEXO 5: PLANOS	150
ANEXO 6: REGISTRO FOTOGRÁFICO	154
ANEXO 7: SOLICITUD Y OFICIO	158

CONTENIDO DE TABLAS

Tabla 2. 1 Tamices	31
Tabla 2. 2 Dosificación de las combinaciones	31
Tabla 2. 3 Número de Calicatas para Exploración de Suelo	32
Tabla 2. 4 Categoría de subrasante	33
Tabla 2. 5 Penetración	34
Tabla 2. 6 Factor de K	35
Tabla 2. 7 Estimados de precisión	36
Tabla 2. 8 Clasificación de suelos, según índice de plasticidad	36
Tabla 3. 1 Operacionalizacion de variables	41
Tabla 4. 1 Clasificación de rangos de validez	45
Tabla 4. 2 El contenido instrumental de la validez de las variables	45
Tabla 4. 3 Clasificación de los indices de confiabilidad	46
Tabla 5. 1 Ubicación de calicatas	48
Tabla 5. 2 Ensayos a realizar en laboratorio	49
Tabla 5. 3 Peso específico de la ceniza de eucalipto	49
Tabla 5. 4 Granulometría de la ceniza de eucalipto	49
Tabla 5. 5 Características de cal	51
Tabla 5. 6 Clasificación de suelos	51
Tabla 5. 7 Límites de Consistencia suelo natural de las 3 calicatas	52
Tabla 5. 8 Proctor Modificado del suelo natural de las 3 calicatas	53
Tabla 5. 9 Capacidad de Soporte CBR del suelo natural de la calicata C-1	54
Tabla 5. 10 Capacidad de Soporte CBR del suelo natural de la calicata C-2	55
Tabla 5. 11 Capacidad de Soporte CBR del suelo natural de la calicata C-3	56
Tabla 5. 12 CBR de las dosificaciones	57
Tabla 5. 13 Índice de Plasticidad de las dosificaciones	57
Tabla 5. 14 Máxima Densidad Seca de las dosificaciones	58
Tabla 5. 15 Estabilización de Subrasantes	58
Tabla 5. 16 Resultado de CBR de las dosificaciones	59
Tabla 5. 17 Resultados de Índice de Plasticidad de las dosificaciones	60
Tabla 5. 18 Resultados de Proctor Modificado de las Dosificaciones	61
Tabla 5. 19 Resultados de la estabilización de la subrasante con cenizas de eucalipto y c	al
	62

Tabla 5. 20 Correlación de cenizas de eucalipto y cal	63
Tabla 5. 21 Prueba de normalidad de la ceniza de eucalipto y cal	63
Tabla 5. 22 Prueba de normalidad para la Capacidad de Soporte (CBR)	64
Tabla 5. 23 Prueba de ANOVA para la Capacidad de Soporte (CBR)	65
Tabla 5. 24 Prueba de Comparaciones Multiples post hoc de la Capacidad de Sop	orte
(CBR)	65
Tabla 5. 25 Correlación de la Capacidad de Soporte (CBR)	66
Tabla 5. 26 Prueba de normalidad para los Límites de Consistencia	67
Tabla 5. 27 Prueba de ANOVA para los Límites de Consistencia	68
Tabla 5. 28 Prueba de Comparaciones Multiples post hoc de los Limites de Consis	stencia68
Tabla 5. 29 Correlación de los Límites de Consistencia	69
Tabla 5. 30 Prueba de normalidad para la compactación de Suelos	70
Tabla 5. 31 Prueba de ANOVA para la compactación de Suelos	71
Tabla 5. 33 Prueba de Comparaciones Multiples post hoc de la compactación de S	Suelos 71
Tabla 5. 34 Correlación de la compactación de Suelos	72

CONTENIDO DE FIGURAS

Figura 1. 1 Vista de la carretera Mallan Bajo en mal estado	20
Figura 1. 2 Vista de las vías sin mantenimiento	21
Figura 2. 1 Ejemplo de grafico de Curva de Compactación	37
Figura 5. 1 Curva Granulométrica de la ceniza de eucalipto	50
Figura 5. 2 Limites de Consistencia de suelo natural de las calicata C-1, C-2 Y C-3	52
Figura 5. 3 Proctor Modificado del suelo natural de las calicatas C-1, C-2 Y C-3	53
Figura 5. 4 CBR de suelo natural de la calicata C-1	54
Figura 5. 5 CBR de suelo natural de la calicata C-2	55
Figura 5. 6 CBR de suelo natural de la calicata C-3	56
Figura 5. 7 CBR	59
Figura 5. 8 Índice de Plasticidad	60
Figura 5. 9 Máxima Densidad Seca	61

RESUMEN

La presente investigación se titula: "Estabilización de subrasante con cenizas de eucalipto y cal en caminos vecinales, carretera Mallan Bajo, Pasco 2022"; se fijó por objetivo: determinar cuánto varia la estabilización de subrasantes con cenizas de eucalipto y cal en caminos vecinales, carretera Mallan Bajo, Pasco 2022. Como metodología, se aplicó el método científico, del tipo: aplicada, del nivel: explicativo y diseño: experimental. La población de esta investigación fue la carretera Mallan Bajo en el distrito de Huachon, Provincia y Departamento de Pasco. Se ejecutaron la excavación de tres calicatas para la muestra. La primera calicata es progresiva km 7+505, la segunda calicata es progresiva km 8+500 y finalmente tercera calicata es progresiva km 9+500. Para las muestras, se realizó un muestreo no probabilístico. Todas las muestras realizadas fueron sometidas a ensayos de mecánica de suelos en laboratorio para proceder a la adición de cenizas de eucalipto y cal. Las normas utilizadas para los ensayos fueron de estándares nacionales e internacionales MTC, ASTM, SUCS y ASHTTO. Los resultados obtenidos fueron: que con el 80% de suelo natural con la adición de 15% de ceniza de eucalipto y 5% de cal aumentó la capacidad de soporte en un 167.92%, 263.33% y 194.57%, para las calicatas C-1, C-2 y C-3, respectivamente. El índice de plasticidad disminuyó en un 28.57% y 25.00% para las calicatas C-2 y C-3, respectivamente; ya que la calicata C-1 no presenta IP. La máxima Densidad Seca disminuyó en un 11.49%, 6.49% y 3.49% para las calicatas C-1, C-2 y C-3, respectivamente.

Palabras claves: cenizas de eucalipto, cal, CBR, límites de consistencia y máxima densidad seca.

ABSTRACT

The present research is entitled: "Subgrade stabilization with eucalyptus ashes and lime in local roads, Mallan Bajo road, Pasco 2022"; its objective was to determine how much the subgrade stabilization with eucalyptus ashes and lime in local roads, Mallan Bajo road, Pasco 2022 varies. As methodology, the scientific method was applied, type: applied, level: explanatory and design: pure experimental. The population of this research was the Mallan Bajo road in the district of Huachon, Province and Department of Pasco. Three test pits were excavated for the sample. The first trench is progressive km 7+505, the second trench is progressive km 8+500 and finally the third trench is progressive km 9+500. All the samples were subjected to soil mechanics tests in the laboratory in order to proceed with the addition of eucalyptus ash and lime. The norms used for the tests were national and international standards MTC, ASTM, SUCS and ASHTTO. The results obtained were: 80% natural soil with the addition of 15% eucalyptus ash and 5% lime increased the bearing capacity by 167.92%, 263.33% and 194.57%, for pits C-1, C-2 and C-3, respectively. The plasticity index decreased by 28.57% and 25.00% for test pits C-2 and C-3, respectively; since test pit C-1 does not present IP. The maximum dry density decreased by 11.49%, 6.49% and 3.49% for test pits C-1, C-2 and C-3, respectively.

Key words: eucalyptus ash, lime, CBR, consistency limits and maximum dry density.

INTRODUCCIÓN

La estabilización es la estrategia ideal para evaluar el estado del suelo y su capacidad portante, así como para prepararlo para las operaciones de construcción de carreteras. Añadiendo ligante sólo cuando es necesario, se puede reducir el contenido de humedad del suelo. La estabilización es más económica y requiere menos recursos que la sustitución completa de la subrasante. Por ejemplo, reducir el número de viajes de camiones y acelerar la construcción puede reducir costes al optimizar las operaciones en la obra. Se ahorran recursos porque los aglutinantes, como la cal y las cenizas de eucalipto, se aplican por separado o combinados para formar una mezcla aglutinante, y porque el suelo existente se utiliza plenamente para la estabilización.

La presente investigación titulada "Estabilización de subrasantes con cenizas de eucalipto y cal en caminos vecinales, carretera Mallan Bajo, Pasco 2022", busca la solución del problema ¿Cuánto varia la estabilización de subrasantes con cenizas de eucalipto y cal en caminos vecinales, carretera Mallan Bajo, Pasco 2022?; durante su desarrollo se evalúan teorías relacionadas con la variable de estabilización de subrasantes con ceniza de eucalipto y cal. Se fija como objetivo general determinar cuánto varia la estabilización de subrasantes con cenizas de eucalipto y cal en caminos vecinales, carretera Mallan Bajo, Pasco 2022, los resultados son los siguientes: que el 80% de suelo natural con la adición de 15% de ceniza de eucalipto y 5% de cal aumento la capacidad de soporte en un 263.33%; el índice de plasticidad disminuyo en un 28.57% y la máxima densidad seca disminuyo en un 6.49%; y finalmente se alcanza a las siguientes conclusiones: La estabilización de subrasantes varía considerablemente; el 80% de suelo natural con la adición de 15% de ceniza de eucalipto y 5% de cal aumento la capacidad de soporte 263.33%; el índice de plasticidad disminuyo en un 28.57% y la máxima densidad seca disminuyo en 6.49%.

El estudio de la estabilización sugerida con ceniza de eucalipto y cal puede asegurar la condición funcional del camino vecinal de Mallan Bajo; esta investigación es crucial ya que será útil para este y otros estudios de naturaleza similar y hará una contribución significativa.

La investigación se divide en los siguientes capítulos:

Capítulo I: consta el Planteamiento del problema, que formula los problemas de investigación y los define, junto con sus objetivos, justificación y delimitación (conceptual, espacial y temporal).

Capítulo II: consta de los fundamentos teóricos de cada variable, así como de la definición de la terminología básica, junto con el marco teórico en el que se hace referencia a los antecedentes nacionales e internacionales.

Capitulo III: Incluye la definición de las variables, así como la Hipótesis General, las Hipótesis Específicas y la Hipótesis.

Capitulo IV: incluye la población, la muestra, la técnica y el instrumento del estudio, así como la metodología, es decir, el método, el tipo, el nivel y el diseño de la investigación.

Capítulo V: contiene la visión detallada de la descripción del área de estudio, análisis y resultados de cada objetivo de estudio.

Capítulo VI: contiene un análisis de los resultados y su relación con los objetivos propuestos.

Al final se presentan las conclusiones, recomendaciones, referencias bibliográficas y anexos de la investigación.

CAPITULO I: PLANTEAMIENTO DEL PROBLEMA

1.1. Descripción de la realidad problemática

En el Perú y en especial en la sierra los fenómenos naturales ocurren con frecuencia, especialmente durante la temporada de lluvias, dando como resultado carreteras dañadas, caminos sin mantenimiento por razones económicas y afectando la movilización a diversas actividades económicas.

A nivel internacional de acuerdo con la Asociación Mexicana de Ingeniería Vial, el desarrollo de la mecánica de suelos coincidió con un cambio en estos métodos de mejoramiento de suelos, que pasaron de ser sistemas puramente empíricos a sistemas basados en teorías e investigaciones científicas hacia principios del siglo XX. En la actualidad, los ingenieros pueden medir la estabilización del suelo y sus ventajas mediante diversas teorías, estudios y ensayos.

Según El Ministerio de Transportes y Comunicación (MTC), menciona que en el Perú la vía de comunicación más importante es la vía terrestre. Este a su vez se clasifica en función a la demanda en autopistas, carreteras y trochas carrozables (interior del país, conecta distritos a provincias).

Según (ANCADE; ANTER; IECA), menciona que comenzó a estabilizar el suelo de algunos caminos agrícolas en España hace más de 50 años, pero su aplicación generalizada en carreteras y aeropuertos de nuestro país sólo data de mediados del siglo XX. Esto se debe a que estas robustas máquinas son excelentes para mezclar

cemento o cal en el suelo sobre el terreno, produciendo capas de material con un espesor consistente y un excelente rendimiento.

La carretera Mallan Bajo, ubicada en distrito de Huachon, Provincia y Departamento de Pasco. Es la única vía de acceso a cultivos agrícolas como hortalizas, tubérculos, aguacates, chirimoyas, rocoto y maracuyá. El problema que viene pasando es que debido a la falta de mantenimiento periódico ya que se encuentra en mal estado, pues en la temporada de invierno se ve afectado significativamente. Se presenta este problema desde su creación de la vía por la falta de mantenimiento ya que le compete a la municipalidad del distrito. Perjudica directamente a los agricultores ya que se trasladan a diario a cultivar sus sembríos, el traslado de fertilizantes para el cuidado. En época de cosecha se trasladan camiones y motocicletas ya que al mal estados de la vía puede ocasionar accidentes. Una alternativa de solución es la estabilización de suelos utilizando las cenizas de eucalipto que se conseguirá de las de las cocinas mejoradas ya que la población, utiliza la madera más conocido como leña de eucalipto en conjunto con cal y así lograr una estabilización de suelos adecuados, los cuales nos permitirán contar con caminos lo suficientemente adecuados para un flujo de tránsito normal.

Figura 1. 1 Vista de la carretera Mallan Bajo en mal estado

Fuente: Elaboración propia

Figura 1. 2 Vista de las vías sin mantenimiento

Fuente: Elaboración propia

1.2. Delimitación del problema

1.2.1. Espacial

La presente investigación se centra en la carretera Mallán Bajo, en particular en el tramo de carretera vecinal en el distrito de Huachón, provincia y región de Pasco.

1.2.2. Temporal

Esta investigación se realizará en el año 2022 con información de libros y referencias bibliográficas del año 2008 al 2021.

1.2.3. Conceptual

La estabilización de la subrasante y la ceniza de eucalipto con cal fueron las dos variables de estudio.

1.3. Formulación del problema

1.3.1. Problema general

¿Cuánto varia la estabilización de subrasantes con cenizas de eucalipto y cal en caminos vecinales, carretera Mallan Bajo, Pasco 2022?

1.3.2. Problemas específicos

¿Cuánto varia la capacidad de soporte (CBR) de las subrasantes con cenizas de eucalipto y cal en caminos vecinales, carretera Mallan Bajo, Pasco 2022?

¿Cuánto varia los límites de consistencia de las subrasantes con cenizas de eucalipto y cal en caminos vecinales, carretera Mallan Bajo, Pasco 2022?

¿Cuánto varia la compactación de suelo de las subrasantes con cenizas de eucalipto y cal en caminos vecinales, carretera Mallan Bajo, Pasco 2022?

1.4. Justificación

1.4.1. Social

Esta investigación se realizará con la finalidad de conocer los beneficios que aporta a la estabilización de subrasantes al agregar cenizas de eucalipto y cal. Ya que el día a día exige buscar alternativas de mejora en las técnicas de estabilización de suelos.

1.4.2. Teórica

El objetivo de esta investigación es conocer las técnicas y procedimientos necesarios para evaluar la varianza de estabilización de subrasantes con ceniza de eucalipto y cal en caminos vecinales, carretera Mallan Bajo, Pasco 2022.

1.4.3. Metodológica

La metodología utilizada en este estudio es, en teoría, realizar un estudio de mecánica de suelos para determinar las propiedades físicas y mecánicas del suelo de cimentación objeto de la investigación. Posterior a ello, se estabilizará dicho suelo en laboratorio con cenizas de eucalipto y cal en distintos porcentajes establecidos. Evaluar la capacidad portante de cada método de estabilización propuesto utilizando simultáneamente el ensayo CBR. Además, realizar el estudio para identificar cuál de las proporciones utilizadas para estabilizar la subrasante

contribuirá más. Todos estos datos se utilizarán para determinar las variaciones en la estabilización de subrasantes utilizando cal y ceniza de eucalipto en caminos vecinales, carretera Mallan Bajo, Pasco 2022.

1.5. Objetivos

1.5.1. Objetivo general

Determinar cuánto varía la estabilización de subrasantes con cenizas de eucalipto y cal en caminos vecinales, carretera Mallan Bajo, Pasco 2022.

1.5.2. Objetivos específicos

Calcular cuánto varía la capacidad de soporte (CBR) de las subrasantes con cenizas de eucalipto y cal en caminos vecinales, carretera Mallan Bajo, Pasco 2022.

Cuantificar cuanto varia los límites de consistencia de las subrasantes con cenizas de eucalipto y cal en caminos vecinales, carretera Mallan Bajo, Pasco 2022.

Determinar cuánto varía la compactación de suelo de las subrasantes con cenizas de eucalipto y cal en caminos vecinales, carretera Mallan Bajo, Pasco 2022.

CAPITULO II: MARCO TEÓRICO

2.1. Antecedentes

2.1.1. Antecedentes internacionales

Rincon et al. (2020), en su tesis de grado titulado: "Análisis de la resistencia a la compresión inconfinada y CBR de un afirmado estabilizado con ceniza de bagazo de caña de azúcar y cal", fijo como objetivo, analizar el comportamiento de un suelo afirmado, estabilizado con adición de ceniza de bagazo de caña y cal, en diferentes proporciones, a la compresión inconfinada y a la capacidad de soporte (CBR). Utilizando una metodología de diseño experimental, obtuvo los siguientes resultados: es una alternativa eficaz desde el punto de vista económico, técnico y medioambiental porque aprovecha un residuo agroindustrial cuyo almacenamiento provoca problemas de contaminación. Las conclusiones finales son las siguientes: El California Bearing Ratio (CBR) mejoró notablemente a medida que aumentaba la concentración de ceniza de bagazo de caña de azúcar; la mezcla de suelo más 12% de CBCA obtuvo los mejores resultados, aumentando su valor de CBR del 23% al 65% en relación con el suelo natural. Los resultados mejoraron aún más cuando se añadió cal, como demostró la mezcla de suelo más 12% de ceniza de bagazo de caña de azúcar y 5% de cal (S+12%CBCA+5%C), que produjo un resultado CBR de 87%, una mejora de 33,4%.

Garcia et al. (2021), en su tesis de grado titulado: "Análisis de la estabilidad de un suelo arcilloso con cáscaras de huevo pulverizadas añadidas", fijo como

objetivo, analizar y comparar el comportamiento de las propiedades físico-mecánicas de un suelo arcilloso expansivo, con adición de cascara de huevo y cal, comparando diferentes porcentajes de estos. Aplicando una metodología diseño experimental, obtuvo los resultados siguientes: Con valores de 1,95% para la cal (5,5% de cal), 1,73% para la CHP (5,5% de CHP) y 1,97% para la combinación de cal y CHP (3,0% de cal + 2,5% de CHP), estos especímenes demostraron un comportamiento positivo frente al cambio volumétrico. Según la evaluación de la ampliación, el uso de la cal y la cogeneración deben aplicarse individualmente o en proporciones que se aproximen entre sí y no se desvíen más de un 5% una de otra. A continuación se presentan los resultados generales: Las pruebas de límite de consistencia (límite líquido y límite plástico) mostraron que la adición de CHP y cal disminuía el índice de plasticidad del suelo; la muestra con el mayor resultado de IP comprendía 4,5% de cal y 1% de CHP.

Elkholy et al. (2020), en su investigación titulada: "Effect of Palm Fronds Ash as Stabilizing Agent on Geotechnical Properties of Expansive Soil". Fija como objetivo introducir un nuevo agente mitigador para ser mezclado con suelo expansivo con el fin de mejorar sus propiedades geotécnicas, el cual es la ceniza de hojas de palma (PFA). Asimismo, al respecto de la dosificación empleada, consistió en preparar y ensayar muestras remodeladas de suelo expansivo mezclado con 4 %, 8 % y 12 % de PFA, en peso. Finalmente fija como conclusiones: Los resultados estimados fueron que con un contenido de PFA de aproximadamente el 9 % en peso en las muestras de suelo expansivo, el límite líquido del suelo disminuyó casi un 40 %. Con un contenido de PFA de aproximadamente el 9 % en peso en las muestras de suelo expansivo, la densidad seca máxima aumentó en casi 5 %. Adicionando a la muestra de suelo expansivo aproximadamente 9 % de PFA, la resistencia a la compresión no confinada aumentó en promedio un 24 %, mientras que la presión de hinchamiento disminuyó en 88 %.

Oludolapo et al. (2020), en su investigación titulada: "Sugarcane straw ash effects on lime stabilized lateritic soil for structural works". Fijo como objetivo examinar la idoneidad de la ceniza de paja de caña de azúcar (SSA) como modificador en suelos estabilizados con cal con miras a mejorar las consideraciones

geotécnicas de las estructuras del suelo. Asimismo, al respecto de la dosificación empleada, consistió en estabilizar el suelo con un contenido óptimo de cal (7 %) y luego se mezcló con un porcentaje variable de SSA (6 %, 8 %, 10 %, y 12.5 %) en relación al peso de las muestras de suelo. Finalmente fija como conclusiones: El CBR de la muestra A sin estabilizar, obtuvo un valor de 6.0 %. Asimismo, al agregarle cal en 7 % se logró mantuvo el CBR en el valor de 6.0 %. Además, adicionándole a la misma 8 % de SSA, elevó el valor CBR a 12 %. El CBR de la muestra B sin estabilizar, obtuvo un valor de 3.0 %. Asimismo, al agregarle cal en 7 % se logró aumentar el CBR hasta un valor de 6.0 %. Además, adicionándole a la misma 8 % de SSA, elevó el valor CBR a 10 %. El CBR de la muestra C sin estabilizar, obtuvo un valor de 5.0 %. Asimismo, al agregarle cal en 7 % se logró aumentar el CBR hasta un valor de 8.0 %. Además, adicionándole a la misma 8 % de SSA, elevó el valor CBR a 10 %.

Teddy et al. (2021), en su investigación titulada: "Blending Lime with Sugarcane Bagasse Ash for Stabilizing Expansive Clay Soils in Subgrade". Este estudio evaluó la posibilidad de utilizar ceniza de bagazo de caña de azúcar (SCBA) reemplazando parcialmente la cal apagada para estabilizar suelos arcillosos expansivos. Asimismo, se realizaron pruebas experimentales de contracción lineal (LS), índice de plasticidad (PI) y relación de carga de California (CBR) en muestras de suelo no estabilizado y tratadas con cal SCBA. Al respecto de la dosificación empleada, consistió en formar 7 grupos en los cuales el primero no tuvo ningún tipo de adición, al segundo se le agregó 5% de cal con respecto al peso de la muestra. Además, a los siguientes grupos se le adicionó 5% de cal y también SCBA en proporciones de 2%, 4%, 6%, 8% y 10% en relación al porcentaje de cal agregado. Finalmente fija como conclusiones: El CBR de la muestra no estabilizada del suelo fue inicialmente del 12% y aumentó al 34% cuando se añadió el 5% de estabilizador de cal. Esto significa un aumento de casi el 183% en comparación con el CBR de suelo no estabilizado. El CBR aumentó con la adición de SCBA-cal, del 12 % para suelo no estabilizado hasta el 48 % con un 6 % de reemplazo de SCBA. El reemplazo de cal óptimo se estableció como un reemplazo de cal SCBA del 6% basado en criterios CBR.

2.1.2. Antecedentes nacionales

Vásquez (2018), en su tesis de grado titulado "Capacidad de soporte al estabilizar el suelo de la Vía Cascajal con adición de carbón y cal a nivel de sub rasante", fijo como objetivo, Determinar la capacidad de soporte al estabilizar el suelo de la vía Cascajal con la adición del 7% de carbón mineral y 4% de cal a nivel de sub rasante. Aplicando una metodología, tipo aplicada y nivel cuasi experimental, obtuvo los resultados siguientes: La prueba del coeficiente de soporte de California (CBR) se realizó en las tres calicatas, y los resultados fueron los siguientes: la calicata nº 01 tenía un valor CBR de 16,2% al 100% y se añadió 7% de carbón y 4% de cal al 100% para obtener un CBR de 29,0%; la calicata nº 02 tenía un valor CBR de 15,4% al 100% y se añadió 7% de carbón y 4% de cal al 100% para obtener un CBR de 35,3%; y la calicata nº 03 tenía un valor CBR de 14,0%. En la calicata nº 3 se obtuvo un valor CBR del 14,0% al 100% y un valor CBR del 32,2% añadiendo un 7% de carbón y un 4% de cal al 100%. Finalmente, fija como conclusiones: En comparación con la muestra patron y experimental, el CBR al 100% del MDS para la calicata N°01 aumentó en un 79,012%, para la calicata N°02 en un 129,221%, y para la calicata N°03 en un 152,143%. Una o dos subcategorías del grupo de subrasantes se mejoran como resultado de esta mejora de la capacidad portante.

Abanto, et al. (2021), en su tesis de grado titulado "Análisis de la estabilización de subrasantes con uso de ceniza de bagazo de caña de azúcar y cal en el Perú", fijo como objetivo, Realizar el análisis de la estabilización de subrasantes con el uso de Ceniza de bagazo de caña de azúcar y cal en el Perú. Aplicando una metodología: tipo de investigación aplicada, diseño no experimental transversal, obtuvo los resultados siguientes: Los porcentajes ideales de adición de cal para los suelos SC se encontraron comparando los distintos porcentajes de adición de cal: 3%, 4%, 5% y 8%. Para SM se añadió un 6% de cal. Finalmente fija como conclusiones: Cuando se añade un 20% de CBCA y un 4% de cal, aumenta más de un 30% y más de un 8%, respectivamente. Para explorar la estabilización de la subrasante, se utilizaron cal y cenizas de bagazo de caña de azúcar. Para un suelo SUCS de tipo CL, los aportes apropiados fueron 4 y 6% de cal y 15 y 20% de CBCA.

Delgado et al. (2021), en su tesis de grado titulado: "Estabilización de suelos arcillosos con adición de ceniza de mazorca de maíz y cal", fijo como objetivo,

determinar en qué medida influye la adición de cal y ceniza de mazorca de maíz (CMM), en la estabilización de suelos arcillosos obtenido del Km 04+500 de la Vía Expresa Cusco. Aplicando una metodología: cuantitativo y aplicativa (experimental), obtuvo los resultados siguientes: La dosificación que mejor funciona es la de suelo natural + 5% de cal + 3% de MMC, que tiene la mayor densidad seca máxima (MDD) y los mejores límites de consistencia. Su CBR es un 319% superior al del suelo natural. En comparación con el suelo natural, esto indica una mejora progresiva importante en términos de cualidades físico-mecánicas. Finalmente fija como conclusiones: se obtuvo un valor de 4,02% para el CBR del suelo en su forma natural. El CBR del suelo natural con 5% de cal fue de 4,61%. El CBR del suelo natural con 5% de cal y 1% de MMC fue de 5,13%. Con un 5% de cal y un 2% de MMC, el CBR del suelo natural fue del 9,35%. El CBR del suelo natural era del 12,84% cuando se combinaba con un 5% de cal y un 3% de MMC.

Castillo V. (2022); en su tesis de maestría titulado: "Uso de ceniza de bagazo de caña de azúcar para la estabilización de base en la carretera Santiago de Cao – Huanchaco, 2021", fijo como objetivo, es determinar la estabilización del suelo de base con adición ceniza de bagazo de caña de azúcar en el camino vecinal Santiago de Cao – Huanchaco, 2021. Aplicando una metodología: el método científico, del tipo cualitativo, nivel explicativo descriptivo y diseño experimental, obtuvo los resultados siguientes: Cuando se aplican cenizas de bagazo de caña de azúcar al suelo en cantidades del 1%, 2% y 3%, mejoran las características físico-mecánicas del suelo. Esto conduce a una mejora significativa del CBR de hasta 102,40%, una densidad seca máxima de hasta 2,09%, y un contenido de humedad óptimo de 7,40%. Finalmente fija como conclusiones: Los porcentajes de CBR aumentaron cuando se añadieron cenizas de bagazo de caña de azúcar en las dosis recomendadas del 1%, 2% y 3%; asimismo, cuando se añadió SCBA al 3%, estos valores aumentaron aún más, mostrando una mejora considerable y dando lugar a una mayor resistencia al corte con un módulo de resiliencia de 49429,12 psi.

Vizcarra S. et al. (2020), realizaron el artículo científico titulado: "Experimental analysis of the addition of rice husk ash to the clayey subgrade of a road stabilized with lime". Este estudio evaluó la influencia que tiene RHA en este

tipo de suelo estabilizado con 3% de cal. Después de la mezcla inicial de suelo-cal, CBR aumentó 11,2 veces su valor inicial; dentro de la adición de la ceniza, el CBR promedió entre 45-50% hasta llegar al 28% de RHA, donde los resultados disminuyeron considerablemente. El suelo se hizo más fácil de trabajar, y las muestras con más ceniza produjeron más material granular con un valor de índice del grupo 0 de acuerdo con los criterios de la AASHTO. La muestra de 16% de RHA, 3% de cal y suelo produjo el mayor registro de CBR, alcanzando 51,3% de CBR, 1,58g/cm3 de MDD y 16,5% de OMC. Sin embargo, sólo demostró un aumento del 1,55% en resistencia respecto a la muestra de suelo calcáreo. Para suelos arcillosos ricos en sílice, la adición de cal debería ser suficiente para un rendimiento satisfactorio, ya que el CBR tiende a perder valor cuando hay una mayor presencia de RHA. Finalmente fija como conclusiones: a medida que la ceniza sin reaccionar comienza a persistir en la estructura interna del compuesto, las interacciones puzolánicas entre el CaO y el SiO2 se detienen, provocando una caída de los valores CBR a partir de la composición R16C3. Según la AASHTO, los límites de consistencia produjeron una categorización de arcilla arenosa tipo A-6 (5) con los siguientes valores: 40% LL, 16% LP y 24% IP. A medida que se añade más ceniza, el IG desciende, revelando la plasticidad limitada del suelo. El MDD disminuye de 1.826 g/cm3 a 1.398 g/cm3. Por otro lado, el OMC aumenta de 14,80% a 25,10%, debido a la floculación generada por la adición de cal al suelo.

Goñas O. et al. (2020), realizaron el artículo científico titulado: "Estabilización de suelos con cenizas de carbón para uso como subrasante mejorada". En este estudio, se mejoraron las propiedades mecánicas de muestras de suelo utilizando ceniza de carbón vegetal, subproducto de la quema de carbón vegetal y carbón vegetal de una empresa ladrillera de la ciudad de Chachapoyas. Finalmente fija como conclusiones: Las cenizas de carbón mejoran las propiedades mecánicas (CBR) de los tipos de suelo CH y OH, a pesar de que no se ajustan a las normas para su uso como material de subrasante. Se alcanzaron valores de CBR del 3,5% y 3,7%, respectivamente, sin superar el valor mínimo del 6% especificado en la Sección "Suelos, Geología, Geotecnia y Pavimentos" del Manual de Carreteras: Suelos y Pavimentos.

2.2. Bases Teóricas

2.2.1. Ceniza de eucalipto y cal

Ceniza de eucalipto

La quema de troncos secos de eucalipto producidos en hornos de ladrillos artesanales mejorados (cocinas mejoradas por foncodes) produce las cenizas.

Cal

Según Sampedro (2005), menciona que debido a que se endurecen cuando se exponen al CO2 del aire, las cales utilizadas para estabilizar el suelo se denominan CALES DE AIRE CALCIFICADO (CL). Carecen de componentes puzolánicos o hidráulicos y están compuestas principalmente de óxido e hidróxido de calcio y magnesio. (p. 5).

2.2.1.1. Características de la ceniza de eucalipto y cal

2.2.1.1.1. Peso específico (ASTM C-128)

Según la Práctica Normalizada para Prueba de Ensayo de Densidad, Densidad Relativa (Gravedad Específica), y Absorción del Agregado Fino (ASTM C128 - 15), menciona que la densidad relativa (gravedad específica), una cantidad adimensional (gravedad específica aparente), se indica como secado al horno (OD), "superficie saturada seca" (SSD) o densidad aparente relativa. El OD se determina después de que los áridos se hayan secado. Tras dejar el árido en remojo en agua durante el tiempo establecido, se calcularon la densidad relativa SSD y la absorción absorbida (p. 1).

2.2.1.1.2. Granulometría Por Medio del Hidrómetro (MTC E 109)

Según el Manual de Ensayos de Materiales (2016), menciona que el fundamento del análisis hidrométrico es la ley de Stokes. Se considera que una masa de suelo dispersa compuesta por partículas de diversos tamaños y formas puede describirse mediante la ley de Stokes. El porcentaje de partículas de suelo que están dispersas y permanecen en suspensión durante un tiempo

determinado se determina con el hidrómetro. Para las pruebas de rutina y con fines de clasificación, las partículas de suelo que pasan el filtro de 2,00 mm (n. ° 10) se someten a un examen hidrométrico. (p. 54).

Tabla 2. 1 Tamices

Abertura (mm)
75
50
38.1
25
19
9.5
4.76
2
0.85
0.425
0.25
0.106
0.075

Fuente: ASTM D-422 (2007)

2.2.1.1.3. Dosificación

Según Atienza et al. (2008), menciona que para que cualquier material sea tratado con eficacia, es fundamental el procedimiento de dosificación. El proceso de dosificación implica calcular el contenido ideal de agua y dosificar el aglutinante (p. 18).

Tabla 2. 2 Dosificación de las combinaciones

Dosificación	Suelo Natural	Ceniza de Eucalipto	Cal
M0	100	0	0
M2	92	5	3
M8	86	10	4
M7	80	15	5
M6	74	20	6

Fuente: Elaboración Propia

2.2.2. Estabilización de Subrasantes

Según el MTC (Manual de Suelos, Geología, Geotecnia y Pavimentos) (2014), menciona que es la mejora mecánica de las propiedades físicas de un suelo mediante la adición de productos químicos, ya sean sintéticos o naturales. Estas estabilizaciones, que consisten en estabilizar el suelo utilizando cemento, cal, asfalto y otros elementos, se llevan a cabo con frecuencia en suelos con una subrasante insuficiente o inadecuada. (p. 89).

Según el MTC (Manual de Suelos, Geología, Geotecnia y Pavimentos) (2014), Las calicatas se colocarán longitudinalmente y, alternativamente, a intervalos aproximadamente iguales, dentro de la franja que abarca la anchura de la calzada; en caso necesario, la exploración se concentrará entonces en determinados lugares del plano de la calzada. (p. 28).

Tabla 2. 3 Número de Calicatas para Exploración de Suelo

Tipo de Carretera	Profundidad (m)	Número mínimo de calicatas	Observación
Autopistas: carreteras de IMD mayor de 6000 veh/día, de calzadas separadas, cada una con dos o más carriles.	1.50 m respecto al nivel de sub rasante del proyecto.	. Calzada 2 carriles por sentido: 4 calicatas x km x sentido. . Calzada 3 carriles por sentido: 4 calicatas x km. X sentido. . Calzada 4 carriles por sentido: 6 calicatas x km x sentido.	– Las calicatas se ubicarán
Autopistas: carreteras de IMD mayor de 6000 veh/día, de calzadas separadas, cada una con dos o más carriles.	1.50 m respecto al nivel de sub rasante del proyecto.	. Calzada 2 carriles por sentido: 4 calicatas x km x sentido . Calzada 3 carriles por sentido: 4 calicatas x km. X sentido. . Calzada 4 carriles por sentido: 6 calicatas x km x sentido.	longitudinalmentey en formaalternada.
Carretera de Primera Clase: carreteras con un IMDA entre 4000- 2001 veh/día, de una calzada de dos carriles.	1.50 m respecto al nivel de sub rasante del proyecto.	. 4 calicatas x km.	
Carreteras de segunda clase: carreteras con un IMDA entre 2000- 401 veh/día de una calzada de dos carriles.	1.50 m respecto al nivel de sub rasante del proyecto.	. 3 calicatas x km.	Las calicatas se ubicarán longitudinalmente
Carreteras de tercera clase: carreteras con un IMDA entre 400-201 veh/día de una calzada de dos carriles.	1.50 m respecto al nivel de sub rasante del proyecto.	. 2 calicatas x km.	y en forma alternada.
Carretera de Bajo Volumen de tránsito: carreteras con un IMDA < 200 veh. Día de una calzada.	1.50 m respecto al nivel de sub rasante del proyecto.	. 1 calicata x km.	_

Fuente (MTC, 2014)

2.2.2.1. Características de la estabilización de subrasantes

2.2.2.1.1. Capacidad de soporte (CBR)

Según el MTC (2016), menciona que describe el procedimiento de ensayo utilizado para calcular el California Bearing Ratio, o CBR, una medida de la resistencia del suelo. La prueba también puede realizarse de forma similar en muestras de suelo inalterado. Normalmente, la prueba se realiza en suelos que han sido tratados en un laboratorio en condiciones precisas de humedad y densidad. (p. 248).

Tabla 2. 4 Categoría de subrasante

Categorías de Subrasante	CBR
S0: Subrasante Inadecuada	CBR < 3%
S1: Subrasante Pobre	De CBR \geq 3% A CBR $<$ 6%
S2: Subrasante Regular	De CBR \geq 6% A CBR $<$ 10%
S3: Subrasante Buena	De CBR \geq 10% A CBR \leq 20%
S4: Subrasante Muy Buena	De CBR \geq 20% A CBR $<$ 30%
S5: Subrasante Excelente	CBR ≥ 30%

Fuente: MTC, 2014.

El CBR de un suelo se representa como un porcentaje del valor estándar apropiado y representa la carga unitaria equivalente a una penetración de 0,1" o 0,2":

$$CBR = \frac{Resistencia\ a\ la\ penetracion\ (Psi)requerida\ para\ penetrar\ 0.1\ pulg}{1000\ lb/pulg^2}*100$$
 (Ec 2.1)

Dado que la condición de saturación es la menos favorable, este ensayo se realiza 96 horas después del período de inmersión en agua.

2.2.2.1.1.1. Expansión

Según el Manual de ensayos de materiales el MTC (2016), menciona que comparando los valores de la medida de deformación tomados antes y después de la sumersión, es posible determinar la expansión. Esta cantidad se expresa como porcentaje de la altura de 127 mm de la muestra en el molde (5"). (p. 255)

Es decir:

% Expansión =
$$\frac{L2 - L1}{127}x$$
 100

Donde

L1 = Lectura inicial en mm.

L2 = Lectura final en mm.

2.2.2.1.1.2. Penetración

Según el MTC (2016), menciona que para determinar las presiones de penetración reales a partir de los datos del ensayo, se calcula la presión del penetrómetro y se muestra una curva; el punto cero de la curva se modifica para tener en cuenta los defectos superficiales que alteran la forma original de la curva. (p. 255).

Tabla 2. 5 Penetración

Pe	Penetración Presión			
Mm	Pulgadas	MN/m2	kgf/cm2	lb/plg2
2.54	0.1	6.9	70.31	1
5.08	0.2	10.35	105.46	1.5

Fuente: MTC, 2016

2.2.2.1.1.3. Módulo de resiliencia

Según el Manual de Suelos Geología, Geotecnia y Pavimentos (2014), menciona que el módulo de resiliencia es una medida de la elasticidad de un suelo que tiene en cuenta algunas características no lineales (p.38).

$$MR(psi) = 2555xCBR^{0.64}$$
 (Ec. 2.3)

2.2.2.1.2. Límites de Consistencia

2.2.2.1.2.1. Límite Líquido (MTC E 110 – ASTM D 4318)

Según el MTC (2016), menciona que es el porcentaje de humedad del suelo que hace que éste pase de líquido a plástico. Es el contenido de

humedad al que la ranura que divide las dos mitades de una pasta de suelo se cierra en su parte inferior a una distancia de 13 mm tras 25 caídas desde una altura de 1 cm a un ritmo de dos caídas por segundo. (p. 67).

Determine el límite líquido para el contenido de humedad de cada espécimen utilizando una de las siguientes ecuaciones:

Donde:

$$LL = W^n * (\frac{N}{25})^{0.121}$$
 (Ec 2.4)

$$LL = kW^n (Ec 2.5)$$

N = Números de golpes requeridos para cerrar la ranura

Wn = Contenido de humedad del suelo

K = factor dado en la tabla

Tabla 2. 6 Factor de K

N (Numero de golpes)	K (Factor para limite liquido)
20	0.974
21	0.979
22	0.985
23	0.99
24	0.995
25	1.000
26	1.005
27	1.009
28	1.014
29	1.018
30	1.022

Fuente: MTC, 2016.

2.2.2.1.2.2. Límite Plástico (MTC E 111 - ASTM D 4318)

Según el MTC (2016), menciona que es el contenido de humedad más bajo al que puede formarse tierra rodando palitos de 3,2 mm (1/8") de diámetro entre la palma de la mano y una superficie lisa (vidrio esmerilado) sin desintegrarse (p. 72).

Tabla 2. 7 Estimados de precisión

Índice de precisión y tipo de ensayo	Desviación Estándar	Rango Aceptable de dos resultados
Precisión de un operador simple		
Limite Plástico	0.9	2.6
Precisión Multilaboratorio		
Limite Plástico	3.7	10.6

Fuente: MTC, 2016.

2.2.2.1.2.3. Índice de Plasticidad (MTC E 111 - ASTM D 4318)

Según el MTC (2016), menciona que la diferencia entre el límite líquido y el límite plástico de un suelo es lo que se conoce como índice de plasticidad de ese suelo (p. 73).

La siguiente fórmula representa el índice de plasticidad:

$$IP = LL - LP (Ec 2.4)$$

El índice de plasticidad demuestra la cantidad de humedad necesaria para que un suelo se mantenga flexible (antes de cambiar a estado líquido). Las siguientes clasificaciones son posibles en función del valor del índice de plasticidad:

Tabla 2. 8 Clasificación de suelos, según índice de plasticidad

Índice de Plasticidad	Plasticidad	Característica
IP > 20	Alta	Suelos muy arcillosos
7< IP ≤ 20	Media	Suelos arcillosos
IP < 7	Baja	Suelos poco arcillosos
IP = 0	No Plástico (NP)	Suelos exentos de arcilla

Fuente: MTC, 2016.

2.2.2.1.3. Máxima Densidad Seca

Según el MTC (2016), menciona que se realizó una prueba que engloba los procedimientos de compactación aplicados en el laboratorio (curva de compactación) para determinar la relación entre el contenido de agua del suelo y el peso seco unitario. La tierra se compacta con una energía de compactación de 2700 kN-m/m3 (56000 ft-lbf/ft3) usando un pisón de 44,5 N (10 lbf) y un molde con un diámetro de 101,6 o 152,4 mm (4 o 6 in) y una altura de 457 mm (18 in). (p. 105).

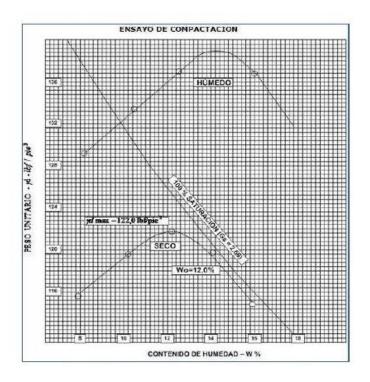


Figura 2. 1 Ejemplo de grafico de Curva de Compactación

Fuente: MTC 2016.

2.2.2.1.3.1. Densidad

Según RUI (2020), menciona que es un indicador del grado de compactación de un suelo o relleno, como los utilizados en los terraplenes de las carreteras. Se puede alcanzar una densidad determinada en función del nivel de humedad del suelo que sea necesario aumentar. (p. 246)

2.2.2.1.3.2. Optimo contenido de humedad

Según GONZALES (2001), menciona que es la humedad para la cual una compactación determinada produce una densidad seca máxima.

2.3. Definición de Términos

- ✓ Análisis granulométrico.- es identificar el componente a partir del cual es posible extrapolar aproximadamente todas las demás propiedades que resulten útiles. MTC (2008) p. 112.
- ✓ Capacidad de soporte.- es determinar la resistencia de un suelo al peso de objetos en movimiento sobre un determinado tipo de construcción vial o al peso de las ruedas sobre una superficie determinada. ARQUIE (1978) p. 50.
- ✓ Limite líquido.- es el punto en el que el suelo pasa de estado líquido a estado plástico en términos de contenido de humedad. MTC (2016) p. 67.
- ✓ Limite plástico.- es la humedad más mínima a la que se pueden realizar barritas de tierra de 3,2 mm de diámetro sin que se desintegren al pasarlas entre la palma de la mano y una superficie lisa. MTC (2016) p. 72.
- ✓ Máxima densidad seca.- es el ratio entre el peso seco de los suelos y su contenido de humedad. MTC (2016) p. 105.

CAPITULO III: HIPÓTESIS

3.1 Hipótesis general

La estabilización de subrasantes con cenizas de eucalipto y cal varia significativamente en caminos vecinales, carretera Mallan Bajo, Pasco 2022.

3.2 Hipótesis específicas

La estabilización de subrasantes con cenizas de eucalipto y cal varía considerablemente la capacidad de soporte (CBR) en caminos vecinales, carretera Mallan Bajo, Pasco 2022.

La estabilización de subrasantes con cenizas de eucalipto y cal varía significativamente los límites de consistencia en caminos vecinales, carretera Mallan Bajo, Pasco 2022.

La estabilización de subrasantes con cenizas de eucalipto y cal varía considerablemente la compactación de suelos en caminos vecinales, carretera Mallan Bajo, Pasco 2022.

40

3.3 Variables

3.3.1 Definición conceptual de las variables

Variable Independiente: Cenizas de eucalipto y cal

Se ha estudiado el uso de diferentes cenizas, además de las de eucalipto,

como sustancia auxiliar o soporte parcial del cemento y la cal en la estabilización

de suelos (incluyendo cenizas volantes, cenizas de cáscara de arroz y cenizas de

bagazo de caña de azúcar, entre otras). Teddy et al. (2021).

Variable dependiente: Estabilización de subrasantes

La estabilización del suelo es el proceso de mejora de las propiedades

físicas de un suelo mediante métodos mecánicos y la adición de sustancias

químicas naturales o sintéticas. MTC (2014) p. 89.

3.3.2 Definición operacional de las variables

Variable Independiente: Cenizas de eucalipto y cal

Las cenizas de eucalipto y cal se operacionaliza mediante sus

dimensiones: Peso específico, Granulometría, Dosificación. Cada dimensión se

divide a su vez en tres indicadores.

Variable dependiente: Estabilización de subrasantes

La Estabilización de subrasantes se operacionaliza mediante sus

dimensiones: Capacidad Portante (CBR), Límites de consistencia, Máxima

Densidad Seca. Cada dimensión se divide a su vez en tres indicadores.

3.3.3 Operacionalizacion de variables

Tabla 3. 1 Operacionalizacion de variables

VARIABLES	DEFINICIÓN CONCEPTUAL	DEFINICIÓN OPERACIONAL	DIMENSIONES	INDICADORES	INSTRUMENTOS	ESCALA				
	Se ha estudiado el uso de			I1: Gravedad específica						
	diferentes cenizas, además		D1: Peso Especifico	I2: Volumen						
	de las de	Las cenizas de		I3: Densidad	-					
	eucalipto, como sustancia auxiliar	eucalipto y cal se operacionaliza		I1: 2" - N°4	-					
	o soporte parcial del cemento y la	mediante sus	D2: Granulometría	I2: N° 4 - N°200	-					
V1: Cenizas de eucalipto y	cal en la estabilización de	dimensiones: Peso específico,	Grand Grand	I3: < N° 200	-					
cal	suelos	Granulometría, Dosificación.		I1: 92SN% - CE5 %	-					
	cenizas de cenizas de cenizas de cenizas de cenizas de cenizas de centres	Cada dimensión se divide a su vez		- C3% I2: 86SN% - CE10% - C4 %						
		D3: Dosificación	I3: 80SN% - CE15% - C5 %	Ficha de Recolección de Datos	Razón					
	El proceso de mejora de las	L La		I1: Expansión	-					
	características	Estabilización de subrasantes se	D1: Capacidad de soporte (CBR)	I2: Penetración	-					
	suelo mediante	operacionaliza	operacionaliza	operacionaliza	ante operacionaliza	fisicas de un operacionaliza suelo mediante mediante sus	de soporte (CBR)	I3: Modulo de resiliencia	-	
V2:	técnicas mecánicas y la	dimensiones:	nicas dimensiones:	I1: Índice de plasticidad	-					
Estabilización	adición de compuestos	Portante (CBR),	D2: Límites de consistencia	I2: Límite líquido	- - -					
de subrasantes químicos	-	micos consistencia,		I3: Límite plástico						
	sintéticos se	Máxima Densidad Seca. Cada		I1: Densidad						
	conoce como estabilización del suelo. (MTC, 2014).	conoce como stabilización del suelo. (MTC, tres indicadores	D3: Máxima Densidad Seca	I2: Óptimo contenido de humedad	-					

CAPITULO IV: METODOLOGÍA

4.1 Método de investigación: Científico

Según Baena (2017), menciona que "El objetivo del método científico es crear preguntas o problemas sobre la realidad y las personas basándose en observaciones de la realidad y en las teorías actuales, prever soluciones y crear hipótesis para estos problemas, y luego compararlas con la realidad misma." (p. 33).

La presente investigación, se planteará problemas a partir de la realidad problemática expuesta. Asimismo, se determinará objetivos que permitan analizar y conocer los sucesos importantes que servirán para contrastar las hipótesis asumidas. Siguiendo estos factores, en este estudio se ha empleado el método *Científico*.

4.2 Tipo de investigación: Aplicada

Según Salinas (2016), menciona que "La definición clásica de investigación aplicada es "Investigación que resuelve inmediatamente un problema". Amplía las conclusiones, opciones y descubrimientos de la investigación dirigida. Dado que las respuestas que genera pueden ponerse en práctica de inmediato para abordar cuestiones que afectan a las personas, se la conoce como aplicada." (p. 17).

En la presente investigación se buscará dar solución a la problemática planteada en la carretera Mallan bajo, para lo cual se utilizará las cenizas de eucalipto

y cal en la estabilización de subrasantes de dicha localidad. En consecuencia, teniendo en cuenta los objetivos de investigación mencionados, este estudio encaja en el tipo *Aplicada*.

4.3 Nivel de investigación: Explicativo

Según Arias (2012), menciona que "El nivel explicativo se encarga de desarrollar vínculos causa-efecto para establecer el porqué de los hechos." (p. 26).

Debido a que su objetivo principal es establecer el vínculo causal entre las variables independientes ceniza de eucalipto y cal y la incidencia que puede crear en la variable dependiente estabilización de la subrasante, esta investigación califica como explicativa. Este enfoque manejó el tipo de estudio *Explicativo*.

4.4 Diseño de la investigación: Experimental

Según Palella et al. (2012), menciona que "El diseño experimental es una estrategia de investigación que consiste en controlar una variable experimental novedosa en un entorno controlado. Su finalidad es describir cómo y por qué se produce o podría producirse un fenómeno." (p. 86).

En la presente investigación se manipulará las cenizas de eucalipto y cal a través de cambiar los porcentajes de dosificación, para ver la reacción que provoca en laestabilización de subrasantes. Por lo tanto, la investigación enmarca en aplicar el diseño *Experimental*.

4.5 Población y muestra

4.5.1 Población

Según Gomez et al. (2010), menciona que "Una población es un grupo de individuos que participan en un estudio o acontecimiento y que tienen una o varias características en común." (p. 172).

La carretera vecinal Mallan Bajo de 3 km de longitud se ubica en el distrito

de Huachón de la provincia y región de Pasco sirvió como población de estudio en esta investigación.

4.5.2 Muestra

Según Gomez et al. (2010), menciona que "La probabilidad de que los resultados se apliquen a toda la población aumenta porque la muestra es representativa de una población mayor." (p. 171).

La muestra será de la excavación de 3 calicatas de la carretera Mallan Bajo; tomadas en las progresivas de km 7+505, km 8+500 y km 9+500.

4.5.3 Muestreo

Según Hernández *et al.* (2014), menciona que "El objetivo del muestreo no probabilístico es seleccionar componentes que tengan cualidades relevantes para el propósito del investigador. En este estudio se empleará el muestreo no probabilístico. (p. 176).

4.6 Técnicas e instrumentos de recolección de datos

4.6.1 Técnica: Observación directa

Según Gallardo (2017), menciona que "La observación directa es la documentación metódica, legítima y fidedigna de cualquier hecho, fenómeno o circunstancia que ocurra en la naturaleza o en la sociedad representado por la vista, de conformidad con los objetivos de estudio previamente establecidos." (p. 72).

Se empleará la observación directa como metodología para este estudio, ya que permitirá recopilar los datos necesarios sobre los sucesos ocurridos mientras se analizaban las muestras en el laboratorio de suelos.

4.6.2 Instrumento de recolección de datos: Ficha de recopilación de datos

Según Guffante et al. (2016), menciona que "Las fichas de recogida de datos utilizadas durante la observación son las fichas de observación, y se utilizan para

documentar la información encontrada de acuerdo con lo que se está observando." (p. 101).

El formato de recolección de información, elaborado con base en lo mencionado en la normatividad vigente aplicable, será utilizado como herramienta para esta investigación.

4.6.2.1 Validez:

Según Hernandez et al. (2014), menciona que "El grado en que un instrumento mide con precisión la variable que pretendía medir se conoce como "validez". Para estimar el peso de un objeto, por ejemplo, utilizar una cinta métrica no sería válido." (p. 200).

Tabla 4. 1 Clasificación de rangos de validez

0.53 a menos	Validez nula
0.54 a 0.59	Validez baja
0.60 a 0.65	Válida
0.66 a 0.71	Muy válida
0.72 a 0.99	Excelente validez
1	Validez perfecta

Fuente: Oseda et al (2011)

En la tabla siguiente se enumeran los expertos que validaron la ficha de recopilación de datos.

Tabla 4. 2 El contenido instrumental de la validez de las variables

N°	Grado Académico	Apellidos y Nombres	CIP	Validez
1	Ingeniero Civil	Castillo Diego Jorge	113217	0.983
2	Ingeniero Civil	Ojeda Montalvo Luis Jesús	210477	0.958
3	Ingeniero Civil	Benites Feijoo Carlos	153789	0.973
			PROMEDIO	0.971

Fuente: Elaboración Propia.

Según los rangos proporcionados por Oseda et al. (p. 30), se alcanzó una validez excelente con una puntuación promedio de validez de 0,971.

4.6.2.2 Confiabilidad:

Según Hernandez et al. (2014), menciona que "La confiabilidad es la

capacidad de un instrumento de medida de producir sistemáticamente los mismos resultados cuando se utiliza con el mismo sujeto u objeto." (p. 200).

Tabla 4. 3 Clasificación de los indices de confiabilidad

0.53 a menos	Confiabilidad nula
0.54 a 0.59	Confiabilidad baja
0.60 a 0.65	Confiable
0.66 a 0.71	Muy confiable
0.72 a 0.99	Excelente confiabilidad
1	Confiabilidad perfecta

Fuente: Oseda et al. (2011)

4.7 Técnicas de procesamiento y análisis de datos

Una vez recopilada la información esencial de las muestras, los resultados se examinarán con el programa Microsoft Excel para presentar la información en cifras y tablas junto con la interpretación adecuada. Los resultados se examinarán utilizando el programa IBM SPSS 23 para el análisis estadístico.

4.8 Aspectos éticos de la investigación

Esta investigación se llevó a cabo de conformidad con el código ético de la universidad, sin alterar los resultados ni incurrir en mala conducta. No hubo corrupción de datos, falsificación de datos ni plagio, ni ningún otro tipo de falta de ética científica. El programa informático Turniting, que verifica los índices de plagio y originalidad, también examinó todos los datos que utilizó el investigador.

CAPITULO V: RESULTADOS

5.1 Descripción de la zona de estudio

5.1.1 Ubicación

La carretera Mallan Bajo se encuentra en el distrito de Huachón, bajo el control de la Provincia y Región Pasco, a una altura aproximada de 3350 msnm. Entre los 10°39'48" de latitud sur y los 76°15'16" de longitud oeste, tiene coordenadas UTM E 395419.67, S 8823965.24 y una superficie de 471.68 kilómetros cuadrados. Se compone de tierras altas y algo de selva. La zona de intervenida es tres kilómetros de la carretera de Mallan Bajo.

5.1.2 Características de la zona de estudio

La carretera de Mallan Bajo abarca un total de 3.000 kilómetros en la zona de estudio. Dado que el Índice Medio Anual Diario (IMDA) de la carretera objeto de estudio es inferior a 200 veh/día, se clasifica como trocha carrozable. La carretera Mallan Bajo tiene un ancho de vía de 4.5m.

5.2 Estudios previos

5.2.1 Obtención de la ceniza de eucalipto

La obtención de la muestra de ceniza de eucalipto se obtuvo de las cocinas mejoradas de los habitantes del distrito de Huachón. Las cocinas mejoradas se calientan al quemar troncos de eucalipto una vez terminada la combustión se obtiene la ceniza de eucalipto. La muestra se trasladó al laboratorio para esta investigación, se dividió en cuatro partes iguales y se tamizó a través de la malla número 4 antes de realizar las pruebas.

5.2.2 Estudios de campo

5.2.2.1 Estudio topográfico

Para analizar las características del terreno se solicitó al Gobierno Regional de Pasco el mapa topográfico de esta localidad (ver anexo 6). El archivo se realizó en AutoCAD Civil 3D, conservando las formas y relieves naturales actuales del terreno.

5.2.2.2 Exploración de suelos

Se ha seguido la Norma AASHTO para la Investigación y Muestreo de Suelos y Rocas, que recomienda el uso de la norma T 86-90, equivalente a la ASTM D 420-69, así como las recomendaciones de las normas MTC E-101, MTC E-102, MTC E-103 y MTC E-104. Como se observa en la tabla adjunta, la muestra se tomó entre el kilómetro 7.000 y el km 10.000, con un total de 3 calicatas:

Tabla 5. 1 Ubicación de calicatas

N° DE		COORD	ENADAS	ELEVACIÓN	
CALICATAS	PROGRESIVA	ESTE	NORTE	(msnm)	
C-1	km 7 + 505	419409.003	8818928.024	2228	
C-2	km 8 + 500	420250.311	8818657.684	2251	
C-3	km 9 + 500	420984.431	8818202.635	2249	

5.2.3 Estudios de laboratorio

Su desarrollo se ha guiado por el Manual de Carreteras, Suelos, Geología, Geotecnia y Pavimentos. (2014) (p. 40).

Tabla 5. 2 Ensayos a realizar en laboratorio

ENSAYOS	NORMA	AS	ANEXO
Análisis Granulométrico por Tamizado	ASTM D - 422	MTC E 107	Anexo 3
Límite Líquido	ASTM D-4318	MTC E 110	Anexo 3
Límite Plástico	ASTM D-4318	MTC E 111	Anexo 3
Contenido de humedad	ASTM D-2216	MTC E 108	Anexo 3
California Bearing Ratio	ASTM D-1883	MTC E 132	Anexo 3
Proctor Modificado	ASTM D-1557	MTC E 115	Anexo 3
Análisis Granulométrico por Sedimentación	ASTM D-7928		Anexo 3
Peso Especifico	ASTM C128-15		Anexo 3
Potencial de Hidrogeno	ASTM D-4972-18		Anexo 3

Fuente: Elaboración Propia

5.3 Descripción de resultados

Caracterización de la ceniza de eucalipto

Peso específico de la ceniza de eucalipto

Tabla 5. 3 Peso específico de la ceniza de eucalipto

Muestra	Peso (P)	Vo	Vf	Volumen	P.E	Densidad Real
N°	g	cm3	cm3	cm3	g/cm3	Promedio (g/cm3)
1	60	1	23.5	22.5	2.67	
2	60	0.6	22.8	22.2	2.70	2.68
3	60	0.5	22.9	22.4	2.68	_

Fuente: Elaboración Propia

Granulometría por Sedimentación de la ceniza de eucalipto

Tabla 5. 4 Granulometría de la ceniza de eucalipto

TAM	ICES	% QUE PASA
(pulg.)	(mm.)	M-1
3"	75.000	100.00
2"	50.400	100.00
1 1/2"	38.100	100.00
1"	25.400	100.00

3/4"	19.000	100.00
3/8"	9.500	100.00
N°04	4.750	100.00
N°10	2.000	99.50
N°20	0.850	92.70
N°40	0.425	86.40
N°60	0.250	81.20
N°100	0.150	77.00
N°140	0.106	73.40
N°200	0.075	71.50
	0.06	65.9
	0.042	63.7
	0.03	59.1
	0.022	52.3
	0.016	43.2
	0.012	34.1
	0.008	31.8
	0.006	29.6
	0.004	29.6
	0.003	29.6
	0.002	27.3

Fuente: Elaboración Propia

CURVA GRANULO METRICA

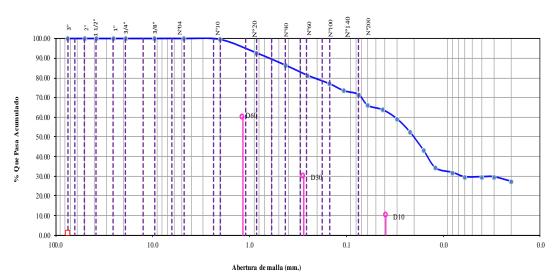


Figura 5. 1 Curva Granulométrica de la ceniza de eucalipto

Caracterización de cal

Especificaciones técnicas cal

La cal de la marca Martell presenta las siguientes propiedades:

Tabla 5. 5 Características de cal

	Características
Aspecto:	Polvo granulado
Color:	Variable de un blanco humo a grisáceo
Ca (OH)2 (%):	3 - 15
% Retenido (M-40):	8 – 15

Fuente: Elaboración Propia

Compuesto de trazas de carbonato cálcico, hidróxido cálcico o una combinación de carbonato cálcico y fragmentos de roca triturada.

Clasificación del suelo (suelo natural): Calicatas C-1, C-2 y C-3. Los siguientes resultados se validaron tras la clasificación de los suelos de los tres calicatas de los kilómetros 8+125, 9+200 y 10+250:

Tabla 5. 6 Clasificación de suelos

ANALISIS GRANULOMETRICO POR TAMIZADO						
N° CALICATA	C-1	C-2	C-3			
RESUMEN DE CLASIFICACION DE SUELOS						
N° CALICATA	SUCS	AASHTO	MATERIAL			
C-1	SM	A-1-b (0)	Arena limosa con grava			
C-2 SC A-2-4 (0) Arena arcillosa						
C-3	SC	A-2-4 (0)	Arena arcillosa con grava			

Fuente: Elaboración Propia

El grupo se designa como clasificación SUCS (SM, SC y SC), y la AASTHO lo clasifica como (A-1-b (0), A-2-4 (0) y A-2-4 (0). Además según la descripción de los grupos y sub grupos norma AASHTO M-145 en el comportamiento general como subrasante lo califican de excelente a bueno.

Límites de Consistencia (suelo natural): La prueba del límite de consistencia se llevó a cabo en los calicatas de prueba C-1, C-2 y C-3 de acuerdo con la norma internacional ASTM D-318 y MTC E-110/E-111. A continuación se presentan los resultados del índice de plasticidad, el límite líquido y el límite plástico:

Tabla 5. 7 Límites de Consistencia suelo natural de las 3 calicatas

LIMITES DE CONSISTENCIA						
N° DE CALICATA LIMITE LIQUIDO LIMITE INDICE DE PLASTICO PLASTICIDAD						
C-1	NP	NP	NP			
C-2	28.00%	21.00%	7.00%			
C-3	28.00%	20.00%	8.00%			

Fuente: Elaboración Propia

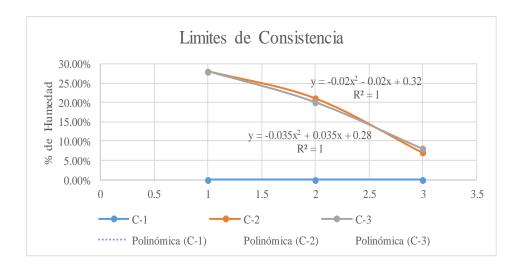


Figura 5. 2 Limites de Consistencia de suelo natural de las calicata C-1, C-2 Y C-3

Proctor Modificado (suelo natural): de las calicatas C-1, C-2 y C-3. Una de las evaluaciones clave para conocer el grado de compactación de los suelos objeto de investigación es la compactación del suelo. Cuando la tierra está compactada a su máxima densidad posible, el contenido de humedad está en su nivel ideal. A continuación se presentan los resultados:

Tabla 5. 8 Proctor Modificado del suelo natural de las 3 calicatas

N° CALICATA	OPTIMO CONTENIDO DE HUMEDAD %	MÁXIMA DENSIDAD SECA g/cm3
C-1	10.60%	2.107
C-2	12.80%	1.958
C-3	13.00%	2.030

Fuente: Elaboración Propia

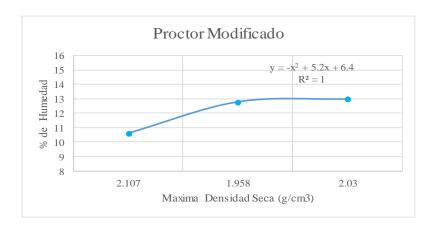


Figura 5. 3 Proctor Modificado del suelo natural de las calicatas C-1, C-2 Y C-3

Capacidad de soporte (CBR) (suelo natural): las calicatas C-1, C-2 y C-3. La prueba CBR es un índice de suelo que permite determinar la capacidad portante de un suelo y evaluar su calidad. Se afirma que se trata de una prueba empírica realizada en circunstancias particulares, tales como: control de la humedad y de la densidad (Proctor modificado). A continuación se presentan los resultados:

Tabla 5. 9 Capacidad de Soporte CBR del suelo natural de la calicata C-1

RELACION DE CAPACIDAD DE SOPORTE (CBR) C-1							
N° CALICATA	PENETRACION		GOLPES				
N CALICATA	PENETRACION	10	25	56			
C-1	0.1"	13.00	25.00	63.00			
C-1	0.2"	14.67	26.67	66.67			
DENSIDAD MAX.		1.700	1.809	2.100			
CBR - 100%	0.1"	63.0	0.2"	66.7			
CBR - 95%	0.1"	48.5	0.2"	50.5			
DENSIDAD MAX. (DENSIDAD MAX. (PROCTOR M.)						

Fuente: Elaboración Propia

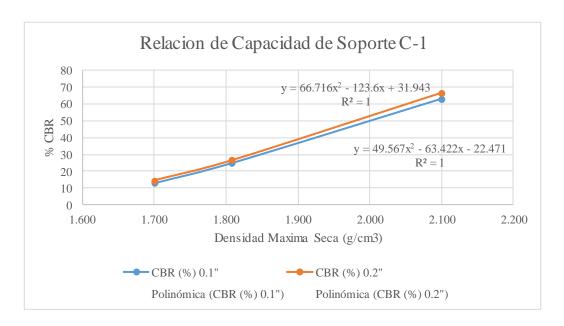


Figura 5. 4 CBR de suelo natural de la calicata C-1

Tabla 5. 10 Capacidad de Soporte CBR del suelo natural de la calicata C-2

RELACIÓN DE CAPACIDAD DE SOPORTE (CBR) C-2						
N° CALICATA	PENETRACIÓN		GOLPES			
N CALICATA	PENETRACION	10	25	56		
C-2	0.1"	11.00	15.50	20.00		
C-2	0.2"	12.67	16.67	21.00		
DENSIDAD MAX.		1.680	1.808	1.958		
CBR - 100%	0.1"	20	0.2"	21		
CBR - 95%	0.1"	17.1	0.2"	18.2		
DENSIDAD MAX.	DENSIDAD MAX. (PROCTOR M.)					

Fuente: Elaboración Propia

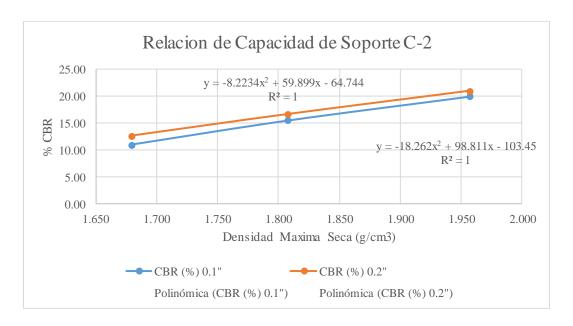


Figura 5. 5 CBR de suelo natural de la calicata C-2

Tabla 5. 11 Capacidad de Soporte CBR del suelo natural de la calicata C-3

RELACION DE CAPACIDAD DE SOPORTE (CBR) C-3						
No CALICATA	DENIETD A CION		GOLPES			
N° CALICATA	PENETRACION	10	25	56		
C-3	0.1"	8.00	20.00	40.00		
C-3	0.2"	8.53	22.33	44.33		
DENSIDAD MAX.		1.814	1.946	2.030		
CBR - 100%	0.1"	40	0.2"	44.2		
CBR - 95%	0.1"	18	0.2"	20		
DENSIDAD MAX. (DENSIDAD MAX. (PROCTOR M.)					

Fuente: Elaboración Propia

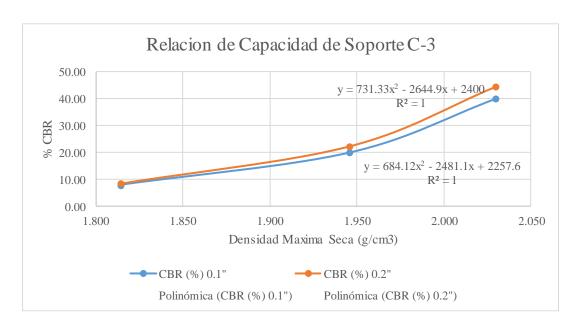


Figura 5. 6 CBR de suelo natural de la calicata C-3

5.3.1 Calculo de la variación de la capacidad de soporte (CBR) de las subrasantes con cenizas de eucalipto y cal.

Las muestras de las calicatas C-1, C-2 y C-3 fueron evaluadas para el CBR primero en suelo natural y posteriormente en dosis que contenían porcentajes de ceniza de eucalipto y cal, como se indica en la tabla siguiente:

Tabla 5. 12 CBR de las dosificaciones

	Capacidad de Soporte (CBR)						
Muestra	Tipo	Suelo Natural 100%	92%SN + 5%CE + 3%C	86%SN% + 10%CE + 4%C	80%SN + 15%CE + 5%C	74%SN + 20%CE + 6%C	
C1	CBR al 100%	66.70%	66.70%	78.70%	112.00%	71.30%	
CI	Módulo de Resiliencia	1971.66	1971.66	2191.87	2747.20	2057.63	
C2	CBR al 100%	21.00%	25.30%	30.90%	55.30%	37.30%	
C2	Módulo de Resiliencia	941.05	1060.20	1204.94	1748.78	1359.20	
C3 -	CBR al 100%	44.20%	45.30%	62.00%	86.00%	64.70%	
CS	Módulo de Resiliencia	1515.17	1539.20	1881.58	2319.90	1933.61	

Fuente: Elaboración Propia

5.3.2 Cuantificación de la variacion de los límites de consistencia de las subrasantes con cenizas de eucalipto y cal.

Para realizar los ensayos de límite líquido, límite plástico e índice plástico, se utilizaron muestras de las calicatas C-1, C-2 y C-3. Las pruebas se realizaron dos veces: una en suelo natural y otra con cal y cenizas de eucalipto adicionales. La tabla siguiente muestra:

Tabla 5. 13 Índice de Plasticidad de las dosificaciones

	Indice de Plasticidad							
Muestra	Tipo	Suelo Natural 100%	92%SN + 5%CE + 3%C	86%SN% + 10%CE + 4%C	80%SN + 15%CE + 5%C	74%SN + 20%CE + 6%C		
	Limite Liquido	NP	NP	NP	NP	NP		
C-1	Limite Plastico	NP	NP	NP	NP	NP		
	Indice de Plasticidad	NP	NP	NP	NP	NP		
_	Limite Liquido	28.00%	32.00%	33.00%	34.00%	NP		
C-2	Limite Plastico	21.00%	27.00%	29.00%	32.00%	NP		
	Indice de Plasticidad	7.00%	5.00%	4.00%	2.00%	NP		
	Limite Liquido	28.00%	33.00%	34.00%	35.00%	36.00%		
C-3	Limite Plastico	20.00%	27.00%	30.00%	33.00%	NP		
	Indice de Plasticidad	8.00%	6.00%	4.00%	2.00%	NP		

5.3.3 Determinación de la variación de la compactación de suelo de las subrasantes con cenizas de eucalipto y cal.

Las muestras de suelo de las calicatas C-1, C-2 y C-3 se evaluaron para la prueba Proctor modificada tanto en suelo natural como en sus combinacones de ceniza de eucalipto y cal. Los resultados se muestran en la siguiente tabla:

Tabla 5. 14 Máxima Densidad Seca de las dosificaciones

Proctor Modificado							
Muestra	Tipo	Suelo Natural 100%	92%SN + 5%CE + 3%C	86%SN% + 10%CE + 4%C	80% SN + 15% CE + 5% C	74%SN + 20%CE + 6%C	
C-1	Optimo Contenido de Humedad (%)	10.60%	12.50%	13.10%	13.70%	14.00%	
	Máxima Densidad Seca (g/cm3)	2.107	2.004	1.919	1.865	1.853	
C 2	Optimo Contenido de Humedad (%)	12.80%	13.70%	14.00%	14.60%	14.90%	
C-2	Máxima Densidad Seca (g/cm3)	1.958	1.920	1.847	1.831	1.81	
C-3	Optimo Contenido de Humedad (%)	13.00%	14.10%	14.50%	15.00%	15.90%	
	Máxima Densidad Seca (g/cm3)	2.030	2.011	1.970	1.950	1.934	

Fuente: Elaboración Propia

5.3.4 Determinación de la variación de la estabilización de subrasantes con cenizas de eucalipto y cal.

Tabla 5. 15 Estabilización de Subrasantes

	Estabilización de la subrasante					
Muestra	Tipo	Suelo Natural 100%	92%SN + 5%CE + 3%C	86%SN + 10%CE + 4%C	80%SN + 15%CE + 5%C	74%SN + 20%CE + 6%C
	CBR	66.70%	66.70%	78.70%	112.00%	71.30%
C-1	Índice de Plasticidad	NP	NP	NP	NP	NP
	Densidad máxima (g/cm3)	2.107	2.004	1.919	1.865	1.853
	CBR	21.00%	25.30%	30.90%	55.30%	37.30%
C-2	Índice de Plasticidad	7.00%	5.00%	4.00%	2.00%	NP
	Densidad máxima (g/cm3)	1.958	1.92	1.847	1.831	1.81
C-3	CBR	44.20%	45.30%	62.00%	86.00%	64.70%
	Índice de Plasticidad	8.00%	6.00%	4.00%	2.00%	NP
	Densidad máxima (g/cm3)	2.030	2.011	1.970	1.950	1.934

5.4 Resultados de la investigación

5.4.1 Resultados del cálculo de la variación de la capacidad de soporte (CBR) de las subrasantes con cenizas de eucalipto y cal.

Tabla 5. 16 Resultado de CBR de las dosificaciones

	Muestra		CBR	
	Muestra	C-1	C-2	C-3
	Suelo Natural 100%	66.70%	21.00%	44.20%
M2	92%SN + 5%CE + 3%C	66.70%	25.30%	45.30%
M8	86%SN% + 10%CE + 4%C	78.70%	30.90%	62.00%
M7	80%SN + 15%CE + 5%C	112.00%	55.30%	86.00%
M6	74%SN + 20%CE + 6%C	71.30%	37.30%	64.70%

Fuente: Elaboración Propia

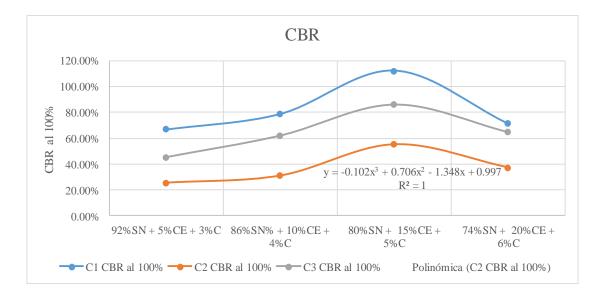


Figura 5. 7 CBR

Fuente: Elaboración Propia

Interpretación: En la tabla 5.16 y la figura 5.7, se muestra que la capacidad de soporte (CBR) varia de 66.70%, 78.70%, 112.00% y 71.30% para la calicata C-1; de 25.30%, 30.90% 55.30% y 37.30% para la calicata C-2; además de 45.30%, 62.00%, 86.00% y 64.60% para la calicata C-3; para combinaciones de (M2: 92%SN + 5%CE + 3%C), (M8: 86%SN + 10%CE + 4%C), (M7: 80%SN + 15%CE + 5%C) y (M6: 74%SN% + 20%CE + 6%C), respectivamente. La máxima capacidad de soporte alcanzada es de 112%, 55.30% y 86%, para la calicatas C-1, C-2 y C-3 respectivamente que fue obtenida con la combinación (M7: 80%SN +

15%CE + 5%C); para valores mayores a esta combinación la capacidad de soporte disminuye.

5.4.2 Resultados de la cuantificación de la variación de los límites de consistencia de las subrasantes con cenizas de eucalipto y cal.

Tabla 5. 17 Resultados de Índice de Plasticidad de las dosificaciones

	Muestra	INDIC	INDICE DE PLASTICIDAD			
	Muestra	C-1	C-2	C-3		
	Suelo Natural 100%	NP	7.00%	8.00%		
M2	92%SN + 5%CE + 3%C	NP	5.00%	6.00%		
M8	86%SN% + 10%CE + 4%C	NP	4.00%	4.00%		
M7	80%SN + 15%CE + 5%C	NP	2.00%	2.00%		
M6	74%SN + 20%CE + 6%C	NP	NP	NP		

Fuente: Elaboración Propia

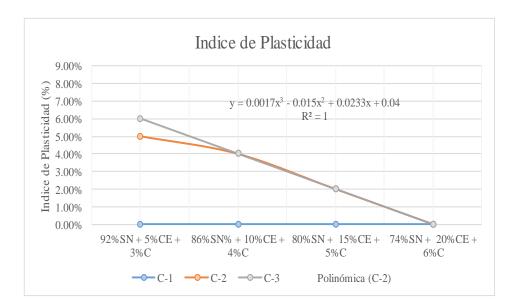


Figura 5. 8 Índice de Plasticidad

Fuente: Elaboración Propia

Interpretación: En la tabla 5.17 y la figura 5.8, se muestra que el índice de plasticidad para la calicata C-1 no presenta IP; varia de 5.00%, 4.00% 2.00% y NP para la calicata C-2; además de 6.00%, 4.00%, 2.00% y NP para la calicata C-3; para combinaciones de (M2: 92%SN + 5%CE + 3%C), (M8: 86%SN + 10%CE + 4%C), (M7: 80%SN + 15%CE + 5%C) y (M6: 74%SN% + 20%CE + 6%C), respectivamente. El mínimo índice de plasticidad alcanzada es de NP, 2% y 2%

para la calicatas C-1, C-2 y C-3 respectivamente que fue obtenida con la combinación (M7: 80%SN+15%CE+5%C); para valores mayores a esta combinación el índice de plasticidad disminuye.

5.4.3 Resultados de la determinación de la variación de la compactación de suelo de las subrasantes con cenizas de eucalipto y cal.

Tabla 5. 18 Resultados de Proctor Modificado de las Dosificaciones

	Muestra	PROCTO	PROCTOR MODIFICADO				
	Muestra	C-1	C-2	C-3			
	Suelo Natural 100%	2.107	1.958	2.030			
M2	92%SN + 5%CE + 3%C	2.004	1.920	2.011			
M8	86%SN% + 10%CE + 4%C	1.919	1.847	1.970			
M7	80%SN + 15%CE + 5%C	1.865	1.831	1.950			
M6	74%SN + 20%CE + 6%C	1.853	1.810	1.934			

Fuente: Elaboración Propia

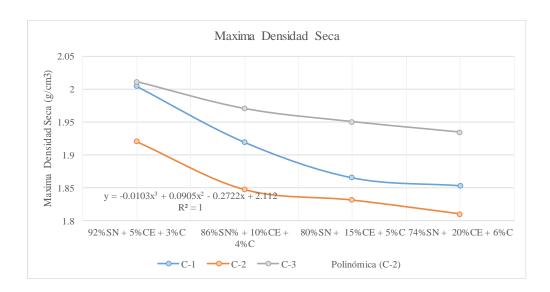


Figura 5. 9 Máxima Densidad Seca

Fuente: Elaboración Propia

Interpretación: En la tabla 5.18 y la figura 5.9, se muestra que la Máxima Densidad Seca (MDS), varia de 2.004 g/cm3, 1.919 g/cm3, 1.865 g/cm3 y 1.853 g/cm3 para la calicata C-1; de 1.920 g/cm3, 1.847 g/cm3, 1.831 g/cm3 y 1.810 g/cm3 para la calicata C-2; además de 2.011 g/cm3, 1.970 g/cm3, 1.950 g/cm3 y 1.934 g/cm3 para la calicata C-3; para combinaciones de (M2: 92%SN + 5%CE + 3%C), (M8: 86%SN + 10%CE + 4%C), (M7: 80%SN + 15%CE + 5%C) y (M6:

74%SN% + 20%CE + 6%C), respectivamente. El valor máximo de la máxima densidad seca alcanzada es de 2.004 g/cm3, 1.920 g/cm3 y 2.011 g/cm3, para la calicatas C-1, C-2 y C-3 respectivamente que fue obtenida con la combinación (M2: 92%SN+5%CE+3%C); la máxima densidad seca desciende para valores superiores a esta combinación.

5.4.4 Resultados de la determinación de la variación de la estabilización de subrasantes con cenizas de eucalipto y cal.

Tabla 5. 19 Resultados de la estabilización de la subrasante con cenizas de eucalipto y cal

	Muestra _		CBR			INDICE DE PLASTICIDAD			MAXIMA DENSIDAD SECA		
		C-1	C-2	C-3	C-1	C-2	C-3	C-1	C-2	C-3	
	Suelo Natural 100%	66.70%	21.00%	44.20%	NP	7.00%	8.00%	2.107	1.958	2.030	
M2	92%SN + 5%CE + 3%C	66.70%	25.30%	45.30%	NP	5.00%	6.00%	2.004	1.920	2.011	
M8	86%SN + 10%CE + 4%C	78.70%	30.90%	62.00%	NP	4.00%	4.00%	1.919	1.847	1.970	
M7	80%SN + 15%CE + 5%C	112.00%	55.30%	86.00%	NP	2.00%	2.00%	1.865	1.831	1.950	
M6	74%SN + 20%CE + 6%C	71.30%	37.30%	64.70%	NP	NP	NP	1.853	1.810	1.934	

Fuente: Elaboración Propia

Interpretación: En la tabla 5.19 se muestra la variación la capacidad de soporte (CBR) varia de 66.70%, 78.70%, 112.00% y 71.30% para la calicata C-1; de 25.30%, 30.90% 55.30% y 37.30% para la calicata C-2; además de 45.30%, 62.00%, 86.00% y 64.60% para la calicata C-3; el índice de plasticidad para la calicata C-1 no presenta IP; varia de 5.00%, 4.00% 2.00% y NP para la calicata C-2; además de 6.00%, 4.00%, 2.00% y NP para la calicata C-3 y la Máxima Densidad Seca (MDS), varia de 2.004 g/cm3, 1.919 g/cm3, 1.865 g/cm3 y 1.853 g/cm3 para la calicata C-1; de 1.920 g/cm3, 1.847 g/cm3, 1.831 g/cm3 y 1.810 g/cm3 para la calicata C-2; además de 2.011 g/cm3, 1.970 g/cm3, 1.950 g/cm3 y 1.934 g/cm3 para la calicata C-3 para combinaciones de (M2: 92%SN+5%CE+3%C), (M8: 86%SN+10%CE+4%C), (M7: 80%SN+15%CE+5%C) y (M6:74%SN+20%CE+6%C), respectivamente. Los mejores resultados obtenidos fueron para la combinación M7: 80%SN+15%CE+5%C.

5.5 Contrastación de hipótesis

Análisis estadístico

Estadística correlacional

Tabla 5. 20 Correlación de cenizas de eucalipto y cal

	Correlacione	es	
		Cenizas	Cal
	Correlación de Pearson	1	,962**
Cenizas	Sig. (bilateral)		.000
	N	15	15
	Correlación de Pearson	,962**	1
Cal	Sig. (bilateral)	.000	
	N	15	15

Fuente: Datos del SPSS 23

Interpretación: Según la prueba de correlación de Pearson, el valor de correlación de la tabla 5.20 entre la ceniza de eucalipto y la cal es de 0,962, lo que se considera muy significativo.

Estadística inferencial

Tabla 5. 21 Prueba de normalidad de la ceniza de eucalipto y cal

	Pruebas de normalidad								
	Kolmogorov-Smirnova			Shapiro-Wilk					
	Estadístico	gl	Sig.	Estadístico	gl	Sig.			
Cenizas	0.153	15	,200*	0.902	15	0.103			
Cal	0.189	15	0.155	0.859	15	0.023			

Fuente: Datos del SPSS 23

Interpretación: Según el estadístico de la prueba de Shapiro-Wilk de la tabla 5.21, los valores observados para la cal y la ceniza de eucalipto son p=0,859 y p=0,902, respectivamente. Estos datos indican que ambas variables son paramétricas y tienen una distribución normal, por lo que se acepta Ha y se rechaza Ho.

5.5.1 Contraste de hipótesis para capacidad de soporte (CBR)

Ho: La estabilización de subrasantes con cenizas de eucalipto y cal no varía considerablemente la capacidad de soporte (CBR) en caminos vecinales, carretera Mallan Bajo, Pasco 2022.

Ha: La estabilización de subrasantes con cenizas de eucalipto y cal varía considerablemente la capacidad de soporte (CBR) en caminos vecinales, carretera Mallan Bajo, Pasco 2022.

Valor P de la prueba de normalidad

Dado que los resultados del análisis son inferiores a 50, se asume la prueba de Shapiro-Wilk.

Formulación de la hipótesis estadística

Ho: Los datos de la Capacidad de Soporte (CBR) tienen una distribución normal.

H1: Los datos de la Capacidad de Soporte (CBR) no tienen una distribución normal.

Tabla 5. 22 Prueba de normalidad para la Capacidad de Soporte (CBR)

	Pruebas de normalidad									
	Cenizas		v-Sm	irnova	Shapiro-Wilk					
	Cenizas	Estadístico	gl	Sig.	Estadístico	gl	Sig.			
	100%SN	0.176	3		1.000	3	0.983			
	92%SN+5%CE+3%CAL	0.178	3		0.999	3	0.957			
CBR	86%SN+10%CE+4%CAL	0.245	3		0.971	3	0.671			
	80%SN+15%CE+5%CAL	0.189	3		0.998	3	0.909			
	74%SN+20%CE+6%CAL	0.316	3		0.889	3	0.352			

Fuente: Datos del SPSS 23

Interpretación: Aceptamos la hipótesis nula de que los datos tienen una distribución normal porque la Tabla 5.22 demuestra que los valores de significación (valor p) de la Capacidad Portante (CBR) son superiores a 0,05. En consecuencia, utilizaremos una prueba estadística paramétrica. Realizaremos la prueba ANOVA.

Prueba de análisis de la varianza mediante ANOVA

Formulación de la hipótesis estadística

Ho: Las medias de los valores son iguales, por lo que no influye en la Capacidad de Soporte (CBR) al adicionar cenizas de eucalipto y cal.

H1: Las medias de los valores son diferentes, por lo que si influye en la Capacidad de Soporte (CBR) al adicionar cenizas de eucalipto y cal.

Tabla 5. 23 Prueba de ANOVA para la Capacidad de Soporte (CBR)

			ANOVAa			
Me	odelo	Suma de cuadrados	gl	Media cuadrática	F	Sig.
	Regresión	131.774	2	65.887	11.063	,036b
1	Residuo	714.670	12	59.556		
	Total	846.444	14			

Fuente: Datos del SPSS 23

Interpretación: Dado que el valor p es 0.036 para la prueba ANOVA es menor que el valor significativo de 0.05 (mostrado en la tabla 5.23), aceptamos la hipótesis alterna de que las medias del CBR del suelo son diferentes. Es decir, los resultados sobre la capacidad portante (CBR) se ven afectados por la adición de ceniza de eucalipto y cal. La existencia de una diferencia estadística entre los grupos se verificó posteriormente utilizando el análisis post hoc de Tukey.

Tabla 5. 24 Prueba de Comparaciones Multiples post hoc de la Capacidad de Soporte (CBR)

	Comparaciones m	últiples HSE	Tukey			
(D) (C) (1) (1)	(D.C. 1)	Diferencia	Error	Sia	Intervalo de confianza al 95%	
(I) Combinaciones	(J) Combinaciones	de medias (I-J)	estándar	Sig.	Límite inferior	Límite superior
	92%SN+5%CE+3%CAL	-0.030	2.170	1.000	-5.962	5.902
100%SN	86%SN+10%CE+4%CAL	-12,1356*	2.062	0.000	-17.773	-6.498
100%51	80%SN+15%CE+5%CAL	-38,9064*	1.914	0.000	-44.138	-33.675
	74%SN+20%CE+6%CAL	-9,6190*	2.060	0.000	-15.250	-3.988
	100%SN	0.030	2.170	1.000	-5.902	5.962
92%SN+5%CE+3%CAL	86%SN+10%CE+4%CAL	-12,1057*	2.037	0.000	-17.674	-6.538
9270SIN+370CE+370CAL	80%SN+15%CE+5%CAL	-38,8765*	1.886	0.000	-44.033	-33.721
	74%SN+20%CE+6%CAL	-9,5891*	2.034	0.000	-15.150	-4.028
	100%SN	12,1356*	2.062	0.000	6.498	17.773
86%SN+10%CE+4%CAL	92%SN+5%CE+3%CAL	12,1057*	2.037	0.000	6.538	17.674
	80%SN+15%CE+5%CAL	-26,7709*	1.761	0.000	-31.586	-21.956

	74%SN+20%CE+6%CAL	2.517	1.919	0.684	-2.730	7.763
80%SN+15%CE+5%CAL	100%SN	38,9064*	1.914	0.000	33.675	44.138
	92%SN+5%CE+3%CAL	38,8765*	1.886	0.000	33.721	44.033
	86%SN+10%CE+4%CAL	26,7709*	1.761	0.000	21.956	31.586
	74%SN+20%CE+6%CAL	29,2874*	1.758	0.000	24.481	34.094
	100%SN	9,6190*	2.060	0.000	3.988	15.250
74%SN+20%CE+6%CAL	92%SN+5%CE+3%CAL	9,5891*	2.034	0.000	4.028	15.150
/4%SN+20%CE+0%CAL	86%SN+10%CE+4%CAL	-2.517	1.919	0.684	-7.763	2.730
	80%SN+15%CE+5%CAL	-29,2874*	1.758	0.000	-34.094	-24.481

Se basa en las medias observadas.

Fuente: Datos del SPSS 23

Interpretación: La dosificación de 80%SN+15%CE+5%CAL tiene una diferencia media de 38,9064* con respecto a la muestra patrón, que es mayor que las otras dosificaciones y es la dosificación ideal que afecta más significativamente al suelo patron, según la tabla 5.24, que también muestra la prueba post hoc de Tukey, que identifica las diferencias significativas. Se realizó una correlación de Pearson para verificar si las variables están relacionadas de alguna manera con la capacidad portante (CBR).

Tabla 5. 25 Correlación de la Capacidad de Soporte (CBR)

	Correlaciones								
	Variables de control			Cal					
		Correlación	1.000	.955					
	Cenizas	Significación (bilateral)		.000					
CBR		gl	0	12					
CDK		Correlación	.955	1.000					
	Cal	Significación (bilateral)	.000						
	-	gl	12	0					

Fuente: Datos del SPSS 23

Interpretación: La tabla 5.25 demuestra que, con los datos obtenidos, podemos destacar un nivel de significación de 0,955 y un nivel sig. de 0,000 inferior al nivel de error de 0,05 utilizando el coeficiente de correlación de Pearson. Muestra una fuerte correlación directa positiva. Los resultados contradicen la hipótesis Ho y apoyan la hipótesis Ha. Se confirma la hipótesis propuesta.

^{*.} La diferencia de medias es significativa en el nivel .05.

5.5.2 Contraste de hipótesis para los limites de consistencia

Ho: La estabilización de subrasantes con cenizas de eucalipto y cal no varía significativamente los límites de consistencia de las subrasantes en caminos vecinales, carretera Mallan Bajo, Pasco 2022.

Ha: La estabilización de subrasantes con cenizas de eucalipto y cal varía significativamente los límites de consistencia de las subrasantes en caminos vecinales, carretera Mallan Bajo, Pasco 2022.

Valor P de la prueba de normalidad

Dado que los resultados del análisis son inferiores a 50, se asume la prueba de Shapiro-Wilk.

Formulación de la hipótesis estadística

Ho: Los datos de los Límites de Consistencia tienen una distribución normal.

H1: Los datos de los Límites de Consistencia no tienen una distribución normal.

Tabla 5. 26 Prueba de normalidad para los Límites de Consistencia

	Pruebas de normalidadb										
	Cenizas -		Kolmogorov-Smirnova			Shapiro-Wilk					
			gl	Sig.	Estadístico	gl	Sig.				
	100%SN	0.343	3		0.842	3	0.220				
ΙP	92%SN_5%CE_%CAL	0.328	3		0.871	3	0.298				
IP	86%SN_10%CE_4%CAL	0.385	3		0.750	3	0.000				
	80%SN_15%CE_5%CAL	0.385	3		0.750	3	0.000				

a. Corrección de significación de Lilliefors

Fuente: Datos del SPSS 23

Interpretación:

Aceptamos la hipótesis nula de que los datos tienen una distribución normal porque la Tabla 5.26 demuestra que los valores de significación (valor p) de los Límites de Consistencia son superiores a 0,05. En consecuencia, utilizaremos una prueba estadística paramétrica. Realizaremos la prueba ANOVA.

b. IP es constante cuando Cenizas = 74% SN_20% CE_6% CAL. Se ha omitido.

Prueba de análisis de la varianza mediante ANOVA

Formulación de la hipótesis estadística

Ho: Las medias de los valores son iguales, por lo que no influye en los Límites de Consistencia, al adicionar cenizas de eucalipto y cal.

H1: Las medias de los valores son diferentes, por lo que si influye en los Limites de Consistencia, al adicionar cenizas de eucalipto y cal.

Tabla 5. 27 Prueba de ANOVA para los Límites de Consistencia

			ANOVA a			
Mo	delo	Suma de cuadrados	gl	Media cuadrática	F	Sig.
	Regresión	45.633	2	22.817	3.798	,053b
IP	Residuo	72.1	12	6.008		
	Total	117.733	14			

Fuente: Datos del SPSS 23

Interpretación: Dado que el valor p para la prueba ANOVA es 0.053 que es igual al valor significativo de 0.05 (mostrado en la tabla 5.27), aceptamos la hipótesis alterna de que las medias de los Límites de Consistencia del suelo son diferentes. Es decir, los resultados sobre los Límites de Consistencia se ven afectados por la adición de ceniza de eucalipto y cal. La existencia de una diferencia estadística entre los grupos se verificó posteriormente utilizando el análisis post hoc de Tukey.

Tabla 5. 28 Prueba de Comparaciones Multiples post hoc de los Limites de Consistencia

	Comparaciones múltiples HSD Tukey										
(I) Combinations	(I) Combinations	Diferencia	Error	G: ~	Intervalo de confianza al 95%						
(I) Combinaciones	(J) Combinaciones	de medias (I-J)	estándar	Sig.	Límite inferior	Límite superior					
	92%SN_5%CE_%CAL	1,9879*	0.173	0.000	1.521	2.455					
100%SN	86%SN_10%CE_4%CAL	3,5333*	0.191	0.000	3.018	4.049					
	80%SN_15%CE_5%CAL	5,5333*	0.245	0.000	4.871	6.196					
_	100%SN	-1,9879*	0.173	0.000	-2.455	-1.521					
92%SN_5%CE_%CAL	86%SN_10%CE_4%CAL	1,5455*	0.203	0.000	0.998	2.093					
	80%SN_15%CE_5%CAL	3,5455*	0.255	0.000	2.858	4.233					
	100%SN	-3,5333*	0.191	0.000	-4.049	-3.018					
86%SN_10%CE_4%CAL	92%SN_5%CE_%CAL	-1,5455*	0.203	0.000	-2.093	-0.998					
_	80%SN_15%CE_5%CAL	2,0000*	0.267	0.000	1.279	2.721					

_	100%SN	-5,5333*	0.245	0.000	-6.196	-4.871
80%SN_15%CE_5%CAL	92%SN_5%CE_%CAL	-3,5455*	0.255	0.000	-4.233	-2.858
_	86%SN_10%CE_4%CAL	-2,0000*	0.267	0.000	-2.721	-1.279

Se basa en las medias observadas.

Fuente: Datos del SPSS 23

Interpretación: La dosificación de 80% SN+15% CE+5% CAL tiene una diferencia media de 5,5333* con respecto a la muestra patrón, que es mayor que las otras dosificaciones y es la dosificación ideal que afecta más significativamente al suelo patron, según la tabla 5.28, que también muestra la prueba post hoc de Tukey, que identifica las diferencias significativas. Se realizó una correlación de Pearson para verificar si las variables están relacionadas de alguna manera con los Límites de Consistencia.

Tabla 5. 29 Correlación de los Límites de Consistencia

		Correlaciones		
Variables de co	ontrol		Cenizas	Cal
IP —		Correlación	1.000	.939
	Cenizas	Significación (bilateral)		.000
		gl	0	12
		Correlación	.939	1.000
	Cal	Significación (bilateral)	.000	
		gl	12	0

Fuente: Datos del SPSS 23

Interpretación: En la tabla 5.29 demuestra que, con los datos obtenidos, podemos destacar un nivel de significación de 0,939 y un nivel sig. de 0,000 inferior al nivel de error de 0,05 utilizando el coeficiente de correlación de Pearson. Muestra una fuerte correlación directa positiva. Los resultados contradicen la hipótesis Ho y apoyan la hipótesis Ha. Se confirma la hipótesis propuesta.

^{*.} La diferencia de medias es significativa en el nivel .05.

5.5.3 Contraste de hipótesis para la compactación de suelos

Ho: La estabilización de subrasantes con cenizas de eucalipto y cal no varía considerablemente la compactación de suelo de las subrasantes en caminos vecinales, carretera Mallan Bajo, Pasco 2022.

H1: La estabilización de subrasantes con cenizas de eucalipto y cal varía considerablemente la compactación de suelo de las subrasantes en caminos vecinales, carretera Mallan Bajo, Pasco 2022.

Valor P de la prueba de normalidad

Dado que los resultados del análisis son inferiores a 50, se asume la prueba de Shapiro-Wilk.

Formulación de la hipótesis estadística

Ho: Los datos de la Compactación de Suelos tienen una distribución normal.

H1: Los datos de la Compactación de Suelos no tienen una distribución normal.

Tabla 5. 30 Prueba de normalidad para la compactación de Suelos

Pruebas de normalidad								
Cenizas		Kolmogorov-Smirnova			Shapiro-Wilk			
		Estadístico	gl	Sig.	Estadístico	gl	Sig.	
_	100%SN	0.177	3		1.000	3	0.963	
PROCTOR	92%SN+5%CE+3%CAL	0.361	3		0.807	3	0.132	
	86%SN+10%CE+4%CAL	0.212	3		0.990	3	0.812	
	80%SN+15%CE+5%CAL	0.276	3		0.942	3	0.537	
	74%SN+20%CE+6%CAL	0.246	3		0.970	3	0.666	

a. Corrección de significación de Lilliefors

Fuente: Datos del SPSS 23

Interpretación: Aceptamos la hipótesis nula de que los datos tienen una distribución normal porque la Tabla 5.30 demuestra que los valores de significación (valor p) de la compactación de suelos son superiores a 0,05. En consecuencia, utilizaremos una prueba estadística paramétrica. Realizaremos la prueba ANOVA.

Prueba análisis de varianza ANOVA

Formulación de la hipótesis estadística

Ho: Las medias de los valores son iguales, por lo que no influye en la Compactación de Suelos, al adicionar cenizas de eucalipto y cal.

H1: Las medias de los valores son diferentes, por lo que si influye en la Compactación de Suelos al adicionar cenizas de eucalipto y cal.

Tabla 5. 31 Prueba de ANOVA para la compactación de Suelos

			ANOVA a			
Mod	delo	Suma de cuadrados	gl	Media cuadrática	F	Sig.
	Regresión	0.056	2	0.028	8.162	,006b
PROCTOR	Residuo	0.041	12	0.003		
•	Total	0.097	14			

Fuente: Datos del SPSS 23

Interpretación: Dado que el valor-p para la prueba ANOVA es 0.006 que menor al valor significativo de 0.05 (mostrado en la tabla 5.31), aceptamos la hipótesis alterna de que las medias de la compactación de suelos son diferentes. Es decir, los resultados sobre la compactación de suelos se ven afectados por la adición de ceniza de eucalipto y cal. La existencia de una diferencia estadística entre los grupos se verificó posteriormente utilizando el análisis post hoc de Tukey.

Tabla 5. 32 Prueba de Comparaciones Multiples post hoc de la compactación de Suelos

	Comparaciones	múltiples HS	SD Tukey			
(I) Combinaciones	(J) Combinaciones	Diferencia de medias (I-J)	Error estándar	Sig.	Intervalo de confianza al 95%	
				Sig.	Límite inferior	Límite superior
100%SN	92%SN+5%CE+3%CAL	,16600*	0.032	0.483	-0.042	0.148
	86%SN+10%CE+4%CAL	,11967*	0.032	0.009	0.025	0.215
	80%SN+15%CE+5%CAL	,14967*	0.032	0.001	0.055	0.245
	74%SN+20%CE+6%CAL	0.053	0.032	0.000	0.071	0.261
92%SN+5%CE+3%CAL	100%SN	-,16600*	0.032	0.000	-0.261	-0.071
	86%SN+10%CE+4%CAL	-,11267*	0.032	0.015	-0.208	-0.018
	80%SN+15%CE+5%CAL	-0.046	0.032	0.614	-0.141	0.049
	74%SN+20%CE+6%CAL	-0.016	0.032	0.986	-0.111	0.079
86%SN+10%CE+4%CAL	100%SN	-,11967*	0.032	0.009	-0.215	-0.025

	92%SN+5%CE+3%CAL	-0.066	0.032	0.273	-0.161	0.029
	80%SN+15%CE+5%CAL	0.030	0.032	0.884	-0.065	0.125
	74%SN+20%CE+6%CAL	0.046	0.032	0.614	-0.049	0.141
	100%SN	-,14967*	0.032	0.001	-0.245	-0.055
80%SN+15%CE+5%CAL	92%SN+5%CE+3%CAL	-,09633*	0.032	0.046	-0.191	-0.001
00%SN+13%CE+3%CAL	86%SN+10%CE+4%CAL	-0.030	0.032	0.884	-0.125	0.065
	74%SN+20%CE+6%CAL	0.016	0.032	0.986	-0.079	0.111
	100%SN	-0.053	0.032	0.483	-0.148	0.042
74%SN+20%CE+6%CAL	92%SN+5%CE+3%CAL	0.066	0.032	0.273	-0.029	0.161
74%SN+20%CE+0%CAL	86%SN+10%CE+4%CAL	,09633*	0.032	0.046	0.001	0.191
	80%SN+15%CE+5%CAL	,11267*	0.032	0.015	0.018	0.208

Se basa en las medias observadas.

Fuente: Datos del SPSS 23

Interpretación: La dosificación de 92% SN+5% CE+3% CAL tiene una diferencia de media de 0,16600* con respecto a la muestra patrón, que es mayor que las otras dosificaciones y es la dosificación ideal que afecta más significativamente al suelo patron, según la tabla 5.33, que también muestra la prueba post hoc de Tukey, que identifica las diferencias significativas. Se realizó una correlación de Pearson para verificar si las variables están relacionadas de alguna manera con la compactación de suelos.

Tabla 5. 33 Correlación de la compactación de Suelos

		Correlaciones		
Variables de co	ntrol		Cenizas	Cal
		Correlación	1.000	.912
	Cenizas	Significación (bilateral)		.000
PROCTOR		gl	0	12
TROCTOR		Correlación	.912	1.000
	Cal	Significación (bilateral)	.000	
		gl	12	0

Fuente: Datos del SPSS 23

Interpretación: En la tabla 5.34 demuestra que, con los datos obtenidos, podemos destacar un nivel de significación de 0,912 y un nivel sig. de 0,000 inferior al nivel de error de 0,05 utilizando el coeficiente de correlación de Pearson. Muestra una fuerte correlación directa positiva. Los resultados contradicen la hipótesis Ho y apoyan la hipótesis Ha. Se confirma la hipótesis propuesta.

^{*.} La diferencia de medias es significativa en el nivel .05.

CAPITULO VI: ANÁLISIS Y DISCUSIÓN DE RESULTADOS

6.1 Discusión 1:

La capacidad de soporte (CBR) varia de 66.70%, 78.70%, 112.00% y 71.30% para la calicata C-1; de 25.30%, 30.90% 55.30% y 37.30% para la calicata C-2; además de 45.30%, 62.00%, 86.00% y 64.60% para la calicata C-3; para combinaciones de (M2: 92%SN + 5%CE + 3%C), (M8: 86%SN + 10%CE + 4%C), (M7: 80%SN +15%CE + 5%C) y (M6: 74%SN% + 20%CE + 6%C), respectivamente. La máxima capacidad de soporte alcanzada es de 112%, 55.30% y 86%, para la calicatas C-1, C-2 y C-3 respectivamente que fue obtenida con la combinación (M7: 80%SN + 15%CE + 5%C); para valores mayores a esta combinación la capacidad de soporte disminuye. Al respecto Vasquez, (2018), citado como antecedente nacional, la capacidad portante del suelo de la carretera del Cascajal aumenta cuando se añade un 4% de cal y un 7% de carbón, en comparación con el suelo sin adición. Los aumentos se expresan en porcentajes con respecto a la muestra patrón y experimental para la calicata N°01, calicata N°02, y calicata N°03, y son respectivamente 79.012%, 129.221%, y 152.143%. Asimismo Rincon H. et al. (2020), citado como antecedente internacional, la capacidad de soporte (CBR) varía de 67%, 72%, 84% y 87%. La máxima capacidad de soporte alcanzada es de 87% que fue obtenida con la combinación (S + 12CBCA + 5C). Además según el Manual de Carreteras: Suelos, Geologia y Pavimentos (2014), el CBR \geq 30% la subrasante es excelente. El objetivo se ha cumplido porque los resultados son coherentes con los observados en los antecedentes.

6.2 Discusión 2:

El índice de plasticidad para la calicata C-1 no presenta IP; varia de 5.00%, 4.00% 2.00% y NP para la calicata C-2; además de 6.00%, 4.00%, 2.00% y NP para la calicata C-3; para combinaciones de (M2: 92%SN + 5%CE + 3%C), (M8: 86%SN + 10%CE + 4%C), (M7: 80%SN + 15%CE + 5%C) y (M6: 74%SN% + 20%CE + 10%CE6%C), respectivamente. El mínimo índice de plasticidad alcanzada es de NP, 2% y 2% para la calicatas C-1, C-2 y C-3 respectivamente que fue obtenida con la combinación (M7: 80%SN+15%CE+5%C); para valores mayores a esta combinación el índice de plasticidad disminuye. Al respecto Goñas et al. (2020), citado como antecedente nacional, el índice de plasticidad varia de 18%, 17%, 15% y 13%. El mínimo índice de plasticidad alcanzada es de 13% que fue obtenida con la combinación (C-2 + 25%CC). Asimismo Garcia et al. (2021) citado como antecedente internacional, el índice de plasticidad varia de 24%, 22%, 25% y 35%. El mínimo índice de plasticidad alcanzada es de 22% que fue obtenida con la combinación (4.5%C + 1%CHP). Además según el Manual de Carreteras: Suelos, Geologia y Pavimentos (2014), el IP < 7 es de plasticidad baja suelos pocos arcillosos. El objetivo se ha cumplido porque los resultados son coherentes con los observados en los antecedentes.

6.3 Discusión 3:

La Máxima Densidad Seca (MDS), varia de 2.004 g/cm3, 1.919 g/cm3, 1.865 g/cm3 y 1.853 g/cm3 para la calicata C-1; de 1.920 g/cm3, 1.847 g/cm3, 1.831 g/cm3 y 1.810 g/cm3 para la calicata C-2; además de 2.011 g/cm3, 1.970 g/cm3, 1.950 g/cm3 y 1.934 g/cm3 para la calicata C-3; para combinaciones de (M2: 92%SN + 5%CE + 3%C), (M8: 86%SN + 10%CE + 4%C), (M7: 80%SN + 15%CE + 5%C) y (M6: 74%SN% + 20%CE + 6%C), respectivamente. El valor máximo de la máxima densidad seca alcanzada es de 2.004 g/cm3, 1.920 g/cm3 y 2.011 g/cm3, para la calicatas C-1, C-2 y C-3 respectivamente que fue obtenida con la combinación (M2: 92%SN+5%CE+3%C); la máxima densidad seca desciende para valores superiores a esta combinación. Al respecto Castillo V. (2022) citado como antecedente nacional, la máxima densidad seca varia de 1.79g/cm3, 1.99g/cm3, 2.02g/cm3 y 2.09/cm3. El valor máximo de la máxima densidad seca alcanzada es de 2.09g/cm3 que fue obtenida con la combinación (Base + 3%SCBA). Asimismo Teddy et al. (2021), citado como antecedente internacional, la densidad seca máxima (MDD) del suelo varía de

1.80g/cm3, 1.77g/cm3, 1.70g/cm3 y 1.64/cm3. El valor máximo de la máxima densidad seca alcanzada es de 1.80g/cm3 que fue obtenida con la combinación (Control + 2%SCBA + 5%Cal). Además, el grado mínimo de compactación necesario es el 100% de la densidad máxima determinada por el ensayo Proctor Modificado, según el Manual de "Especificaciones Técnicas Generales para la Construcción" EG - (2013). El objetivo se ha cumplido porque los resultados son coherentes con los observados en los antecedentes.

6.4 Discusión 4:

La estabilización de subrasantes varía considerablemente; con el 80% de suelo natural con la adición de 15% de ceniza de eucalipto y 5% de cal ya que aumentó la capacidad de soporte en un 167.92%, 263.33% y 194.57%, para las calicatas C-1, C-2 y C-3, respectivamente. El índice de plasticidad disminuyó en un 28.57% y 25.00% para las calicatas C-2 y C-3, respectivamente; ya que la calicata C-1 no presenta IP. La máxima Densidad Seca disminuyó en un 11.49%, 6.49% y 3.49% para las calicatas C-1, C-2 y C-3, respectivamente. Al respecto Delgado R. et al. (2021), citado como antecedente nacional, varía considerablemente; el índice de plasticidad pasó de 17,25 a NP con la adición de suelo natural + 5% de cal + 3% de MMC, el CBR del suelo natural aumentó una media del 300% con respecto al CBR del suelo natural + 5% de cal + 3% de MMC, y la densidad seca máxima del suelo natural aumentó un 5%. 1,651 gr/cm3 es el valor de la cal, que empieza a aumentar y a hacerse más constante a medida que se añade ceniza de mazorca de maíz, alcanzando un valor máximo de 1,725 gr/cm3 con el suelo natural + 5% de Cal + 3% de MMC. Asimismo Garcia A. et al. (2021), citado como antecedente internacional, varía considerablemente; la máxima capacidad de soporte aumento de 0.83% a 10.30% que fue obtenida con la combinación (4.5%C + 1%CHP). El mínimo índice de plasticidad alcanzada es de 22% que fue obtenida con la combinación (4.5%C + 1%CHP); el valor máximo de la máxima densidad seca disminuyo de 1,704g/cm3 a 1.594g/cm3 que fue obtenida con la combinación (4.5%C + 1%CHP). El objetivo se ha cumplido porque los resultados son coherentes con los observados en los antecedentes.

CONCLUSIONES

Conclusión 1:

La capacidad de soporte (CBR), varia de 66.70%, 78.70%, 112.00% y 71.30% para la calicata C-1; de 25.30%, 30.90% 55.30% y 37.30% para la calicata C-2; además de 45.30%, 62.00%, 86.00% y 64.60% para la calicata C-3; para combinaciones de (M2: 92%SN + 5%CE + 3%C), (M8: 86%SN + 10%CE + 4%C), (M7: 80%SN + 15%CE + 5%C) y (M6: 74%SN% + 20%CE + 6%C), respectivamente. La máxima capacidad de soporte alcanzada es de 112%, 55.30% y 86%, para la calicatas C-1, C-2 y C-3 respectivamente que fue obtenida con la combinación (M7: 80%SN + 15%CE + 5%C); para valores mayores a esta combinación la capacidad de soporte disminuye.

Conclusión 2:

El índice de plasticidad varia para la calicata C-1 no presenta IP; de 5.00%, 4.00% 2.00% y NP para la calicata C-2; además de 6.00%, 4.00%, 2.00% y NP para la calicata C-3; para combinaciones de (M2: 92%SN + 5%CE + 3%C), (M8: 86%SN + 10%CE + 4%C), (M7: 80%SN + 15%CE + 5%C) y (M6: 74%SN% + 20%CE + 6%C), respectivamente. El mínimo índice de plasticidad alcanzada es de NP, 2% y 2% para la calicatas C-1, C-2 y C-3 respectivamente que fue obtenida con la combinación (M7: 80%SN+15%CE+5%C); para valores mayores a esta combinación el índice de plasticidad disminuye.

Conclusión 3:

La Máxima Densidad Seca (MDS), varia de 2.004 g/cm3, 1.919 g/cm3, 1.865 g/cm3 y 1.853 g/cm3 para la calicata C-1; de 1.920 g/cm3, 1.847 g/cm3, 1.831 g/cm3 y 1.810 g/cm3 para la calicata C-2; además de 2.011 g/cm3, 1.970 g/cm3, 1.950 g/cm3 y 1.934 g/cm3 para la calicata C-3; para combinaciones de (M2: 92%SN + 5%CE + 3%C), (M8: 86%SN + 10%CE + 4%C), (M7: 80%SN + 15%CE + 5%C) y (M6: 74%SN% + 20%CE + 6%C), respectivamente. El valor máximo de la máxima densidad seca alcanzada es de 2.004 g/cm3, 1.920 g/cm3 y 2.011 g/cm3, para la calicatas C-1, C-2 y C-3 respectivamente que fue obtenida con la combinación (M2: 92%SN+5%CE+3%C); la densidad seca máxima desciende para valores superiores a esta combinación.

Conclusión 4:

La estabilización de subrasantes varía considerablemente; con el 80% de suelo natural con la adición de 15% de ceniza de eucalipto y 5% de cal ya que aumentó la capacidad de soporte en un 167.92%, 263.33% y 194.57%, para las calicatas C-1, C-2 y C-3, respectivamente. El índice de plasticidad disminuyó en un 28.57% y 25.00% para las calicatas C-2 y C-3, respectivamente; ya que la calicata C-1 no presenta IP. La máxima Densidad Seca disminuyó en un 11.49%, 6.49% y 3.49% para las calicatas C-1, C-2 y C-3, respectivamente.

RECOMENDACIONES

Recomendación 1

Se recomienda añadir hasta 15% cenizas de eucalipto y 5% de cal para mejorar las subrasantes, para porcentajes más altos de cenizas de eucalipto y cal la capacidad de soporte CBR disminuye. Considerar que el calcinado de las cenizas de eucalipto a una temperatura aproximada de 600 °C.

Recomendación 2

Se recomienda añadir hasta 15% cenizas de eucalipto y 5% de cal para mejorar las subrasantes, para porcentajes más altos de cenizas de eucalipto y cal, el índice de plasticidad disminuye. Las cenizas de eucalipto y cal al combinarse tienden a disminuir la plasticidad del suelo, es por eso que se debe considerar la aplicación de un aditivo para lograr la mejora del índice de plasticidad en suelos del tipo SC y SM según SUCS que son suelos poco arcillosos.

Recomendación 3

Se recomienda añadir hasta 5% cenizas de eucalipto y 3% de cal para mejorar las subrasantes, para porcentajes más altos de cenizas de eucalipto y cal, la máxima densidad seca disminuye. Se ha demostrado que la compactación disminuye la máxima densidad seca, pero aumenta el óptimo contenido de humedad.

Recomendación 4

Se recomienda utilizar 15% de ceniza de eucalipto y 5% de cal para lograr la estabilización de subrasantes. Al realizar futuras investigaciones con cenizas de eucalipto y cal se debe considerar que se obtendrán ventajas en cuanto a la durabilidad de las subrasantes.

REFERENCIAS BIBLIOGRÁFICAS

ABANTO ESPINOZA, Luis Carlos y SALINAS SANCHEZ, Eloy . 2021. ANÁLISIS DE LA ESTABILIZACIÓN DE SUBRASANTES CON USO DE CENIZA DE BAGAZO DE CAÑA DE AZÚCAR Y CAL EN EL PERU. Facultad de Ingenieria Civil, Universidad Privada Del Norte. Trujillo : s.n., 2021. pág. 161, Tesis de Pregrado.

ANCADE; ANTER; IECA;. 1997. *MANUAL DE ESTABILIZACION DE SUELOS CON CEMENTO O CAL*. Madrid: Instituto Español del Cemeento y sus Aplicaciones (IECA), 1997. pág. 217. 978-84-89702-23-3.

ARIAS, Fidias. 2012. El proyecto de la investigacion. Caracas : EPISTEME, 2012. pág. 138. Vol. 6.

ARQUIE, Georges. 1978. *COMPACTACION EN CARRETERAS Y AEROPUERTOS.* [ed.] Editores Tecnicos Asociados s.a. Barcelona : s.n., 1978. pág. 74.

ATIENZA, M., DÍAZ, J. y FERNÁNDEZ, J. 2008. Manual de estabilización de suelos con cemento o cal. Madrid: Instituto Español del cemento y sus Aplicaciones. [ed.] Instituto Español del cemento y sus Aplicaciones. Madrid: s.n., 2008.

BAENA, Eugenia. 2017. Metodologia de la investigacion. Patria: s.n., 2017. pág. 157.

Blending Lime with Sugarcane Bagasse Ash for Stabilizing Expansive Clay Soils in Subgrade. **TEDDY**, **Zalwango**, **ANNETTE**, **Bazairwe** y **AINOMUGISHA**, **Safiki**. **2021**. 2021, Journal of Engineering and Technological Sciences, Vol. 53, págs. 1-18.

CASTILLO V., Roberto Carlos. 2022. Uso de ceniza de bagazo de caña de azúcar para la estabilización de base en la carretera Santiago de Cao – Huanchaco. Universidad Ricardo Palma. Lima: s.n., 2022. pág. 131, Tesis de Maestria.

DELGADO R., Christian Alexander y MORMONTOY P. , Victor Daniel . 2021. *ESTABILIZACIÓN DE SUELOS ARCILLOSOS CON ADICIÓN DE CENIZA DE MAZORCA DE MAÍZ Y CAL.* Cusco, Universidad Andina Del Cusco. Cusco : s.n., 2021. pág. 249, Tesis de Pregrado.

Effect of Palm Fronds Ash as Stabilizing Agent on Geotechnical Properties of Expansive Soil. ELKHOLY, S.M., ALSALEM, S.S.A y ELRAGI, A.F. 2020. Pakistan: s.n., 2020, Technical Journal University of Engineering and Technology Taxila, Vol. 25, págs. 9-14. 1813-1786.

Estabilización de suelos con cenizas de carbón para uso como subrasante mejorada. GOÑAS LABAJOS, O. y SALDAÑA NUÑEZ, J. H. 2020. Chachapoyas: s.n., 2020, Revista Científica UNTRM Ciencias Naturales e Ingeniería.

Experimental analysis of the addition of rice husk ash to the clayey subgrade of a road stabilized with lime. **VIZCARRA**, **S.**, **y** otros. **2020**. [ed.] Institute of Physics Publishing. Lima: s.n., 2020, IOP conference series. Materials science and engineering.

GALLARDO, **Eliana. 2017.** *Metodologia de Investigacion: manual autoformativo interactivo*. [ed.] Universidad Continental. Huancayo: s.n., 2017. pág. 97.

GARCIA A., Bernardo José y MORALES D., Daniel Mauricio . 2021. Análisis de la estabilidad de un suelo arcilloso con cáscaras de huevo pulverizadas añadidas. Universidad de La Salle. Bogotá: s.n., 2021. pág. 91, Tesis de Pregrado.

GOMEZ, Miguel, DESLAURIERS, Jean-Pierre y ALZATE, Maria. 2010. Como hacer tesis de maestria y doctorado. Bogota: Ecoe Ediciones, 2010.

GONZALES CABALLERO , Matilde. 2001. *EL TERRENO*. s.l. : Edicions UPC , 2001. pág. 287.

GUFFANTE, Tania, GUFFANTE, Fernando y CHAVEZ, Patricio. 2016. INVESTICACION CIENTIFICA: El Proyecto de Investigacion. 2016. pág. 108.

HERNANDEZ, Roberto, FERNANDEZ, Carlos y BATISTA, Maria. 2014. METODOLOGIA DE LA INVESTIGACION . s.l. : McGRAW-HILL, 2014. pág. 600. Vol. 6.

HERNANDEZ, Roberto y MENDOZA, Christian. 2018. *Metodologia de la investigacion.* Mexico: Mc Graw Hill, 2018. pág. 714.

Método de Ensayo Estándar para el Análisis Granulométrico ASTM Designación: D 422 - 63. Materials, American Society for Testing and. 2007. 2007.

MTC. 2013. Manual de Carreteras Especificaciones Tecnicas Generales Para Construccion. [ed.] Dirección General de Caminos y Ferrocarriles. 2013.

— **2016.** *Manual de ensayos de materiales*. Lima - Perú : Ministerio de trasportes y comunicaciones, 2016.

— **2016.** *Manual de Ensayos de Materiales*. [ed.] Ministerio de Transportes y Comunicaciones. Lima: s.n., 2016.

—. **2014.** *Manual de Suelos, Geología, Geotecnia y Pavimentos.* Lima - Perú : Ministerio de trasportes y comunicaciones, 2014.

MTC, Ministerio de Transportes y Comunicaciones del Perú. 2008. Manual de Diseño de Carreteras Pavimentadas de Bajo Volumen de Tránsito. [ed.] Dirección General de Caminos y Ferrocarriles. 2008.

OSEDA, Dulio , y otros. 2011. ¿Cómo aprender y enseñar investigación científica? [ed.] Juan José Oré Rojas. Huancavelica : s.n., 2011. pág. 195. Vol. I.

PALELLA, Santa y MARTINS, Feliberto. 2012. Metodologia de la investigacion cuantitativa. Caracas: FEDUPEL, 2012. pág. 285.

Práctica Normalizada para Prueba de Ensayo de Densidad, Densidad Relativa (Gravedad Específica), y Absorción del Agregado fino. Materials, American Society for Testing and. ASTM C128 - 15. ASTM C128 - 15, pág. 7.

RINCON H., Leidi Paola y CORTES R., Anggie Alexandra . 2020. Análisis de la resistencia a la compresión inconfinada y CBR de un afirmado estabilizado con ceniza de bagazo de caña de azúcar y cal. Facultad de Ingenieria civil, Universidad De La Salle. Bogota: s.n., 2020. pág. 244, Tesis de pregrado.

RUI WAMBA, Javier. 2020. TEORIA UNIFICADA DE ESTRUCTURAS Y CIMIENTOS. UNA MIRADA TRANSVERSAL. Barcelona : Editorial Reverte S.A., 2020. pág. 1065.

SALINAS, Pedro José. 2016. *METODOLOGÍA DE LA INVESTIGACIÓN CIENTÍFICA*. Merida: Venezuela: Universidad Peruana Los Andes, 2016. pág. 182.

SAMPEDRO R., Angel. 2005. *TRATAMIENTOS DE SUELOS CON CAL.* [ed.] ANCADE (Asociación Nacional de fabricantes de Cales y Derivados de España). Madrid : s.n., 2005. pág. 101.

SUGARCANE STRAW ASH EFFECTS ON LIME STABILIZED LATERITIC SOIL FOR STRUCTURAL WORKS. **OLUDOLAPO**, **Olugbenga**, y otros. **2020**. 2020, Stavební obzor - Civil Engineering Journal, Vol. 3, págs. 306-314.

VASQUEZ CABRERA, Alexander Mauricio. 2018. Capacidad de soporte al estabilizar el suelo de la Vía Cascajal con adición de carbón y cal a nivel de sub rasante. Universidad San Pedro. Chimbote: s.n., 2018. pág. 122, Tesis de Pregrado.

ANEXOS

ANEXO 1: MATRIZ DE CONSISTENCIA

TÍTULO: "ESTABILIZ	ACIÓN DE SUBRASANT	ES CON CENIZAS DE EU	CALIPTO Y CAL EN	CAMINOS VECINALI	ES, CARRETERA MALLAN BA	JO. PASCO 2022"	
AUTOR: FLORES JUR		25 CON CENTERIO DE EC	C.LLII TO I CILL DIV	C.IIII (OD) ECHNIEI	So, Charles Blanch Blanch	00,11000	
PROBLEMAS	OBJETIVOS	HIPÓTESIS	VARIABLES	DIMENSIONES	INDICADORES	INSTRUMENTOS	METODOLOGÍA
Problema general ¿Cuánto varia la estabilización de	Objetivo general Determinar cuánto varía la estabilización de	Hipótesis general La estabilización de subrasantes con cenizas de		D1: Peso Especifico	I1: Gravedad específica I2: Volumen I3: Densidad		Método de investigación:
subrasantes con cenizas de eucalipto y cal en caminos vecinales, carretera Mallan Bajo, Pasco 2022?	subrasantes con cenizas de eucalipto y cal en caminos vecinales, carretera Mallan Bajo, Pasco 2022.	eucalipto y cal varia significativamente en caminos vecinales, carretera Mallan Bajo, Pasco 2022.	V1: Cenizas de eucalipto y cal	D2: Granulometría	I1: 2" - N°4 I2: N° 4 - N°200 I3: < N° 200		Científico
Problemas específicos	Objetivos específicos Calcular cuánto varía la	Hipótesis específicas La estabilización de		D3: Dosificación	I1: 92SN% - CE5 % - C3% I2: 86SN% - CE10% - C4 % I3: 80SN% - CE15% - C5 %		Tipo de investigación: Aplicada
capacidad de soporte (CBR) de las subrasantes con cenizas de eucalipto y cal en caminos vecinales,	capacidad de soporte (CBR) de las subrasantes con cenizas de eucalipto y cal en caminos vecinales, carretera	subrasantes con cenizas de eucalipto y cal varía considerablemente la capacidad de soporte (CBR) en caminos		D1: Capacidad de soporte (CBR)	I1: Expansión I2: Penetración I3: Modulo de resiliencia	Ficha de recopilación de datos	Nivel: Explicativo
carretera Mallan Bajo, Pasco 2022? ¿Cuánto varia los límites de consistencia	Mallan Bajo, Pasco 2022. Cuantificar cuanto varia los límites de	vecinales, carretera Mallan Bajo, Pasco 2022. La estabilización de subrasantes con cenizas de	V2: Estabilización de subrasantes	D2: Límites de consistencia	I1: Índice de plasticidad I2: Límite líquido I3: Límite plástico		Diseño:
de las subrasantes con cenizas de eucalipto y cal en caminos vecinales, carretera Mallan Bajo, Pasco 2022?	consistencia de las subrasantes con cenizas de eucalipto y cal en caminos vecinales, carretera Mallan Bajo, Pasco 2022.	eucalipto y cal varía significativamente los límites de consistencia de las subrasantes en caminos vecinales, carretera Mallan Bajo, Pasco 2022.		D3: Máxima Densidad Seca	II: Densidad I2: Óptimo contenido de humedad		Experimental
¿Cuánto varia la compactación de suelo de las subrasantes con cenizas de eucalipto y cal en caminos vecinales, carretera Mallan Bajo, Pasco 2022?	Determinar cuánto varía la compactación de suelo de las subrasantes con cenizas de eucalipto y cal en caminos vecinales, carretera Mallan Bajo, Pasco 2022.	La estabilización de subrasantes con cenizas de eucalipto y cal varía considerablemente la compactación de suelo de las subrasantes en caminos vecinales, carretera Mallan Bajo, Pasco 2022.					

()	_
х	r
o	L

ANEXO 2: INSTRUMENTO DE INVESTIGACIÓN VALIDADO

FICHA DE RECOLECCION DE DATOS

TESIS: "ESTABILIZACIÓN DE SUBRASANTES CON CENIZAS DE EUCALIPTO Y CAL EN CAMINOS VECINALES, CARRETERA MALLAN BAJO, PASCO 2022"

AUTOR: MAYRA NISIDA FLORES JURADO

L- INFORMACION GENERAL	:					
UBICACIÓN:	CARRETERA	A MALLAN BAJO				
DISTRITO:	HUACHON		ALTITUD:	2457 msnm		
PROVINCIA:	PASCO		LATITUD:	10°40′19"S		EXPERTO
REGION:	PASCO		LONGITUD:	75°45′20"W		A
IL-D1: Peso Especifico	•					0.9
Colocar la información a reco	pilar de campo	para medir la D1V1 ó D1V2:				
Indicador 1:	Und	Indicador 2:	Und	Indicador 3:	Und	
de eucalipto y cal	g/cm3	Volumen	cm3			
II D2: Granulometría						1
Colocar la información a reco	pilar de campo	para medir la D1V1 ó D2V2:				
Indicador 1:	Und	Indicador 2:	Und	Indicador 3:	Und	
N° 200		N° 40		N° 16		
I D3: Dosificación						1
Colocar la información a reco	pilar de campo	para medir la D1V1 ó D3V2:				
Indicador 1:	Und	Indicador 2:	Und	Indicador 3:	Und	
S92 % - CE5 % - C3 %	%	S86 % - CE10 % - C4 %	%	S80 % - CE15 % - C5 %	%	
V D1: Capacidad de soporte (C						1
Colocar la información a reco	pilar de campo	para medir la D1V2 ó D1V1:			_	
Indicador 1:	Und	Indicador 2:	Und	Indicador 3:	Und	
Expansion	%	Penetracion	pulgadas	Modulo de resiliencia	psi	
V D2: Límites de consistencia						1
Colocar la información a reco	pilar de campo	-	1		1	
Indicador 1:	Und	Indicador 2:	Und	Indicador 3:	Und	
Índice de plasticidad	%	Límite líquido	%	Límite plástico	%	
V D3: Máxima Densidad Seca						1
Colocar la información a reco	<u> </u>	<u>*</u>	1	1	1	
Indicador 1:	Und	Indicador 2:	Und	Indicador 3:	Und	
Densidad	gr/cm3	Óptimo contenido de humedad	%			
APELLIDOS Y NOMBRES:	Castillo Dieg	o Jorge Antonio	Firma	11()		
PROFESION	Ingeniero Civ	vil				
REGISTRO CIP No:	113217					
EMAIL:	jorgecastill	odiego@gmail.com				
TELEFONO:	990464834			<u> </u>	PROMEDIO	0.983

FICHA DE RECOLECCION DE DATOS

TESIS: "ESTABILIZACIÓN DE SUBRASANTES CON CENIZAS DE EUCALIPTO Y CAL EN CAMINOS VECINALES, CARRETERA MALLAN BAJO, PASCO 2022"

AUTOR: MAYRA NISIDA FLORES JURADO

L- INFORMACION GENERAL	<i>:</i>					
UBICACIÓN:	CARRETER	A MALLAN BAJO				
DISTRITO:	HUACHON		ALTITUD:	2457 msnm		
PROVINCIA:	PASCO		LATITUD:	10°40′19"S		EXPERTO
REGION:	PASCO		LONGITUD:	75°45′20"W		В
IL-D1: Peso Especifico						1
Colocar la información a reco	opilar de campo	para medir la D1V1 ó D1V2:				
Indicador 1:	Und	Indicador 2:	Und	Indicador 3:	Und	
de eucalipto y cal	g/cm3	Volumen	cm3			
II D2: Granulometría						1
Colocar la información a reco	opilar de campo	para medir la D1V1 ó D2V2:				
Indicador 1:	Und	Indicador 2:	Und	Indicador 3:	Und	
N° 200		N° 40		N° 16		
D3: Dosificación						0.85
Colocar la información a reco	opilar de campo	para medir la D1V1 ó D3V2:				
Indicador 1:	Und	Indicador 2:	Und	Indicador 3:	Und	
S92 % - CE5 % - C3 %	%	S86 % - CE10 % - C4 %	%	S80 % - CE15 % - C5 %	%	
V D1: Capacidad de soporte (C	CBR)					1
Colocar la información a reco	opilar de campo	para medir la D1V2 ó D1V1:				
Indicador 1:	Und	Indicador 2:	Und	Indicador 3:	Und	
Expansion	%	Penetracion	pulgadas	Modulo de resiliencia	psi	
D2: Límites de consistencia	1					0.9
Colocar la información a reco	opilar de campo	para medir la D2V2 ó D2V1:				
Indicador 1:	Und	Indicador 2:	Und	Indicador 3:	Und	
Índice de plasticidad	%	Límite líquido	%	Límite plástico	%	
D3: Máxima Densidad Seca						1
Colocar la información a reco	opilar de campo	para medir la D3V2 ó D3V1:				
Indicador 1:	Und	Indicador 2:	Und	Indicador 3:	Und	
Densidad	gr/cm3	Óptimo contenido de humedad	%			
APELLIDOS Y NOMBRES:	Ojeda Mont	alvo Luis Jesús	Firma:	Λ		
PROFESION	Ingeniero Ci	vil				
REGISTRO CIP No:	210477					
EMAIL:	jesus_ojed	a_m@hotmail.com		L'		
TELEFONO:	979121007				PROMEDIO	0.958

FICHA DE RECOLECCION DE DATOS

TESIS: "ESTABILIZACIÓN DE SUBRASANTES CON CENIZAS DE EUCALIPTO Y CAL EN CAMINOS VECINALES, CARRETERA MALLAN BAJO, PASCO 2022"

AUTOR: MAYRA NISIDA FLORES JURADO

I	INFORMACION GENERAL:						
	UBICACIÓN:	CARRETERA	MALLAN BAJO				
	DISTRITO:	HUACHON		ALTITUD:	2457 msnm		
	PROVINCIA:	PASCO		LATITUD:	10°40′19"S		EXPERTO
	REGION:	PASCO		LONGITUD:	75°45′20"W		С
II.	D1: Peso Especifico						0.99
	Colocar la información a recop	pilar de campo	para medir la D1V1 ó D1V2:				
	Indicador 1:	Und	Indicador 2:	Und	Indicador 3:	Und	
	de eucalipto y cal	g/cm3	Volumen	cm3			
II	D2: Granulometría						0.85
	Colocar la información a recop	oilar de campo	para medir la D1V1 ó D2V2:				
	Indicador 1:	Und	Indicador 2:	Und	Indicador 3:	Und	
	N° 200		N° 40		N° 16		
I	D3: Dosificación						1
	Colocar la información a recop	pilar de campo	para medir la D1V1 ó D3V2:				
	Indicador 1:	Und	Indicador 2:	Und	Indicador 3:	Und	
	S92 % - CE5 % - C3 %	%	S86 % - CE10 % - C4 %	%	S80 % - CE15 % - C5 %	%	
V	D1: Capacidad de soporte (CI						1
	Colocar la información a recop			Т	T		
	Indicador 1:	Und	Indicador 2:	Und	Indicador 3:	Und	
_	Expansion	%	Penetracion	pulgadas	Modulo de resiliencia	psi	
\mathbf{v}	D2: Límites de consistencia						1
	Colocar la información a reco	oilar de campo	nara medir la D2V2 ó D2V1				
	Indicador 1:	Und	Indicador 2:	Und	Indicador 3:	Und	
		%		%		%	
	Índice de plasticidad	70	Límite líquido	70	Límite plástico	70	
V	D3: Máxima Densidad Seca						1
	Colocar la información a reco	oilar de campo	para medir la D3V2 ó D3V1:				
H	Indicador 1:	Und	Indicador 2:	Und	Indicador 3:	Und	
	Densidad	gr/cm3	Óptimo contenido de humedad	%			
Al	PELLIDOS Y NOMBRES:	Benites Feijo	o Carlos	Firma:	CONCREMAX		
PI	ROFESION	Ingeniero Civ			Bout 7		
RI	EGISTRO CIP No:	153789			Carlos H. Benites Feijoo JEFE DE PROYECTO		
C	ARGO:	Jefe de Proye	cto		JEFE DE PROYECTO		
EN	IPRESO:	CONCREMA				PROMEDIO	0.973

ANEXO 3: CERTIFICADOS DE LABORATORIO

Dirección: Av. Circunvalación Mz. "B", Lote 1, Int. 1 Huachipa - Lima - Perú

950 270 955 - 01 5407661

Web: www.masterlem.com.pe Email: servicios@masterlem.com.pe

Solicitante

Mayra Flores Jurado

Expediente N°

: 251_22_5

Nombre del proyecto

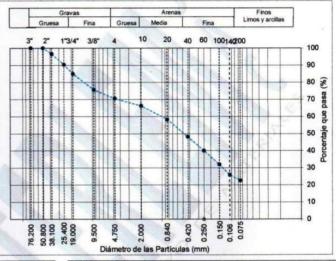
Fecha de ensayo

: 23/11/2022

"Estabilización de subrasante con cenizas de eucalipto y cal en caminos vecinales, carretera Mallan Bajo, Pasco - 2023"

Fecha de emisión

Ubicación del laboratorio


Huachipa, Lima

: 25/11/2022

Identificación muestra

Calicata - 1

AN	ALISIS GRANULOME	TRICO POR TAMIZA	DO
TAMIZ	ABERTURA (mm)	PORCENTAJE QUE PASA	ESPECIFIC
3"	76.200	100.0	
2"	50.800	100.0	
1 1/2"	38.100	96.6	
1"	25.400	90.3	
3/4"	19.000	85.0	
3/8"	9.500	75.7	
Nº 4	4.750	70.5	
Nº 10	2.000	66.3	
Nº 20	0.840	58.3	-
Nº 40	0.425	48.1	-
Nº 60	0.250	40.1	-3
Nº 100	0.150	31.9	-
Nº 140	0.106	25.9	
Nº 200	0.075	22.7	

CONTENIDO DE HU ASTM D2216	
CONTENIDO DE HUMEDAD (%)	4.7
MÉTODO DE SECADO	Horno a 110 +/-5°C
MÉTODO DE REPORTE	"B"
MATERIALES EXCLUÍDOS	Ninguno

CLASIFICACIÓN VISUAL - MANUAL	SM-SW arena bien gradada con limos, finos no plásticos de color geige claro en condición parcialmente húmeda.
NOTAS SOBRE LA MUESTRA	Sin presencia de materiales extraños ajenos al suelo

LÍMITES DE CONSISTENC ASTM D4318	CIA
LÍMITE LÍQUIDO	N.P.
LÍMITE PLÁSTICO	N.P.
ÎNDICE DE PLASTICIDAD	N.P.
INDICE DE CONSISTENCIA (Ic)	- 7, V
INDICE DE LIQUIDEZ (IL)	
MÉTODO DE ENSAYO DE LÍMITE LÍQUIDO	

CLA	SIFICACIÓN DEL SUEL	.0
CLASIFICACIÓN SUCS	(ASTM D2487)	SM
CLASIFICACIÓN AASH	TO (ASTM D3282)	A-1-b (0)
NOMBRE DEL GRUPO	Arena limosa c	on grava

COMPOSICIÓN FÍSICA DEL SUELO EN FUNCIÓN AL TAMAÑ PARTÍCULAS			
CONTENIDO DE GRAVA PRESENTE EN EL SUELO %	29.5		
CONTENIDO DE ARENA PRESENTE EN EL SUELO %	47.8		
CONTENIDO DE FINOS PRESENTES EN EL SUELO %	22.7		

Dirección: Av. Circunvalación Mz. "B", Lote 1,

Int. 1 Huachipa – Lima – Perú 950 270 955 – 01 5407661

Web: www.masterlem.com.pe Email: servicios@masterlem.com.pe

Solicitante

: Mayra Flores Jurado

Expendiente

: 251_22_27

Nombre del proyecto

: "Estabilización de subrasante con cenizas de eucalipto y cal en caminos vecinales, carretera Mallan Bajo, Pasco - 2023"

Fecha de ensayo

: 9/12/2022

camir

Fecha de emisión

: 15/12/2022

· Ubicación del laboratorio

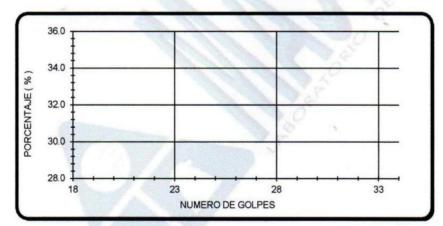
: Huachipa, Lima.

LIMITES DE CONSISTENCIA DE ATTERBERG ASTM D 4318

Referencia de la muestra:

Identificación

: Calicata - 1 cal 3% ceniza eucalipto 5%


Muestra

: Sacos de polipropileno

Cantidad

: 100 kg aproximadamente

DESCRIPCIÓN	LÍI	MITE LÍQUIC	00	LÍMITE PLÁSTICO	
Ensayo Nº	1	2	3	1	2
Nro. de Recipiente					
Masa de Recipiente (g)					
Masa de Recipiente + Suelo Húmedo (g)					
Masa Recipiente + Suelo Seco (g)					
№ De Golpes					
Cantidad mínima requerida LL: 20 g / LP: 6 g					
Aceptación de resultado (LL: R2>0.985 / LP: Ds < 2				N.	. P.
Contenido de Humedad (%)	N.P	N.P	N.P	N.P.	N.P.

Límite Líquido %	N.P.
Límite Plástico %	N.P.
Índice de Plasticidad	N.P.

N. P.= No presenta

Dirección: Av. Circunvalación Mz. "B", Lote 1, Int. 1 Huachipa - Lima - Perú

950 270 955 - 01 5407661 Web: www.masterlem.com.pe

Email: servicios@masterlem.com.pe

Solicitante

: Mayra Flores Jurado

Expendiente

: 251_22_28

Nombre del proyecto

: "Estabilización de subrasante con cenizas de eucalipto y cal en Fecha de ensayo

: 9/12/2022

caminos vecinales, carretera Mallan Bajo, Pasco - 2023"

Fecha de emisión

: 15/12/2022

· Ubicación del laboratorio

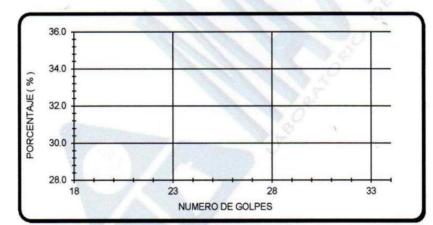
: Huachipa, Lima.

LIMITES DE CONSISTENCIA DE ATTERBERG ASTM D 4318

Referencia de la muestra:

Identificación

: Calicata - 1 cal 4% ceniza eucalipto 10%


Muestra

: Sacos de polipropileno

Cantidad

: 100 kg aproximadamente

DESCRIPCIÓN	LÍN	ITE LÍQUI	00	LÍMITE P	LÁSTICO
Ensayo №	1	2	3	1	2
Nro. de Recipiente					
Masa de Recipiente (g)					<u> </u>
Masa de Recipiente + Suelo Húmedo (g)					
Masa Recipiente + Suelo Seco (g)					
№ De Golpes					
Cantidad mínima requerida LL: 20 g / LP: 6 g		7			
Aceptación de resultado (LL: R2>0.985 / LP: Ds < 2	NA.	3340	MAT.	N.	P.
Contenido de Humedad (%)	N.P	N.P	N.P	N.P	N.P

Límite Líquido %	N.P.
Límite Plástico %	N.P.
Índice de Plasticidad	N.P.

N. P.= No presenta

Dirección: Av. Circunvalación Mz. "B", Lote 1, Int. 1 Huachipa – Lima – Perú

nt. 1 Huacnipa – Lima – Peru 950 270 955 – 01 5407661

Web: www.masterlem.com.pe Email: servicios@masterlem.com.pe

Solicitante

: Mayra Flores Jurado

Expendiente

: 251_22_29

Nombre del proyecto

: "Estabilización de subrasante con cenizas de eucalipto y cal en

Fecha de ensayo

: 9/12/2022

caminos vecinales, carretera Mallan Bajo, Pasco - 2023"

Fecha de emisión

: 15/12/2022

· Ubicación del laboratorio

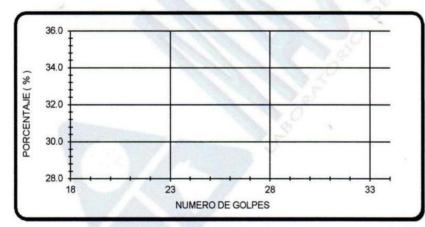
: Huachipa, Lima.

LIMITES DE CONSISTENCIA DE ATTERBERG ASTM D 4318

Referencia de la muestra:

Identificación

:Calicata - 1 cal 5% ceniza eucalipto 15%


Muestra

: Sacos de polipropileno

Cantidad

: 100 kg aproximadamente

DESCRIPCIÓN	LÍMITE LÍQUIDO		CRIPCIÓN LÍMITE LÍQUIDO LÍMITE PLÁSTICO		LÁSTICO
Ensayo №	1	2	3	1	2
Nro. de Recipiente					
Masa de Recipiente (g)					
Masa de Recipiente + Suelo Húmedo (g)					•••••
Masa Recipiente + Suelo Seco (g)					•••••
№ De Golpes					••••••
Cantidad mínima requerida LL: 20 g / LP: 6 g					
Aceptación de resultado (LL: R2>0.985 / LP: Ds < 2		10,0		N.	Р.
Contenido de Humedad (%)	N.P	N.P	N.P	N.P	N.P

Límite Líquido %	N.P.
Límite Plástico %	N.P.
Índice de Plasticidad	N.P.

N. P.= No presenta

RUC 20506076235 Dirección: Av. Circunvalación Mz. "B", Lote 1, Int. 1 Huachipa – Lima – Perú 950 270 955 – 01 5407661

Web: www.masterlem.com.pe Email: servicios@masterlem.com.pe

Solicitante

: Mayra Flores Jurado

Expendiente

: 251_22_30

Nombre del proyecto

: "Estabilización de subrasante con cenizas de eucalipto y cal en Fecha de ensayo

: 9/12/2022

caminos vecinales, carretera Mallan Bajo, Pasco - 2023"

Fecha de emisión

: 15/12/2022

Ubicación del laboratorio

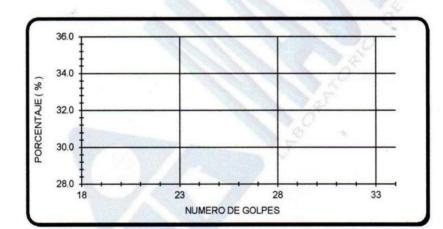
: Huachipa, Lima.

LIMITES DE CONSISTENCIA DE ATTERBERG ASTM D 4318

Referencia de la muestra:

Identificación

: Calicata - 1 cal 6% ceniza eucalipto 20%


Muestra

: Sacos de polipropileno

Cantidad

: 100 kg aproximadamente

DESCRIPCIÓN	LÍ	MITE LÍQU	IDO	LÍMITE P	LÁSTICO
Ensayo Nº	1	2	3	1	2
Nro. de Recipiente					
Masa de Recipiente (g)					<u> </u>
Masa de Recipiente + Suelo Húmedo (g)					
Masa Recipiente + Suelo Seco (g)	280.000548				
№ De Golpes				20	
Cantidad mínima requerida LL: 20 g / LP: 6 g					SUCCESSION STATES
Aceptación de resultado (LL: R2>0.985 / LP: Ds < 2				N.	P.
Contenido de Humedad (%)	N.P	N.P	N.P	N.P	N.P

Límite Líquido %	N.P.
Límite Plástico %	N.P.
Índice de Plasticidad	N.P.

N. P.= No presenta

Dirección: Av. Circunvalación Mz. "B", Lote 1, Int. 1 Huachipa – Lima – Perú

950 270 955 – 01 5407661

Web: www.masterlem.com.pe Email: servicios@masterlem.com.pe

Solicitante

: Mayra Flores Jurado

Expendiente

Fecha de emisión

: 251_22_35

Nombre del proyecto

: "Estabilización de subrasante con cenizas de eucalipto y cal en Fecha de ensayo

: 9/12/2022

caminos vecinales, carretera Mallan Bajo, Pasco - 2023"

: 15/12/2022

· Ubicación del laboratorio

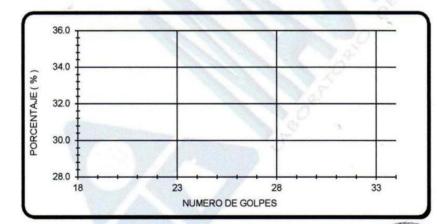
: Huachipa, Lima.

LIMITES DE CONSISTENCIA DE ATTERBERG ASTM D 4318

Referencia de la muestra:

Identificación

: Calicata - 1


Presentación

: Sacos de polipropileno

Cantidad

: 100 kg aproximadamente

DESCRIPCIÓN	LÍM	ITE LÍQUI	00	LÍMITE F	PLÁSTICO
Ensayo №	1	2	3	1	2
Nro. de Recipiente					2/4
Masa de Recipiente (g)					
Masa de Recipiente + Suelo Húmedo (g)					
Masa Recipiente + Suelo Seco (g)					
№ De Golpes					
Cantidad mínima requerida LL: 20 g / LP: 6 g					
Aceptación de resultado (LL: R2>0.985 / LP: Ds < 2			V 92	N	. P.
Contenido de Humedad (%)	N.P	N.P	N.P	N.P.	N.P.

Límite Líquido %	N.P.
Límite Plástico %	N.P.
Índice de Plasticidad	N.P.

N. P.= No presenta

TASTENIEN TO STENE THE TASTE OF THE PARTY OF

Dirección: Av. Circunvalación Mz. "B", Lote 1, Int. 1 Huachipa – Lima – Perú

950 270 955 - 01 5407661 Web: www.masterlem.com.pe

Email: servicios@masterlem.com.pe

Solicitante

: Mayra Flores Jurado

Nombre de Proyecto

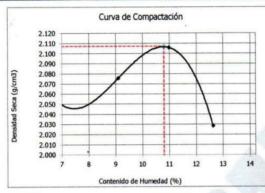
: "Estabilización de subrasante con cenizas de eucalipto y cal en caminos

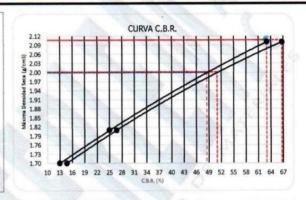
vecinales, carretera Mallan Bajo, Pasco - 2023"

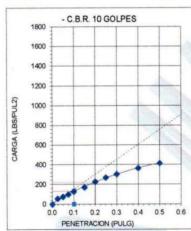
Expediente Nº

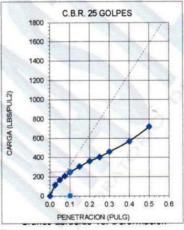
: 251 22 12

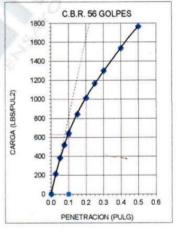
Fecha de Ensayo Fecha de Emision : 29/11/2022 : 9/12/2022


Ubicación de laboratorio


: Huachipa, Lima


Identificacion de muestra


: Calicata 1


ENSAYO DE RELACIÓN DE SOPORTE DE CALIFORNIA (C.B.R.) DE SUELOS COMPACTADOS EN EL LABORATORIO ASTM D 1883

Máxima Densidad Seca Próctor	g/cm3	2.107
Óptimo Contenido de Humedad Pro	óctor %	10.6

C.B.R. al 100 % M.D.S. 0.1"	(%)	63.0
C.B.R. al 95 % M.D.S. 0.1"	(%)	48.5
C.B.R. al 100 % M.D.S. 0.2"	(%)	66.7
C.B.R. al 95 % M.D.S. 0.2"	(%)	50.5

Observaciones:

Muestra proporcionada por el cliente.

El presente documento no deberá reproducirse sin la autorización escrita del laboratorio, salvo que la reproducción

sea en su totalidad. El laboratorio no se hace responsable por el mal uso de los resultados por

LABORATORIO DE ENSAYO DE MATERIALES

RUC 20506076235

Dirección: Av. Circunvalación Mz. "B", Lote 1, Int. 1 Huachipa – Lima – Perú 950 270 955 – 01 5407661

Web: www.masterlem.com.pe

Email: servicios@masterlem.com.pe

Solicitante

: Mayra Flores Jurado

.

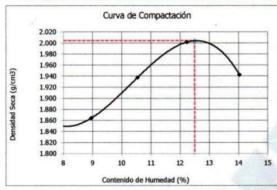
: 251_22_15

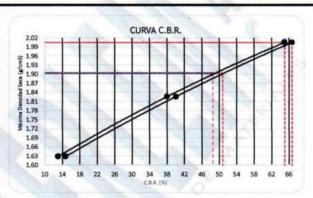
Nombre de Proyecto

: "Estabilización de subrasante con cenizas de eucalipto y cal en caminos vecinales, carretera Mallan Bajo, Pasco - 2023"

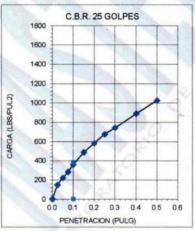
Expediente Nº Fecha de Ensayo Fecha de Emision

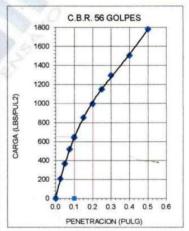
: 29/11/2022


Ubicación de laboratorio


: Huachipa, Lima

Identificacion de muestra


: Calicata 1 adición de cal 3% y ceniza de eucalipto 5%


ENSAYO DE RELACIÓN DE SOPORTE DE CALIFORNIA (C.B.R.) DE SUELOS COMPACTADOS EN EL LABORATORIO ASTM D 1883

Máxima Densidad Seca Próctor	g/cm3	2.004
Óptimo Contenido de Humedad Pr	óctor %	12.5

C.B.R. al 100 % M.D.S. 0.1"	(%)	65.0
C.B.R. al 95 % M.D.S. 0.1"	(%)	48.5
C.B.R. al 100 % M.D.S. 0.2"	(%)	66.7
C.B.R. al 95 % M.D.S. 0.2"	(%)	50.8

Observaciones:

Muestra proporcionada por el cliente.

El presente documento no deberá reproducirse sin la autorización escrita del laboratorio, salvo que la reproducción sea en su totalidad. El laboratorio no se hace responsable por el mal uso de los resultados presentados.

Value Value

Dirección: Av. Circunvalación Mz. "B", Lote 1, Int. 1 Huachipa – Lima – Perú

> 950 270 955 - 01 5407661 Web: www.masterlem.com.pe

Email: servicios@masterlem.com.pe

Solicitante

: Mayra Flores Jurado

Nombre de Proyecto

: "Estabilización de subrasante con cenizas de eucalipto y cal en caminos

vecinales, carretera Mallan Bajo, Pasco - 2023"

Expediente Nº

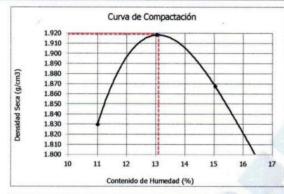
: 251_22_16

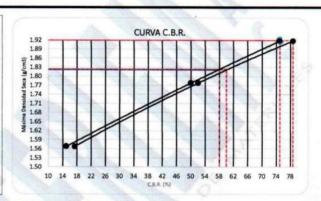
Fecha de Ensayo

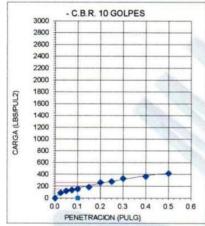
: 29/11/2022

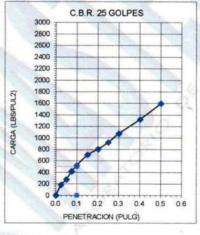
Fecha de Emision

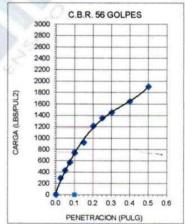
: 15/12/2022


Ubicación de laboratorio


: Huachipa, Lima


Identificacion de muestra


: Calicata 1 adición de cal 4% ceniza de eucalipto 10%


ENSAYO DE RELACIÓN DE SOPORTE DE CALIFORNIA (C.B.R.) DE SUELOS COMPACTADOS EN EL LABORATORIO ASTM D 1883

Máxima Densidad Seca Próctor	g/cm3	1.919
Óptimo Contenido de Humedad Pro	óctor %	13.1

C.B.R. al 100 % M.D.S. 0.1"	(%)	75.0
C.B.R. al 95 % M.D.S. 0.1"	(%)	58.0
C.B.R. al 100 % M.D.S. 0.2"	(%)	78.7
C.B.R. al 95 % M.D.S. 0.2"	(%)	60.0

Observaciones:

Muestra proporcionada por el cliente.

El presente documento no deberá reproducirse sin la autorización escrita del laboratorio, salvo que la reproducción sea en su totalidad. El laboratorio no se hace responsable por el mal uso de los resultados presentados.

Dirección: Av. Circunvalación Mz. "B", Lote 1, Int. 1 Huachipa - Lima - Perú

950 270 955 - 01 5407661

Web: www.masterlem.com.pe Email: servicios@masterlem.com.pe

Solicitante

: Mayra Flores Jurado

Nombre de Proyecto

: "Estabilización de subrasante con cenizas de eucalipto y cal en caminos

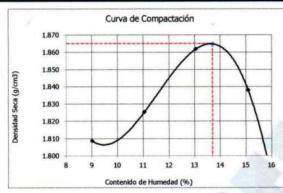
vecinales, carretera Mallan Bajo, Pasco - 2023"

Expediente Nº Fecha de Ensayo : 251_22_17

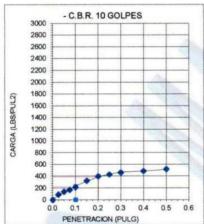
Fecha de Emision

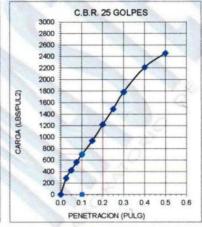
: 29/11/2022

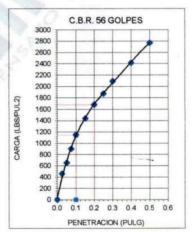
: 15/12/2022


Ubicación de laboratorio


: Huachipa, Lima


Identificacion de muestra


: Calicata 1 adición de cal 5% y ceniza de eucalipto 15%


ENSAYO DE RELACIÓN DE SOPORTE DE CALIFORNIA (C.B.R.) DE SUELOS COMPACTADOS EN EL LABORATORIO ASTM D 1883

Máxima Densidad Seca Próctor g/d	cm3	1.865
Óptimo Contenido de Humedad Próctor	%	13.7

C.B.R. al 100 % M.D.S. 0.1"	(%)	100.0
C.B.R. al 95 % M.D.S. 0.1"	(%)	72.5
C.B.R. al 100 % M.D.S. 0.2"	(%)	112.0
C.B.R. al 95 % M.D.S. 0.2"	(%)	83.5

Observaciones:

Muestra proporcionada por el cliente.

El presente documento no deberá reproducirse sin la autorización escrita del laboratorio, salvo que la reproducción sea en su totalidad. El laboratorio no se hace responsable por el mal uso de los resultados pres

A MASTERLEMS

LABORATORIO DE ENSAYO DE MATERIALES

RUC 20506076235

Dirección: Av. Circunvalación Mz. "B", Lote 1, Int. 1 Huachipa – Lima – Perú 950 270 955 – 01 5407661

Web: www.masterlem.com.pe

Email: servicios@masterlem.com.pe

Solicitante

: Mayra Flores Jurado

Expediente Nº

: 251 22 18

Nombre de Proyecto

: "Estabilización de subrasante con cenizas de eucalipto y cal en caminos

Fecha de Ensayo

: 29/11/2022

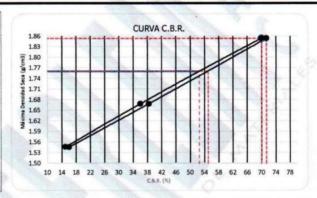
17

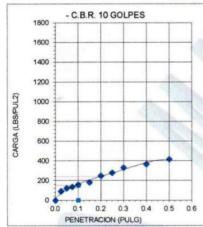
vecinales, carretera Mallan Bajo, Pasco - 2023"

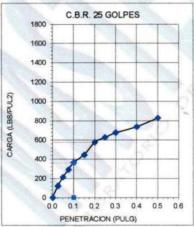
Fecha de Emision

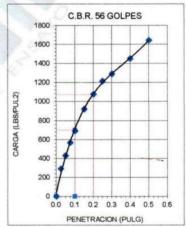
: 15/12/2022

Ubicación de laboratorio


: Huachipa, Lima


*Identificacion de muestra


: Calicata 1 adición de cal 6% y ceniza de eucalipto 20%


ENSAYO DE RELACIÓN DE SOPORTE DE CALIFORNIA (C.B.R.) DE SUELOS COMPACTADOS EN EL LABORATORIO ASTM D 1883

Máxima Densidad Seca Próctor	g/cm3	1.853
Óptimo Contenido de Humedad Pro	óctor %	14.0

C.B.R. al 100 % M.D.S. 0.1"	(%)	70.0
C.B.R. al 95 % M.D.S. 0.1"	(%)	52.5
C.B.R. al 100 % M.D.S. 0.2"	(%)	71.3
C.B.R. al 95 % M.D.S. 0.2"	(%)	55.0

Observaciones:

Muestra proporcionada por el cliente.

El presente documento no deberá reproducirse sin la autorización escrita del laboratorio, salvo que la reproducción sea en su totalidad. El laboratorio no se hace responsable por el mal uso de los resultados aresentados.

Dirección: Av. Circunvalación Mz. "B", Lote 1, Int. 1 Huachipa - Lima - Perú

950 270 955 - 01 5407661

Web: www.masterlem.com.pe Email: servicios@masterlem.com.pe

Solicitante

Mayra Flores Jurado

Expediente N°

: 251_22_6A

Nombre del proyecto

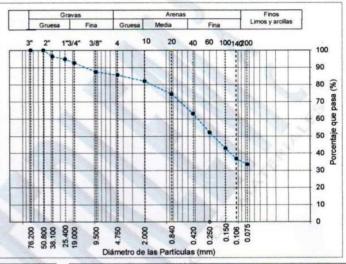
"Estabilización de subrasante con cenizas de eucalipto y cal en caminos vecinales, carretera Mallan Bajo, Pasco - 2023"

Fecha de ensayo

: 23/11/2022

Ubicación del laboratorio

Huachipa, Lima


Fecha de emisión

: 25/11/2022

 Identificación 	muestra
------------------------------------	---------

: Calicata - 2

AN	ANÁLISIS GRANULOMÉTRICO POR TAMIZADO			
TAMIZ	ABERTURA (mm)	PORCENTAJE QUE PASA	ESPECIFIC	
3"	76.200	100.0	_	
2"	50.800	100.0		
1 1/2"	38.100	96.4		
1"	25.400	94.9		
3/4"	19.000	92.7		
3/8"	9.500	87.4		
Nº 4	4.750	85.7		
Nº 10	2.000	82.1		
Nº 20	0.840	74.5	-	
Nº 40	0.425	63.1	-	
Nº 60	0.250	52.1		
Nº 100	0.150	42.9	- 1	
Nº 140	0.106	36.9	-	
Nº 200	0.075	33.5		

CONTENIDO DE HU ASTM D2216	
CONTENIDO DE HUMEDAD (%)	8.9
MÉTODO DE SECADO	Horno a 110 +/-5°C
MÉTODO DE REPORTE	"B"
MATERIALES EXCLUÍDOS	Ninguno

CLASIFICACIÓN	SC Mezcla de arenas y arcillas finos con límite
VISUAL -	líquido y plástico de color oscuro en condición
MANUAL	parcialmente húmeda.
NOTAS SOBRE LA MUESTRA	Sin presencia de materiales extraños ajenos al suelo

LÍMITES DE CONSISTENCIA ASTM D4318			
LÍMITE LÍQUIDO	28		
LÍMITE PLÁSTICO	21		
ÍNDICE DE PLASTICIDAD	7		
INDICE DE CONSISTENCIA (Ic)	2.7		
INDICE DE LIQUIDEZ (IL)	3 781		
MÉTODO DE ENSAYO DE LÍMITE LÍQUIDO	District -		

CL	ASIFICACIÓN DEL SU	LO
CLASIFICACIÓN SUC	S (ASTM D2487)	- SC
CLASIFICACIÓN AASI	HTO (ASTM D3282)	A-2-4 (0)
NOMBRE DEL GRUPO	Arena ar	cillosa

COMPOSICIÓN FÍSICA DEL SUELO EN FUNCIÓN AL T PARTÍCULAS	AMAÑO DE
CONTENIDO DE GRAVA PRESENTE EN EL SUELO %	14.3
CONTENIDO DE ARENA PRESENTE EN EL SUELO %	52.2
CONTENIDO DE FINOS PRESENTES EN EL SUELO %	33.5

Dirección: Av. Circunvalación Mz. "B", Lote 1,

Int. 1 Huachipa - Lima - Perú 950 270 955 - 01 5407661

Web: www.masterlem.com.pe Email: servicios@masterlem.com.pe

Solicitante

:Mayra Flores Jurado

Expendiente

: 251_22_31

Nombre del proyecto

: "Estabilización de subrasante con cenizas de eucalipto y cal

Fecha de ensayo

: 9/12/2022

en caminos vecinales, carretera Mallan Bajo, Pasco - 2023"

Fecha de emisión

: 15/12/2022

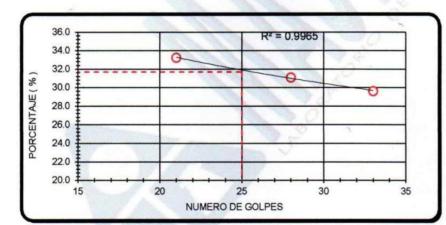
· Ubicación del laboratorio

:Huachipa, Lima

LIMITES DE CONSISTENCIA DE ATTERBERG ASTM D 4318

Referencia de la muestra:

Identificación


: Calicata - 2 cal 3% ceniza eucalipto 5%

Muestra : Sacos de polipropileno

Cantidad

: 100 kg aproximadamente

DESCRIPCIÓN	LÍM	LÍMITE LÍQUIDO			LÍMITE PLÁSTICO	
Ensayo Nº	1	2	3	1	2	
Nro. de Recipiente	11	2	8	7	6	
Masa de Recipiente (g)	16.58	16.42	16.48	43.05	45.10	
Masa de Recipiente + Suelo Húmedo (g)	52.51	56.40	55.60	54.20	52.30	
Masa Recipiente + Suelo Seco (g)	44.30	46.91	45.84	51.80	50.75	
№ De Golpes	33	28	21			
Cantidad mínima requerida LL: 20 g / LP: 6 g	¡Cumple!	¡Cumple!	¡Cumple!	¡Cumple!	¡Cumple	
Aceptación de resultado (LL: R2>0.985 / LP: Ds < 2	- 33	0.997		-		
Contenido de Humedad (%)	29.6	31.1	33.2	27.4	27.4	

Límite Líquido %	: 32
Límite Plástico %	: 27
Índice de Plasticidad	: 5

Dirección: Av. Circunvalación Mz. "B", Lote 1, Int. 1 Huachipa - Lima - Perú 950 270 955 - 01 5407661

> Web: www.masterlem.com.pe Email: servicios@masterlem.com.pe

Solicitante

:Mayra Flores Jurado

Expendiente

: 251_22_32

Nombre del proyecto

: "Estabilización de subrasante con cenizas de eucalipto y cal

Fecha de ensayo

: 9/12/2022

en caminos vecinales, carretera Mallan Bajo, Pasco - 2023"

Fecha de emisión

: 15/11/2022

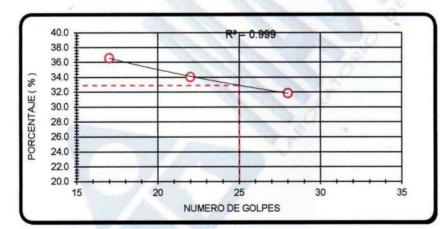
· Ubicación del laboratorio

:Huachipa, Lima

LIMITES DE CONSISTENCIA DE ATTERBERG ASTM D 4318

Referencia de la muestra:

Identificación


: Calicata - 2 cal 4% ceniza eucalipto 10%

Muestra : Sacos de polipropileno

Cantidad

: 100 kg aproximadamente

DESCRIPCIÓN	LÍMITE LÍQUIDO			LÍMITE PLÁSTICO	
Ensayo Nº	1_	2	3	1	2
Nro. de Recipiente	1	12	4	7	8
Masa de Recipiente (g)	14.51	14.61	14.72	42.70	43.87
Masa de Recipiente + Suelo Húmedo (g)	50.30	53.99	56.28	49.48	51.73
Masa Recipiente + Suelo Seco (g)	41.65	43.99	45.14	47.95	49.95
№ De Golpes	28	22	17		
Cantidad mínima requerida LL: 20 g / LP: 6 g	¡Cumple!	¡Cumple!	¡Cumple!	¡Cumple!	¡Cumple
Aceptación de resultado (LL: R2>0.985 / LP: Ds < 2		0.999			
Contenido de Humedad (%)	31.9	34.0	36.6	29.1	29.3

Límite Líquido %	: 33
Límite Plástico %	: 29
Índice de Plasticidad	: 4

Dirección: Av. Circunvalación Mz. "B", Lote 1,

Int. 1 Huachipa - Lima - Perú 950 270 955 - 01 5407661

Web: www.masterlem.com.pe Email: servicios@masterlem.com.pe

Solicitante

:Mayra Flores Jurado

Expendiente

: 251_22_33

Nombre del proyecto

: "Estabilización de subrasante con cenizas de eucalipto y cal

Fecha de ensayo

: 9/12/2022

en caminos vecinales, carretera Mallan Bajo, Pasco - 2023"

Fecha de emisión

: 15/12/2022

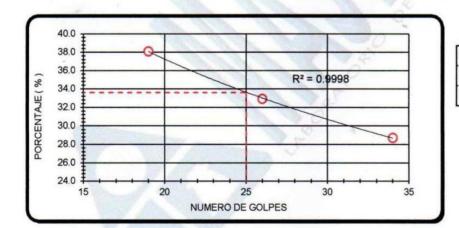
· Ubicación del laboratorio

:Huachipa, Lima

LIMITES DE CONSISTENCIA DE ATTERBERG ASTM D 4318

Referencia de la muestra:

Identificación


: Calicata - 2 cal 5% ceniza eucalipto 15%

Muestra : Sacos de polipropileno

Cantidad

: 100 kg aproximadamente

DESCRIPCIÓN	LÍMITE LÍQUIDO			LÍMITE PLÁSTICO	
Ensayo Nº	1	2	3	1	2
Nro. de Recipiente	2	4	7	6	9
Masa de Recipiente (g)	17.10	16.85	17.56	55.38	53.22
Masa de Recipiente + Suelo Húmedo (g)	45.96	39.85	37.60	61.49	60.45
Masa Recipiente + Suelo Seco (g)	39.52	34.15	32.07	60.01	58.69
№ De Golpes	34	26	19		
Cantidad mínima requerida LL: 20 g / LP: 6 g	¡Cumple!	¡Cumple!	¡Cumple!	¡Cumple!	¡Cumple!
Aceptación de resultado (LL: R2>0.985 / LP: Ds < 2		1.000	1. P.		
Contenido de Humedad (%)	28.7	32.9	38.1	32.0	32.2

Límite Líquido %	: 34
Límite Plástico %	: 32
Índice de Plasticidad	: 2

Dirección: Av. Circunvalación Mz. "B", Lote 1, Int. 1 Huachipa - Lima - Perú 950 270 955 - 01 5407661

Web: www.masterlem.com.pe Email: servicios@masterlem.com.pe

Solicitante

:Mayra Flores Jurado

Expendiente

: 251_22_34

Nombre del proyecto

: "Estabilización de subrasante con cenizas de eucalipto y cal en Fecha de ensayo

: 9/12/2022

caminos vecinales, carretera Mallan Bajo, Pasco - 2023"

Fecha de emisión

: 15/12/2022

Ubicación del laboratorio

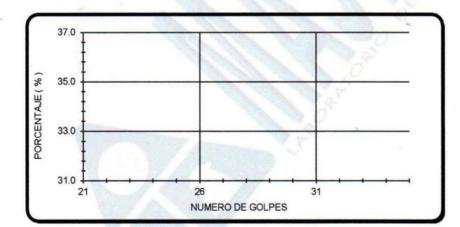
:Huachipa, Lima

LIMITES DE CONSISTENCIA DE ATTERBERG ASTM D 4318

Referencia de la muestra:

Identificación

: Calicata - 2 cal 6% ceniza eucalipto 20%


Muestra

: Sacos de polipropileno

Cantidad

: 100 kg aproximadamente

DESCRIPCIÓN	LÍMITE LÍQUIDO			LÍMITE PLÁSTICO	
Ensayo №	1	2	3	1	2
Nro. de Recipiente					
Masa de Recipiente (g)					A.
Masa de Recipiente + Suelo Húmedo (g)					
Masa Recipiente + Suelo Seco (g)					
№ De Golpes				No.	
Cantidad mínima requerida LL: 20 g / LP: 6 g					Samuel and the control of the contro
Aceptación de resultado (LL: R2>0.985 / LP: Ds < 2			Z W		
Contenido de Humedad (%)	N.P	N.P	N.P	N.P	N.P

Límite Líquido %	N.P.
Límite Plástico %	N.P.
Índice de Plasticidad	N.P.

N.P.= No presenta

JORGE FRANCISCO RAMIREZ JAPAJA INGENIERO CIVIL

Reg. de CIP N° 84286

Dirección: Av. Circunvalación Mz. "B", Lote 1, Int. 1 Huachipa – Lima – Perú 950 270 955 - 01 5407661

> Web: www.masterlem.com.pe Email: servicios@masterlem.com.pe

Solicitante

:Mayra Flores Jurado

Expendiente

: 251 22 8

Nombre del proyecto

: "Estabilización de subrasante con cenizas de eucalipto y cal

Fecha de ensayo

: 23/11/2022

en caminos vecinales, carretera Mallan Bajo, Pasco - 2023"

Fecha de emisión

: 25/11/2022

Ubicación del laboratorio

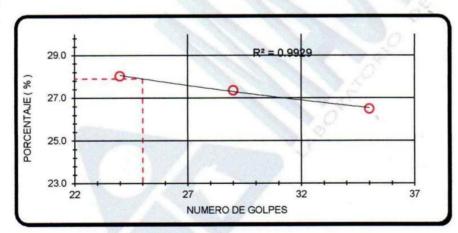
:Huachipa, Lima

LIMITES DE CONSISTENCIA DE ATTERBERG ASTM D 4318

Referencia de la muestra:

Identificación

: Calicata - 2


Presentación

: Sacos de polipropileno

Cantidad

: 100 kg aproximadamente

DESCRIPCIÓN	LÍMITE LÍQUIDO			LÍMITE PLÁSTICO	
Ensayo №	1	2	3	1	2
Nro. de Recipiente	Α	В	С	D	E
Masa de Recipiente (g)	32.52	33.27	33.29	42.10	34.85
Masa de Recipiente + Suelo Húmedo (g)	57.01	59.84	54.53	50.94	42.92
Masa Recipiente + Suelo Seco (g)	51.88	54.13	49.88	49.40	41.54
№ De Golpes	35	29	24		
Cantidad mínima requerida LL: 20 g / LP: 6 g	¡Cumple!	¡Cumple!	¡Cumple!	¡Cumple!	¡Cumple
Aceptación de resultado (LL: R2>0.985 / LP: Ds < 2	1.000		7		
Contenido de Humedad (%)	26.5	27.4	28.0	21.1	20.6

Límite Líquido %	: 28
Límite Plástico %	: 21
Índice de Plasticidad	: 7

Dirección: Av. Circunvalación Mz. "B", Lote 1,

Int. 1 Huachipa – Lima – Perú 950 270 955 – 01 5407661

Web: www.masterlem.com.pe Email: servicios@masterlem.com.pe

Solicitante

: Mayra Flores Jurado

Nombre de Proyecto

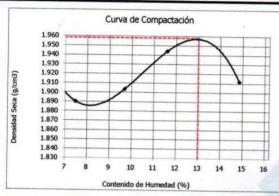
: "Estabilización de subrasante con cenizas de eucalipto y cal en caminos

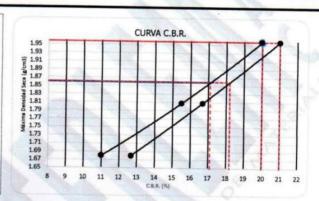
vecinales, carretera Mallan Bajo, Pasco - 2023"

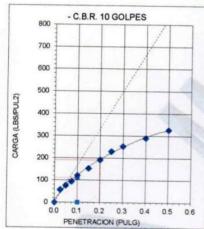
Expediente Nº

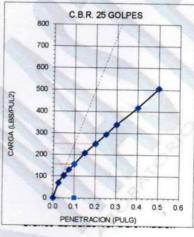
: 251_22_13

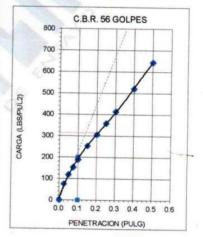
Fecha de Ensayo


: 29/11/2022


Fecha de Emision


9/12/2022


Ubicación de laboratorio Identificacion de muestra : Huachipa, Lima : Calicata - 2


ENSAYO DE RELACIÓN DE SOPORTE DE CALIFORNIA (C.B.R.) DE SUELOS COMPACTADOS EN EL LABORATORIO ASTM D 1883

Máxima Densidad Seca Próctor	g/cm3	1.958
Óptimo Contenido de Humedad Pro	octor %	12.8

C.B.R. al 100 % M.D.S. 0.1"	(%)	20.0
C.B.R. al 95 % M.D.S. 0.1"	(%)	17.1
C.B.R. al 100 % M.D.S. 0.2"	(%)	21.0
C.B.R. al 95 % M.D.S. 0.2"	(%)	18.2

Observaciones:

Muestra proporcionada por el cliente.

El presente documento no deberá reproducirse sin la autorización escrita del laboratorio, salvo que la reproducción sea en su totalidad.El laboratorio no se hace responsable por el mal uso de los resultados presentados.

Dirección: Av. Circunvalación Mz. "B", Lote 1,

Int. 1 Huachipa – Lima – Perú 950 270 955 – 01 5407661

Web: www.masterlem.com.pe

Email: servicios@masterlem.com.pe

Solicitante

: Mayra Flores Jurado

Expediente Nº Fecha de Ensavo : 251_22_19

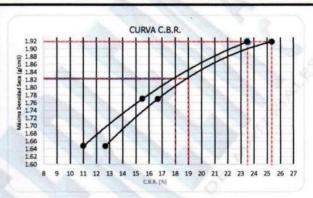
Nombre de Proyecto

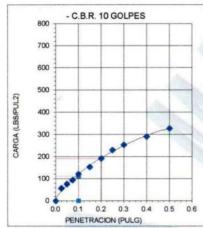
: "Estabilización de subrasante con cenizas de eucalipto y cal en caminos vecinales, carretera Mallan Bajo, Pasco - 2023"

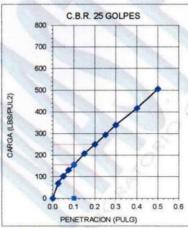
Fecha de Emision

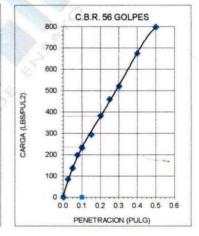
: 9/12/2022 : 15/12/2022


Ubicación de laboratorio


: Huachipa, Lima


1 Identificacion de muestra


: Calicata - 2 adición de cal 3% y ceniza de eucalipto 5%


ENSAYO DE RELACIÓN DE SOPORTE DE CALIFORNIA (C.B.R.) DE SUELOS COMPACTADOS EN EL LABORATORIO ASTM D 1883

Máxima Densidad Seca Próctor	g/cm3	1.920
Óptimo Contenido de Humedad Pr	óctor %	13.7

C.B.R. al 100 % M.D.S. 0.1"	(%)	23.5
C.B.R. al 95 % M.D.S. 0.1"	(%)	18.0
C.B.R. al 100 % M.D.S. 0.2"	(%)	25.3
C.B.R. al 95 % M.D.S. 0.2"	(%)	19.0

Observaciones:

Muestra proporcionada por el cliente.

El presente documento no deberá reproducirse sin la autorización escrita del laboratorio, salvo que la reproducción sea en su totalidad. El laboratorio no se hace responsable por el mal uso de los resultados presentados.

Dirección: Av. Circunvalación Mz. "B", Lote 1, Int. 1 Huachipa – Lima – Perú 950 270 955 – 01 5407661

> Web: www.masterlem.com.pe Email: servicios@masterlem.com.pe

Solicitante

: Mayra Flores Jurado

Nombre de Proyecto

: "Estabilización de subrasante con cenizas de eucalipto y cal en caminos

vecinales, carretera Mallan Bajo, Pasco - 2023"

Expediente Nº

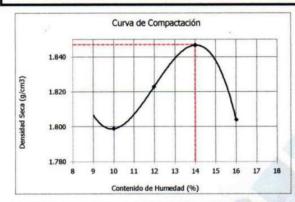
: 251 22 20

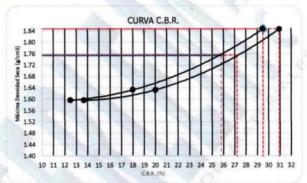
Fecha de Ensayo

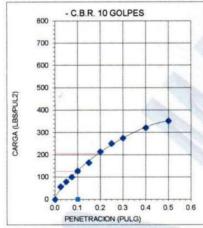
: 9/12/2022

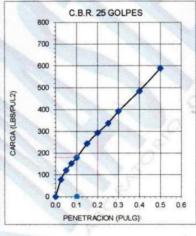
Fecha de Emision

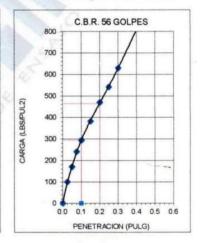
: 15/12/2022


Ubicación de laboratorio


: Huachipa, Lima


*Identificacion de muestra


: Calicata - 2 adición de cal 4% y ceniza de eucalipto 10%


ENSAYO DE RELACIÓN DE SOPORTE DE CALIFORNIA (C.B.R.) DE SUELOS COMPACTADOS EN EL LABORATORIO ASTM D 1883

Máxima Densidad Seca Próctor	g/cm3	1.847
Óptimo Contenido de Humedad Pr	óctor %	14.0

C.B.R. al 100 % M.D.S. 0.1"	(%)	29.5
C.B.R. al 95 % M.D.S. 0.1"	(%)	26.3
C.B.R. al 100 % M.D.S. 0.2"	(%)	30.9
C.B.R. al 95 % M.D.S. 0.2"	(%)	27.2

Observaciones:

Muestra proporcionada por el cliente.

El presente documento no deberá reproducirse sin la autorización escrita del laboratorio, salvo que la reproducción sea en su totalidad. El laboratorio no se hace responsable por el mal uso de los resultados presentados.

Dirección: Av. Circunvalación Mz. "B", Lote 1, Int. 1 Huachipa – Lima – Perú 950 270 955 – 01 5407661

> Web: www.masterlem.com.pe Email: servicios@masterlem.com.pe

Nombre de Proyecto

Solicitante

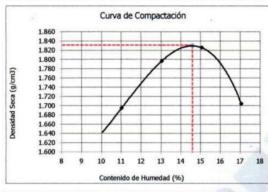
: Mayra Flores Jurado : "Estabilización de subrasante con cenizas de eucalipto y cal en caminos

vecinales, carretera Mallan Bajo, Pasco - 2023"

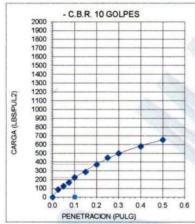
Expediente Nº

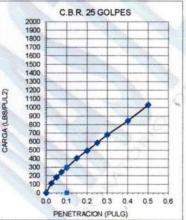
: 251_22_21

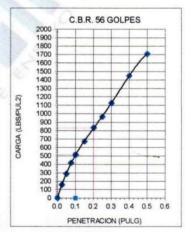
Fecha de Ensayo Fecha de Emision : 9/12/2022 : 15/12/2022


Ubicación de laboratorio

: Huachipa, Lima


Identificacion de muestra


: Calicata - 2 adición de cal 5% y ceniza de eucalipto 15%


ENSAYO DE RELACIÓN DE SOPORTE DE CALIFORNIA (C.B.R.) DE SUELOS COMPACTADOS EN EL LABORATORIO ASTM D 1883

Máxima Densidad Seca Próctor	g/cm3	1.831
Óptimo Contenido de Humedad Pro	óctor %	14.6

C.B.R. al 100 % M.D.S. 0.1"	(%)	51.5
C.B.R. al 95 % M.D.S. 0.1"	(%)	43.0
C.B.R. al 100 % M.D.S. 0.2"	(%)	55.3
C.B.R. al 95 % M.D.S. 0.2"	(%)	47.0

Observaciones:

Muestra proporcionada por el cliente.

El presente documento no deberá reproducirse sin la autorización escrita del laboratorio, salvo que la reproducción sea en su totalidad. El laboratorio no se hace responsable por el mal uso de los resultados presentados.

Dirección: Av. Circunvalación Mz. "B", Lote 1, Int. 1 Huachipa - Lima - Perú

950 270 955 - 01 5407661 Web: www.masterlem.com.pe

Email: servicios@masterlem.com.pe

Solicitante

: Mayra Flores Jurado

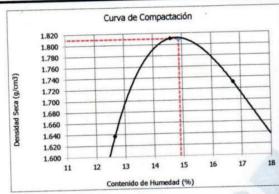
Nombre de Proyecto

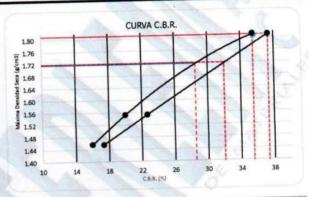
: "Estabilización de subrasante con cenizas de eucalipto y cal en caminos

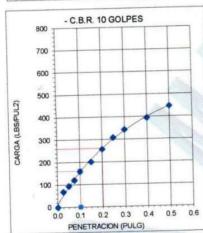
vecinales, carretera Mallan Bajo, Pasco - 2023"

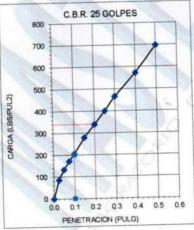
Expediente Nº

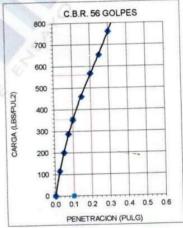
: 251_22_22


Fecha de Ensayo Fecha de Emision : 9/12/2022 : 15/12/2022


: Huachipa, Lima


Ubicación de laboratorio Identificacion de muestra


: Calicata - 2 adición de cal 6% y ceniza de eucalipto 20%


ENSAYO DE RELACIÓN DE SOPORTE DE CALIFORNIA (C.B.R.) DE SUELOS COMPACTADOS EN EL LABORATORIO ASTM D 1883

Máxima Densidad Seca Próctor	g/cm3	1.810
Óptimo Contenido de Humedad Pr	óctor %	14.9

C.B.R. al 100 % M.D.S. 0.1" (%)	35.5
C.B.R. al 95 % M.D.S. 0.1" (%)	28.5
C.B.R. al 100 % M.D.S. 0.2" (%)	37.3
C.B.R. al 95 % M.D.S. 0.2" (%)	32.0

Observaciones:

Muestra proporcionada por el cliente.

El presente documento no deberá reproducirse sin la autorización escrita del laboratorio, salvo que la reproducción

sea en su totalidad. El laboratorio no se hace responsable por el mal uso de los resultada

Dirección: Av. Circunvalación Mz. "B", Lote 1, Int. 1 Huachipa - Lima - Perú 950 270 955 - 01 5407661

> Web: www.masterlem.com.pe Email: servicios@masterlem.com.pe

Solicitante

Nº 100

Nº 140

Nº 200

Mayra Flores Jurado

Expediente N°

: 251_22_7A

Nombre del proyecto

"Estabilización de subrasante con cenizas de eucalipto y cal en caminos

Fecha de ensayo

: 23/11/2022

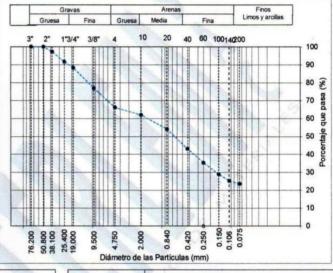
Ubicación del laboratorio

vecinales, carretera Mallan Bajo, Pasco - 2023" Huachipa, Lima

Identificación muestra

Calicata - 3

Facha	4-	aminián
recna	ae	emisión


: 25/11/2022

TAMIZ	ABERTURA (mm)	PORCENTAJE QUE PASA	ESPECIFIC
3"	76.200	100.0	
2"	50.800	100.0	
1 1/2"	38.100	97.3	
1"	25.400	91.7	
3/4"	19.000	88.3	
3/8"	9.500	76.9	
Nº 4	4.750	66.2	
Nº 10	2.000	62.1	
Nº 20	0.840	54.1	
Nº 40	0.425	43.2	
Nº 60	0.250	35.3	

0.150

0.106

0.075

CONTENIDO DE HUMEDAD ASTM D2216				
CONTENIDO DE HUMEDAD (%)	10.7			
MÉTODO DE SECADO	Horno a 110 +/-5°C			
MÉTODO DE REPORTE	"B"			
MATERIALES EXCLUÍDOS	Ninguno			

28.9

25.3

23.6

CLASIFICACIÓN VISUAL - MANUAL	SC arena arcillosa con límite líquido y plástico de color geige claro en condición parcialmente húmeda.
NOTAS SOBRE LA MUESTRA	Sin presencia de materiales extraños ajenos al suelo

LÍMITES DE CONSISTENCIA ASTM D4318				
LÍMITE LÍQUIDO	28			
LÍMITE PLÁSTICO	20			
ÍNDICE DE PLASTICIDAD	8			
INDICE DE CONSISTENCIA (Ic)	2.2			
INDICE DE LIQUIDEZ (IL)	- C			
MÉTODO DE ENSAYO DE LÍMITE LÍQUIDO	- T			

CLA	SIFICACIÓN DEL SUE	LO
CLASIFICACIÓN SUCS	(ASTM D2487)	- sc
CLASIFICACIÓN AASH	TO (ASTM D3282)	A-2-4 (0)
NOMBRE DEL GRUPO	Arena arcillosa	con grava

COMPOSICIÓN FÍSICA DEL SUELO EN FUNCIÓN AL TAMAÑO DE PARTÍCULAS				
CONTENIDO DE GRAVA PRESENTE EN EL SUELO %	33.8			
CONTENIDO DE ARENA PRESENTE EN EL SUELO %	42.6			
CONTENIDO DE FINOS PRESENTES EN EL SUELO %	23.6			

Dirección: Av. Circunvalación Mz. "B", Lote 1,

Int. 1 Huachipa - Lima - Perú 950 270 955 - 01 5407661

Web: www.masterlem.com.pe Email: servicios@masterlem.com.pe

Solicitante

: Mayra Flores Jurado

Expendiente

: 251_22_36

Nombre del proyecto

: "Estabilización de subrasante con cenizas de eucalipto y cal

Fecha de ensayo

: 23/11/2022

en caminos vecinales, carretera Mallan Bajo, Pasco - 2023"

Fecha de emisión

: 25/11/2022

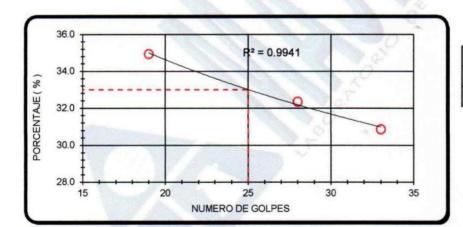
Ubicación del laboratorio

: Huachipa, Lima.

LIMITES DE CONSISTENCIA DE ATTERBERG ASTM D 4318

Referencia de la muestra:

Identificación


: Calicata - 3 cal 3% ceniza eucalipto 5%

Muestra : Sacos de polipropileno

Cantidad

: 100 kg aproximadamente

DESCRIPCIÓN	LÍMI	TE LÍQUID	LÍMITE PLÁSTICO		
Ensayo N⁰	1	2	3	1	2
Nro. de Recipiente	14	12	9	6	5
Masa de Recipiente (g)	17.74	16.89	17.23	44.05	47.01
Masa de Recipiente + Suelo Húmedo (g)	51.45	55.99	56.65	61.89	60.50
Masa Recipiente + Suelo Seco (g)	43.50	46.43	46.44	58.10	57.63
Nº De Golpes	33	28	19		
Cantidad mínima requerida LL: 20 g / LP: 6 g	¡Cumple!	¡Cumple!	¡Cumple!	¡Cumple!	¡Cumple
Aceptación de resultado (LL: R2>0.985 / LP: Ds < 2	0.994		4 -		
Contenido de Humedad (%)	30.9	32.4	35.0	27.0	27.0

Límite Líquido %	: 33
Límite Plástico %	: 27
Índice de Plasticidad	: 6

Dirección: Av. Circunvalación Mz. "B", Lote 1, Int. 1 Huachipa – Lima – Perú 950 270 955 – 01 5407661

Web: www.masterlem.com.pe Email: servicios@masterlem.com.pe

Solicitante

: Mayra Flores Jurado

Expendiente

: 251_22_37

Nombre del proyecto

: "Estabilización de subrasante con cenizas de eucalipto y cal

Fecha de ensayo

: 9/12/2022

o do projecto

en caminos vecinales, carretera Mallan Bajo, Pasco - 2023"

Fecha de emisión

: 15/11/2022

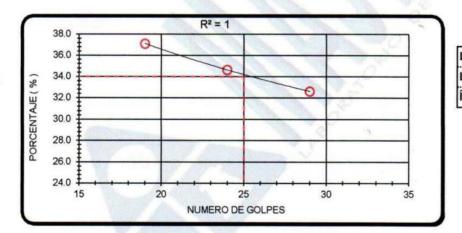
Ubicación del laboratorio

: Huachipa, Lima.

LIMITES DE CONSISTENCIA DE ATTERBERG ASTM D 4318

Referencia de la muestra:

Identificación


: Calicata - 3 cal 4% ceniza eucalipto 10%

Muestra : Sacos de polipropileno

Cantidad

: 100 kg aproximadamente

DESCRIPCIÓN	LÍM	TE LÍQUID	LÍMITE PLÁSTICO		
Ensayo №	1,0000	2	3	1	2
Nro. de Recipiente	4	5	6	В	Α
Masa de Recipiente (g)	15.55	16.48	16.05	44.96	45.06
Masa de Recipiente + Suelo Húmedo (g)	44.50	45.86	40.36	52.06	56.33
Masa Recipiente + Suelo Seco (g)	37.38	38.30	33.78	50.40	53.79
№ De Golpes	29	24	19		
Cantidad mínima requerida LL: 20 g / LP: 6 g	¡Cumple!	¡Cumple!	¡Cumple!	¡Cumple!	¡Cumple!
Aceptación de resultado (LL: R2>0.985 / LP: Ds < 2	1.000		-		
Contenido de Humedad (%)	32.6	34.6	37.1	30.5	29.1

Límite Líquido %	: 34
Límite Plástico %	: 30
Índice de Plasticidad	: 4

Dirección: Av. Circunvalación Mz. "B", Lote 1, Int. 1 Huachipa - Lima - Perú

950 270 955 - 01 5407661 Web: www.masterlem.com.pe

Email: servicios@masterlem.com.pe

Solicitante

: Mayra Flores Jurado

Expendiente

: 251_22_38

Nombre del proyecto

: "Estabilización de subrasante con cenizas de eucalipto y cal

Fecha de ensayo

: 9/12/2022

en caminos vecinales, carretera Mallan Bajo, Pasco - 2023"

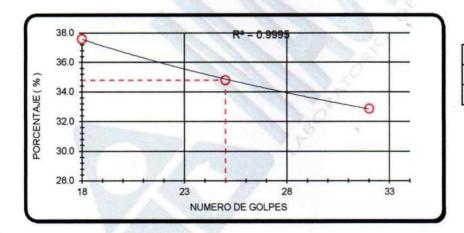
Ubicación del laboratorio : Huachipa, Lima.

: 15/12/2022 Fecha de emisión

LIMITES DE CONSISTENCIA DE ATTERBERG ASTM D 4318

Referencia de la muestra:

Identificación


: Calicata - 3 cal 5% ceniza eucalipto 15%

Muestra : Sacos de polipropileno

Cantidad

: 100 kg aproximadamente

DESCRIPCIÓN	LÍM	ITE LÍQUIC	LÍMITE PLÁSTICO		
Ensayo N⁰	1	2	3	1	2
Nro. de Recipiente	Α	С	W	45	62
Masa de Recipiente (g)	16.52	16.01	15.87	54.70	53.61
Masa de Recipiente + Suelo Húmedo (g)	45.98	46.99	38.96	61.11	64.59
Masa Recipiente + Suelo Seco (g)	38.69	38.99	32.65	59.50	61.89
N° De Golpes	32	25	18	-	
Cantidad mínima requerida LL: 20 g / LP: 6 g	¡Cumple!	¡Cumple!	¡Cumple!	¡Cumple!	¡Cumple
Aceptación de resultado (LL: R2>0.985 / LP: Ds < 2	2	1.000		•	
Contenido de Humedad (%)	32.9	34.8	37.6	33.5	32.6

Límite Líquido %	: 35
Límite Plástico %	: 33
Índice de Plasticidad	: 2

Dirección: Av. Circunvalación Mz. "B", Lote 1, Int. 1 Huachipa – Lima – Perú

950 270 955 - 01 5407661 Web: www.masterlem.com.pe

Email: servicios@masterlem.com.pe

Solicitante

: Mayra Flores Jurado

Expendiente

: 251_22_39

Nombre del proyecto

: "Estabilización de subrasante con cenizas de eucalipto y cal en

Fecha de ensayo

: 9/12/2022

Olo

caminos vecinales, carretera Mallan Bajo, Pasco - 2023"

Fecha de emisión

: 15/12/2022

Ubicación del laboratorio

: Huachipa, Lima.

LIMITES DE CONSISTENCIA DE ATTERBERG ASTM D 4318

Referencia de la muestra:

Identificación

: Calicata - 3 cal 6% ceniza eucalipto 20%

Muestra

: Sacos de polipropileno

Cantidad

: 100 kg aproximadamente

DESCRIPCIÓN	LÍI	MITE LÍQUI	LÍMITE PLÁSTICO		
Ensayo Nº	1	2	3	100	D. F
Nro. de Recipiente	5	7	12	/ 10	6 / E
Masa de Recipiente (g)	16.48	14.89	15.74		
Masa de Recipiente + Suelo Húmedo (g)	47.77	48.47	49.61		
Masa Recipiente + Suelo Seco (g)	39.69	39.55	40.27		/
№ De Golpes	33	25	18		
Cantidad mínima requerida LL: 20 g / LP: 6 g	¡Cumple!	¡Cumple!	¡Cumple!		
Aceptación de resultado (LL: R2>0.985 / LP: Ds < 2		0.998	187		
Contenido de Humedad (%)	34.8	36.2	38.1	N.P.	N.P.

Límite Líquido %	: 36
Límite Plástico %	N.P.
Índice de Plasticidad	N.P.

N. P.= No presenta

Dirección: Av. Circunvalación Mz. "B", Lote 1, Int. 1 Huachipa - Lima - Perú

950 270 955 - 01 5407661 Web: www.masterlem.com.pe

Email: servicios@masterlem.com.pe

Solicitante

: Mayra Flores Jurado

Expendiente

: 251_22_9

Nombre del proyecto

: "Estabilización de subrasante con cenizas de eucalipto y cal

Fecha de ensayo

: 23/11/2022

en caminos vecinales, carretera Mallan Bajo, Pasco - 2023"

Fecha de emisión

: 25/11/2022

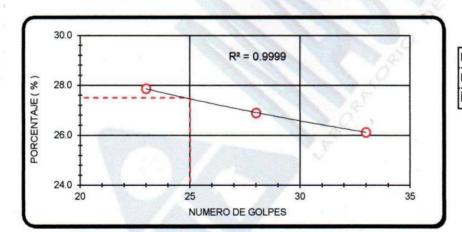
Ubicación del laboratorio : Huachipa, Lima.

LIMITES DE CONSISTENCIA DE ATTERBERG ASTM D 4318

Referencia de la muestra:

Identificación

: Calicata - 3


Presentación

: Sacos de polipropileno

Cantidad

: 100 kg aproximadamente

DESCRIPCIÓN	LÍM	TE LÍQUID	00	LÍMITE P	LÁSTICO
Ensayo Nº	1	2	3	1	2
Nro. de Recipiente	12	5	С	2	7
Masa de Recipiente (g)	15.44	15.12	14.22	15.40	14.40
Masa de Recipiente + Suelo Húmedo (g)	38.37	38.09	37.67	22.40	22.20
Masa Recipiente + Suelo Seco (g)	33.62	33.22	32.56	21.22	20.92
№ De Golpes	33	28	23		
Cantidad mínima requerida LL: 20 g / LP: 6 g	¡Cumple!	¡Cumple!	¡Cumple!	¡Cumple!	¡Cumple!
Aceptación de resultado (LL: R2>0.985 / LP: Ds < 2		1.000		94	
Contenido de Humedad (%)	26.1	26.9	27.9	20.3	19.6

Límite Líquido %	; 28
Límite Plástico %	: 20
Índice de Plasticidad	: 8

Dirección: Av. Circunvalación Mz. "B", Lote 1, Int. 1 Huachipa - Lima - Perú

950 270 955 - 01 5407661

Web: www.masterlem.com.pe Email: servicios@masterlem.com.pe

Solicitante

: Mayra Flores Jurado

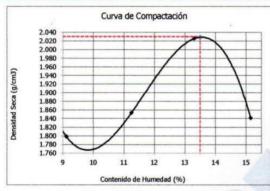
: "Estabilización de subrasante con cenizas de eucalipto y cal en caminos

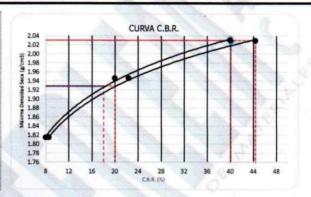
vecinales, carretera Mallan Bajo, Pasco - 2023"

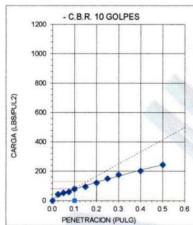
Expediente Nº Fecha de Ensayo : 251_22_14

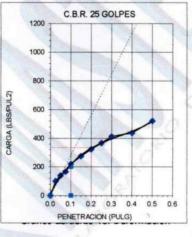
: 29/11/2022

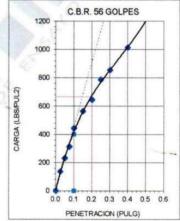
Fecha de Emision


: 9/12/2022


Ubicación de laboratorio Identificacion de muestra


Nombre de Proyecto


: Huachipa, Lima : Calicata 3


ENSAYO DE RELACIÓN DE SOPORTE DE CALIFORNIA (C.B.R.) DE SUELOS COMPACTADOS EN EL LABORATORIO ASTM D 1883

Máxima Densidad Seca Próctor	g/cm3	2.030
Óptimo Contenido de Humedad Pr	óctor %	13.0

C.B.R. al 100 % M.D.S. 0.1"	(%)	40.0
C.B.R. al 95 % M.D.S. 0.1"	(%)	18.0
C.B.R. al 100 % M.D.S. 0.2"	(%)	44.2
C.B.R. al 95 % M.D.S. 0.2"	(%)	20.0

Observaciones:

Muestra proporcionada por el cliente.

El presente documento no deberá reproducirse sin la autorización escrita del laboratorio, salvo que la reproducción sea en su totalidad. El laboratorio no se hace responsable por el mal uso de los resultados presentados.

Dirección: Av. Circunvalación Mz. "B", Lote 1, Int. 1 Huachipa – Lima – Perú 950 270 955 – 01 5407661

> Web: www.masterlem.com.pe Email: servicios@masterlem.com.pe

Solicitante

: Mayra Flores Jurado

Nombre de Proyecto

: "Estabilización de subrasante con cenizas de eucalipto y cal en caminos

vecinales, carretera Mallan Bajo, Pasco - 2023"

Expediente Nº

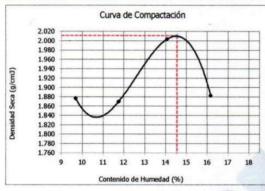
: 251_22_23

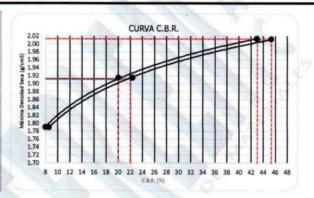
Fecha de Ensayo

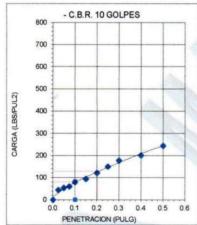
: 29/11/2022

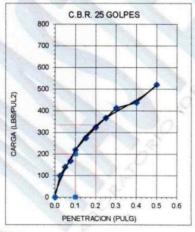
Fecha de Emision

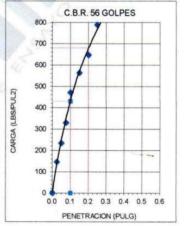
: 9/12/2022


Ubicación de laboratorio


: Huachipa, Lima


Identificacion de muestra


: Calicata 3 adición de cal 3% y ceniza de eucalipto 5%


ENSAYO DE RELACIÓN DE SOPORTE DE CALIFORNIA (C.B.R.) DE SUELOS COMPACTADOS EN EL LABORATORIO ASTM D 1883

Máxima Densidad Seca Próctor	g/cm3	2.011
Óptimo Contenido de Humedad Pri	óctor %	14 1

C.B.R. al 100 % M.D.S. 0.1"	(%)	43.0
C.B.R. al 95 % M.D.S. 0.1"	(%)	20.0
C.B.R. al 100 % M.D.S. 0.2"	(%)	45.3
C.B.R. al 95 % M.D.S. 0.2"	(%)	22.0

Observaciones

Muestra proporcionada por el cliente.

El presente documento no deberá reproducirse sin la autorización escrita del laboratorio, salvo que la reproducción sea en su totalidad. El laboratorio no se hace responsable por el mal uso de los resultados presentados.

Dirección: Av. Circunvalación Mz. "B", Lote 1, Int. 1 Huachipa – Lima – Perú

950 270 955 - 01 5407661 Web: www.masterlem.com.pe

Email: servicios@masterlem.com.pe

Solicitante

: Mayra Flores Jurado

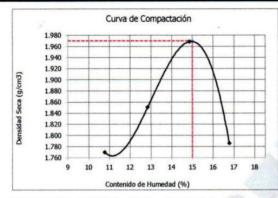
Expediente Nº

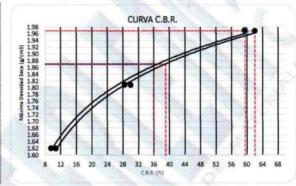
: 251 22 24

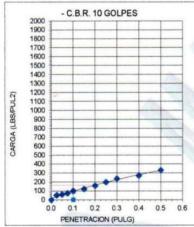
Nombre de Proyecto

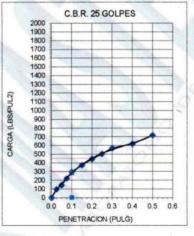
: "Estabilización de subrasante con cenizas de eucalipto y cal en caminos vecinales, carretera Mallan Bajo, Pasco - 2023"

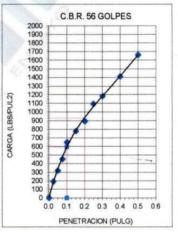
Fecha de Ensayo Fecha de Emision : 29/11/2022


Ubicación de laboratorio


: Huachipa, Lima


Identificacion de muestra


: Calicata 3 adición de cal 4% y ceniza de eucalipto 10%


ENSAYO DE RELACIÓN DE SOPORTE DE CALIFORNIA (C.B.R.) DE SUELOS COMPACTADOS EN EL LABORATORIO ASTM D 1883

Máxima Densidad Seca Próctor	g/cm3	1.970
Óptimo Contenido de Humedad Pro	óctor %	14.5

C.B.R. al 100 % M.D.S. 0.1"	(%)	59.5
C.B.R. al 95 % M.D.S. 0.1"	(%)	36.0
C.B.R. al 100 % M.D.S. 0.2"	(%)	62.0
C.B.R. al 95 % M.D.S. 0.2"	(%)	39.0

Observaciones:

Muestra proporcionada por el cliente.

El presente documento no deberá reproducirse sin la autorización escrita del laboratorio, salvo que la reproducción sea en su totalidad. El laboratorio no se hace responsable por el mal uso de los resultados presentados.

Dirección: Av. Circunvalación Mz. "B", Lote 1, Int. 1 Huachipa – Lima – Perú 950 270 955 – 01 5407661

Web: www.masterlem.com.pe Email: servicios@masterlem.com.pe

Solicitante

: Mayra Flores Jurado

Expediente Nº

: 251 22 25

Nombre de Proyecto

: "Estabilización de subrasante con cenizas de eucalipto y cal en caminos

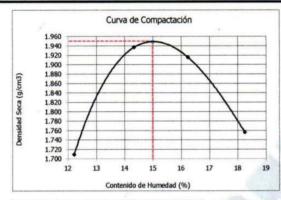
Fecha de Ensayo

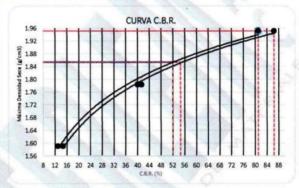
: 29/11/2022

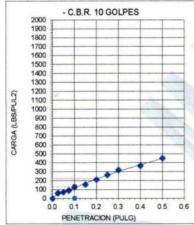
vecinales, carretera Mallan Bajo, Pasco - 2023"

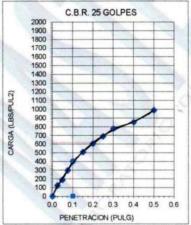
Fecha de Emision

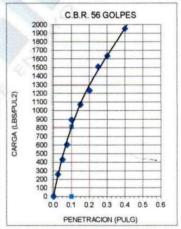
: 15/12/2022


Ubicación de laboratorio


: Huachipa, Lima


* Identificacion de muestra


: Calicata 3 adición de cal 5% y ceniza de eucalipto 15%


ENSAYO DE RELACIÓN DE SOPORTE DE CALIFORNIA (C.B.R.) DE SUELOS COMPACTADOS EN EL LABORATORIO ASTM D 1883

Máxima Densidad Seca Próctor	g/cm3	1.950
Óptimo Contenido de Humedad Pr	óctor %	15.0

	C.B.R. al 100 % M.D.S. 0.1"	(%)	81.0
	C.B.R. al 95 % M.D.S. 0.1"	(%)	52.0
Г	C.B.R. al 100 % M.D.S. 0.2"	(%)	86.0
	C.B.R. al 95 % M.D.S. 0.2"	(%)	54.6

Observaciones:

Muestra proporcionada por el cliente.

El presente documento no deberá reproducirse sin la autorización escrita del laboratorio, salvo que la reproducción sea en su totalidad. El laboratorio no se hace responsable por el mal uso de los resultados presentados.

Dirección: Av. Circunvalación Mz. "B", Lote 1, Int. 1 Huachipa - Lima - Perú

950 270 955 - 01 5407661

Web: www.masterlem.com.pe Email: servicios@masterlem.com.pe

Solicitante

: Mayra Flores Jurado

: "Estabilización de subrasante con cenizas de eucalipto y cal en caminos

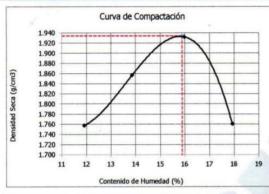
vecinales, carretera Mallan Bajo, Pasco - 2023"

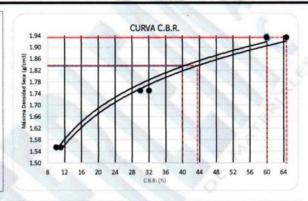
Expediente Nº

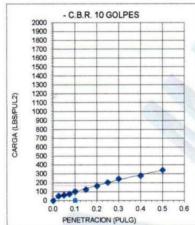
: 251 22 26

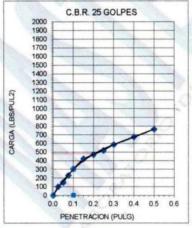
Fecha de Ensayo Fecha de Emision : 29/11/2022 : 15/12/2022

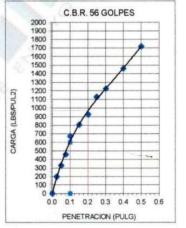
Ubicación de laboratorio


Nombre de Proyecto


: Huachipa, Lima


Identificacion de muestra


: Calicata 3 adición de cal 6% y ceniza de eucalipto 20%


ENSAYO DE RELACIÓN DE SOPORTE DE CALIFORNIA (C.B.R.) DE SUELOS COMPACTADOS EN EL LABORATORIO ASTM D 1883

Máxima Densidad Seca Próctor	g/cm3	1.934
Óptimo Contenido de Humedad Pr	óctor %	15.9

C.B.R. al 100 % M.D.S. 0.1"	(%)	60.0
C.B.R. al 95 % M.D.S. 0.1"	(%)	40.0
C.B.R. al 100 % M.D.S. 0.2"	(%)	64.7
C.B.R. al 95 % M.D.S. 0.2"	(%)	43.5

Observaciones:

Muestra proporcionada por el cliente.

El presente documento no deberá reproducirse sin la autorización escrita del laboratorio, salvo que la reproducción sea en su totalidad. El laboratorio no se hace responsable por el mal uso de los resulta

Dirección: Av. Circunvalación Mz. "B", Lote 1, Int. 1 Huachipa - Lima - Perú 950 270 955 - 01 5407661

> Web: www.masterlem.com.pe Email: servicios@masterlem.com.pe

Solicitante

: Mayra Flores Jurado

Expediente N°

: 251_22_11

Nombre del proyecto

"Estabilización de subrasante con cenizas de eucalipto y cal en

Fecha de ensayo : 23/11/2022

Fecha de emisión : 25/11/2022

caminos vecinales, carretera Mallan Bajo, Pasco - 2023" Ubicación del proyecto : Huachipa, Lima

Identificación muestra

Muestras de calicatas

ENSAYO QUIMÍCOS CONTROL DE CALIDAD SUELOS

Ensayos	Unidades	Resultados	Norma
Potencial hidrógeno pH (Calicata - 1)	%	6.97	ASTM D 4972-18
Potencial hidrógeno pH (Calicata - 2)	%	6.39	ASTM D 4972-18
Potencial hidrógeno pH (Calicata - 3)	%	6.33	ASTM D 4972-18

Observaciones

El presente documento no deberá reproducirse sin la autorización escrita del laboratorio, salvo que la reproducción sea en su totalidad. El laboratorio no se hace responsable por el mal uso de los resultados presentados.

Dirección: Av. Circunvalación Mz. "B", Lote 1, Int. 1 Huachipa - Lima - Perú 950 270 955 - 01 5407661

> Web: www.masterlem.com.pe Email: servicios@masterlem.com.pe

> > Fecha de emisión : 23/11/2022

Solicitante

: Mayra Flores Jurado

Expediente Nº

: 251_22_1

Nombre del proyecto

"Estabilización de subrasante con cenizas de eucalipto y cal en caminos Fecha de ensayo

: 21/11/2022

: Huachipa, Lima

Ubicación del laboratorio Procedencia de la muestra

: Las cocinas mejoradas de foncodes

vecinales, carretera Mallan Bajo, Pasco - 2023"

ENSAYO FISICO DE LA CENIZA DE EUCALIPTO / CONTENIDO DE HUMEDAD

REFERENCIAS DE LA MUESTRA:

Procedencia

: Las cocinas mejoradas de foncodes

Presentación

: bolsa de polipropileno

Descripción

: Ceniza de eucalipto

Cantidad

10 Kg aprox.

DESCRIPCIÓN	Unidades	Datos
Peso de la muestra húmeda	9	121.8
Peso de la muestra seca	9	119.5
CONTENIDO DE HUMEDAD	%	1.89

Certificados de calibración de equipos

Certificado de calibración de balanza Nº CCB 012-2022 Certificado de calibración de horno Nº CMI 002-2022

Refencia de la norma - ASTM D 2216 (Contenido de Húmedad).

El presente documento no deberá reproducirse sin la autorización escrita del laboratorio, salvo que la reproducción sea en su totalidad. El laboratorio no se hace responsable por el mal uso de los resultados presentados. La muestra fue proporcionado por el cliente.

Dirección: Av. Circunvalación Mz. "B", Lote 1,

Int. 1 Huachipa - Lima - Perú 950 270 955 - 01 5407661

Web: www.masterlem.com.pe

Email: servicios@masterlem.com.pe

Solicitante

: Mayra Flores Jurado

Expediente N°

: 252_22_2

Nombre del proyecto

"Estabilización de subrasante con cenizas de eucalipto y cal en caminos

Fecha de ensayo

: 21/11/2022

vecinales, carretera Mallan Bajo, Pasco - 2023"

Fecha de emisión

: 23/11/2022

Ubicación del laboratorio

: Huachipa, Lima

Procedencia de la muestra : Las cocinas mejoradas de foncodes

ENSAYO FÍSICO DE LA CENIZA DE EUCALIPTO / PESO ESPECÍFICO

REFERENCIAS DE LA MUESTRA:

Procedencia

: Las cocinas mejoradas de foncodes

Presentación

Bolsa de polipropileno

Descripción

: Ceniza de eucalipto

Cantidad

10 kg aprox.

Peso de la ceniza :

60

Ensayo	Lectura inicial	Lectura final (cm³)	Peso especifico (g/cm³)
	1	23.5	2.67
1	0.6	22.8	2.70
2	0.5	22.9	2.68
3	PROMEDIO	18 18	2.68

Certificados de calibración de equipos

Certificado de calibración de balanza Nº CCB-012-2022

Certificado de calibración de horno Nº CMI-002-2022

Referencia de la norma de peso específico del cemento ASTM C128 - 15

El presente documento no deberá reproducirse sin la autorización escrita del laboratorio, salvo que la reproducción sea en su totalidad. El laboratorio no se hace responsable por el mal uso de los resultados presentados.

La muestra fue proporcionado por el cliente.

PRANCISCO RAMIREZ JAPAJA JORGE, INGENIERO CIVIL Reg. de CIP N° 84286

Dirección: Av. Circunvalación Mz. "B", Lote 1,

Int. 1 Huachipa – Lima – Perú 950 270 955 – 01 5407661

Web: www.masterlem.com.pe Email: servicios@masterlem.com.pe

Solicitante

: Mayra Flores Jurado

Proyecto : "Estal

: "Estabilización de subrasante con cenizas de eucalipto y cal en caminos vecinales,

carretera Mallan Bajo, Pasco - 2023"

Ubicación del laboratorio: Huachipa, Lima

Nº de expediente Fecha de ensayo

: 251_22_10

Fecha de emisión

: 23/11/2022 : 25/11/2022

Nº de página : 2 de2

ANÁLISIS GRANULOMÉTRICO POR SEDIMENTACIÓN ASTM D 7928

Material

: Las cocinas mejoradas de foncodes - Ceniza de eucalipto

N° de Muestra : 01

Tamiz	Diámetro (mm.)	% que pasa
3 in	75.000	100.0
2 in	50.400	100.0
1 1/2 in	38.100	100.0
1 in	25.400	100.0
3/4 in	19.000	100.0
3/8 in	9.500	100.0
N°4	4.750	100.0
N°10	2.000	99.5
N°20	0.850	92.7
N°40	0.425	86.4
N°60	0.250	81.2
N°100	0.150	77.0
N°140	0.106	73.4
N°200	0.075	71.5
	0.060	65.9
	0.042	63.7
	0.030	59.1
	0.022	52.3
	0.016	43.2
	0.012	34.1
	0.008	31.8
	0.006	29.6
	0.004	29.6
	0.003	29.6
	0.002	27.3

1	- (Gravas			Arenas	Fino	
	Gruesa	Fina	Gruesa	Media	Fina	Limos y a	arcillas
3"	o" 4" 3/	4" 3/8"	4 10	20 40	60 100140 2	00	
7	** **			20 40	00 100 140 2		10
+	1650						90
1							80
					•		70
							60
	- 19				- 4		50
19	-				10	1	40
					7	1	30
				3			20
			100				10
8	99 99	8		8 %	8 8 0		0
75.00	50.000 38.100 25.400 19.000	9.500	2,000	0.850	e las Partico		

LÍMITE LÍQUIDO (ASTM D4318)	NP
LÍMITE PLÁSTICO (ASTM D4318	B) NP
ÍNDICE PLÁSTICO (ASTM D431)	8) NP
CLASIFICACIÓN SUCS	
(ASTM D2487)	- 10 - 10 - 10 T

% PARTICULAS DE 75.000 - 4.75 mm	
% PARTICULAS DE 4.75 - 0.075 mm	28.5
% PARTÍCULAS DE 0.075 - 0.005 mm	41.9
% PARTÍCULAS < 0.005 mm	29.6
% PARTÍCULAS < 0.075 mm (tamiz No. 200)	71.5

OBSERVACIONES:

- * Muestra provista e identificada por el solicitante
- * Prohibida la reproducción parcial o total de este documento sin la autorización escrita de MASTERLEM S.A.C.

Dirección: Av. Circunvalación Mz. "B", Lote 1,

Int. 1 Huachipa – Lima – Perú 950 270 955 – 01 5407661

Web: www.masterlem.com.pe Email: servicios@masterlem.com.pe

Solicitante

: Mayra Flores Jurado

Proyecto

: "Estabilización de subrasante con cenizas de eucalipto y cal en

caminos vecinales, carretera Mallan Bajo, Pasco - 2023"

Ubicación del laboratorio : Huachipa, Lima

Nº de expediente : 251_22_10

Fecha de ensayo: 23/11/2022 Fecha de emisión: 25/11/2022

Nº de página: 1 de 2

ANÁLISIS GRANULOMÉTRICO POR SEDIMENTACIÓN ASTM D 7928

Material

: Las cocinas mejoradas de foncodes - Ceniza de eucalipto

N° de Muestra : 01

Inicio de Ensayo : 23/11/2022

Fin de Ensayo: 24/11/2022

DATOS Y CALCULOS DE SEDIMENTACION

Humedad	5.2%
Mh estimada	52.59
Md utilizada	50.00

Método de dispersión utilizad preparación de la mues	
Mezclador de dispersi	ón

Masa de tara	114.37
Tara + Mh	254.21
Tara + Ms	247.33

Mét. control de lecturas Relación de calibración

Aplicación del dispersante
Disuelto en 100 mL de agua

Gravedad específica 20°C <	2.68	
Métódo de obtención de Gs Mediante		ensayo

Volumen de Bulbo (cm ³)	54.29
Hr ₁ (cm)	18.39
Hr ₂ (cm)	6.755

Área de cilindro (cm²)	29.37
Lectura mínima, r ₁	0.990
Lectura máxima, r ₂	1.038

Corrección por menisco, Cm	0.050
Corrección por defloculante, Rdm	0.996
Modelo de Hidrómetro utilizado	151H

Tiempo (min)	Temp. (°C)	Lectura real r _m	Lectura corregida A	Densidad del agua (g/cm³) ρ	Diferencia de lectura r _{dm}	Longitud (cm) H _m	Viscosidad del agua	Diámetro (mm) Dm	% más fino N _m
1	23.6	1.0250	1.028	0.99740	1.025	21.10	0.009228	0.0596	92.3
2	23.6	1.0240	1.027	0.99740	1.024	21.34	0.009228	0.0424	89.1
4	23,6	1.0220	1.025	0.99740	1.022	21.83	0.009228	0.0303	82.7
8	23.7	1.0190	1.022	0.99737	1.019	22.56	0.009206	0.0218	73.2
15	23.7	1.0150	1.018	0.99737	1.015	23.53	0.009206	0.0162	60.5
30	23.7	1.0110	1.014	0.99737	1.011	24.50	0.009206	0.0117	47.7
60	23.7	1.0100	1.013	0.99737	1.010	24.74	0.009206	0.0083	44.5
120	23.7	1.0090	1.012	0.99737	1.009	24.98	0.009206	0.0059	41.4
240	24.1	1.0090	1.012	0.99727	1.009	24.98	0.009120	0.0042	41.4
480	24.5	1.0090	1.012	0.99717	1.009	24.98	0.009040	0.0029	41.4
1440	23.6	1.0080	1.011	0.99740	1.008	25.22	0.009228	0.0017	38.2

Hora de inicio de la sedimentación 10:26:00

Hr

Hr

JORGE FRANCISCO RAMIREZ JAPAJA
INGENIERO CIVIL
Reg. de CIP N° 84286

1	1	0
- 1	L	7

ANEXO 4: CERTIFICADOS DE CALIBRACIÓN DE EQUIPOS

CERTIFICADO DE CALIBRACIÓN CAC-004-2022

Peticionario

: MASTERLEM S.A.C.

Atención

: MASTERLEM S.A.C.

Lugar de Calibración

: Laboratorio CELDA EIRL. Ubicado en la Av. Circunvalación s/n. Mz.B. Lt.1

Urb. Las Praderas de Huachipa. Lurigancho Chosica.

Tipo de equipo

: Anillo de Carga

Capacidad del equipo

: 10,000 lbf (45 kN ó 4,500 Kgf)

División de escala

: 0,0001" (pulgadas)

Marca

: LUFKIN

Modelo

: P22A-200

Nº de serie del anillo

: 122

Tipo dial indicador

: Analógico

Temp.(°C) y H.R.(%) inicial

: 20.6 °C / 75%

Temp.(°C) y H.R.(%) final

: 20.8 °C / 75%

Procedencia

: USA

Método de calibración

: ASTM E-4 "Standard Practices for Force Verification of Testing Machines"

Patrón de referencia

: Patrón utilizado HBM, C18/100 kN, N° de serie 00283TO0, clase A, calibrado de acuerdo a la norma ASTM E74-18, método B, certificado de calibración reporte N° 822023841(ASRET)L1820.Con trazabilidad NIST

(United States National Institute of Standards & Technology).

Número de páginas

: 2

Fecha de calibración

: 2022-01-04

Este certificado de calibración sólo puede ser difundido sin modificaciones y en su totalidad. Las modificaciones y extractos del certificado necesitan autorización de CELDA EIRL.

El presente certificado sin firmas y sellos carece de validez.

Sello

Fecha

Hecho por

Revisado por

2022-01-06

WANCISCO RAMIREZ JAPAJA INGENIERO CIVIL 1911. del CIP N° 84286

CAC-004-2022

Página 1 de 2

Resultados de Medición

Dirección de Carga: Compresión

Def. unitaria del	Indicación de fuerza de la celda patrón		Promedio	Fuerza obtenida	Error	Incertidumbre	
anillo de carga	1º ascenso	2º ascenso	3º ascenso	de fuerza	con los factores		K=2
(0,0001")	(N)	(N)	(N)	(N)	(N)	(%)	U (%)
0	0	0	0	0	0	0	0.1
100	4351.92	4335.24	4284.71	4324.0	4490	-3.8	0.2
200	8586.31	8570.97	8570.97	8576.1	8596	-0.2	0.1
300	12752.21	12742.87	12741.04	12745.4	12701	0.3	0.1
400	16982.11	16938.65	16827.98	16916.2	16806	0.7	0.1
500	21017.98	20997.16	20929.46	20981.5	20911	0.3	0.1
600	25071.83	25053.85	25099.18	25075.0	25016	0.2	0.1
700	29154.80	29135.28	29186.83	29159.0	29122	0.1	0.1
800	33234.09	33223.41	33249.70	33235.7	33227	0.0	0.1
900	37366.98	37241.00	37282.91	37297.0	37332	-0.1	0.1
1000	41387.95	41274.21	41323.63	41328.6	41437	-0.3	0.1

Coeficientes de regresión y correlación obtenidos en diferentes unidades de fuerza

Unidad de fuerza	Newtons (N)	Libras (lbf)	Kilogramos (kgf)	
Coef. regresión A	385.13003	86.58067	39.35481	
Coef. regresión B	41.05220	9.22890	4.19495	
Coef.correlación r	0.999977	0.999977	0.999977	

Ecuación para obtencion de fuerza en diferentes unidades

Fuerza = (Def. unitaria del anillo de carga x Coef. regresión B) + Coef. regresión A

Incertidumbre

La incertidumbre reportada en el presente certificado es la Incertidumbre Expandida de medición, que resulta de multiplicar la Incertidumbre estándar por el factor de cobertura k=2 y ha sido determinada de acuerdo a la "Guía para la expresión de la Incertidumbre en la medición".

Notas

El usuario esta obligado a tener el equipo calibrado en intervalos apropiados de tiempo de acuerdo al uso, mantenimiento y conservación que este expuesto.

Se adjunta adicionalmente 03 cartas de calibración de 03 hojas cada una, las cuales estan en Libras, Kilogramos y Newtons.

CAC-003-2022

Página 2 de 2

CERTIFICADO DE CALIBRACIÓN CCB-013-2022

Peticionario

: MASTERLEM SAC

Åtención

: MASTERLEM SAC

Lugar de calibración

: MASTERLEM SAC. Ubicado en la Av. Circunvalación s/n. Huachipa - Lima

Instrumento de medición

: Balanza de funcionamiento no automático

Marca

: AND

Número de serie

: T0323224

Tipo

: Electrónica

Clase

: 11

Procedencia

: Japón

Capacidad máxima

: 8100 g

Modelo

: GF-8000

División de escala (d)

: 0,1 g

División de verificación (e)

: 0,1 g

Método de calibración

: Procedimiento de calibración de balanzas de funcionamiento no automático clase I y clase II - PC 011 - Indecopi - cuarta edición

Temp.(°C) y H.R.(%) inicial

: 26.0 °C / 60%

Temp.(°C) y H.R.(%) final

: 26.1 °C / 60%

Patrones de referencia

: Trazabilidad METROIL, 01 juego de pesas Mettler Toledo clase OIML F1 de 1 - 500 c con certificado de calibración N° M-0306-2021, 02 pesas Mettler Toledo clase OIML F1 de 2 kg con certificados de calibración N° M-0293-2021, M-0294-2021, 01 pesa Mettler Toledo clase OIML F1 de 5 kg con certificado de calibración N° M-0295-2021, 01 pesa Mettler Toledo clase OIML F1 de 1 kg con certificado de calibración N°

M-0292-2021.

Número de páginas

: 3

Fecha de calibración

: 2022-03-21

Este certificado de calibración sólo puede ser difundido sin modificaciones y en su totalidad. Las modificaciones y extractos del certificado necesitan autorización de CELDA EIRL. El presente certificado sin firmas y sellos carece de validez.

Sello

Fecha

Hecho por

Revisado por

2022-03-24

Vladimir Tello Torre

Reg. del CIP N° 84286

CCB-013-2022

Página 1 de 3

RESULTADOS DE MEDICIÓN

INSPECCIÓN VISUAL

Ajuste a cero	Si
Oscilación Libre	Si
Plataforma	Si
Sistema de Traba	No

Escala	No
Cursor	No
Nivelación	Si

ENSAYO DE REPETIBILIDAD

	Inicial	Final	
T. (°C)	26.0	26.0	

	Inicial	Final
H. R. (%)	60	60

Medición	Carg	a L1 = 400	0,0 g	Carga L2 = 8100,0 g			
N°	I (g)	ΔL (g)	E (g)	I (g)	ΔL (g)	E (g)	
1	4000.0	0.05	0.00	8100.2	0.07	0.18	
2	4000.0	0.05	0.00	8100.2	0.07	0.18	
3	4000.0	0.05	0.00	8100.2	0.07	0.18	
4	4000.0	0.05	0.00	8100.2	0.07	0.18	
5	4000.0	0.05	0.00	8100.2	0.07	0.18	
6	4000.0	0.05	0.00	8100.2	0.07	0.18	
7	4000.0	0.05	0.00	8100.2	0.07	0.18	
8	4000.0	0.05	0.00	8100.2	0.07	0.18	
9	4000.0	0.05	0.00	8100.2	0.07	0.18	
10	4000.0	0.05	0.00	8100.2	0.07	0.18	

E= I + ½ d - ΔL - L

ENSAYO DE EXCENTRICIDAD

2 3	Posición de		Inicial	Final		Inicial	Final
5 4	las cargas	T. (°C)	26.0	26.1	H. R. (%)	60	60

Posición	Determinación de Eo				Determinación del error corregido Ec				
de carga	carga en cero* (g)	l (g)	ΔL (g)	Eo (g)	Carga L (g)	I (g)	ΔL (g)	E (g)	Ec (g)
1	1.0	1.0	0.03	0.02	2500.0	2500.0	0.05	0.00	-0.02
2	1.0	1.0	0.03	0.02	2500.0	2500.0	0.05	0.00	-0.02
3	1.0	1.0	0.03	0.02	2500.0	2500.0	0.05	0.00	-0.02
4	1.0	1.0	0.03	0.02	2500.0	2500.0	0.05	0.00	-0.02
5	1.0	1.0	0.03	0.02	2500.0	2500.1	0.05	0.10	0.08

* valor entre 0 y 10e

E= I + ½ d - ΔL - L

CCB-013-2022

ENSAYO DE PESAJE

T. (°C) Inicial Final 26.1 26.1

H. R. (%)	Inicial	Final
H. R. (%)	60	60

Carga		Creci	entes			Decred	cientes		E.M.P.*
L (g)	l (g)	ΔL (g)	E (g)	Ec (g)	l (g)	ΔL (g)	E (g)	Ec (g)	(g)
1.0	1.0	0.03	0.02	(*)					
50.0	50.0	0.04	0.01	-0.01	50.0	0.04	0.01	-0.01	0.1
100.0	100.0	0.04	0.01	-0.01	100.0	0.04	0.01	-0.01	0.1
200.0	200.0	0.04	0.01	-0.01	200.0	0.04	0.01	-0.01	0.1
500.0	500.0	0.04	0.01	-0.01	500.0	0.04	0.01	-0.01	0.1
1000.0	1000.0	0.05	0.00	-0.02	1000.0	0.05	0.00	-0.02	0.2
1500.0	1500.0	0.05	0.00	-0.02	1500.0	0.05	0.00	-0.02	0.2
2000.0	2000.0	0.05	0.00	-0.02	2000.0	0.05	0.00	-0.02	0.2
3000.0	3000.0	0.05	0.00	-0.02	3000.0	0.05	0.00	-0.02	0.3
5000.0	5000.0	0.06	-0.01	-0.03	5000.1	0.06	0.09	0.07	0.3
8100.0	8100.2	0.07	0.18	0.16	8100.2	0.07	0.18	0.16	0.3

(*) Carga para determinar Eo

E= I + 1/2 d - ΔL - L

Ec = E - Eo

E.M.P.* = Error máximo permisible

INCERTIDUMBRE DE LA MEDICIÓN	U = 0.00016g + (0.0000023)I
------------------------------	-----------------------------

I = Indicación de la balanza

E = Error de la balanza

Eo = Error en cero

Ec = Error corregido

Incertidumbre

La incertidumbre reportada en el presente certificado es la Incertidumbre Expandida de medición, que resulta de multiplicar la Incertidumbre estándar por el factor de cobertura k=2 y ha sido determinada de acuerdo a la "Guía para la expresión de la Incertidumbre en la medición".

Notas

El usuario está obligado a tener el equipo calibrado en intervalos apropiados de tiempo de acuerdo al uso, mantenimiento y conservación al que este expuesto.

Página 3 de 3

CERTIFICADO DE CALIBRACIÓN CCC-008-2022

Peticionario

: MASTERLEM S.A.C.

Atención

: MASTERLEM S.A.C.

Lugar de calibración

: Masterlem SAC, Av. Circunvalación s/n. Lurigancho - Chosica - Lima

Instrumento de medición

: Copa de Casa Grande

Marca

: Ele - International

Modelo: No Indica.

Número de serie

: 00259

Código de identificación

: No Indica.

Procedencia

: USA

Método de calibración

: Norma ASTM D4318

Temp.(°C) y H.R.(%) inicial

: 21,1°C / 66%

Temp.(°C) y H.R.(%) final

: 21,1°C / 66%

Patrón de referencia para determinar medidas de longitud

: Proyector de perfiles marca MITUTOYO, trazabilidad INACAL-DM utilizando escalas patrones de vidrio (reglas de vidrio), con N° de serie 16973, certificado N° LLA-024-2022 y patrón de N° de serie 16369, con certificado N° LLA-025-2022. Certificado de calibración FESEPSA S.A. N° FS-0179-2022. Proyector de perfiles grado 1 según la norma Japonesa

JIS B7450

Balanza de referencia para determinar masa

: Marca OHAUS, de 2000 g de capacidad, con N° de serie SND 05732704, modelo TS200S, clase II, calibrado con patrones de masa marca mettler toledo clase OIML F1 de 1 - 500 g con certificado de calibración N° M-0306-2021. y 01 pesa mettler toledo clase OIML F1 de 2 kg. Con certificado de calibración

N° M-0294-2021.

Número de páginas

: 3

Fecha de calibración

: 2022-11-23

Este certificado de calibración sólo puede ser difundido sin modificaciones y en su totalidad. Las modificaciones y extractos del certificado necesitan autorización de CELDA EIRL.

El presente certificado sin firmas y sellos carece de validez

Sello

Fecha

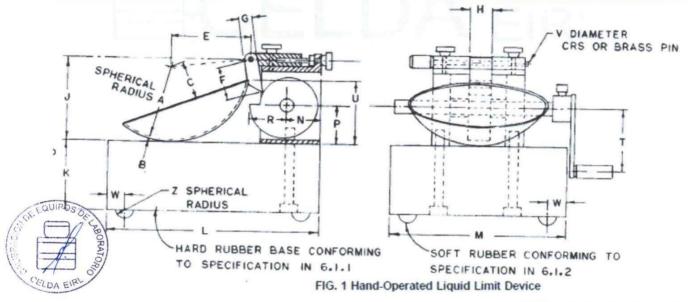
Hecho por

Revisado por

2022-11-27

Wladimir Tello Gerre

INGENIERO CIVIL.


CCC-008-2022

Página 1 de 3

Resultados de medición

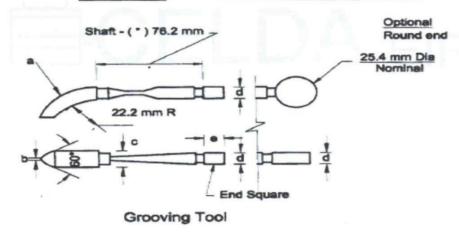
1) Dimensiones de la copa de casa grande (ASTM D4318)	Medida obtenida (mm)	Especificación (mm)
A) Distancia del eje del pin a parte interior de la copa	53,91	54 +/- 0.5
B) Espesor de la copa	2	2 +/- 0.1
C) Distancia del eje del pin a parte superio de la copa	27,31	27 +/- 0.5
E) Distancia del eje del pin al eje central de la copa	56,28	56 +/- 2.0
F) Distancia del eje del pin a parte baja del gancho de la copa	30,72	32
G) Espesor del gancho de la copa	9,79	10
H) Ancho del gancho de la copa	12,67	16
J) Altura del eje del pin hasta la parte superior de la base de la copa	59,66	60 +/- 1.0
K) Altura de la base de la copa	50,73	50 +/- 2.0
L) Longitud de la base de la copa	150,40	150 +/- 2.0
M) Ancho de la base de la copa	124,72	125 +/- 2.0
N) Distancia del eje de la polea hacia la parte mas corta de esta	23,86	24
P) Distancia del eje de la polea hasta la parte superior de la base de la copa	23,57	28
R) Distancia del eje de la polea hacia la parte mas larga de esta	24,08	24
T) Distancia del eje de la polea hasta el eje de la manisuela	47,32	45
U) Distancia de la parte mas alta de la copa hasta la parte superior de la base	46,77	47 +/- 1.0
V) Diámetro del pin	3,17	3,8
W) Distancia del eje del apoyo inferior de la copa a la parte lateral de la base	11,56	13
Z) Radio de apoyo inferior de la copa	6,31	6,5

2) Peso de la copa (incluido el gancho)	Masa		
	obtenida (g)	(g)	
Peso de la copa de casa grande con el gancho donde atravieza el pin	202,82	185 a 215	

Nota

El usuario esta obligado a tener el equipo calibrado en intervalos apropiados de tiempo de acuerdo al uso, mantenimiento y conservación al que este expuesto.

CCC-008-2022



3) Dimensiones del acanalador (AASTHO T89)	Medida obtenida (mm)	Especificación (mm)
a) Espesor del extremo curvo del acanalador	10,06	10.0 +/- 0.1
b) Borde de corte del extremo curvo acanalador (**)	2,01	2.0 +/- 0.1
c) Ancho del extremo curvo del acanalador	13,57	13.5 +/- 0.1
d) Profundidad del calibrador del acanalador	9,99	10.0 +/- 0.2
e) longitud del calibrador del acanalador (*)	16,04	15.9 +/- no indica
Shaft ó eje (*)	73,03	76.2 +/- no indica

(*) Dimension nominal, no indica tolerancia.

(**) Una tolerancia de desgaste adicional de 0.1 mm se permitira para la medida "b" cuando el acanalador es usado.

	Grooving Tool							
	(Curved End	Gage					
Dimension	a	b	С	đ	*e			
Description	Thickness	Cutting Edge	Width	Depth	Length			
Metric, mm	10.0	2.0	13.5	10.0	15.9			
Tolerance, mm	0.1	0.1	0.1	0.2	_			

Note: An additional wear tolerance of 0.1 mm shall be allowed for dimension "b" for used grooving tools.

(*) Nominal dimensions.

(*) Nominal dimensions.

All tolerances specified are plus or minus (±) except as noted above.

Nota

El usuario esta obligado a tener el equipo calibrado en intervalos apropiados de tiempo de acuerdo al uso, mantenimiento y conservación al que este expuesto.

CCC-008-202

CERTIFICADO DE CALIBRACIÓN CCT-001-2022

Peticionario

: MASTERLEM S.A.C.

Atención

: MASTERLEM S.A.C.

Lugar de calibración

: Laboratorio CELDA EIRL. Av. Circunvalación s/n. Mz.B. Lt.1

Urb. Las Praderas de Huachipa. Lurigancho Chosica.

Instrumento de medición

: Tamiz de abertura cuadrada de 8" diametro

Marca

: ELE-INTERNATIONAL

Número de serie

: 09316731

Código de identificación

: No indica

Abertura de Tamiz

: 75 µm (N° 200)

Procedencia

: USA

Método de calibración

: Procedimiento de calibración de tamices CELDA EIRL Nº PCT-C-002-2009

Temp.(°C) y H.R.(%) inicial

: 25.9°C / 64%

Temp.(°C) y H.R.(%) final

: 26.0°C / 64%

Patrón de referencia

: Proyector de perfiles marca MITUTOYO, trazabilidad INACAL-DM utilizando escalas patrones de vidrio (reglas de vidrio), con N° de serie 16973, certificado N° LLA-057-2020 y patrón de N° de serie 16369, con certificado N° LLA-058-2020. Certificado de calibración FESEPSA S.A. N° F-0486-2020. Proyector de perfiles grado 1 según la norma Japonesa

JIS B7450

Numero de paginas

: 2

Fecha de calibración

: 2022-02-21

Este certificado de calibración sólo puede ser difundido sin modificaciones y en su totalidad.

Las modificaciones y extractos del certificado necesitan autorización de CELDA EIRL.

El presente certificado sin firmas y sellos carece de validez

Sello

Fecha

Hecho por

Revisado por

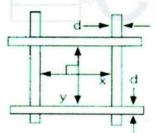
2022-02-28

Vladimir Telle Torre

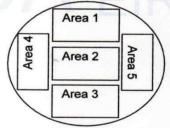
ORGE FRANCISCO RAMIREZ JAPAJA

PARIAN CIPAL BASE

CCT-001-2022



RESULTADOS DE MEDICIÓN


		ABERTURAS Y T	OLERANCIAS DE AC	UERDO A LA NORMA	ASTM E 11	- 04	
ÁREA DE	ABERTURA	INCERTIDUMBRE	ABERTURA	INCERTIDUMBRE	ERROR P	ERMISIBLE	ABERTURA INDIVIDUAL
MEDICIÓN	PROMEDIO EJE X	ABERTURA EJE X	PROMEDIO EJE Y	ABERTURA EJE Y	MÍNIMO	MÁXIMO	DEL TAMIZ - MÁXIMO
	(µm)	(µm)	(µm)	(µm)	(µm)	(µm)	(µm)
1	74	2	76	2	70	80	103
2	76	2	76	2	70	80	103
3	75 .	2	77	2	70	80	103
4	75	2	76	2	70	80	103
5	76	2	76	2	70	80	103

Valor estandar según norma ASTM E 11 - 04 = 75 µm

	DIAMETRO DEL	ALAMBRE Y TOLERA	NCIAS DE ACUERDO	A LA NORMA ASTM	E 11 - 04		
ÁREA DE MEDICIÓN F	DIAMETRO (d)	DIAMETRO (d) INCERTIDUMBRE		INCERTIDUMBRE	ERROR PERMISIBLE		
	PROMEDIO EJE X	DIAMETRO EJE X	PROMEDIO EJE Y	DIAMETRO EJE Y	MÍNIMO	MÁXIMO	
	(µm)	(µm)	(µm)	(µm)	(µm)	(µm)	
1	49	2	48	2	43	58	
2	46	2	49	2	43	58	
3	46	2	49	2	43	58	
4	45	2	50	2	43	58	
5	46	2	50	2	43	58	

Correcto dimensionamiento de malla metálica

Areas exploradas referenciales

Incertidumbre

La incertidumbre reportada en el presente certificado es la Incertidumbre Expandida de medición, que resulta de multiplicar la Incertidumbre estándar por el factor de cobertura k=2 y ha sido determinada de acuerdo a la "Guía para la expresión de la Incertidumbre en la medición".

Notas

El usuario esta obligado a tener el equipo calibrado en intervalos apropiados de tiempo de acuerdo al uso, mantenimiento y conservación al que este expuesto.

El equipo se encuentra calibrado.

CCT-001-2022 Página 2 de 2

CERTIFICADO DE CALIBRACIÓN CCT-005-2022

Peticionario

: MASTERLEM SAC

Atención

: MASTERLEM SAC

Lugar de calibración

: Laboratorio CELDA EIRL. Av. Circunvalación s/n. Mz.B. Lt.1

Urb. Las Praderas de Huachipa. Lurigancho Chosica.

Instrumento de medición

: Tamiz de abertura cuadrada de 8" diametro

Marca

: ELE - INTERNATIONAL

Número de serie

: 06357302

Código de identificación

: No Indica

Abertura de Tamiz

: 425 µm (N° 40)

Procedencia

: USA

Método de calibración

: Procedimiento de calibración de tamices CELDA EIRL Nº PCT-C-002-2009

Temp.(°C) y H.R.(%) inicial

: 26.1°C / 63%

Temp.(°C) y H.R.(%) final

: 26.0°C / 62%

Patrón de referencia

: Proyector de perfiles marca MITUTOYO, trazabilidad INACAL-DM utilizando escalas patrones de vidrio (reglas de vidrio), con Nº de serie 16973, certificado N° LLA-057-2020 y patrón de N° de serie 16369, con certificado Nº LLA-058-2020. Certificado de calibración FESEPSA S.A. N° F-0486-2020. Proyector de perfiles grado 1 según la norma Japonesa

JIS B7450

Numero de paginas

: 2

Fecha de calibración

: 2022-02-21

Este certificado de calibración sólo puede ser difundido sin modificaciones y en su totalidad.

Las modificaciones y extractos del certificado necesitan autorización de CELDA EIRL. El presente certificado sin firmas y sellos carece de validez

Sello

Fecha

Hecho por

Revisado por

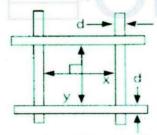
2022-02-28

GENIERO CIVIL

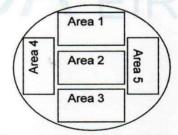
Reg. del CIP Nº 84286

CCT-005-2022

Página 1 de 2



RESULTADOS DE MEDICIÓN


ABERTURAS Y TOLERANCIAS DE ACUERDO A LA NORMA ASTM E 11 - 04								
ÁREA DE	ABERTURA	INCERTIDUMBRE	ABERTURA	INCERTIDUMBRE	ERROR PERMISIBLE		ABERTURA INDIVIDUAL	
MEDICIÓN	PROMEDIO EJE X	ABERTURA EJE X	PROMEDIO EJE Y	ABERTURA EJE Y	MÍNIMO	MÁXIMO	DEL TAMIZ - MÁXIMO	
	(µm)	(µm)	(µm)	(µm)	(µm)	(µm)	(µm)	
1	428	2	447	2	406	444	502	
2	430	2	438	2	406	444	502	
3	420	2	433	2	406	444	502	
4	425	2	438	2	406	444	502	
5	423	2	432	2	406	444	502	

Valor estandar según norma ASTM E 11 - 04 = 425 μm

DIAMETRO DEL ALAMBRE Y TOLERANCIAS DE ACUERDO A LA NORMA ASTM E 11 - 04								
ÁREA DE	DIAMETRO (d)	INCERTIDUMBRE DIAMETRO EJE X	DIAMETRO (d) PROMEDIO EJE Y	INCERTIDUMBRE	ERROR PERMISIBLE			
MEDICIÓN	PROMEDIO EJE X			DIAMETRO EJE Y	MÍNIMO	MÁXIMO (μm)		
	(µm)	(µm)	(µm)	(µm)	(µm)			
1	287	2	258	2	238	322		
2	282	2	261	2	238	322		
3	291	2	268	2	238	322		
4	288	2	266	2	238	322		
5	289	2	275	2	238	322		

Correcto dimensionamiento de malla metálica

Areas exploradas referenciales

Incertidumbre

La incertidumbre reportada en el presente certificado es la Incertidumbre Expandida de medición, que resulta de multiplicar la Incertidumbre estándar por el factor de cobertura k=2 y ha sido determinada de acuerdo a la "Guía para la expresión de la Incertidumbre en la medición".

Notas

El usuario esta obligado a tener el equipo calibrado en intervalos apropiados de tiempo de acuerdo al uso, mantenimiento y conservación al que este expuesto.

El equipo se encuentra calibrado.

Página 2 de 2

CERTIFICADO DE CALIBRACIÓN CCT-016-2022

Peticionario

: MASTERLEM SAC

Atención

: MASTERLEM SAC

Lugar de calibración

: Laboratorio CELDA EIRL. Av. Circunvalación s/n. Mz.B. Lt.1

Urb. Las Praderas de Huachipa. Lurigancho Chosica.

Instrumento de medición

: Tamiz de abertura cuadrada de 8" diámetro

Marca

: W. S. TYLER

Número de serie

: 9753346

Código de identificación

: No indica

Abertura de Tamiz

: 4,750 mm (Nº4)

Procedencia

: USA

Método de calibración

Procedimiento de calibración de tamices CELDA EIRL Nº PCT-C-002-2009

Temp.(°C) y H.R.(%) inicial

: 25.7°C / 61%

Temp.(°C) y H.R.(%) final

: 25.8°C / 62%

Patrón de referencia

: Proyector de perfiles marca MITUTOYO, trazabilidad INACAL-DM utilizando escalas patrones de vidrio (reglas de vidrio), con N° de serie 16973, certificado N° LLA-057-2020 y patrón de N° de serie 16369, con certificado N° LLA-058-2020. Certificado de calibración FESEPSA S.A. N° F-0486-2020. Proyector de perfiles grado 1 según la norma Japonesa

JIS B7450

Número de páginas

: 2

Fecha de calibración

: 2022-02-23

Este certificado de calibración sólo puede ser difundido sin modificaciones y en su totalidad.

Las modificaciones y extractos del certificado necesitan autorización de CELDA EIRL.

El presente certificado sin firmas y sellos carece de validez

Sello

Fecha

Hecho por

Revisado por

CALIBRACION CALIBR

2022-02-28

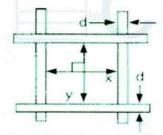
Vladimi Tello Torre

JORGE FRANCISCO RAMIREZ JAPAJA INGENIERO CIVIL

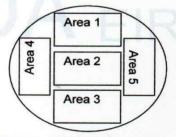
Reg. del CIP Nº 84286

CCT-016-2022

Página 1 de 2



RESULTADOS DE MEDICIÓN


		ABERTURAS Y TOLERANCIAS DE ACUERDO A LA NORMA ASTM E 11 - 04								
	ÁREA DE	ABERTURA	INCERTIDUMBRE	ABERTURA	INCERTIDUMBRE	ERROR PERMISIBLE		ABERTURA INDIVIDUAL		
	MEDICIÓN	PROMEDIO EJE X ABERTURA		PROMEDIO EJE Y	ABERTURA EJE Y	MÍNIMO	MÁXIMO	DEL TAMIZ - MÁXIMO		
		(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)		
	1	4.753	0.002	4.771	0.002	4.600	4.900	5.140		
	2	4.759	0.002	4.770	0.002	4.600	4.900	5.140		
	3	4.754	0.002	4.764	0.002	4.600	4.900	5.140		
	4	4.743	0.002	4.777	0.002	4.600	4.900	5.140		
ı	5	4.774	0.002	4.760	0.002	4.600	4.900	5.140		

Valor estandar según norma ASTM E 11 - 04 = 4,750 mm

DIAMETRO DEL ALAMBRE Y TOLERANCIAS DE ACUERDO A LA NORMA ASTM E 11 - 04									
ÁREA DE	DIAMETRO (d)	INCERTIDUMBRE DIAMETRO EJE X	DIAMETRO (d)	INCERTIDUMBRE	ERROR PERMISIBLE				
MEDICIÓN	PROMEDIO EJE X		PROMEDIO EJE Y	DIAMETRO EJE Y	MÍNIMO	MÁXIMO			
	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)			
1	1.603	0.002	1.597	0.002	1.360	1.840			
2	1.591	0.002	1.599	0.002	1.360	1.840			
3	1.603	0.002	1.604	0.002	1.360	1.840			
4	1.603	0.002	1.595	0.002	1.360	1.840			
5	1.581	0.002	1.597	0.002	1.360	1.840			

Areas exploradas referenciales

Incertidumbre

La incertidumbre reportada en el presente certificado es la Incertidumbre Expandida de medición, que resulta de multiplicar la Incertidumbre estándar por el factor de cobertura k=2 y ha sido determinada de acuerdo a la "Guía para la expresión de la Incertidumbre en la medición".

Notas

El usuario esta obligado a tener el equipo calibrado en intervalos apropiados de tiempo de acuerdo al uso, mantenimiento y conservación al que este expuesto.

El equipo se encuentra calibrado.

CCT-016-2022

Página 2 de 2

CERTIFICADO DE CALIBRACIÓN CMI-002-2022

Peticionario

: MASTERLEM SAC

Atención

: MASTERLEM SAC

Lugar de calibración

: MASTERLEM SAC Av. Circunvalación s/n. Huachipa - Lima

Tipo de instrumento

: Horno de secado para muestras

Marca

: Despatch

Nº de serie

: 164802

Modelo

: LEB1-76-4

Alcance

: 400 °F

División de Escala

: 0.1 °C

Selector de temperatura

: Digital

Método de calibración

: Procedimiento para la calibración o caracterización de medios isotermos con aire como medio termostático PC 018 - Indecopi:

2° Edición.

Temp.(°C) y H.R.(%) inicial

: 17.3°C / 75%

Temp.(°C) y H.R.(%) final

: 17.4°C / 75%

Patrones de referencia

: Patrón utilizado Thermometer mit PT-100, marca MBW Calibration AG, modelo T12, N° de serie 19-0728, certificado de calibración 3000MBW2020

con trazabilidad SWISS CALIBRATION.

Número de páginas

: 6

Fecha de calibración

: 2022-08-03

Este certificado de calibración sólo puede ser difundido sin modificaciones y en su totalidad.

Las modificaciones y extractos del certificado necesitan autorización de CELDA EIRL. El presente certificado sin firmas y sellos carece de validez.

Sello

Fecha

Hecho por

Revisado por

2022-08-04

Vladimir Tello Torre

INGENIERO CIVIL Reg. del CIP N° 84286

MIRET JAPA JA

CMI-002-2022

Página 1 de 6

CALIBRACIÓN PARA LA TEMPERATURA DE 110 °C ± 5 °C

Tiempo	Indicador	TEMPERATURA EN LAS POSICIONES DE MEDICIÓN (°C)								T			
(min)	(°C)			L SUPE				NIV	EL INFE	RIOR	72.3	T prom.	T máx T mín.
Maria Santa		1	2	3	4	5	6	7	8	9	10	(°C)	(°C)
0	121.1	111.6	111.7	112.2	113.0	111.5	111.6	111.8	112.2	112.4	111.2	111.9	1.8
2	121.1	111.5	111.7	112.2	113.1	111.4	111.6	111.7	112.1	112.3	111.2	111.9	1.9
4	121.1	111.5	111.6	112.1	113.1	111.2	111.5	111.6	112.0	112.3	111.1	111.8	2.0
6	121.1	111.4	111.5	112.0	113.0	111.2	111.4	111.6	112.0	112.2	111.1	111.7	1.9
8	121.1	111.3	111.5	112.0	113.0	111.1	111.3	111.5	111.9	112.3	111.0	111.7	2.0
10	121.1	111.2	111.4	111.9	112.9	111.0	111.2	111.4	111.8	112.1	110.9	111.6	2.0
12	121.1	111.2	111.3	111.8	112.8	111.0	111.1	111.4	111.8	112.1	110.8	111.5	2.0
14	121.1	111.1	111.2	111.8	112.8	111.0	111.1	111.3	111.7	112.0	110.8	111.5	2.0
16	121.1	111.1	111.2	111.7	112.9	111.1	111.0	111.2	111.7	112.0	110.7	111.5	2.2
18	121.1	111.0	111.1	111.7	112.9	111.1	111.0	111.0	111.6	111.9	110.6	111.4	2.3
20	121.1	111.0	111.1	111.6	112.9	111.0	110.9	111.1	111.6	111.9	110.6	111.4	2.3
22	121.1	111.1	111.2	111.6	112.8	111.0	111.1	111.2	111.7	112.0	110.5	111.4	2.3
24	121.1	111.2	111.2	111.7	112.9	111.2	111.1	111.3	111.7	112.0	110.6	111.5	2.3
26	121.1	111.2	111.3	111.8	112.8	111.3	111.2	111.4	111.8	112.1	110.8	111.6	2.0
28	121.1	111.3	111.4	111.9	113.0	111.3	111.3	111.4	111.9	112.1	110.9	111.7	2.1
30	121.1	111.4	111.5	111.9	113.1	111.4	111.3	111.5	112.0	112.2	111.1	111.7	2.0
32	121.1	111.5	111.6	112.0	113.2	111.5	111.4	111.5	112.0	112.3	111.1	111.8	2.1
34	121.1	111.6	111.6	112.0	113.0	111.5	111.4	111.6	112.1	112.4	111.2	111.8	1.8
36	121.1	111.6	111.6	112.2	113.0	111.6	111.5	111.7	112.2	112.4	111.2	111.9	1.8
38	121.1	111.6	111.7	112.2	112.8	111.6	111.5	111.7	112.3	112.5	111.3	111.9	1.5
40	121.1	111.7	111.8	112.3	113.0	111.7	111.6	111.7	112.4	112.5	111.4	112.0	1.6
42	121.1	111.7	111.8	112.3	112.9	111.6	111.7	111.8	112.4	112.6	111.3	112.0	1.6
44	121.1	111.7	111.7	112.2	112.9	111.4	111.7	111.8	112.2	112.4	111.2	111.9	1.7
46	121.1	111.6	111.7	112.2	113.0	111.3	111.6	111.7	112.3	112.4	111.2	111.9	1.8
48	121.1	111.5	111.6	112.1	113.0	111.3	111.6	111.7	112.3	112.3	111.1	111.9	1.9
50	121.1	111.5	111.5	112.1	113.0	111.2	111.5	111.6	112.2	112.3	111.2	111.8	1.8
52	121.1	111.5	111.5	112.0	113.1	111.2	111.5	111.6	112.1	112.2	111.0	111.8	2.1
54	121.1	111.4	111.5	112.0	113.0	111.1	111.4	111.5	112.1	112.2	111.0	111.7	2.0
56	121.1	111.4	111.4	111.9	113.0	111.1	111.3	111.4	112.0	112.3	110.9	111.7	2.1
58	121.1	111.3	111.4	111.8	113.1	111.0	111.4	111.5	112.0	112.2	110.9	111.7	2.2
60	121.1	111.3	111.4	111.9	113.0	111.0	111.4	111.5	111.9	112.2	111.0	111.7	2.0
.PROM	121.1	111.4	111.5	112.0	113.0	111.3	111.4	111.5	112.0	112.2	111.0	111.7	
T.MAX	121.1	111.7	111.8	112.3	113.2	111.7	111.7	111.8	112.4	112.6	111.4		
T.MIN	121.0	111.0	111.1	111.6	112.8	111.0	110.9	111.0	111.6	111.9	110.5		
DTT	0.0	0.7	0.7	0.7	0.4	0.7	0.8	0.8	0.8	0.7	0.9		

Temperatura ambiental promedio

: 17.4 °C

Tiempo de calibración del equipo

: 60 minutos

. PARÁMETRO	VALOR (°C)	INCERTIDUMBRE EXPANDIDA (°C)		
Máxima Temperatura Medida	113.2	0.3		
Mínima Temperatura Medida	110.5	0.3		
Desviación de Temperatura en el Tiempo	0.9	0.1		
Desviación de Temperatura en el Espacio	2.0	0.3		
Estabilidad Medida (±)	0.45	0.02		
Uniformidad Medida	2.3	0.3		

Para alcanzar el valor esperado de 110 °C ± 5 °C dentro de la cámara, el controlador fue marcado.

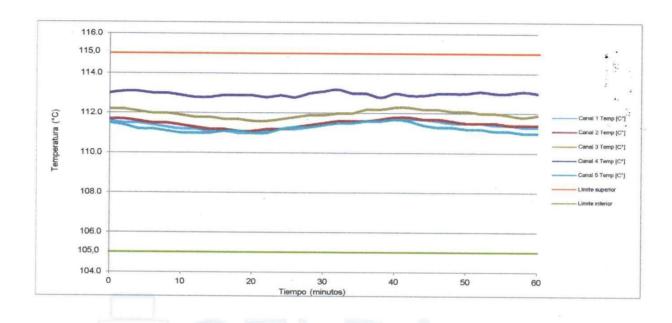
T.PROM: Promedio de la temperatura en una posición de medición durante el tiempo de calibración.

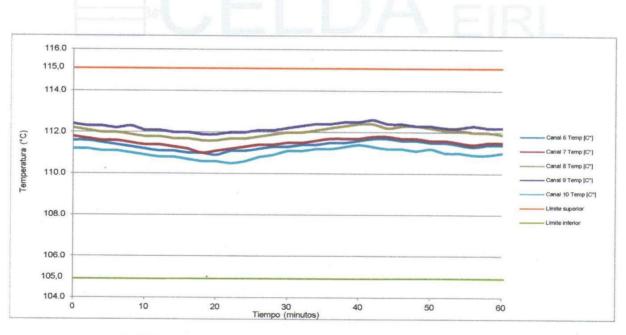
T prom. : Promedio de las temperaturas en las diez posiciones de medición para un instante dado.

T.MAX : Temperatura máxima
T.MIN : Temperatura mínima

DTT : Desviación de Temperatura en el Tiempo

Para cada posición de medición su "desviación de temperatura en el tiempo" DTT está dada por la diferencia entre la máxima y la mínima temperatura registradas en dicha posición.


Entre dos posiciones de medición su "desviación de temperatura en el espacio" está dada por la diferencia entre los promedios de temperaturas registradas en ambas posiciones.


CMI-002-2022

Página 2 de 6

TEMPERATURA DE TRABAJO 110 °C ± 5 °C

Página 3 de 6

PARA LA TEMPERATURA DE 180 °C

Tiempo	Indicador (°C)	TEMPERATURA EN LAS POSICIONES DE MEDICIÓN (°C)										T prom.	T máx T mín.
(min)		NIVEL SUPERIOR						NIVEL INFERIOR				(°C)	(°C)
_	004.4	1	2	3	4	5	6	7	8	9	10		
0	204.4	180.0	179.1	179.5	178.8	180.2	179.2	180.1	179.4	179.4	179.4	179.5	1.4
2	204.4	180.1	179.0	179.8	179.7	180.1	179.1	180.0	179.5	179.2	179.1	179.6	1,1
4	204.4	180.4	179.7	179.9	180.0	180.3	179.5	180.4	180.1	179.0	180.0	179.9	1.4
6	204.4	180.7	180.1	180.2	180.3	181.2	180.0	181.0	181.4	180.4	180.8	180.6	1.4
8	204.4	180.7	180.4	180.4	181.2	181.2	180.2	181.3	181.5	181.0	180.7	180.9	1.3
10	204.4	180.8	180.4	180.6	180.6	181.1	180.4	181.4	181.4	181.2	181.3	180.9	1.0
12	204.4	180.3	180.0	180.5	181.3	181.1	180.6	181.3	181.2	181.1	181.4	180.9	1.4
14	204.4	180.9	179.8	180.1	179.6	181.0	180.0	180.3	181.4	180.8	181.2	180.5	1.8
16	204.4	180.5	179.6	180.0	179.4	180.8	179.9	180.1	181.0	180.4	180.6	180.2	1.6
18	204.4	179.8	179.1	179.5	179.2	180.6	179.6	180.4	180.4	180.0	180.3	179.9	1.5
20	204.4	179.9	179.3	179.7	179.4	180.4	179.3	180.3	180.3	179.4	179.6	179.8	1.1
22	204.4	180.1	179.1	179.7	179.6	180.4	179.2	180.1	179.9	179.3	179.6	179.7	1.3
24	204.4	181.0	180.0	180.3	180.1	181.0	180.3	181.0	180.3	180.1	180.1	180.4	1.0
26	204.4	180.8	180.3	180.5	180.8	181.2	180.6	181.2	180.3	180.6	181.2	180.8	0.9
28	204.4	180.7	181.1	181.0	181.3	181.0	181.1	181.1	181.2	181.0	180.7	181.0	0.6
30	204.4	180.1	181.2	181.2	181.4	181.1	181.1	181.2	180.6	181.1	180.4	180.9	1.3
32	204.4	180.4	181.1	181.3	181.5	181.2	181.3	181.4	181.5	181.3	181.0	181.2	1.1
34	204.4	180.5	181.0	181.0	181.2	181.3	181.2	181.3	181.3	181.2	181.0	181.1	8.0
36	204.4	180.5	180.7	180.7	181.2	181.4	181.5	181.4	181.0	181.1	181.2	181.1	1.0
38	204.4	180.6	180.4	180.5	181.0	181.0	180.4	181.2	181.5	180.9	181.4	180.9	1.1
40	204.4	180.5	180.2	180.3	180.7	180.8	180.0	180.9	181.4	181.2	181.3	180.7	1.4
42	204.4	180.0	180.1	180.0	180.4	180.7	179.5	180.4	181.2	180.3	180.5	180.3	1.7
44	204.4	180.3	179.9	180.0	180.3	180.4	179.4	180.4	180.3	180.4	180.1	180.2	1.0
46	204.4	179.8	179.9	179.8	180.0	180.3	179.3	180.3	180.2	181.0	180.2	180.1	1.7
48	204.4	180.0	179.7	179.7	180.1	180.1	179.2	180.3	180.5	180.4	180.4	180.0	1.3
50	204.4	180.1	179.6	179.9	180.0	180.3	179.2	180.4	180.3	180.2	180.3	180.0	1.2
52	204.4	180.0	179.8	180.1	180.3	180.6	179.5	180.5	180.0	180.3	180.3	180,1	1.1
54	204.4	180.3	180.4	180.4	181.0	181.0	180.0	181.0	181.0	180.0	180.6	180.6	1.0
56	204.4	180.3	181.2	181.3	181.3	181.0	180.1	181.1	180.2	181.5	181.5	181.0	1.4
58	204.4	181.0	181.1	181.2	181.2	181.1	181.1	181.3	180.3	181.4	181.4	181.1	1.1
60	204.4	181.1	181.0	181.1	181.0	181.1	181.2	181.1	180.4	181.0	181.2	181.0	0.8
.PROM	204.4	180.4	180.1	180.3	180.4	180.8	180.1	180.8	180.7	180.5	180.6	180.5	
T.MAX	204.4	181.1	181.2	181.3	181.5	181.4	181.5	181.4	181.5	181.5	181.5		
T.MIN	204.4	179.8	179.0	179.5	178.8	180.1	179.1	180.0	179.4	179.0	179.1		
DTT	0	1.3	2.2	1.8	2.7	1.3	2.4	1.4	2.1	2.5	2.4		

Temperatura ambiental promedio

: 17.4 °C

Tiempo de calibración del equipo

: 60 minutos

. PARÁMETRO	VALOR (°C)	INCERTIDUMBRE EXPANDIDA (°C) 0.3		
Máxima Temperatura Medida	181.5			
Mínima Temperatura Medida	178.8	0.3		
Desviación de Temperatura en el Tiempo	2.7	0.1		
Desviación de Temperatura en el Espacio	0.7	0.3		
Estabilidad Medida (±)	1.35	0.04		
Uniformidad Medida	1.8	0.3		

Para alcanzar el valor esperado de 180 °C ± 2 °C dentro de la cámara, el controlador fue marcado.

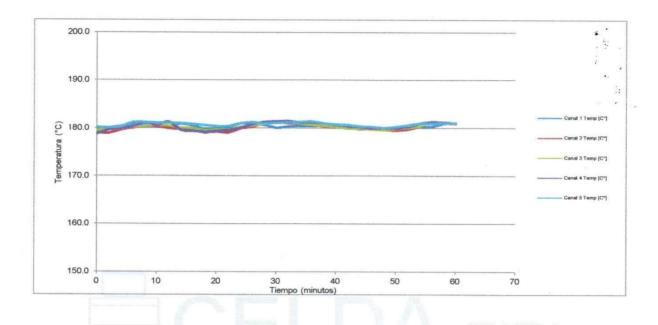
T.PROM: Promedio de la temperatura en una posición de medición durante el tiempo de calibración.

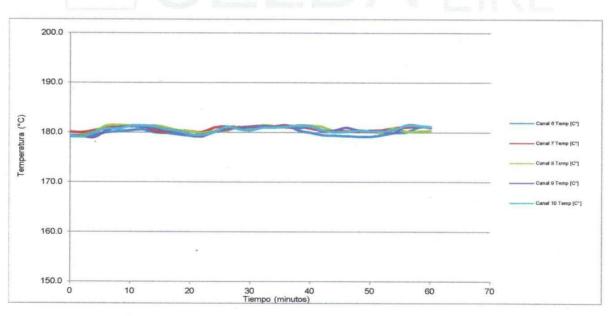
T prom. : Promedio de las temperaturas en las diez posiciones de medición para un instante dado.

T.MAX : Temperatura máxima
T.MIN : Temperatura mínima

DTT : Desviación de Temperatura en el Tiempo

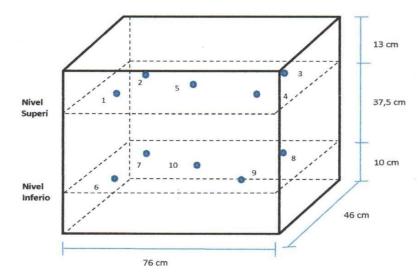
Para cada posición de medición su "desviación de temperatura en el tiempo" DTT está dada por la diferencia entre la máxima y la mínima temperatura registradas en dicha posición.


Entre dos posiciones de medición su "desviación de temperatura en el espacio" está dada por la diferencia entre los promedios de temperaturas registradas en ambas posiciones.


CMI-002-2022

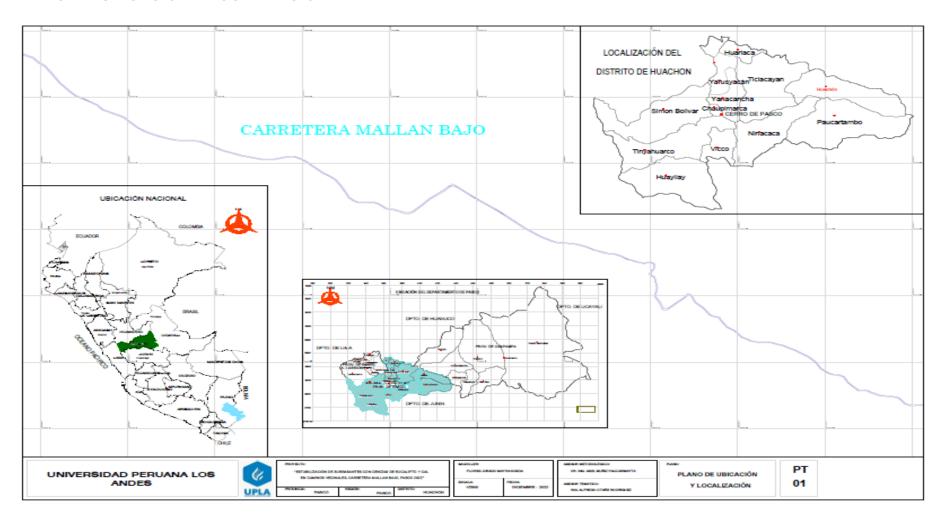
Página 4 de 6

TEMPERATURA DE TRABAJO 180 °C

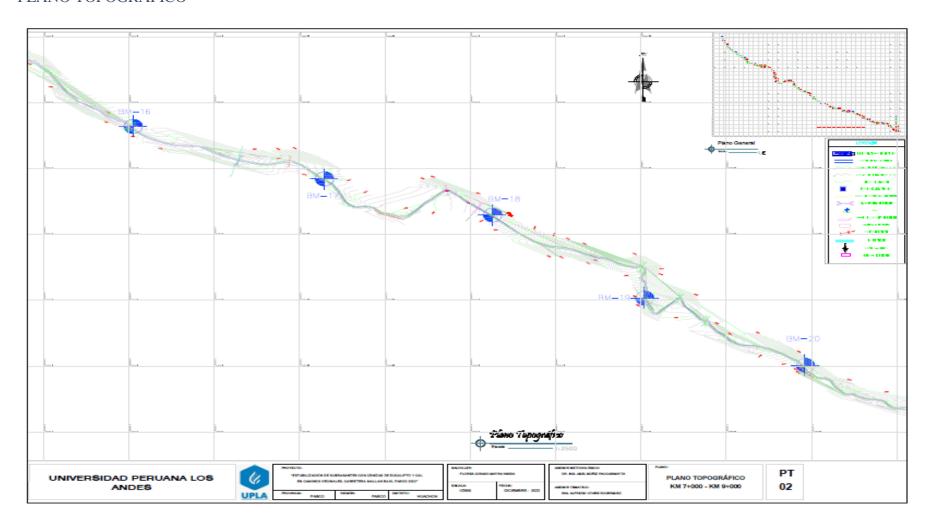


Página 5 de 6

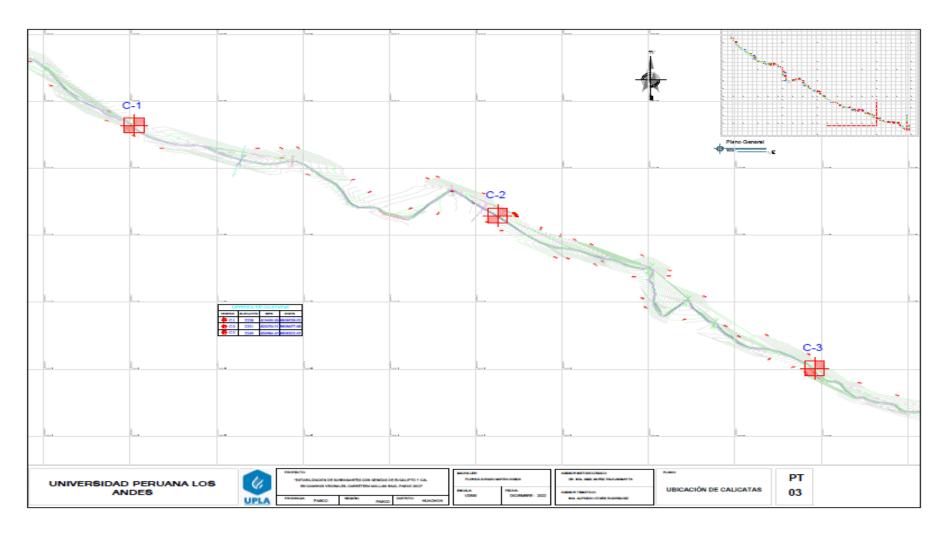
DISTRIBUCIÓN DE LOS SENSORES DE TEMPERATURA


Los sensores 5 y 10 están ubicados en el centro de sus respectivas parrillas. Los sensores del 1 al 4 y del 6 al 9 están ubicados a 18 cm de las paredes laterales. Los sensores del 1 al 4 y del 6 al 9 están ubicados a 10 cm del frente y fondo de la estufa.

CMI-002-2022


ANEXO 5: PLANOS

PLANO DE UBICACIÓN Y LOCALIZACIÓN


Fuente: Gobierno Regional Pasco (Dirección Regional de Transportes y Comunicaciones Pasco)

PLANO TOPOGRÁFICO

Fuente: Gobierno Regional Pasco (Dirección Regional de Transportes y Comunicaciones Pasco)

PLANO DE UBICACIÓN DE CALICATAS

Fuente: Gobierno Regional Pasco (Dirección Regional de Transportes y Comunicaciones Pasco)

ANEXO 6: REGISTRO FOTOGRÁFICO

Figura 6. 1 Excavacion de calicata 3

Figura 6. 2 Combustion de la leña de eucalipto

Figura 6. 3 Cenizas de eucalipto

Figura 6. 4 Peso especifico de la ceniza de eucalipto

Figura 6. 5 Granulometria de la ceniza de eucalipto por sedimentacion

Figura 6. 6 Cuarteo de muestras

Figura 6. 7 Pesaje de muestras para proctor

Figura 6. 9 Granulometria

Figura 6. 10 Muestra de suelo natural, cenizas y cal para proctor

Figura 6. 11 Moldeo de proctor modificado

Figura 6. 12 Enrazado de proctor

Figura 6. 13 Saturacion de CBR

Figura 6. 14 Penetracion de CBR

Figura 6. 15 Limite Pastico de la calicata 2 a suelo natural

Figura 6. 16 Limite Liquido de la calicata 3 a suelo natural

ANEXO 7: SOLICITUD Y OFICIO

Solicitud para la obtención de la Copia del Plano Topográfico

SOLICITUD: COPIA DE PLANO TOPOGRÁFICO DE LA CARRETERA MALLAN

BAJO

DIRECTOR REGIONAL DE TRANSPORTES Y COMUNICACIONES PASCO

Yo MAYRA FLORES JURADO, bachiller en ingeniería civil de la Universidad Peruana Los Andes, identificada con DNI Nº 71777993 con domicilio es Av. Oxapampa s/n Quiparacra en el distrito de Huachon.

Ante usted me presento y expongo lo siguiente:

Que siendo requisito indispensable para optar el título profesional de Ingeniero Civil, realizar un trabajo de investigación, requiero de su apoyo para que se me proporcione la COPIA DEL PLANO TOPOGRÁFICO DE LA CARRETERA MALLAN BAJO, para la investigación : "ESTABILIZACIÓN DE SUBRASANTES CON CENIZAS DE EUCALIPTO Y CAL, EN CAMINOS VECINALES, CARRETERA MALLAN BAJO, PASCO 2022".

POR LO EXPUESTO:

Pido a usted acceder a mi solicitud.

Pasco, 02 de Diciembre de 2022.

FLORES JURADO MAYRA
DNI N° 717777993

Oficio de respuesta del Gobierno Regional Pasco (Dirección Regional de Transportes y Comunicaciones Pasco.

DIRECCIÓN REGIONAL DE TRANSPORTES Y COMUNICACIONES PASCO

http://drtc.regionnasco.gob.pe/ - https://www.gob.pe/regionpasco-drtc

"Año del Fortalecimiento de la Soberanía Nacional" "Año del Fortalecimiento de la Identidad Cultural de Pasco y los 400 Años de la Iglesia Matriz de Villa de Pasco"

Cerro de Pasco, 16 de diciembre de 2022

OFICIO N° 1084-2022-G.R.P-GGR-GRI/DRTC SEÑORITA:

Mayra FLORES JURADO

DIRECCIÓN: Av. Oxapampa s/n Quiparacra - Huachón - Pasco

Huachón.-

ASUNTO: INFORMO DOCUMENTACIÓN ATENDIDA REFERENCIA: SOLICITUD S/N DE FECHA 04/11/2022

SOLICITUD S/N DE FECHA 02/12/2022

Es grato saludarlo a nombre de la Dirección Regional de Transportes y Comunicaciones Pasco, al mismo tiempo, en atención al documento de la referencia, INFORMO a su representada que, se remitió el plano topográfico digital de la zona de ejecución de la obra: "MEJORAMIENTO Y REHABILITACIÓN DE LA CARRETERA USHUN - MALLAN BAJO, DISTRITO DE HUACHÓN - PASCO - PASCO", para su conocimiento y demás fines.

Asimismo, para mayor detalle adjunto el INFORME N° 1686-2022-GRP/ DRTC/DC-PASCO, para su trámite respectivo.

Sin otro particular, me suscribo de Usted.

Atentamente;

Con Copia:
- Archivo (2).
Sec./ JJRQ

"TODAS LAS EMPRESAS Y ESTABLECIMIENTOS CUENTAN"

063 - 422177