# UNIVERSIDAD PERUANA LOS ANDES FACULTAD DE INGENIERÍA

ESCUELA PROFESIONAL DE INGENIERIA CIVIL



TESIS

# ANÁLISIS DEL REFORZAMIENTO DE EDIFICACIONES DE CONCRETO ARMADO CON DISIPADORES DE FLUIDO VISCOELASTICOS EN LA CIUDAD DE HUANCAYO

### LINEA DE INVESTIGACIÓN DE LA UNIVERSIDAD:

TRANSPORTE Y URBANISMO

LINEA DE INVESTIGACIÓN DE ESCUELA PROFESIONAL DE INGENIERIA CIVIL:

ESTRUCTURAS

**PRESENTADO POR:** 

### Bach. EDUARDO GENARO VENTURA CAMAC

PARA OPTAR EL TÍTULO PROFESIONAL DE:

### **INGENIERO CIVIL**

HUANCAYO – PERU

2019

ASESOR

PH.D. MOHAMED MEHDI HADI MOHAMED

### DEDICATORIA

Dedico la presente a aquellos que me apoyaron cada momento de mi vida académica, mis padres.

A mi familia, motivadores de mi desarrollo personal y profesional.

HOJA DE CONFORMIDAD DE MIEMBROS DEL JURADO

DR. CASIO AURELIO TORRES LOPEZ PRESIDENTE

### MSC. JULIO CESAR LLALLICO COLCA JURADO

ING. ALCIDES LUIS FABIAN BRAÑEZ JURADO

ING. CARLOS ALBERTO JESUS SEDANO JURADO

MG. MIGUEL ANGEL CARLOS CANALES SECRETARIO DOCENTE

## ÍNDICE

| DEDICATORIA                                | iv       |
|--------------------------------------------|----------|
| HOJA DE CONFORMIDAD DE MIEMBROS DEL JURADO | v        |
| ÍNDICE                                     | vi       |
| ÍNDICE DE CUADROS                          | x        |
|                                            | viv      |
|                                            | XIV      |
| RESUMEN                                    | xviii    |
| ABSTRACT                                   | xix      |
| INTRODUCCIÓN                               | хх       |
| CAPITULO I                                 | 21       |
| 1 PLANTEAMIENTO DE LA INVESTIGACIÓN        | 21       |
|                                            |          |
|                                            | 21       |
| 1.2. PORMULACIÓN DEL PROBLEMA.             | 22<br>22 |
| 1.2.2. PROBLEMAS ESPECÍFICOS:              |          |
| 1.3. JUSTIFICACIÓN:                        |          |
| 1.3.1. PRACTICA O SOCIAL                   | 23       |
| 1.3.2. METODOLÓGICA                        | 23       |
| 1.4. DEMILITACIONES:                       |          |
| 1.4.1. GEOGRÁFICOS                         | 24       |
| 1.4.2. TEMPORAL                            |          |
| 1.5. LIMITACIONES:                         |          |
| 1.5.1. DE INFORMACION                      |          |
| 1.5.2. ECONÓMICO                           |          |
| 1.5.3. TECNICO                             |          |
| 1.6. OBJETIVOS DE LA INVESTIGACIÓN:        |          |
| 1.6.1. OBJETIVO GENERAL                    |          |
| 1.6.2. OBJETIVOS ESPECÍFICOS:              |          |
|                                            | 28       |
| 2. MARCO TEÓRICO                           | 28       |

|    | 2.1.         | AN <sup>.</sup> | TECEDENTES:                                                              | 28             |
|----|--------------|-----------------|--------------------------------------------------------------------------|----------------|
|    | 2.1          | .1.             | ANTECEDENTE NACIONALES                                                   | 28             |
|    | 2.1          | .2.             | ANTECEDENTE INTERNACIONALES                                              | 38             |
|    | 2.2.<br>PROT | MA<br>FECC      | RCO CONCEPTUAL EDIFICACIONES CON SISTEMAS DE<br>CIÓN POR AMORTIGUAMIENTO | 47             |
|    | 2.2          | .1.             | ENFOQUE SISMORRESISTENTE TRADICIONAL                                     | 47             |
|    | 2.2<br>PO    | .2.<br>R AN     | ENFOQUE SISMORRESISTENTE CON SISTEMAS DE PROTECCIÓI<br>IORTIGUAMIENTO    | <b>N</b><br>49 |
|    | 2.2          | .3.             | CONCEPTO DE SISTEMAS DE PROTECCIÓN SÍSMICA                               | 52             |
|    | 2.3.         | SIS             | TEMAS MODERNOS PASIVOS DE PROTECCIÓN SÍSMICA:                            | 53             |
|    | 2.3          | .1.             | ESPECTRO GENERAL DE DISEÑO                                               | 55             |
|    | 2.3          | .2.             | AISLAMIENTO EN LA BASE                                                   | 56             |
|    | 2.3          | .3.             | DISIPACIÓN DE ENERGÍA                                                    | 57             |
|    | 2.4.         | DIS             | IPADORES DE FLUIDO VISCOELASTICOS:                                       | 57             |
|    | 2.4          | .1.             | COMPORTAMIENTO HISTERÉTICO                                               | 58             |
|    | 2.4          | .2.             | MODELO MECÁNICO DEL DISIPADOR                                            | 59             |
|    | 2.4          | .3.             | MODELO DEL SISTEMA DE AMORTIGUAMIENTO                                    | 61             |
|    | 2.4          | .4.             | ECUACIÓN GENERAL:                                                        | 65             |
|    | 2.4          | .5.             | CRITERIOS DE UBICACIÓN Y DISPOSICIÓN                                     | 75             |
|    | 2.4          | .6.             | FABRICANTES                                                              | 78             |
|    | 2.5.         | HIP             | ÓTESIS:                                                                  | 79             |
|    | 2.5          | .1.             | HIPÓTESIS GENERAL                                                        | 79             |
|    | 2.5          | .2.             | HIPÓTESIS ESPECÍFICOS:                                                   | 79             |
|    | 2.6.         | VA              | RIABLES:                                                                 | 80             |
|    | 2.6          | .1.             | DEFINICIÓN CONCEPTUAL DE LAS VARIABLES                                   | 80             |
|    | 2.6          | .2.             | DEFINICIÓN OPERACIONAL DE LAS VARIABLES                                  | 80             |
| С  | APITU        | ILO I           | <b>II</b>                                                                |                |
| 3. | ME           | TOD             | OLOGÍA DE LA INVESTIGACION:                                              |                |
|    | 3.1.         | MÉ              | TODO DE INVESTIGACIÓN                                                    | 81             |
|    | 3.2.         | TIP             | O DE LA INVESTIGACIÓN                                                    | 81             |
|    | 3.3.         | NIV             | EL DE LA INVESTIGACIÓN                                                   | 81             |
|    | 3.4.         | DIS             | EÑO DE LA INVESTIGACIÓN                                                  | 82             |
|    | 3.5.         | PO              | BLACIÓN Y MUESTRA:                                                       | 82             |
|    | 3.5          | .1.             | POBLACIÓN                                                                | 82             |
|    | 3.5          | .2.             | MUESTRA                                                                  | 82             |

| 3.6. AN<br>VISCOEL     | ÁLISIS Y DISEÑO UTILIZANDO DISIPADORES SÍSMICOS<br>ÁSTICOS DEL TIPO FLUIDO VISCOSO  | 82       |
|------------------------|-------------------------------------------------------------------------------------|----------|
| 3.7. PR                | OCEDIMIENTO DE LA INFORMACION:                                                      |          |
| 3.8. MO                | DELAMIENTO DEL SISTEMA DE AMORTIGUAMIENTO:                                          |          |
| 3.8.1.                 | OBJETIVOS DE DESEMPEÑO                                                              |          |
| 3.8.2.                 | NIVELES DE DESEMPEÑO                                                                | 87       |
| 3.8.3.                 | SISMOS DE DISEÑO                                                                    |          |
| 3.9. DE                | FINICIÓN DE LOS OBJETIVOS DE DISEÑO:                                                | 90       |
| 3.9.1.                 | RELACIÓN DESEMPEÑO-DERIVA                                                           | 90       |
| 3.9.2.                 | DERIVA OBJETIVO                                                                     | 92       |
| 3.9.3.                 | AMORTIGUAMIENTO OBJETIVO                                                            |          |
| 3.9.4.                 | REDUCCIÓN DE LA RESPUESTA, COEFICIENTE "B"                                          | 95       |
| 3.9.5.                 | AMORTIGUAMIENTO EQUIVALENTE, FACTOR "β"                                             |          |
| 3.9.6.                 | DEFINICIÓN DE LAS PROPIEDADES DEL AMORTIGUADOR                                      |          |
| 3.9.7.                 | UBICACIÓN Y DISPOSICIÓN DE LOS AMORTIGUADORES                                       |          |
| 3.10. N                | IODELAMIENTO DEL SISTEMA DE AMORTIGUAMIENTO                                         | 99       |
| 3.11. P<br>AMORTIG     | ROCEDIMIENTO RESPUESTA-SPECTRUM CON SISTEMA DE GUAMIENTO:                           | 99       |
| 3.11.1.                | MODELADO                                                                            | 99       |
| 3.11.2.<br>AMORT       | RECOMENDACIONES SOBRE EL USO DEL SISTEMA DE<br>IGUAMIENTO EN EDIFICACIONES.         | 100      |
| 3.11.3.                | DERIVAS                                                                             | 104      |
| 3.11.4.                | BALANCE ENERGÉTICO                                                                  | 105      |
| 3.12. T                | ÉCNICAS Y ANALISIS DE DATOS:                                                        | 105      |
| 3.12.1.                | TÉCNICAS                                                                            | 105      |
| 3.12.2.                | ANALISIS DE DATOS:                                                                  | 105      |
| CAPITULO               | IV:                                                                                 | 107      |
| 4. ANÁLIS<br>DISIPADOR | SIS DE RESULTADOS DE LAS EDIFICACIÓN CON SISTEMA DE<br>ES DE FLUIDO VISCOELASTICOS: | :<br>107 |
| 41 MO                  |                                                                                     | 107      |
| 411                    |                                                                                     | 107      |
| 412                    | DEFINICIÓN DEL ESPECTRO DE ACEI ERACIONES PARA EL                                   |          |
| ANÁLIS                 |                                                                                     | 112      |
| 4.1.3.                 | ANÁLISIS ESTÁTICO                                                                   | 115      |
| 4.1.4.                 | ANÁLISIS DINÁMICO ESPECTRAL                                                         | 119      |

| 4.1.5.             | ESCALAMIENTO DE ACELEROGRAMAS AL ESPECTRO DE DISEÑO<br>127                                               |
|--------------------|----------------------------------------------------------------------------------------------------------|
| 4.1.6.             | RESPUESTA DEL EDIFICIO SIN DISIPADORES:                                                                  |
| 4.2. DIS           | SEÑO ESTRUCTURAL CON DISIPADORES:                                                                        |
| 4.2.1.             | ELECCIÓN DEL OBJETIVO DE DESEMPEÑO                                                                       |
| 4.2.2.             | UBICACIÓN DE LOS DISPOSITIVOS DE DISIPACION                                                              |
| 4.2.3.             | ANALISIS LINEAL DE DISIPADORES:                                                                          |
| 4.2.4.             | ANALISIS NO LINEAL DE DISIPADORES:                                                                       |
| CAPITULO           | <b>V:</b>                                                                                                |
| 5. DISCUS          | SION DE RESULTADOS                                                                                       |
| 5.1. EV            | ALUACIÓN DE LOS RESULTADOS:                                                                              |
| 5.1.1.             | COMPARACIÓN DE DESPLAZAMIENTOS                                                                           |
| 5.1.2.             | COMPARACIÓN DE DERIVAS                                                                                   |
| 5.1.3.             | RESUMEN DE LA COMPARACION DE DATOS                                                                       |
| 5.2. DIS           | SEÑO DE LOS DISPOSITIVOS DE AMORTIGUAMIENTO:                                                             |
| 5.2.1.             | AGRUPACIÓN DE DISPOSITIVOS POR NIVELES DE FUERZA 230                                                     |
| 5.2.2.             | ELECCIÓN DE LOS DISIPADORES DE ENERGÍA 235                                                               |
| CONCLUSI           | ONESccxxxvii                                                                                             |
| RECOMENI           | DACIONES ccxxxviii                                                                                       |
| REFERENC           |                                                                                                          |
| ANEXOS             | ccxli                                                                                                    |
| ANEXO 1            | : MATRIZ DE CONSISTENCIA DEL PROYECTOccxlii                                                              |
| ANEXO 2            | : PROCEDIMIENTO DEL ANÁLISIS EN EL PROGRAMA ETABSccxliii                                                 |
| ANEXO 3<br>ESPECTF | : PROCEDIMIENTO PARA EL ESCALAMIENTO DE ACELOGRAMAS A<br>RO DE DISEÑO EN EL PROGRAMA SISMOMATCH 2016cclv |
| ANEXO 4            | : CUADROS EXTRAÍDAS DEL PROGRAMA (EDIFICIO 1) cclx                                                       |
| ANEXO 5            | IMAGENES DE LAS CORTANTES AL INCLUIR DISIPADORESccciv                                                    |
| ANEXO 6            | : PLANOS DE LA EDIFICACIÓN 1cccxii                                                                       |
| ANEXO 7            | : PLANOS DE LA EDIFICACIÓN 2 cccxvii                                                                     |

### ÍNDICE DE CUADROS

| Cuadro 1. Movimientos Sísmicos de Diseño (SEAOC Vision 2000 Commitee, 1995). 89     |
|-------------------------------------------------------------------------------------|
| Cuadro 2. Objetivos de desempeño sísmico recomendado para estructuras (SEAOC        |
| Vision 2000 Commitee, 1995)                                                         |
| Cuadro 3. Objetivos de desempeño para estructuras básicas                           |
| Cuadro 4. Descripción de daño para cada nivel de desempeño (SEAOC Vision 2000)      |
|                                                                                     |
| Cuadro 5. Relación Daño-Deriva según el tipo de la estructura (extraído de          |
| "Multihazard Loss Estimation Methodology- HAZUS")92                                 |
| Cuadro 6. Relación Daño-Deriva según el tipo de la estructura sugeridos por HAZUS   |
| para edificios de concreto93                                                        |
| Cuadro 7. Coeficiente de amortiguamiento en función del amortiguamiento equivalente |
| (Cuadro extraída del ASCE 7-10, capítulo 18)97                                      |
| Cuadro 8. Recomendaciones de la aplicación del Sistema de amortiguamiento y de      |
| aislamiento de la base según el Nivel de Desempeño Deseado 101                      |
| Cuadro 9. Datos Generales                                                           |
| Cuadro 10. Sistema Estructural 108                                                  |
| Cuadro 11. Cargas Consideradas 109                                                  |
| Cuadro 12. Cortante dinámico en la base – edificio 1 114                            |
| Cuadro 13. Cortante dinámico que absorbe los muros estructurales - edificio 1 114   |
| Cuadro 14. Cortante dinámico en la base – edificio 2 115                            |
| Cuadro 15. Cortante dinamico que absorbe los muros estructurales - edificio 2 115   |
| Cuadro 16. Peso de la edificación por cada nivel – eficicio 1 116                   |
| Cuadro 17. Cortarte estático en la base – edificio 1 117                            |
| Cuadro 18. Peso de la edificación por cada nivel edificio 2 117                     |
| Cuadro 19. Cortarte estático en la base – edificio 2 118                            |
| Cuadro 20. Parámetros Sísmicos 120                                                  |
| Cuadro 21. Datos del Espectro Respuesta - Edificación 1 y 2 120                     |
| Cuadro 22. Revisión de los modos de vibración del edificio 1 122                    |
| Cuadro 23. Revisión de los modos de vibración del edificio 2 125                    |
| Cuadro 24. Ubicación de las Estaciones 128                                          |
| Cuadro 25. Datos del Espectro de Pseudo aceleraciones para escalamiento -           |
| Edificación 1 y 2 130                                                               |
| Cuadro 26. Desplazamiento máximo del edificio 1 por nivel modelamiento dinamico     |
| convencional, Dirección x-x:                                                        |
| Cuadro 27. Desplazamiento máximo del edificio 1 por nivel modelamiento dinamico     |
| convencional, Dirección y-y:                                                        |
| Cuadro 28. Desplazamiento máximo del edificio 2 por nivel modelamiento dinamico     |
| convencional, Dirección x-x:                                                        |
| Cuadro 29. Desplazamiento máximo del edificio 2 por nivel modelamiento dinamico     |
| convencional, Dirección y-y:                                                        |
| Cuadro 30. Revisión de deriva máxima edificio 1(Dirección X)140                     |
| Cuadro 31. Revisión de deriva máxima edificio 1(Dirección Y) 140                    |
| Cuadro 32. Revisión de deriva máxima edificio 2 (Dirección X) 141                   |
| Cuadro 33. Revisión de deriva máxima edificio 2 (Dirección Y) 142                   |

| Cuadro 34. Desplazamiento máximo del edificio 1 por nivel modelamiento dinamico                              |
|--------------------------------------------------------------------------------------------------------------|
| R-1, Direccion X-X                                                                                           |
| R=1, Dirección Y-Y:                                                                                          |
| Cuadro 36. Desplazamiento máximo del edificio 2 por nivel modelamiento dinamico                              |
| R=1, Dirección X-X:                                                                                          |
| Cuadro 37. Desplazamiento máximo del edificio 2 por nivel modelamiento dinamico                              |
| R=1, Dirección Y-Y:                                                                                          |
| Cuadro 38. Revisión de deriva máxima edificio 1 por nivel modelamiento dinamico                              |
| Cuadro 39. Revisión de deriva máxima edificio 1 nor nivel modelamiento dinamico                              |
| B=1. (Dirección Y)                                                                                           |
| Cuadro 40. Revisión de deriva máxima edificio 2 por nivel modelamiento dinamico                              |
| R=1. (Dirección X)                                                                                           |
| Cuadro 41. Revisión de deriva máxima edificio 2 por nivel modelamiento dinamico                              |
| R=1, (Dirección Y)                                                                                           |
| Cuadro 42. Desplazamiento máximo del edificio 1 por nivel modelamiento tiempo-                               |
| historia, Dirección X-X:                                                                                     |
| Cuadro 43. Desplazamiento máximo del edificio 1 por nivel modelamiento tiempo-                               |
| historia, Dirección Y-Y:                                                                                     |
| Cuadro 44.Desplazamiento máximo del edificio 2 por nivel modelamiento tiempo-                                |
| historia, Dirección X-X:                                                                                     |
| Cuadro 45. Desplazamiento máximo del edificio 2 por nivel modelamiento tiempo-                               |
| historia, Dirección Y-Y: 156                                                                                 |
| Cuadro 46. Revisión de deriva máxima edificio 1 por nivel modelamiento tiempo-                               |
| historia, (Dirección X) 157                                                                                  |
| Cuadro 47. Revisión de deriva máxima edificio 1 por nivel modelamiento tiempo-                               |
| historia, (Dirección Y) 158                                                                                  |
| Cuadro 48. Revisión de deriva máxima edificio 2 por nivel modelamiento tiempo-                               |
| historia, (Dirección X)                                                                                      |
| Cuadro 49. Revisión de deriva máxima edificio 2 por nivel modelamiento tiempo-                               |
| historia, (Dirección Y)                                                                                      |
| Cuadro 50. Comparación de Revisión de deriva máxima edificio 1, (Dirección X) 161                            |
| Cuadro 51. Comparación de Revisión de deriva máxima edificio 1, (Dirección Y) 161                            |
| Cuadro 52. Comparación de Revisión de deriva máxima edificio 2, (Dirección X) 162                            |
| Cuadro 53. Comparación de Revisión de deriva máxima edificio 2, (Dirección Y) 163                            |
| Cuadro 54. Objetivos de desempeño para estructuras básicas 164                                               |
| Cuadro 55. Niveles de desempeño y derivas objetivo para edificios tipo CH2 (HAZUS<br>Y SEAOC VISION 2000)165 |
| Cuadro 56. Predimensionamiento del coeficiente de amortiguamiento Edificio 1 en x                            |
| diagonal                                                                                                     |
| Cuadro 57. Predimensionamiento del coeficiente de amortiguamiento Edificio 1 en Y                            |
|                                                                                                              |
| Cuadro 58. Predimensionamiento del coeficiente de amortiguamiento Edificio 2 en X                            |
|                                                                                                              |
| Cuadro 59. Predimensionamiento del coeficiente de amortiguamiento Edificio 2 en Y                            |
|                                                                                                              |

| Cuadro 60. Derivas máximas Edificio 1 incorporadas coeficiente de amortiguamiento                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cuadro 61. Derivas máximas Edificio 1 incorporadas cooficiente de amertiquamiente                                                                                                            |
| Dirección Y                                                                                                                                                                                  |
| Cuadro 62. Derivas máximas Edificio 2 incorporadas coeficiente de amortiguamiento                                                                                                            |
| Dirección X                                                                                                                                                                                  |
| Cuadro 63. Derivas máximas Edificio 2 incorporadas coeficiente de amortiguamiento<br>Dirección Y                                                                                             |
| Cuadro 64. Resultados del análisis tiempo historia para la dirección X – X. edificio 1185                                                                                                    |
| Cuadro 65. Resultados del análisis tiempo historia para la dirección Y – Y, edificio 1185                                                                                                    |
| Cuadro 66. Resultados del análisis tiempo historia para la dirección X – X, edificio 2186                                                                                                    |
| Cuadro 67. Resultados del análisis tiempo historia para la dirección Y – Y, edificio 2186                                                                                                    |
| Cuadro 68. Predimensionamiento del coeficiente de amortiguamiento Edificio 1 en x                                                                                                            |
| diagonal                                                                                                                                                                                     |
| Cuadro 69. Predimensionamiento del coeficiente de amortiguamiento Edificio 1 en Y                                                                                                            |
| Cuadro 70. Predimensionamiento del coeficiente de amortiguamiento Edificio 2 en X                                                                                                            |
|                                                                                                                                                                                              |
| Cuadro 71. Predimensionamiento del coeficiente de amortiguamiento Edificio 2 en Y                                                                                                            |
| Cuadro 72. Las propiedades del perfil del tipo HSS 11.250 – Edificio 1 Dirección X-X                                                                                                         |
|                                                                                                                                                                                              |
| Cuadro 73. Las propiedades del perfil del tipo HSS 12.250 – Edificio 1 Dirección Y-Y<br>                                                                                                     |
| Cuadro 74. Las propiedades del perfil del tipo HSS 10.000 – Edificio 2 Dirección X-X                                                                                                         |
|                                                                                                                                                                                              |
| Cuadro 75. Las propiedades del perfil del tipo HSS 16.000 – Edificio 2 Dirección Y-Y                                                                                                         |
|                                                                                                                                                                                              |
| Cuadro 76. Derivas máximas Edificio 1 incorporadas coeficiente de amortiguamiento                                                                                                            |
| Dirección X                                                                                                                                                                                  |
| Cuadro 77. Derivas máximas Edificio 1 incorporadas coeficiente de amortiguamiento                                                                                                            |
| Dirección Y                                                                                                                                                                                  |
| Cuadro 78. Derivas maximas Edificio 2 incorporadas coeficiente de amortiguamiento                                                                                                            |
| Cuedro 70. Deriveo móximos Edificio 2 incorporados coeficiente de amertiquemiente                                                                                                            |
| Dirección V                                                                                                                                                                                  |
| Cuadro 80. Resultados del análisis tiempo historia para la dirección X – X edificio 1211                                                                                                     |
| Cuadro 80. Resultados del análisis tiempo historia para la dirección $X = X$ , edificio 1211<br>Cuadro 81. Resultados del análisis tiempo historia para la dirección $X = X$ , edificio 1211 |
| Cuadro 82. Resultados del análisis tiempo historia para la dirección $X = X$ edificio 2212                                                                                                   |
| Cuadro 83. Resultados del análisis tiempo historia para la dirección $X - X$ , edificio 2212.                                                                                                |
| Cuadro 84. Variación del desplazamiento máximo adificio 1 en dirección $X = 216$                                                                                                             |
| Cuadro 85. Variación del desplazamiento máximo edificio 1 en dirección V                                                                                                                     |
| Cuadro 86. Variación del desplazamiento máximo adificio 2 en dirección V                                                                                                                     |
| Cuadro 87. Variación del desplazamiento máximo adificio 2 en dirección X                                                                                                                     |
| Cuadro 97. Variación de deriver de entrenies $\binom{9}{2}$ Edificie 1 dirección X                                                                                                           |
| Cuadro 60. Comparación de derivas de entrepiso ( $\infty$ ) Edificio 1 dirección X                                                                                                           |
| Cuadro 00. Comparación de derives de entrepiso (%) Edificio 2 dirección Y                                                                                                                    |
| Cuadro 90. Comparación de derivas de entrepiso (%) Edificio 2 dirección X                                                                                                                    |
|                                                                                                                                                                                              |

| Cuadro 92. Comparación de respuestas globales entre el edificio con disipador y s | in    |
|-----------------------------------------------------------------------------------|-------|
| disipador                                                                         | . 229 |
| Cuadro 93. Niveles de Fuerza en los amortiguadores Edificio 1 Eje X               | . 230 |
| Cuadro 94. Niveles de Fuerza en los amortiguadores Edificio 1 Eje Y               | . 231 |
| Cuadro 95. Niveles de Fuerza en los amortiguadores Edificio 2 Eje X               | . 232 |
| Cuadro 96. Niveles de Fuerza en los amortiguadores Edificio 2 Eje Y               | . 233 |
| Cuadro 97. Resumen cantidad de Amortiguadores                                     | . 234 |

### ÍNDICE DE IMAGENES

| Imagen 1. plano de ubicación del proyecto de edificación 1                            | 25 |
|---------------------------------------------------------------------------------------|----|
| Imagen 2. plano de ubicación del proyecto de edificación 2                            | 25 |
| Imagen 3. Curva capacidad de una estructura y niveles de desempeño                    | 48 |
| Imagen 4. Distribución de la energía sísmica en un edificio sin Disipadores y en otro |    |
| con Disipadores                                                                       | 50 |
| Imagen 5. Reducción en las demandas de resistencia debido al incremento de            |    |
| amortiguamiento                                                                       | 51 |
| Imagen 6. Cuadro conceptual de Protección Sísmica de estructuras                      | 52 |
| Imagen 7. Comparación de respuesta sísmica de edificio sin aislación y edificio con   |    |
| aislamiento basal                                                                     | 54 |
| Imagen 8. Comparación de edificio sin disipadores y edificio con disipadores de       |    |
| energía                                                                               | 54 |
| Imagen 9. Reducción de aceleración mediante aislación sísmica                         | 55 |
| Imagen 10. Efecto de disipación de energía                                            | 56 |
| Imagen 11. Relación fuerza - desplazamiento del disipador de fluido viscoelástico.    |    |
| (Chen Franklin. Smart Structures)                                                     | 58 |
| Imagen 12. (a) Esquema de un disipador de fluido viscoelásticos, (b) Diagrama de      |    |
| Maxwell (Chen Franklin. Smart Structures).                                            | 59 |
| Imagen 13. Relaciones fuerza - velocidad de disipadores viscosos                      | 60 |
| Imagen 14."Modelo dinámico del sistema de amortiguamiento de un sólo grado de         |    |
| libertad (Disposición Diagonal y Chevron)"                                            | 61 |
| Imagen 15. Diagrama de bloques (a) y Representación Matemática (b) del modelo de      | )  |
| Maxwell                                                                               | 63 |
| Imagen 16. Diagrama de bloques (a) y Representación Matemática (b) detallada del      |    |
| modelo del dispositivo de amortiguamiento viscoelastico                               | 64 |
| Imagen 17. Pórtico con disipador de fluido viscoelástico.                             | 66 |
| Imagen 18. Fuerza por amortiguamiento vs Velocidad (extraído de "Seismic Design o     | f  |
| Structures with Viscous Dampers_Jenn-Shin Hwang)                                      | 69 |
| Imagen 19. Relación Fuerza - Desplazamiento para exponentes de velocidad de 1 y       |    |
| 0.5                                                                                   | 71 |
| Imagen 20. Funcionamiento de un disipador de fluido viscoelástico - Fuente: Taylor,   |    |
| 2004                                                                                  | 72 |
| Imagen 21. "Esquema general de un Disipador de Energía TAYLOR DEVICES INC" :          | 73 |
| Imagen 22. Propiedades del Dispositivo TAYLOR DEVICES – Argollas                      | 74 |
| Imagen 23. Propiedades del Dispositivo TAYLOR DEVICES" - Plancha Base                 | 75 |
| Imagen 24. Disposiciones en Chevron                                                   | 77 |
| Imagen 25. Disposiciones en diagonal                                                  | 77 |
| Imagen 26. Disposición Scissor Jack                                                   | 78 |
| Imagen 27. Propiedades del dispositivo en el software ETABS                           | 86 |
| Imagen 28. Relación Factor B y Amortiguamiento efectivo βeff                          | 95 |
| Imagen 29. Reducción del espectro por incremento del amortiguamiento viscoso          | 96 |
| Imagen 30. Esquema del edificio 1, modelo en el software de cálculo ETABS11           | 10 |
| Imagen 31. Esquema del edificio 2, modelo en el software de cálculo ETABS11           | 11 |
| Imagen 32 Espectro de respuesta de la estructura norma E030-2016                      |    |
|                                                                                       | 22 |

| Imagen 34. Modo fundamental edificio 1 en la dirección Y                        | . 124      |
|---------------------------------------------------------------------------------|------------|
| Imagen 35. Modo fundamental edificio 2 en la dirección X                        | . 126      |
| Imagen 36. Modo fundamental edificio 2 en la dirección Y                        | 127        |
| Imagen 37 Asignación Periodo fundamental (T) máximo y mínimo - edificación 1    | 129        |
| Imagen 38. Asignación Periodo fundamental (T) máximo y mínimo - edificación 2   | 120        |
| Imagen 30. Medelee de registree ségmisee                                        | 129        |
| Imagen 39. Modelos de registros sistilicos                                      | . 130      |
| imagen 40. Especiro de Pseudo aceleraciones para escalamiento - norma E030-20   | 10         |
| Incorp 44. Companyación de cooleregreme crisinglus coolede. Cierce 1000 FW      | . 132      |
| imagen 41. Comparación de acelerograma originar vs escalado. Sismo 1966 EVV-    | 122        |
| Euliicio I                                                                      | . 133<br>M |
| imagen 42. Comparación de registros sismico original vs escalado. Sismo 1966 Ev | ۷—<br>122  |
| euliicio I                                                                      | . 133      |
| Imagen 43. Comparación de acelerograma original vs escalado. Sismo 1966 EVV-    | 124        |
| edificio 2.                                                                     | .134<br>M  |
| Imagen 44. Comparación de registros sismico original vs escalado. Sismo 1966 EV | V-         |
|                                                                                 | . 134      |
| Imagen 45. Desplazamiento maximo del edificio 1 en dirección x = 25.92 mm.      |            |
| Estructura sin disipadores                                                      | . 136      |
| Imagen 46. Desplazamiento maximo del edificio 1 en dirección y = 34.77mm.       |            |
| Estructura sin disipadores                                                      | . 137      |
| Imagen 47. Desplazamiento máximo del edificio 2 en dirección $x = 32.262$ mm.   |            |
| Estructura sin disipadores                                                      | . 138      |
| Imagen 48. Desplazamiento máximo del edificio 2 en dirección Y = 46.74 mm.      |            |
| Estructura sin disipadores                                                      | . 139      |
| Imagen 49. Desplazamiento máximo del edificio 1 en dirección $x = 181.4354$ mm. |            |
| Estructura sin disipadores                                                      | . 143      |
| Imagen 50. Desplazamiento máximo del edificio 1 en dirección Y =208.604 mm.     |            |
| Estructura sin disipadores                                                      | . 145      |
| Imagen 51. Desplazamiento máximo del edificio 2 en dirección X = 193.57 mm.     |            |
| Estructura sin disipadores                                                      | . 146      |
| Imagen 52. Desplazamiento máximo del edificio 2 en dirección Y = 280.44 mm.     |            |
| Estructura sin disipadores                                                      | . 148      |
| Imagen 53. Desplazamiento máximo del edificio 1 en dirección X = 194.69 mm.     |            |
| Estructura sin disipadores                                                      | . 152      |
| Imagen 54. Desplazamiento máximo del edificio 1 en dirección Y = 215.43 mm.     |            |
| Estructura sin disipadores                                                      | . 154      |
| Imagen 55. Desplazamiento máximo del edificio 2 en dirección X = 200.25 mm.     |            |
| Estructura sin disipadores                                                      | . 155      |
| Imagen 56. Desplazamiento máximo del edificio 2 en dirección Y = 301.12 mm.     |            |
| Estructura sin disipadores                                                      | . 157      |
| Imagen 57. Dispositivos en el eie 1. Dirección X Edificio 1                     | . 166      |
| Imagen 58. Dispositivos en el eje en diagonal. Dirección XY Edificio 1          | . 166      |
| Imagen 59. Dispositivos en el eje A. Dirección Y Edificio 1                     | . 167      |
| Imagen 60 Dispositivos en el eje I Dirección Y Edificio 1                       | 167        |
| Imagen 61 Dispositivos en el eje en diagonal Dirección XV Edificio 2            | 162        |
| Imagen 62 Dispositivos en el eje en diagonal. Dirección XV Edificio 2           | 160        |
| Imagen 62. Dispositivos en el eje en ulagonal, Dirección X Edificio 2           | 120        |
| Imagen 64. Dispositivos en el eje A, Dirección I Eulificio 2.                   | 109        |
| imagen 04. Dispositivos en el eje en ulagonal, Direccion A r Eulincio 2         | . то9      |

```
Imagen 65. Asignación propiedades del dispositivo Edificio 1. (a) en la dirección x y (b)
Imagen 66. Asignación propiedades del dispositivo Edificio 2. (a) en la dirección x y (b)
Imagen 67. Revisión de desplazamiento máxima Edificio 1 (eje x) = 96.01 mm....... 181
Imagen 68. Revisión de desplazamiento máxima Edificio 1 (eje y) = 100.19 mm...... 181
Imagen 69. Revisión de desplazamiento máxima Edificio 2 (eje x) = 122.18 mm...... 182
Imagen 70. Revisión de desplazamiento máxima Edificio 2 (eje y) = 61.68 mm...... 182
Imagen 71. Deriva máxima Edificio 1 (dirección X) = 0.42 – CUMPLE...... 183
Imagen 72. Deriva máxima Edificio 1 (dirección Y) = 0.44 – CUMPLE...... 183
Imagen 73. Deriva máxima Edificio 2 (dirección X) = 0.51 – CUMPLE...... 184
Imagen 74. Deriva máxima Edificio 2 (dirección Y) = 0.30 – CUMPLE...... 184
Imagen 77. Asignación propiedades del dispositivo Edificio 1. (a) en la dirección x y (b)
Imagen 78. Asignación propiedades del dispositivo Edificio 2. (a) en la dirección x y (b)
Imagen 79. Revisión de desplazamiento máxima Edificio 1 (eje x) = 136.07 mm...... 206
Imagen 80. Revisión de desplazamiento máxima Edificio 1 (eje y) = 138.81 mm...... 207
Imagen 81. Revisión de desplazamiento máxima Edificio 2 (eje x) = 139.23 mm...... 207
Imagen 82. Revisión de desplazamiento máxima Edificio 2 (eje y) = 86.88 mm...... 208
Imagen 83. Deriva máxima Edificio 1 (dirección X) = 0.54 – CUMPLE...... 208
Imagen 84. Deriva máxima Edificio 1 (dirección Y) = 0.64 – CUMPLE...... 209
Imagen 85. Deriva máxima Edificio 2 (dirección X) = 0.61 – CUMPLE...... 209
Imagen 89. Comparación de desplazamiento máximo edifico 1 en dirección X....... 217
Imagen 90. Comparación de desplazamiento máximo edifico 1 en dirección Y...... 218
Imagen 91. Comparación de desplazamiento máximo edifico 2 en dirección X....... 219
Imagen 92. Comparación de desplazamiento máximo edifico 2 en dirección Y...... 221
Imagen 93. Desplazamientos máximos con las señales sísmicas de edificio 1 en
Imagen 94. Desplazamientos máximos con las señales sísmicas de edificio 1 en
Imagen 95. Desplazamientos máximos con las señales sísmicas edificio 2 en dirección
Imagen 96. Desplazamientos máximos con las señales sísmicas edificio 2 en dirección
Imagen 97. Comparación de derivas edificio 1 en dirección X...... 225
Imagen 98. Comparación de derivas edificio 1 en la dirección Y...... 226
Imagen 99. Comparación de derivas edificio 2 en dirección X...... 227
Imagen 100. Comparación de derivas edificio 2 en la dirección Y..... 228
Imagen 102. Dispositivos TAYLOR DEVICES" - Plancha Base, elegidas...... 236
Imagen 103.Cortante máxima en la base con la señal SXT66-EW = 20.16. Ton.....ccciv
```

Imagen 104.Cortante máxima en la base con la señal SXT66-NS= 19.68. Ton......ccciv Imagen 105. Cortante máxima en la base con la señal SXT70-EW = 6.18. Ton......cccv Imagen 106. Cortante máxima en la base con la señal SXT70-NS = 4.58. Ton .....cccv Imagen 107. Cortante máxima en la base con la señal SXT74-EW = 12.58. Ton .....cccvi Imagen 108. Cortante máxima en la base con la señal SXT74-NS = 45.80. Ton .....cccvi Imagen 109. Cortante máxima en la base con la señal SXT07-EW = 18.43. Ton ....cccvi Imagen 110. Cortante máxima en la base con la señal SXT07-NS = 19.09. Ton ....cccvii Imagen 111. Cortante máxima en la base con la señal SYT66-EW= 20.14. Ton ....cccvii Imagen 112. Cortante máxima en la base con la señal SYT66-NS = 19.70. Ton ....cccvii Imagen 113. Cortante máxima en la base con la señal SYT66-NS = 19.70. Ton ....cccvii Imagen 114. Cortante máxima en la base con la señal SYT70-EW = 6.08. Ton......cccix Imagen 115. Cortante máxima en la base con la señal SYT70-EW = 12.6. Ton......cccix Imagen 116. Cortante máxima en la base con la señal SYT74-NS = 45.82. Ton ......cccix Imagen 116. Cortante máxima en la base con la señal SYT74-NS = 45.82. Ton ......cccix Imagen 116. Cortante máxima en la base con la señal SYT74-NS = 45.82. Ton ......cccix Imagen 117. Cortante máxima en la base con la señal SYT74-NS = 45.82. Ton ......cccix Imagen 116. Cortante máxima en la base con la señal SYT74-NS = 45.82. Ton ......cccix Imagen 117. Cortante máxima en la base con la señal SYT74-NS = 45.82. Ton ......cccix

#### RESUMEN

La presente investigación tuvo como problema general: ¿Cuáles son los resultados del análisis del reforzamiento de edificaciones de concreto armado con disipadores de fluido viscoelásticos en la ciudad de Huancayo?, el objetivo general fue: "Determinar los resultados del análisis del reforzamiento de edificaciones de concreto armado con disipadores de fluido viscoelásticos en la ciudad de Huancayo" y la hipótesis general fue: "Los resultados del análisis del reforzamiento de reforzamiento de las edificaciones de concreto armado, con disipadores de fluido viscoelásticos en la ciudad de Huancayo, disminuyen las derivas máximas.".

El método general de investigación es el Científico, como métodos específicos es analítico - sintético, inductivo – deductivo y con un enfoque cuantitativo. El tipo de investigación es Aplicada, de nivel Descriptivo – Explicativo y de diseño No Experimental. La población está conformada por las edificaciones de concreto armado mayores a 8 pisos construidos en ciudad de Huancayo. El tipo de muestreo es el no aleatorio o dirigido, se eligió dos edificaciones de concreto armado: Edificación 1 de 10 pisos ubicada en la Cooperativa el Centenario, y la edificación 2 de 10 pisos ubicada en la intersección de la Av. Centenario y el Pasaje San Antonio en el distrito de Huancayo.

La conclusión principal fue: Los resultados del análisis del reforzamiento de las edificaciones de concreto con disipadores de fluido viscoelásticos disminuyen las derivas máximas donde se obtuvo en la EDIFICACIÓN 1 un 35.59% (0.0085 a 0.0055) en la dirección X y un 34.77% (0.0097 a 0.0063) en la dirección Y, en la EDIFICACIÓN 2 un 27.41% (0.0084 a 0.0061) en la dirección X y un 69.25% (0.0136 a 0.0042) en la dirección Y.

Palabras claves: Reforzamiento de Edificaciones, Concreto Armado, Disipadores de Fluido Viscoelásticos.

#### ABSTRACT

The present investigation had as a general problem: What are the results of the analysis of the reinforcement of reinforced concrete buildings with viscoelastic fluid dissipaters in the city of Huancayo ?, the general objective was: "To determine the results of the analysis of the reinforcement of buildings of concrete reinforced with viscoelastic fluid dissipaters in the city of Huancayo "and the general hypothesis was:" The results of the analysis of the reinforcement of the reinforced concrete buildings, with viscoelastic fluid dissipaters in the city of Huancayo fluid dissipaters in the city of Huancayo "and the reinforced concrete buildings, with viscoelastic fluid dissipaters in the city of Huancayo, diminish the maximum drifts. " .

The general method of investigation is the Scientist, as specific methods is analytic - synthetic, inductive - deductive and with a quantitative approach. The type of research is Applied, Descriptive level - Explanatory and Non-Experimental design. The population is conformed by the reinforced concrete buildings greater than 8 floors built in the city of Huancayo. The type of sampling is non-random or directed, two buildings of reinforced concrete were chosen: Building 1 of 10 floors located in Cooperativa el Centenario, and building 2 of 10 floors located at the intersection of Centennial Avenue and the Passage San Antonio in the district of Huancayo.

The main conclusion was: The results of the analysis of the reinforcement of concrete buildings with viscoelastic fluid dissipaters decrease the maximum drifts where it was obtained in BUILDING 1 a 35.59% (0.0085 to 0.0055) in the X direction and 34.77% (0.0097 to 0.0063) in the Y direction, in BUILDING 2 27.41% (0.0084 to 0.0061) in the X direction and 69.25% (0.0136 to 0.0042) in the Y direction.

Keywords: Reinforcement of Buildings, Reinforced Concrete, Viscoelastic Fluid Dissipaters.

#### INTRODUCCIÓN

En el Perú los sistemas de protección sísmica, tanto disipación de energía como aislamiento, se van incrementando a medida que avanza la tecnología y ya están disponibles comercialmente y se están desarrollando muchos proyectos empleando estas tecnologías.

La experiencia ha demostrado que el uso de los sistemas de disipadores de fluido viscoelásticos mejora el desempeño sísmico de los edificios, disminuyendo el riesgo de pérdida de vidas humanas y de materiales importantes o de valor histórico. Los sistemas de disipadores de fluido viscoelásticos permiten un ahorro importante en gastos de reparación y costos indirectos producidos por la interrupción del servicio de la edificación.

El objetivo de este trabajo es realizar una investigación sobre los alcances del análisis dinámico de una edificación con disipadores de fluido viscoelásticos.

Esta investigación está estructurada en 5 capítulos:

Capítulo I: Planteamiento de la investigación que consta del planteamiento del problema, formulación del problema, justificación, delimitaciones, limitaciones y el objetivo de la investigación.

Capítulo II: Marco Teórico donde se describen los antecedentes, marco conceptual, la hipótesis y las variables.

Capítulo III: Metodología de investigación donde describe el método, tipo, nivel, diseño, población, muestra, el procedimiento de la información, técnicas y análisis de datos.

Capítulo IV: Análisis y resultados de las edificaciones sin disipadores y con disipadores tanto lineal y no lineal.

Capítulo V: Discusión de resultados comparando los desplazamientos y derivas de ambas edificaciones estudiadas.

Y finalmente se tiene las conclusiones, recomendaciones, referencias bibliográficas y anexos.

Bach: Eduardo Genaro Ventura Camac

хх

### **CAPITULO I**

#### **1. PLANTEAMIENTO DE LA INVESTIGACIÓN**

#### 1.1. PLANTEAMIENTO DEL PROBLEMA

"El Perú, al igual que Chile, son países altamente sísmicos, dado que se ubican dentro de la región más crítica en nuestro planeta, que es el Cinturón del Fuego del Pacífico, donde se libera más del 80% de energía acumulada cada año" (Tavera, 2014, párr.3)

En la región Central existen tres fallas que ponen en alerta a la población, "la del Huaytapallana, Ricrán (Jauja) y Satipo", en el caso de la Falla del Huaytapallana mide aproximadamente entre 25 a 100 kilómetros recorriendo parte de la cordillera central. El empinamiento actual fue creado durante dos sismos intensos en 1969: el primero tuvo lugar el 24 de julio y llego a una magnitud de 5,6 en la escala de Richter y el segundo, más catastrófico, ocurrió el 1 de octubre llegando a una intensidad de 6,2, que produjeron intensidades de VI-VII (MM) en dicha ciudad, en la zona del nevado Huaytapallana, las intensidades habrían llegado a valores de X (MM). El Geólogo del IGP, Juan Carlos Gómez, afirmó que, debido a la falla, los sismos en el lugar son del tipo superficial y pueden causar serios daños a Huancayo y el valle del Mantaro.

En la ciudad de Huancayo la mayoría de edificaciones son de diseño sismorresistente convencionales diseñadas para que: i) Soporten sin daños, movimientos sísmicos de intensidad media; ii) Disminuyan los daños en elementos no estructurales durante sismos de mediana intensidad; y iii) aunque presenten daños, eviten el colapso durante sismos de intensidad excepcionalmente fuerte, salvaguardando la vida de sus ocupantes. Esta filosofía de diseño no está orientada a que no se produzcan daños en las estructuras y sus contenidos, los que, en casos extremos, pueden incluso limitar o imposibilitar el uso de una estructura con posterioridad a un sismo muy fuerte. En el caso de estructuras críticas, esenciales, estratégicas, y/o con contenidos de gran valor, tales como hospitales, colegios, edificios públicos e industriales, museos, puertos, puentes y aeropuertos, entre otros, el objetivo de desempeño de la norma es el de prevenir el colapso estructural no es suficiente, ya que se requiere proteger los contenidos y/o que la estructura continúe operando durante o inmediatamente después de ocurrido un sismo muy fuerte.

#### 1.2. FORMULACIÓN DEL PROBLEMA:

#### 1.2.1. PROBLEMA GENERAL

¿Cuáles son los resultados del análisis del reforzamiento de edificaciones de concreto armado con disipadores de fluido viscoelásticos en la ciudad de Huancayo?

#### 1.2.2. PROBLEMAS ESPECÍFICOS:

 a) ¿Cuál es el nivel de desempeño que se puede lograr en las edificaciones de concreto armado con disipadores de fluido viscoelásticos?

- b) ¿Qué normativa es más eficiente para el estudio y diseño de edificaciones de concreto armado con disipadores de fluido viscoelásticos?
- c) ¿Cuáles son los beneficios al emplear disipadores de fluido viscoelásticos?

#### 1.3. JUSTIFICACIÓN:

#### 1.3.1. PRACTICA O SOCIAL

Una de las más grandes causas de daño o problemas en las edificaciones ha sido el uso de configuraciones arquitectónicas y estructurales inapropiadas. Dada la naturaleza de los sismos, los niveles de diseño se pueden exceder, por lo que es aconsejable evitar el uso de configuraciones riesgosas, de ahí la importancia de esta investigación radicará en el planteamiento de soluciones nuevas para problemas estructurales, como irregularidad de piso blando, que puedan incentivar a una mayor investigación. La presente tesis se desarrollarán dos casos prácticos, se eligió dos infraestructuras, la infraestructura 1 actualmente funciona como oficinas y la infraestructura 2 funciona como hogares o de familia, se emplearán disipadores de fluido viscoelásticos para llevar acabo un reforzamiento tratando de evitar el colapso o daño que puedan causar en sismos.

#### 1.3.2. METODOLÓGICA

La investigación se realizó con el propósito de comparar los métodos tradicionales y el uso de los disipadores de fluido viscoelásticos, es decir se hará uso de una metodología (conjunto de métodos) para lograr verificar la hipótesis de estudio; es así que la presente investigación posee justificación metodológica puesto que se usarán diversas metodologías para el cumplimiento de los objetivos, dichas metodologías podrían ser fuente de investigación o uso para posteriores investigaciones, como por ejemplo en aspecto de detalle como en la determinación del óptimo contenido

de humedad y la densidad máxima seca por ejemplo. Es así que se explicarán el funcionamiento de los disipadores de fluido viscoelásticos y los factores de los que depende su eficiencia. Se presentan las distintas configuraciones en las que pueden ser utilizados los dispositivos y la eficiencia vinculada a cada una.

La presente investigación nos ayudara a minimizar las pérdidas mediante la aportación de conocimientos y experiencias para que sean acogidos por los profesionales de la Ingeniería Civil y las pongan en práctica en las construcciones existentes que necesitan ser reforzadas y en las nuevas construcciones que estén diseñando.

#### 1.4. DEMILITACIONES:

#### 1.4.1. GEOGRÁFICOS

La presente investigación se ejecutará a cabo en la ciudad de Huancayo donde la edificación 01 se ubica en la Cooperativa el Centenario, y la edificación 2 se ubica en la intersección de la Av. Centenario y el Pasaje San Antonio en el distrito de Huancayo, provincia de Huancayo y departamento de Junín.



Imagen 1. plano de ubicación del proyecto de edificación 1.



Imagen 2. plano de ubicación del proyecto de edificación 2.

#### 1.4.2. TEMPORAL

El tiempo de estudio y ejecución se realizo en los meses de diciembre del 2016 hasta el mes de octubre del 2018.

#### 1.5. LIMITACIONES:

#### 1.5.1. DE INFORMACION

No hay accesibilidad de documentos y planos por parte de las entidades y propietarios para la investigación del comportamiento sísmico de sus edificaciones.

#### 1.5.2. ECONÓMICO

Para la elaboracion de este proyecto de investigacion los costos (recursos, materiales y equipos) fueron asumidos por el titulando.

#### 1.5.3. **TECNICO**

No hay muchos especialistas que se dediquen a los reforzamientos estructurales con sistemas de proteccion sismica, por lo que en nuestra región debería de haber profesionales que se dediquen a este rubro.

#### 1.6. OBJETIVOS DE LA INVESTIGACIÓN:

#### 1.6.1. OBJETIVO GENERAL

Determinar los resultados del análisis del reforzamiento de edificaciones de concreto armado con disipadores de fluido viscoelásticos en la ciudad de Huancayo

#### 1.6.2. OBJETIVOS ESPECÍFICOS:

- a) Identificar el nivel de desempeño que se puede lograr en las edificaciones de concreto armado con disipadores de fluido viscoelásticos.
- b) Describir la normativa más eficiente para el estudio y diseño de edificaciones de concreto armado con disipadores de fluido viscoelásticos.

c) Determinar los beneficios de emplear disipadores de fluido viscoelásticos

### **CAPITULO II**

#### 2. MARCO TEÓRICO

#### 2.1. ANTECEDENTES:

#### 2.1.1. ANTECEDENTE NACIONALES

 MOSQUEIRA MORENO, Miguel Ángel; TARQUE RUÍZ, Sabino Nicola; en sus tesis "Recomendaciones Técnicas para Mejorar la Seguridad Sísmica de Viviendas de Albañilería Confinada de la Costa Peruana". Lima - Perú. 2005. El objetivo de la tesis fue realizar recomendaciones técnicas ingenieriles el cual con lleven a mejorar la seguridad ante posibles sismos en viviendas de albañilería confinada de la costa peruana. En esta investigación se desarrolla una metodología simple para determinar el riesgo sísmico de viviendas informales de albañilería confinada. Esta metodología

fue aplicada a una muestra de 270 viviendas distribuidas en 5 ciudades de la costa peruana (Chiclayo, Trujillo, Lima, Ica y Mollendo). Los datos de campo recogieron las principales características de ubicación, arquitectónicas, estructurales y constructivas de cada vivienda. La información obtenida se procesó en hojas de cálculo para determinar el riesgo sísmico de las viviendas ante sismos severos, y se elaboró una base de datos para clasificar los principales defectos de las viviendas analizadas. Los resultados obtenidos contribuyeron al desarrollo de una cartilla para la construcción y mantenimiento de viviendas de albañilería confinada en zonas de alto peligro sísmico. La cartilla presenta información sobre cada paso del proceso constructivo en forma gráfica y con lenguaje muy simple. Se espera que, con una adecuada difusión, esta cartilla pueda servir para que los pobladores y albañiles puedan mejor cómo pueden construir viviendas conocer sismorresistentes de albañilería confinada. El autor llega a las siguientes conclusiones: La mayoría de las viviendas de albañilería de arcilla de la costa peruana son construidas informalmente (son construidas por los mismos pobladores, albañiles o maestros de obras), existe una mala situación económica del país es una de las razones importantes para que las personas de más bajos recursos económicos construyan sus viviendas de manera informal y sin importarles los peligros naturales que pueden afectar sus viviendas; una adecuada configuración estructural de las viviendas permite disminuir en gran medida su vulnerabilidad sísmica, la mayoría de las viviendas informales de la costa son vulnerables por tener deficiente configuración estructural; la mayoría de pobladores y albañiles no tienen conocimiento sobre cómo proteger los refuerzos de acero de las viviendas, esto trae consigo el problema de corrosión que pueden sufrir los aceros de refuerzo se evidencia un mal encofrado que se realiza en construcciones

informales hace que se produzcan cangrejeras en el concreto, es así que el 78% de las viviendas informales analizadas tiene problemas de cangrejeras. La mayoría de viviendas informales se construyen por etapas y de acuerdo a las necesidades de los pobladores (por lo general, el proceso constructivo dura más de 10 años). En la zona norte del país, muchas viviendas han sido construidas con unidades de adobe y ladrillo de arcilla (el 20% de las viviendas analizadas mezclan en un muro unidades de adobe y de ladrillo de arcilla, éstas son elaboradas de manera artesanal) y el 76% de las viviendas analizadas se han usado ladrillos de baja calidad. Durante la construcción de las viviendas, los pobladores no controlan la dosificación y mezclado del concreto (origina que el concreto no logre la resistencia а compresión recomendada). Existe un desconocimiento general sobre el curado en los elementos de concreto armado. Un factor determinante para el peligro sísmico es la ubicación de las viviendas el 23% de las viviendas analizadas se ubica sobre suelos de relleno e igual porcentaje en pendientes pronunciadas. Existe la mala tendencia de construir muchos muros en la dirección perpendicular a la calle y pocos muros en la dirección paralela (genera que en una de las direcciones la vivienda no tenga adecuada densidad de muros). El 61% del total de viviendas analizadas no tiene adecuada densidad de muros al menos en una de sus direcciones principales (implica que estas viviendas estarán más propensas a que sufran daños durante la ocurrencia de sismos raros 0.4g). El 72% de las viviendas informales analizadas tiene vulnerabilidad símica alta, el 18% vulnerabilidad símica media y el 10% vulnerabilidad símica baja. Es decir, solo el 10% de las viviendas han sido construidas adecuadamente. El 40% de las viviendas autoconstruidas analizadas tiene peligro sísmico alto, el 60% peligro sísmico medio. El 84% de las viviendas informales analizadas de la

costa peruana tiene riesgo sísmico alto, el 16% riesgo sísmico medio. Esto implica que ante un evento sísmico raro (0,4g) el 84% de éstas viviendas podrían colapsar. El 28% de las viviendas analizadas presenta una mano de obra de mala calidad. El 60% presenta una mano de obra de regular calidad. Solo el 12% presenta mano de obra de buena calidad. El 83% de las viviendas analizadas han sido construidas sin dejar juntas sísmicas respecto a las viviendas contiguas. El 21% de las viviendas analizadas tiene muros portantes de ladrillos panderetas. En algunos casos toda una segunda planta ha sido construida con ladrillo pandereta. El 49% de las viviendas analizadas tiene tabiquería no arriostrada. El 30% de las viviendas analizadas tiene grietas en los muros. Las grietas en los muros han sido caudadas en mayoría por asentamientos diferenciales. El 26% de las viviendas encuestadas tiene presencia de humedad en sus muros, generalmente causado por fugas de agua de las tuberías.

• VIZCONDE CAMPOS, Adalberto; desarrolló su tesis "Evaluación de la vulnerabilidad sísmica de un edificio existente: clínica San Miguel, Piura". Piura 2004, ésta investigación tuvo como objetivo primordial el de descubrir, en el edificio de la Clínica San Miguel, aquellos puntos débiles que fallarían al ocurrir un evento sísmico para posteriormente proceder a una intervención estructural. Cuando se evalúa un edificio existente se determina como responde realmente las fuerzas ya dadas. Se trabaja con las propiedades reales del material, las cargas reales sin amplificarlas, el modelo lo más exacto posible y se analiza cómo serán realmente la interacción de elementos estructurales con los no estructurales y viceversa en el comportamiento sísmico del edificio. Para este estudio se aplicaron unos métodos como el FEMA 154 (ATC 21), el FEMA 310 (ATC 22), además de la evaluación no estructural de equipos y demás elementos no estructurales. Con el primer método identificó aquel edificio que es más vulnerable y con el segundo se evaluó de una manera más detallada. Los resultados se expresan en Cuadros donde se compara la resistencia del elemento con la demanda que le impone el sismo. El estudio de la vulnerabilidad sísmica de edificios como hospitales o clínicas, como es el caso de la clínica San miguel, debe abordarse desde un punto de vista global que considere la vulnerabilidad física (estructural, no estructural) y la vulnerabilidad funcional. Es importante integrar los métodos empíricos, experimentales y analíticos de evaluación de la vulnerabilidad sísmica como una vía para aumentar la confiabilidad de estos estudios. El diseño sísmico de la Clínica San Miguel no es satisfactorio pues no cumple con los objetivos de un nivel de Ocupación Inmediata requerido para este tipo de edificaciones. Tanto el método FEMA 154 como el FEMA 310 pueden aplicarse a los edificios del Perú teniendo en cuenta ciertas consideraciones y tras un serio estudio de ambos métodos para ser eficazmente aplicados. El comportamiento sísmico del edificio, consultorios, cambia drásticamente de comportarse como un edificio de pórticos a uno con comportamiento dual debido a la interferencia de tabiques de albañilería no aislados a los pórticos. Los muros colocados en forma simétrica y regular en todos los pisos, en el edificio, consultorios, han absorbido la mayor cantidad de carga lateral por sismo y han protegido a las columnas de un posible fallo. La mayoría de los muros o tabigues de albañilería no reforzada, al no haber sido diseñados para soportar cargas de sismo fallan por corte par aun sismo máximo esperado (MCE). Existen algunas vigas (V104, V204, V307, V108, V208, V308) gue fallan por flexión debido a su falta de resistencia y de ductilidad. El edificio en su conjunto tiene una buena resistencia al sismo debido a la falla sola de algunas vigas y muros de albañilería,

pero éstos al fisurarse y agrietarse podrían perder su capacidad de corte y no trabajar dejando las cargas a ser soportadas por los elementos de los pórticos (columnas y vigas). Por tanto, no es seguro para un nivel de ocupación inmediata. Para el estudio del periodo fundamental de edificios en zonas urbanas como el de CSM a partir de vibración ambiental es suficiente el registro de aceleración en la parte superior del edificio. No existirá fenómeno de resonancia entre el periodo fundamental del suelo y el del edificio durante un sismo. El suelo debajo de CSM es potencialmente licuable. La presencia de zapatas aisladas en la cimentación influye en el comportamiento dinámico de la estructura. Uno de los principales aportes de este trabajo es que contiene inventariados de la mayoría de los elementos no estructurales y evaluados en su vulnerabilidad sísmica con el fin de ubicarlos dentro de sus instalaciones y tomar futuras medidas de intervención. Finalmente se concluye que el sismo máximo esperado (período de retorno de 475 años) dependiendo de la distancia entre el foco y el sitio podría ser en escalas de Ms = 8.17, 8.25, 9.04 y/o M = 8.6, 8.74, 10.14. Valores que se han presentado ya en la zona de Piura finalmente se expresa la necesidad de dar mayor ductilidad a los muros de albañilería o tabiques por absorber, debido a su rigidez, gran parte de carga sísmica lateral. Además, se detectan otros elementos, ya sea columnas o vigas que fallarían ante un sismo.

 LAUCATA LUNA, Johan Edgar; en su tesis "Análisis de la vulnerabilidad sísmica de las viviendas informales en la ciudad de Trujillo". Lima 2013. Realiza una investigación y genera una metodología simple para determinar el riesgo sísmico de viviendas informales de albañilería confinada en la ciudad de Trujillo. Para ello se ha analizado las características técnicas, así como los errores arquitectónicos, constructivos y estructurales de viviendas construidas informalmente. La mayoría de las viviendas informales carecen de diseño arquitectónico, estructural y se construyen con materiales de baja calidad. Además, estas viviendas son construidas generalmente por los mismos pobladores de la zona, quienes no poseen los conocimientos, ni medios económicos necesarios para una buena práctica constructiva. Para recolectar la información para este trabajo de tesis se encuestaron 30 viviendas en 02 distritos de la ciudad de Trujillo, que se seleccionaron por sus características morfológicas y por la presencia de viviendas informales de albañilería. La información de campo se recolectó en fichas de encuesta, en las que se recopiló datos de ubicación, proceso constructivo, estructuración, y calidad de la construcción. Posteriormente el trabajo de gabinete se procesó la información en fichas de reporte donde se resume las características técnicas, elaborando un análisis sísmico simplificado por medio de la densidad de muros, determinando la vulnerabilidad y peligro y riesgo sísmico de las viviendas encuestadas. Luego con la información obtenida se detalló los principales defectos constructivos encontrados en las viviendas encuestadas. Los resultados obtenidos contribuyeron a la elaboración de una cartilla para la construcción y mantenimiento de las viviendas de albañilería confinada de la costa peruana, zona de alto peligro sísmico. La investigación concluye en lo siguiente: La ciudad de Trujillo sufrió durante su historia varios eventos naturales, entre sismos e inundaciones. El fenómeno del Niño, los constantes sismos, la cercanía al mar y el suelo arenoso, generan un ambiente de riesgo permanente. El Porvenir y Víctor Larco son distritos altamente poblados y representativos de Trujillo, de características morfológicas diferentes. En ambos distritos se construye a través de la construcción informal y la autoconstrucción. Los recursos limitados de los propietarios, incidieron en la adquisición de materiales de baja calidad y contratación de mano de obra no capacitada. Los materiales utilizados en la construcción de las viviendas encuestadas son de regular a deficiente calidad. Existe un inadecuado control de calidad sobre los materiales. Las unidades de albañilería artesanales utilizadas en todas las viviendas, poseen una baja resistencia, una alta variabilidad dimensional y una gran absorción de agua. Esto es debido a la falta de uniformidad de la cocción de las unidades de albañilería de origen artesanal. La calidad de la mano de obra es regular a mala. Esto es generado por la poca capacitación y reducida inversión de los propietarios en mano de obra capacitada. Se observa la poca supervisión durante el proceso constructivo, inclusive en los proyectos asesorados por el Banmat, donde la supervisión es escasa. Los problemas constructivos encontrados en su mayoría son las juntas de construcción mal ubicadas, los malos encofrados y los aceros de refuerzo expuestos. Encontrándose concreto con restos de basura y muchos refuerzos corroídos, a pesar de los intentos artesanales de protección. También se encontró muchos muros construidos con ladrillos crudos o adobes. Los problemas estructurales encontrados la mayoría de las viviendas poseen tabiques sin arriostre, siendo un problema importante al interior de la vivienda. Además, en las azoteas donde se observó tabigues a media altura sin ningún tipo de arriostre, generando un peligro latente durante un sismo pudiendo afectar el escape de los moradores. Ninguna de las viviendas posee una junta sísmica. Además, las losas de techo están a desnivel en zonas con pendiente, siendo un riesgo de daño entre las viviendas en un evento sísmico. Se encontró una mala distribución de los elementos estructurales en la vivienda. Debido a una falta de orientación de los constructores y diseñadores. La rigidez de las viviendas es mayor en el sentido perpendicular a la calle presentando una mayor densidad de muros. En cambio, en el sentido de la calle existe una insuficiente cantidad de muros para soportar un evento sísmico. Los daños en estos muros pueden afectar importantemente en la estructura de la vivienda. Los altos valores de densidad de muros en la dirección perpendicular a la fachada encontrados, están muy por encima de lo requerido. Esto ha demostrado que es la falta de conocimiento técnico y asesoría oportuna de profesionales, la causa principal que exista la deficiencia en la otra dirección. Existen viviendas que han tenido asesoría en la etapa de diseño, pero en algunos diseños no se ha considerado la sismorresistencia de la vivienda. En otros casos ha faltado una adecuada supervisión durante la construcción resultando una la construcción distinta al diseño original de la vivienda. Las construcciones informales en Trujillo ante un sismo severo podrían colapsar la mayoría de sus viviendas ante un sismo severo. De acuerdo a los resultados obtenidos en los reportes de vulnerabilidad. Los recursos limitados de los pobladores de Trujillo en los distritos de expansión y crecimiento generan construcciones sin asesoramiento técnico, ni materiales de calidad. La construcción informal bajo este ambiente es difícil de erradicar. Este estudio expone como se construye actualmente en la ciudad de Trujillo, permitiendo elaborar una cartilla orientadora, dirigida a los pobladores de bajos recursos. Para que tengan una idea de cómo construir adecuadamente sus viviendas. Esta cartilla existe en la actualidad y se elaboró a partir de investigaciones complementarias, en otras ciudades de la costa peruana. El documento se titula "Construcción y mantenimiento de las viviendas de albañilería, para albañiles y maestros de obra", y está a disposición en internet. (BLONDET 2005). La cartilla orientadora no reemplaza a un profesional ingeniero y arquitecto para el diseño y construcción de las viviendas. Cada vivienda es un proyecto único con sus propias características y dificultades. La cartilla es una referencia para reducir la vulnerabilidad a través de recomendaciones.
CHACÓN A. & RAMÍREZ C. (2014) desarrollaron la tesis "ANÁLISIS DE UNA EDIFICACIÓN DE 4 PISOS CON **DISIPADORES DE FLUIDO VISCOSO**". Cuyo objetivo fue realizar el análisis estructural de una edificación con un sistema de disipación de energía; específicamente con disipadores de fluido viscoso. Para ello se procedió a: Realizar una revisión de la literatura sobre los diferentes dispositivos de disipación de energía. Plantear una metodología para el análisis y diseño de una estructura con elementos de disipación de energía (amortiguadores de fluido viscoso). Modelar una estructura hipotética mediante un programa computacional. Mostrar los beneficios del uso de amortiguadores de fluido viscoso. Se realizó un estudio del comportamiento de los disipadores lineales y no lineales de fluido viscoso en la respuesta estructural de un edificio comercial de 4 pisos. Mediante el análisis realizado se demuestra que en este caso los disipadores de fluido viscoso disminuyen significativamente los desplazamientos de la estructura durante el análisis dinámico. Finalmente, se realiza un diseño de los sistemas de protección según la disponibilidad de los dispositivos en el mercado, por lo que se eligen disipadores Taylor. La investigación llegó a las siguientes conclusiones: La comprobación del amortiguamiento efectivo de la estructura se puede realizar empleando el concepto de decremento logarítmico, el cual se logra sometiendo a la estructura a un pulso. Los disipadores no lineales son más eficientes que los disipadores lineales. Los disipadores no lineales pueden cumplir los mismos objetivos de diseño con valores menores del coeficiente de amortiguamiento; Los disipadores lineales tienen una curva histerética casi elíptica, mientras que los disipadores no lineales tiene una tendencia rectangular, disminuyendo la fuerza desarrollada pero aumentando su capacidad de deformación; Se pudo reducir los desplazamientos de la estructura hasta en 52.67% haciendo uso de disipadores lineales y 59.73% haciendo uso de disipadores no lineales; - Se pudo reducir las derivas de entrepiso en 70.23% haciendo uso de disipadores Lineales y 73% haciendo uso de disipadores no lineales; Se obtuvo una deriva máxima de 4 0/00 usando disipadores no lineales, con lo cual se cumplió la deriva objetivo y así se aseguró un desempeño óptimo de la estructura; Los disipadores lineales desarrollan una fuerza axial mayor en comparación de los disipadores no lineales; Los sistemas de disipación con amortiguadores lineales presentan una mayor dispersión en la fuerza axial del disipador en comparación a los disipadores no lineales. Se escogieron 16 disipadores de fluido viscoso con un coeficiente de amortiguamiento C=100 Ton-Seg/mm y una fuerza axial de 25 Ton con un exponente no lineal  $\alpha$ =0.5.

#### 2.1.2. ANTECEDENTE INTERNACIONALES

PARDO VERDUGO Juan Pablo (2007); desarrollo la tesis "Control de la respuesta dinámica de estructuras mediante el uso de disipadores de energía de fluido viscoso del tipo lineal". Cuyo objetivo fue Estudiar y analizar el control de la respuesta de estructuras sometidas a temblores mediante "Dispositivos de Disipación de Energía de Fluido Viscoso. Para lograr cumplir con los objetivos propuestos en esta tesis, se utilizó información de "Dispositivos de Disipación de Energía de Fluido Viscoso" dada por fabricantes e Ingenieros con experiencia en el uso de este tipo de tecnologías. Se desarrolló un algoritmo de diseño de estructuras con Dispositivos de Disipación de Energía de Fluido Viscoso que permita obtener información con respecto al desplazamiento, velocidad y aceleración que experimenta la estructura bajo una cierta excitación basal. Se realizó un análisis modal de la estructura con el objeto de determinar los datos necesarios para la utilización del algoritmo desarrollado, luego se realizó un análisis tiempo historia paso a paso de las estructuras sometidas a un cierto registro sísmico mediante el software SAP2000, de esta manera se tuvo una visión del comportamiento de la estructura con los Dispositivos de Disipación de Energía de Fluido Viscoso, en cada instante de tiempo de la duración del registro. Para poder validar los resultados de la respuesta entregado por SAP2000, se analizó un sistema de un grado de libertad con un dispositivo de Fluido Viscoso con comportamiento Lineal, mediante el método iterativo de Newmark, obteniéndose el resultado de la respuesta que fue graficado para ser comparados con la respuesta entregada por SAP2000. Finalmente se analizó una edificación de hormigón armado de cinco pisos, que posee la particularidad de ser una estructura muy flexible en su sentido longitudinal, por lo que bajo cargas sísmicas en dicho sentido desarrolla grandes deformaciones, que sobrepasan los valores permitidos por la normativa vigente. Como solución a dicho problema se postula la incorporación de Dispositivos de Disipación de Energía de Fluido Viscoso con el objeto de controlar las deformaciones. La tesis llega a las siguientes conclusiones: Mediante el uso de los Disipadores de Energía de Fluido Viscoso, se puede proveer a la estructura del amortiguamiento suplementario que se requiera para poder alcanzar el nivel de la respuesta deseada; La adición de los Disipadores de Energía de Fluido Viscoso es un método efectivo de control de la respuesta dinámica de estructuras, ya que las distorsiones entre piso se lograron disminuir a los valores permitidos por la normativa vigente; Al lograr disminuir los desplazamientos de los Centros de Masa de cada piso, se evita la posibilidad que la estructura trabaje en el rango inelástico, reduciendo la incertidumbre del comportamiento no

lineal, además de impedir la formación de rótulas plásticas y limitando posibles mecanismos de falla; Al utilizar los Disipadores de Energía de Fluido Viscoso, además de reducir los desplazamientos de los centros de masa, se disminuyen las aceleraciones que experimentan estas, lo que conlleva a una reducción de los esfuerzos en las columnas y en la base de la estructura; La disminución de los esfuerzos en la base del edificio conlleva a un diseño de fundaciones más pequeñas. Lo anterior trae consigo fundaciones más económicas y la posibilidad de emplazar edificaciones sobre suelos de mala calidad; Desde el punto de vista constructivo en el caso de la rehabilitación sísmica, los Disipadores de Energía de Fluido Viscoso presentan una clara ventaja frente a otros tipos de Dispositivos de Control Pasivo, como los Aisladores Basales, ya que estos requieren sistemas especiales para su colocación.

SILVA BUSTOS, Natalia Andrea; en su tesis "Vulnerabilidad sísmica estructural en viviendas sociales, y evaluación preliminar de riesgo sísmico en la región metropolitana". Santiago de Chile. 2011, cuyo objetivo principal fue es estimar el riesgo sísmico en una muestra de viviendas sociales construidas entre los periodos 1980 y 2001, distribuidas en 12 comunas de la Región Metropolitana (RM). Para ello se aborda, en un análisis extenso, los dos factores involucrados, vulnerabilidad y peligro sísmico desde la perspectiva de la ingeniería y sismología aplicada respectivamente. La vulnerabilidad se abordó mediante dos enfogues: 1) asignación de clases de vulnerabilidad según distribución de daños dados por la Escala MSK-64; y 2) cálculo del Índice de densidad de muros (índice de primer nivel). Para ambas metodologías, se empleó el catastro detallado de daños experimentados tras el terremoto de 1985 (Ms 7.8). Se optó por emplear para el análisis cuantitativo de vulnerabilidad el índice de densidad de muros

normalizado por número de pisos (d/n)% propuesto por Meli (1991), principalmente por dos razones: a) ha sido concebida para este tipo de estructuras (albañilería reforzada) y ha sido adaptada a la realidad chilena, y b) permite una evaluación masiva de estructuras dado que requiere información estructural básica. Se establece una relación entre este índice y el grado de daño observado en las viviendas, verificando los límites anteriormente propuestos y calibrados por Küpfer (1993). Se recomienda esta metodología para esta tipología pues permite estimar de buena manera, y en primer orden, el comportamiento sísmico esperado ante un evento de intensidades entre VI y VIII. Se propone un (d/n)% de 1.15 para el cual se esperaría un nivel de daño leve (G0 y G1). Se optó por establecer límites conservadores, es decir, que el grado de daño esperado sea mayor que el observado, subestimando la real respuesta de las viviendas sociales. Se evaluó el peligro sísmico en la RM, abordándolo mediante los enfogues probabilístico y determinístico. En el primero, se emplea la metodología propuesta por Algermissen & Perkins (1976), caracterizando las tres fuentes sismogénicas presentes en Chile Central, mediante relaciones de Gutenberg Richter (G-R) y leyes de atenuación, obteniendo isosistas para distintos periodos de retorno de interés. Se incorpora, además, el efecto de sitio, que amplifica hasta en un grado la intensidad según el tipo de suelo dado por la geología superficial (Leyton et al. 2010). Se obtiene que el efecto conjunto y el aporte individual de la fuente interplaca thrust, son las que generan las mayores intensidades en la zona, observando que, para la cuenca de Santiago, la presencia de las fuentes cortical cordillerana (dada su cercanía), e intra placa de profundidad intermedia, son influyentes. El enfoque determinístico generó los escenarios más desfavorables y creíbles a la vez para las fuentes inter e intra placa, y para el caso cortical se barajan distintos largos de

ruptura de la Falla San Ramón, dejando en evidencia la importancia de dicho sistema de fallas. Se observa que un análisis probabilístico, a grandes periodos de retorno, tiende a asemejarse a los resultados obtenidos mediante la metodología determinística. Se propone, como alternativa a la distribución dada por la Escala MSK, una relación funcional dependiente de la amenaza sísmica (intensidades del enfoque probabilista, para 475 años de periodo de retorno) y de la vulnerabilidad (índice de densidad de muros), que estime el riesgo sísmico expresado a través del grado de daño promedio esperado, obteniéndose escenarios para los conjuntos habitacionales considerados. En este sentido, el escenario más severo se obtiene producto del efecto conjunto de las fuentes sismogénicas (IMM levemente superiores a IX, considerando efecto de sitio), el que genera cerca de un 25% de nivel de daño leve (G0 y G1) en las viviendas estudiadas, y cerca de un 50% de nivel de daño grave (G4 y G5), comprometiendo estas últimas su nivel de habitabilidad, consideración hecha a partir del nivel de daño severo, G3. La tesis menciona que una de las características principales de los estudios de riesgo sísmico a nivel urbano es que la metodología que se utiliza para la evaluación de la vulnerabilidad sísmica estructural tiene que ser simplificada, para que pueda aplicarse a grandes áreas o a un gran número de estructuras. Evidentemente cualquier metodología se puede llevar a cabo, pero con su correspondiente incremento de los costos de aplicación de acuerdo al detalle requerido, que para el caso de una mega ciudad como Santiago y las diferentes metodologías constructivas presentes en casas y edificios (adobe, albañilería simple, reforzada, madera y hormigón armado, entre otras), sería completamente inadmisible e incluso inviable. Por ello, se debe encontrar una metodología adecuada que mejor se acomode a los objetivos planteados en el estudio de riesgo

sísmico (ni tan sencilla como para obviar parámetros fundamentales ni tan detallada que la información con la que se cuenta, haga imposible emplearla), a la disposición de información de los elementos que se pretenden evaluar, además de conocer si la metodología ya ha sido adoptada y adaptada a la realidad local de la zona de interés, aspecto que simplifica y valida aún más los resultados y conclusiones respecto del comportamiento sísmico esperado. El nivel y la calidad de la información recabada son los factores que marcan el éxito posterior de los resultados de cualquier metodología de evaluación que se quiera emplear. Especial importancia juegan en este sentido las fichas de levantamiento que se elaboren para recopilar los datos de las estructuras catastradas, debido a que si ellas son sencillas (pero completas) la tarea se simplifica bastante y permite homologar criterio de los posteriores evaluadores. En la medida que se amplíe el número de las muestras de viviendas estudiadas, las conclusiones que puedan obtenerse a partir de la metodología seleccionada, serán mejores y más fidedignas. Para la evaluación de la vulnerabilidad se emplearon dos de las metodologías ampliamente usadas en Chile, las que han sido adaptadas a la realidad nacional. Por parte del análisis cuantitativo, se optó por emplear la metodología propuesta por Meli (1991), índice de primer nivel que calcula para cada dirección en planta del edificio, la densidad de muros por unidad de pisos y lo relaciona con el grado de daño promedio esperado. El segundo enfoque de evaluación de vulnerabilidad, fue la asignación de clases de vulnerabilidad, el cual también lleva consigo incertidumbre dada la asimilación de clases, sin considerar movilidad de ellas. Importante es considerar que no basta contar con altas densidades para tener un buen comportamiento sísmico, sino que también es necesario presentar una buena disposición de las líneas resistentes, así como también aspectos de

regularidad en planta y elevación. Otros aspectos importantes son también el estado de conservación de la vivienda, año de construcción, integridad de las uniones de muros, calidad de los materiales constructivos, entre otros que podrían permitir disminuir la dispersión que se presenta cuando se realiza el análisis de grados de daños observados versus el índice de densidad de muros por unidad de piso. Algunas de las principales razones que pudiera explicar la alta dispersión del índice de densidad de muros, pudieran atribuirse a que el cálculo del índice de Meli tiene relación con la distribución de muros en planta (en ambas direcciones), luego corresponde a un criterio netamente de diseño estructural, es decir, lo que el plano presenta, sin considerar la etapa constructiva de una vivienda, en la que sí se evidencian errores que condicionan el real comportamiento general de una estructura. Estos pudieran ser, como ya se han planteado anteriormente, falencias en la integridad de las conexiones entre muros, mala calidad de materiales empleados, modificaciones posteriores a las viviendas que hacen mover la clase de vulnerabilidad, entre otros efectos posteriores al diseño.

 MARURI ORTIZ Carlos Andrés (2015), desarrolló la tesis "Modelo estructural a escala utilizando amortiguadores viscosos como sistemas de disipación pasiva de energía", cuyos objetivos fueron: Diseñar un modelo estructural a escala con amortiguadores viscosos que pueda ser acoplado a una mesa de excitación dinámica y además pueda ser sometido a diferentes aceleraciones; Evaluar las ondas sinusoidales a diferentes frecuencias y su comportamiento al momento de utilizar amortiguadores viscosos en la estructura; Obtener las propiedades de los amortiguadores viscosos, mediante ensayos de aceleración de la estructura y modelos matemáticos; Replicar el modelo estructural en el programa
 SAP2000 al igual que el comportamiento de los amortiguadores viscosos; Realizar un análisis comparativo de las capacidades resistentes y las mejoras estructurales debido al uso de amortiguadores viscosos. El trabajo es un estudio teóricoexperimental para la implementación de amortiguadores viscosos en modelos de estructuras a escala. Este estudio será evaluado, analizado y modelado utilizando el programa de elementos finitos SAP2000 el cual permitirá concluir los efectos de los amortiguadores viscosos en la estructura. El trabajo llega a las siguientes conclusiones: El modelo estructural a escala se lo construyó en base a columnas de acero laminado y losas de madera tipo triplex. Este material utilizado para el diseño de las columnas, posee una rigidez que permite visualizar los desplazamientos producidos por la mesa de excitación dinámica, a la cual se empotra el modelo estructural. Por otra parte, este material es resistente a la fatiga, liviano, y no se deforma al ser sometido ante diferentes aceleraciones. Por ende, es un material óptimo para la construcción de modelos estructurales a escala a ser estudiados. A pesar que la mesa de excitación dinámica transmite aceleraciones al modelo estructural diseñado, la mesa solo se desplaza +-1cm en dirección horizontal. Este limitante restringe que se generen fuerzas de mayor magnitud en los distintos niveles del modelo estructural diseñado. Por ende, se recomienda modificar y ampliar el rango de movimiento de la mesa en dirección horizontal. El amortiguador viscoso implementado en este trabajo consta de las características necesarias para el estudio del comportamiento de la estructura cuando se somete a aceleraciones en la base. Sin embargo, no consta de precisión para regular el amortiguamiento. Al momento de utilizar dos amortiguadores tipo jeringas de 60ml, la respuesta del amortiguamiento fue diferente para el nivel 1 como para el nivel 2. Al no poder regular que amortiguamiento generan estos

dispositivos, solo se los pudo modelar de manera semejante en el programa SAP2000, mas no ajustar con las propiedades exactas. Al momento de implementar algún tipo de amortiguador en alguna estructura o construcción, y además se lo modele en el programa SAP2000, es indispensable que el estos fabricante de dispositivos asegure todas las características y propiedades que deben ser ingresadas al programa SAP2000 para generar una respuesta exacta del comportamiento estructural del modelo. Al implementar amortiguadores viscosos en el modelo estructural, se evidenció de manera visual y analítica la reducción de la aceleración en cada nivel del modelo estructural. Para el nivel 1 se logró disipar la energía proveniente del acelerograma disminuyendo la aceleración hasta en un 195.6%. Por otra parte, se logró alcanzar una disminución de la aceleración para el nivel 2 de hasta un 96.76%. A pesar de que el amortiguamiento no es el mismo para el nivel 1 como para el nivel 2, se comprobó una efectividad promedio de reducción en la aceleración de 146.18% únicamente con amortiguadores viscosos en base de aire. Los acelerogramas registrados en el programa LoggerLite son ondas distorsionadas. Esto se debe a que pueda existir cierta fricción en la mesa de excitación dinámica. Sin embargo, este tipo de aceleraciones mantuvieron el mismo periodo tanto en el nivel 0, 1 y 2. De igual manera cuando se implementó los amortiguadores en el modelo estructural, los periodos se mantuvieron constantes para los tres niveles de estudio. Al momento de analizar y comparar las gráficas de aceleración experimental, con las gráficas de aceleración teórica, se evidenció el mismo comportamiento entre los acelerogramas almacenados del modelo estructural y los acelerogramas producidos por el programa SAP2000. El error generado con el modelo estructural sin amortiguadores, alcanzo el 12.8% para el nivel 1 y el 4.25 % para el nivel 2. Por otra parte, cuando se

diseñó el modelo estructural con amortiguadores, las gráficas generaron un error del 8.25% para el nivel 1, y el 9.21% para el nivel 2. Esto quiere decir que se mantiene un error del 10% aproximadamente. Esto se debe por leves variaciones en la mesa, en las dimensiones exactas de la geometría del modelo estructural, en las propiedades de los materiales definidos, sobre todo, en la definición de las propiedades del amortiguador utilizado. Finalmente, se puede concluir que este tipo de sistemas de reducción de vibraciones, son una opción considerable para proteger y evitar daños en la estructura, que consecuentemente evitara pérdidas humanas y económicas.

## 2.2. MARCO CONCEPTUAL EDIFICACIONES CON SISTEMAS DE PROTECCIÓN POR AMORTIGUAMIENTO

#### 2.2.1. ENFOQUE SISMORRESISTENTE TRADICIONAL

El desempeño de un edificio, según el enfoque tradicional del diseño sismorresistente, está basado en la capacidad que tiene la propia estructura de disipar la energía introducida por el sismo a través de una combinación de propiedades conocidas como ductilidad, resistencia y rigidez.

Es de esperarse que la estructura tenga un comportamiento elástico ante sismos leves y uno inelástico cuando esté sujeto a sismos moderados o raros. Este comportamiento inelástico está caracterizado por la disipación de energía a través de deformaciones no recuperables que se agravan conforme la deriva de entrepiso se incrementa; teniendo como consecuencia daño estructural y no estructural cuantioso.

Este enfoque convencional del diseño sismorresistente ha llevado a los ingenieros a detallar los edificios con suficiente ductilidad para prevenir fallas repentinas y catastróficas conforme la estructura va entrando en el rango inelástico. La Imagen 3. muestra la curva capacidad de una estructura y sus correspondientes niveles de desempeño conforme aumentan el desplazamiento del último nivel.



Imagen 3. Curva capacidad de una estructura y niveles de desempeño Fuente: SEAOC Vision 2000 Comitee.

Existen edificios tales como hospitales, estaciones de policía, colegios y estaciones de bomberos, que deben continuar operativos después de un sismo severo. Este hecho exige que tales edificios se diseñen con suficiente resistencia para que las deformaciones inelásticas sean mínimas 0 reparables inmediatamente. Una alta resistencia, significa una alta inversión en términos económicos, y, aun así, jamás podríamos mantener la estructura en el rango elástico. El diseño sismorresistente tradicional, el mismo que se presenta en la norma peruana, tiene el objetivo principal de mantener las derivas de la estructura por debajo de un límite máximo incrementando la rigidez. Este incremento por lo general es causante de altas vibraciones que generan daño no estructural en una edificación. (Guevara Huatuco & Torres Arias, 2012)

# 2.2.2. ENFOQUE SISMORRESISTENTE CON SISTEMAS DE PROTECCIÓN POR AMORTIGUAMIENTO

Los disipadores de energía, son dispositivos que se ubican en puntos estratégicos de las estructuras, y que absorben la energía debida a sismos, vientos u otros, reduciendo el daño que esta energía pueda provocar en elementos estructurales y no estructurales.

Los principios de acción de ambos sistemas son intrínseca y conceptualmente distintos. Los aisladores sísmicos reducen la energía del sismo que ingresa a la estructura, mientras que los disipadores de energía permiten disipar parte de la energía que ingresa a la estructura por medio de dispositivos especialmente diseñados para esos fines.

Los sistemas de protección sísmica por amortiguamiento tienen como finalidad reducir los desplazamientos relativos de entrepiso, y por tanto aminorar el daño estructural. Esto se logra mediante un incremento de la participación del amortiguamiento viscoso en la disipación de energía sísmica.

Cuando un edificio no posee dispositivos de amortiguamiento, la energía total ingresada a través del movimiento sísmico es disipada en su gran mayoría mediante energía de deformación elástica e inelástica (también llamada histerética); mientras que la participación de la energía de amortiguamiento viscoso es casi nula.



Imagen 4. Distribución de la energía sísmica en un edificio sin Disipadores y en otro con Disipadores.

 $E_i = E_e + E_h + E_v = Constante$  Ecuación 1

Una consecuencia directa de la adición de amortiguadores es una reducción de la disipación inelástica o histerética (Eh), ya que como indica la Ecuación. 1, la energía de entrada (Ei) se mantiene constante durante el evento sísmico. El edificio ya no tiene que absorber la totalidad de energía sísmica por sí mismo, sino que una porción de esta energía es absorbida por el sistema de amortiguamiento (Ev).

El incremento del amortiguamiento genera una reducción del espectro de pseudoaceleraciones, y, por tanto, una disminución de la resistencia demandada, como se muestra en la Imagen 5.



Imagen 5. Reducción en las demandas de resistencia debido al incremento de amortiguamiento.



# 2.2.3. CONCEPTO DE SISTEMAS DE PROTECCIÓN SÍSMICA

Imagen 6. Cuadro conceptual de Protección Sísmica de estructuras

#### 2.3. SISTEMAS MODERNOS PASIVOS DE PROTECCIÓN SÍSMICA:

En las últimas dos décadas ha ganado aceptación entre la comunidad profesional el uso de sistemas de protección sísmica en estructuras. Entre ellos, los sistemas de aislación sísmica y de disipación de energía han sido los más utilizados. "En términos generales, los sistemas de aislación sísmica limitan la energía que el sismo trasfiere a la superestructura, reduciendo considerablemente los esfuerzos y deformaciones de la estructura aislada, previniendo el daño estructural y no estructural" (Corporación de Desarrollo Tecnológico - Cámara Chilena de la Construcción, 2011, pág. 8). La Imagen 7 muestra una comparación del comportamiento, ante la acción de un sismo, de un edificio sin aislación y un edificio con aislación sísmica. Por su parte, los sistemas de disipación de energía, si bien no evitan el ingreso de energía a la estructura, permiten que la disipación de energía se concentre en dispositivos especialmente diseñados para esos fines, reduciendo sustancialmente la porción de la energía que debe ser disipada por la estructura. El uso de disipadores de energía reduce la respuesta estructural, disminuyendo el daño de componentes estructurales y no estructurales. La Imagen 8 muestra la comparación del comportamiento de un edificio sin dispositivos de disipación de energía y un edificio con disipadores de energía.



Imagen 7. Comparación de respuesta sísmica de edificio sin aislación y edificio con aislamiento basal.



Imagen 8. Comparación de edificio sin disipadores y edificio con disipadores de energía.

## 2.3.1. ESPECTRO GENERAL DE DISEÑO

"Los aisladores sísmicos actúan modificando el periodo natural de la estructura no aislada de modo de reducir la aceleración sobre la estructura aislada" (Tecnoav, s.f.).



Imagen 9. Reducción de aceleración mediante aislación sísmica

Los Disipadores Sísmicos, actúan disipando grandes cantidades de energía, asegurando que otros elementos estructurales no sufran demandas excesivas que signifiquen daños. Pero la mejor forma de asegurar la estructura durante un sismo es combinar ambos sistemas de protección sísmica, proporcionándole a esta una mayor capacidad de amortiguación durante un evento sísmico y una mejor respuesta durante este. Cuando existe estructuras donde el uso de aisladores sísmicos no es recomendable (EJ: Suelos Blandos), sistemas de amortiguamiento con alta capacidad de disipación son la mejor alternativa de protección sísmica (Tecnoav, s.f.)



Imagen 10. Efecto de disipación de energía.

#### 2.3.2. AISLAMIENTO EN LA BASE

El diseño de estructuras con aislación sísmica se fundamenta en el principio de separar la superestructura (componentes del edificio ubicados por sobre la interfaz de aislación) de los movimientos del suelo o de la subestructura, a través de elementos flexibles en la dirección horizontal, generalmente ubicados entre la estructura y su fundación o a nivel del cielo del subterráneo (subestructura). Sin embargo, existen casos donde se han colocado aisladores en pisos superiores. La incorporación de aisladores sísmicos permite reducir la rigidez del sistema estructural logrando que el período de vibración de la estructura aislada sea, aproximadamente, tres veces mayor al período de la estructura sin sistema de aislación.

El aislamiento sísmico es utilizado para la protección sísmica de diversos tipos de estructuras, tanto nuevas como estructuras existentes que requieren de refuerzo o rehabilitación. A diferencia de las técnicas convencionales de reforzamiento de estructuras, el aislamiento sísmico busca reducir los esfuerzos a niveles que puedan ser resistidos por la estructura existente. Debido a esto

último, la aislación sísmica de base es especialmente útil para la protección y refuerzo de edificios históricos y patrimoniales.

## 2.3.3. DISIPACIÓN DE ENERGÍA

Los disipadores de energía, a diferencia de los aisladores sísmicos, no evitan que las fuerzas y movimientos sísmicos se transfieran desde el suelo a la estructura. Estos dispositivos son diseñados para disipar la energía entregada por sismos, fenómenos de viento fuerte u otras solicitaciones de origen dinámico, protegiendo y reduciendo los daños en elementos estructurales y no estructurales. Estos dispositivos permiten aumentar el nivel de amortiguamiento de la estructura (...). Al igual que los sistemas de aislación sísmica de base, los dispositivos de disipación de energía, han sido ampliamente utilizados a nivel mundial en el diseño de estructuras nuevas y en el refuerzo de estructuras existentes. (Corporación de Desarrollo Tecnológico - Cámara Chilena de la Construcción, 2011, pág. 14)

Funcionan de mejor manera en edificios (mediana y alta altura), tanto para minimizar los efectos de los terremotos (sismos) como del viento (huracanes).

## 2.4. DISIPADORES DE FLUIDO VISCOELASTICOS:

Uno de los mecanismos más eficientes para añadir capacidad de disipación de energía a una estructura es mediante el uso de disipadores de fluido viscoelásticos, este mecanismo disipa energía transfiriendo un fluido a través de un orificio, produciendo una presión de amortiguamiento.

Por muchos años, los disipadores de fluido viscoelásticos han sido utilizados en muchas aplicaciones, entre los que se encuentra el control de vibraciones en sistemas aeroespaciales y de defensa en los Estados Unidos, donde fue evaluado con éxito durante muchas décadas. Uno de los usos que ha sido bien documentado fue hecho por instituciones militares para examinar su uso en cañones de alto calibre. Básicamente un amortiguador viscoso es comparable a los amortiguadores utilizados en los automóviles, con la diferencia que los utilizados en estructuras operan en un rango de fuerzas mucho mayor y son construidos en acero inoxidable y otros materiales extremadamente duraderos los cuales tienen una duración de por lo menos 40 años. (Arroyo, 2004, pág. 1)

## 2.4.1. COMPORTAMIENTO HISTERÉTICO

La Imagen 11 muestra un ciclo de histéresis de un amortiguador con un comportamiento viscoso lineal y no lineal. El ciclo muestra una elipse perfecta para el primer caso ( $\alpha$  =1).

Cuando la estructura alcanza su máximo desplazamiento, su velocidad es cero; por lo tanto, la fuerza en el disipador también será cero y cuando el desplazamiento de la estructura sea mínimo, la fuerza en el disipador será máxima.



Imagen 11. Relación fuerza - desplazamiento del disipador de fluido viscoelástico. (Chen Franklin. Smart Structures)

## 2.4.2. MODELO MECÁNICO DEL DISIPADOR

La relación de esfuerzo y velocidad de deformación de un fluido Newtoniano tiene la misma forma que la relación fuerza y velocidad de desplazamiento de un amortiguador, donde el amortiguador en una posición suelta mueve un cilindro que contiene un fluido newtoniano, como lo representa el diagrama de Maxwell en la Imagen 12.



Imagen 12. (a) Esquema de un disipador de fluido viscoelásticos, (b) Diagrama de Maxwell (Chen Franklin. Smart Structures).

Durante la vibración de la estructura, la diferencia de presiones entre cada lado de la cabeza del pistón resulta en la fuerza de amortiguamiento, como se muestra en la siguiente ecuación:

$$F = C.\Delta^{\alpha}$$

La fuerza es una función de  $\Delta$  (velocidad relativa entre dos extremos del disipador), la constante de amortiguamiento C (que

depende de la frecuencia, temperatura y la amplitud del movimiento) y un exponente de velocidad  $\alpha$ 

Los amortiguadores con  $\alpha$  igual a uno tienen un comportamiento lineal y representan la forma más simple de disipación de energía; sin embargo, los disipadores más usados son los no lineales con  $\alpha$ menor a uno. La Imagen 13 muestra el comportamiento de ambos tipos de amortiguadores.



Imagen 13. Relaciones fuerza - velocidad de disipadores viscosos (Jenn – Shin Hwang. Seismic Design of Structures with Viscous Dampers).

Para una pequeña velocidad relativa, el amortiguador con  $\alpha$  menor a uno es el más efectivo minimizando choques de alta velocidad, por lo que provee una fuerza de amortiguamiento mayor que los otros tipos de amortiguadores.

#### 2.4.3. MODELO DEL SISTEMA DE AMORTIGUAMIENTO

#### a) Representación Física Del Sistema De Amortiguamiento

Para este modelo de un grado de libertad se consideran las disposiciones Chevron y Diagonal tal como se ilustra en la Imagen 14 (extraída de "Smart Structures Innovative Systems for Seismic Response Control" - 2008).



Imagen 14."Modelo dinámico del sistema de amortiguamiento de un sólo grado de libertad (Disposición Diagonal y Chevron)"

La rigidez axial del sistema viene gobernada por la rigidez del elemento que contiene el disipador, llamado brazo metálico. La rigidez de este brazo es mucho mayor que la del dispositivo de amortiguamiento. Por esa razón, los brazos pueden ser asumidos como elementos infinitamente rígidos.

Esta suposición y las condiciones de equilibrio nos permiten definir la ecuación dinámica de la estructura con un sistema de amortiguación de un solo grado de libertad.

$$m\ddot{x} + C_S \dot{x} + D + Q = -m\ddot{x}_g \quad \acute{0}$$

$$m\ddot{x} + C_S\dot{x} + P\cos\varphi + Q = -m\ddot{x}_g$$
 Ecuación 2

Donde:

m: Masa de la estructura, concentrada a nivel del techo.

 $C_S$ : Coeficiente de amortiguamiento.

*Q* : Expresión general que considera el comportamiento no lineal de la Fuerza estructural

*P* : Fuerza definida a lo largo del movimiento del sistema de disipación.

*D* : Componente horizontal de la fuerza.

 $\varphi$ : Ángulo que depende de la configuración del sistema de disipación y sus refuerzos.

x(t): Desplazamiento de entrepiso

 $\ddot{x} + \ddot{x}_{q}$ : Aceleración estructural y aceleración del suelo

Esta ecuación representa de manera general el comportamiento de una estructura con dispositivos de amortiguamiento sometida a una fuerza sísmica.

Finalmente cabe destacar que la expresión que representa la fuerza en el dispositivo de amortiguamiento (P) es única para cada tipo de disipador; debido a que cada uno presenta propiedades y características distintas.

## b) Modelo de un Amortiguador individual

La manera más sencilla de representar un amortiguador individual en la estructura es mediante el modelo Maxwell. Se considera un resorte lineal (Driver) en serie con un amortiguador puramente viscoso (Damper). La Imagen 15 presenta el modelo Maxwell.



Imagen 15. Diagrama de bloques (a) y Representación Matemática (b) del modelo de Maxwell

La expresión que representa la relación fuerza-desplazamiento con la velocidad del modelo Maxwell es:

$$F = K_D u = C [sng(v)]v^{\alpha}$$
 Ecuación 3

Donde:

F: Fuerza en el amortiguador.

*K<sub>D</sub>* : Rigidez elástica del resorte.

C: Coeficiente de velocidad del amortiguador.

 $\alpha$ : Exponente de velocidad.

u : Deformación axial.

[sng(v)] : Función signo.

v: Velocidad axial.

Debe tenerse en cuenta que esta representación no considera ningún estado límite de fuerza o desplazamiento ante un sismo de alta magnitud. En el Instituto Tecnológico de Tokio (H. Kit Miyamoto) se realizaron investigaciones con el objetivo de encontrar un modelo que considere todo tipo de estado crítico del sistema disipadores de fluido viscoelásticos. Con este modelo se estimaría un nivel de riesgo más real. La Imagen 16 muestra el modelo matemático resultante de estas investigaciones. (Cano Lagos & Zumaeta Escobedo, 2012, pág. 28)





amortiguamiento viscoelastico

En el software de cálculo estructural ETABS v16.0.0, el modelo del disipador es del tipo Maxwell. Así, el amortiguador puede modelarse como elemento tipo "Link", para después asignarle propiedades "Damper" del tipo lineal o no lineal.

## 2.4.4. ECUACIÓN GENERAL:

La ecuación simplificada de estos dispositivos es la siguiente:

$$F = CV^{\alpha}$$
 Ecuación 4

Donde:

F: Fuerza en el disipador.

- C: Constante de Amortiguamiento.
- V: Velocidad relativa en el amortiguador.
- $\alpha$ : Coeficiente que varía entre 0.4 y 0.6 para edificaciones.

#### a) Coeficiente de amortiguamiento "C"

Es la constante de amortiguamiento del dispositivo, asumiendo dispositivos iguales en todos los niveles y empleando el modo fundamental de cada dirección; y está relacionado a las propiedades del fluido inmerso dentro del dispositivo. Debe ser definido por el proyectista de acuerdo al amortiguamiento objetivo.

Su cálculo parte de una estimación que depende directamente del tipo de disipador utilizado (lineal o no lineal) y del amortiguamiento objetivo. A continuación, se exponen dichas expresiones:

## • CASO LINEAL $\alpha = 1$

Un valor inicial estimado del coeficiente de amortiguamiento "C" para dispositivos lineales puede obtenerse con la siguiente ecuación:

$$\xi_{eff} = \xi_o + \xi_d = \xi_o + \frac{T \sum j c_j \varphi_{rj}^2 (\cos \theta_j)^2}{4\pi \sum i m_i (\phi_i)^2} \quad \text{Ecuación 5}$$

Donde:

 $\xi_{eff}$ : Amortiguamiento total efectivo del sistema.

 $\xi_o$ : Amortiguamiento propio del sistema sin disipadores.

 $\xi_d$ : Amortiguamiento Viscoso Objetivo debido a los amortiguadores.

*T* : Período de la estructura.

*C<sub>i</sub>* : Coeficiente de amortiguamiento del piso j.

 $\phi_i$ : Desplazamiento del modo fundamental en el piso i.

 $\phi_{rj}$ : Desplazamiento Relativo horizontal del disipador del piso j correspondiente a la forma del modo de vibración fundamental en la dirección de análisis.

 $\theta_j$ : Ángulo de inclinación del disipador en el piso j.

 $m_i$ : Masa del piso i.



Imagen 17. Pórtico con disipador de fluido viscoelástico.

Esta fórmula considera un coeficiente de amortiguamiento constante para todos los dispositivos. Sin embargo, se conoce experimentalmente que la eficiencia de los amortiguadores en los pisos superiores es menor que la que se presenta en los niveles inferiores debido a la importancia de los primeros modos.

#### • CASO NO LINEAL $\alpha < 1$

Un valor inicial estimado del coeficiente de amortiguamiento "C" para dispositivos no lineales puede obtenerse con la siguiente ecuación:

$$\xi_{eff} = \xi_o + \xi_d = \xi_o + \frac{T \sum j \lambda C_j \varphi_{rj}^{1+\alpha} (\cos \theta_j)^{1+\alpha}}{2\pi A^{1-\alpha} W^{2-\alpha} \sum i m_i (\varphi_i)^2} \qquad \text{Ecuación 6}$$

Donde:

 $\lambda$  : Valores tabulados en el FEMA 273 a partir de la siguiente ecuación:

$$\lambda = 2^{2+\alpha} \frac{\Gamma^2 \left(1 + \frac{\alpha}{2}\right)}{\Gamma(2+\alpha)}$$

Ecuación 7

Γ: Función gamma. (Jen)

*A* : Amplitud del desplazamiento del modo fundamental de la estructura.

 $\omega$ : Frecuencia angular fundamental de la estructura  $(\omega = 2\pi f)$ .

 $\alpha$ : Exponente de velocidad.

El rango del valor de C dependerá de las condiciones de la estructura tales como: periodo, regularidad, número de niveles y otros.

#### b) Exponente de Velocidad " $\alpha$ "

El exponente de velocidad " $\alpha$ " describe el comportamiento histerético de los disipadores; en otras palabras, propone la disposición de los lazos histeréticos. Este exponente define la reacción del dispositivo ante los impactos de velocidad.

Para el caso de edificaciones se recomienda el uso de  $\alpha$  < 1, típico de un disipador no lineal. Cuando el amortiguador cumple esta condición, logra minimizar golpes de velocidades con una baja fuerza en el amortiguador.

Para amortiguadores lineales el valor de  $\alpha$  es igual a 1. En estos dispositivos la fuerza es proporcional a la velocidad relativa, esto provoca un comportamiento fuera de fase:

# "Fuerza máxima en la estructura" $\rightarrow$ "Fuerza mínima en el disipador".

Los amortiguadores con  $\alpha$  mayor 1 no son comúnmente utilizados en edificaciones porque se necesitan grandes velocidades para incrementar significativamente la fuerza en el amortiguador.

La Imagen 18 ilustra el comportamiento en el amortiguador al variar el valor de a. Demuestra la eficiencia de los amortiguadores nolineales para aminorar altos shocks de velocidad en comparación con los amortiguadores lineales. Para bajas velocidades relativas, los amortiguadores no lineales reaccionan con una mayor fuerza de amortiguamiento.

Según los especialistas de MIYAMOTO INTERNATIONAL se recomienda utilizar valores de  $\alpha$  entre 0.4 y 0.6 para estructuras comunes.



Imagen 18. Fuerza por amortiguamiento vs Velocidad (extraído de "Seismic Design of Structures with Viscous Dampers\_Jenn-Shin Hwang).

# 2.4.4.1. RIGIDEZ DEL DISPOSITIVO "K" (RIGIDEZ DEL BRAZO METÁLICO)

La rigidez del dispositivo es la rigidez del brazo metálico que lo conecta a la estructura principal. Para la rigidez en el caso lineal, considerar el valor de cero. La rigidez axial para el caso no lineal será el valor AE/L, correspondiente al perfil metálico donde se montará el disipador.

Esto debido a que la rigidez axial del dispositivo es mucho menor a la del brazo, cuyo valor se determina con la siguiente ecuación:

$$K = \frac{EA}{L}$$
 Ecuación 8

Donde:

E: Coeficiente de Elasticidad del Acero.

A: Área de la sección del brazo metálico.

L: Longitud del brazo metálico.

Es muy común utilizar perfiles HSS o tipo PIPE por razones de estética y por su facilidad de instalación.

En el proceso de diseño del brazo metálico se deben validar las siguientes expresiones:

 $\phi Tn = \phi FyAg < Tu (Tensión)$  Ecuación 9

Donde:

Tn: Tensión nominal.

 $\phi$  : Factor de reducción (0.9).

Ag : Área bruta de la sección del brazo metálico.

*Tu* : Tensión última obtenida a partir de las fuerzas en el disipador.

 $\phi Pn = \phi FcrAg < Pu (Comprensión)$  Ecuación 10

Donde:

Pn: Compresión nominal.

*Pu* : Compresión última obtenida a partir de las fuerzas en el disipador.

## 2.4.4.2. COMPORTAMIENTO FUERZA DESPLAZAMIENTO

A continuación, se expone la relación fuerza-desplazamiento para el sistema de disipadores de fluido viscoelásticos extraída del documento "Probabilistic Seismic Risk Identification of steel Buildings with Viscous Dampers":



Imagen 19. Relación Fuerza - Desplazamiento para exponentes de velocidad de 1 y 0.5.

La curva que describe el comportamiento Histerético de un disipador de fluido viscoelástico es generalmente de geometría elíptica, alcanzando los valores máximos de fuerza para desplazamientos nulos.

# 2.4.4.3. COMPONENTES DE UN DISIPADOR DE FLUIDO VISCOELASTICOS (DFV).

El disipador de fluido viscoelástico, que actúa como un dispositivo disipador de energía en las estructuras, consiste básicamente en un cilindro de acero inoxidable de alta resistencia, el cual contiene un fluido de alta viscosidad, resistente al fuego (no inflamable y no combustible), estable a los cambios de temperatura y a largos periodos de tiempo. En la actualidad, los únicos fluidos que poseen todas estas características son los que pertenecen a la familia de las siliconas (Taylor, 2004).

El cilindro en su interior posee un pistón (también de acero de alta resistencia e inoxidable), que se compone de una vara que en su borde interior tiene una cabeza ("cabeza del pistón") con orificios. La cabeza del pistón divide el interior del cilindro en dos cavidades llamadas "cámaras". Cuando existe un desplazamiento del pistón a altas velocidades dentro del cilindro debido a una excitación, este provoca el paso de fluido de una cámara a otra, lo que produce una presión diferencial y esta a su vez origina la fuerza de amortiguamiento.

Además, el cilindro en su interior posee una tercera cámara, de "Acumulación", que su principal función es permitir el desplazamiento de la vara del pistón, desde adentro hacia fuera del amortiguador durante la excitación y compensar la expansión y contracción térmica del fluido.



Imagen 20. Funcionamiento de un disipador de fluido viscoelástico - Fuente: Taylor, 2004

La actividad sísmica, presiona el pistón hacia el cilindro comprimiendo el fluido del interior hacia la cámara 2, luego este pasa de regreso de la cámara 1 a la cámara 2, a través de las perforaciones y se iguala la presión, que es la que provoca la fuerza de amortiguamiento. Estas perforaciones se gradúan en tamaño y cantidad, para proporcionar la respuesta deseada. Para prever un efecto de rebote, la
válvula de control libera parte del fluido a la cámara 3 de acumulación.

A continuación, se muestra un esquema de un amortiguador y descripción de sus partes principales:



Imagen 21. "Esquema general de un Disipador de Energía TAYLOR DEVICES INC"

Donde:

- 1) Vástago de acero inoxidable.
- 2) Cabeza del pistón de acero sólido o de bronce.
- 3) Sellos / rodamientos de sello, juntas dinámicas.
- 4) Fluido silicona incompresible.
- Cilindro con tratamiento térmico de aleaciones de acero, protegido contra la corrosión a través de placas y/o pintura.
- Tapa con tratamiento térmico de aleaciones de acero, protegido contra la corrosión a través de placas y/o pintura.
- Extender, acero al carbono forjado en aluminio con protección contra la corrosión.
- Horquilla final con tratamiento térmico de aleaciones de acero con protección contra la corrosión.
- Cojinete esférico forjado con aleación de acero de calidad aeronáutica.
- 10)Fuelle, nylon reforzado de inicio de neopreno.

#### 2.4.4.4. CUADROS DE PROPIEDADES DE LOS DISPOSITIVOS.

En las imagenes 22 y 23 se definen las propiedades de estos dispositivos a partir de los cuadros provistos por el fabricante. Estos se exponen a continuación:



Imagen 22. Propiedades del Dispositivo TAYLOR DEVICES – Argollas



Imagen 23. Propiedades del Dispositivo TAYLOR DEVICES" - Plancha Base

#### 2.4.5. CRITERIOS DE UBICACIÓN Y DISPOSICIÓN

La ubicación, disposición y número de amortiguadores en el edificio influyen significativamente en la efectividad del sistema de amortiguamiento. Diversas investigaciones en torno a ello han dado como resultado recomendaciones generales de ubicación como la búsqueda de simetría.

En el caso de disipador de fluido viscoelástico, se sugiere ubicarlos inicialmente en las zonas de velocidades máximas y en los entrepisos que experimentan mayor desplazamiento relativo. La ubicación óptima de los amortiguadores se logra mediante un proceso iterativo.

También es importante señalar que el uso del edificio y la arquitectura del mismo son factores que influyen significativamente en la ubicación de los amortiguadores. Por esa razón todos los profesionales envueltos en la construcción y diseño de la edificación deben llegar a un acuerdo en cuanto a la ubicación de los amortiguadores, de manera que cumpla con todos los requerimientos de diseño.

Entre los arreglos más comunes se presentan la disposición Chevron y la disposición Diagonal, ambos necesitan de un brazo metálico para conectarse con la estructura.

#### a) DISPOSICIÓN CHEVRON

La configuración Chevron se distingue por colocar el dispositivo de disipación de energía de forma horizontal, es decir paralelo al entrepiso. A través de esta se puede lograr una eficiencia de 100%, es decir que se emplea toda la capacidad del disipador para restringir los desplazamientos de entrepiso.



Imagen 24. Disposiciones en Chevron

#### b) **DISPOSICIÓN DIAGONAL**

En esta disposición se orienta el disipador de forma diagonal dentro del pórtico en que se encontrará y resulta ser la más económica, pues solo requiere tubos metálicos para su instalación. Por otro lado, este arreglo tiene la menor eficiencia ya que solamente la componente horizontal desarrollada por el amortiguador participa en la disipación de energía.



Imagen 25. Disposiciones en diagonal

#### c) CONFIGURACIÓN SCISSOR JACK

Este tipo de disposición tiene una eficiencia mayor al 100%; esto se debe a que su configuración incrementa el desplazamiento del pistón para una deriva de entrepiso dada.



Imagen 26. Disposición Scissor Jack

#### 2.4.6. FABRICANTES

El principal fabricante de estos dispositivos es la marca TAYLOR DEVICES INC, de origen estadounidense y líder mundial desde 1954 en la producción de elementos de absorción de shocks por medio de la compresión y control de fluidos que permiten la disipación de energía. La empresa desarrolló y patentó conceptos tales como el control del fluido a través de orificios, la compresión dinámica de fluidos, los amortiguadores auto ajustables y el resorte líquido desarrollando productos para el sector comercial, militar e industrial.

La principal ventaja de los dispositivos Taylor es que no requieren de ningún mantenimiento antes, durante o después de haber sido sometidos a solicitaciones de carga.

Los amortiguadores Taylor se encuentran presente en más de 400 proyectos a nivel mundial en estructuras nuevas y reforzadas. En estructuras importantes y de valor económico e histórico, ya sea por la estructura en sí o por su contenido, el uso de un sistema de amortiguamiento tiene por lo general una baja incidencia económica relativa. En el Perú, la marca Taylor es representada por la empresa CDV Representaciones, empresa comercializadora de productos especializados para la construcción y la industria.

El precio unitario por dispositivo es de rango variable, pero puede aproximarse inicialmente a US\$ 8000.00, dependiendo de la fuerza de diseño del dispositivo y las propiedades impuestas por el proyectista. Asimismo, debe considerarse el costo de los elementos metálicos involucrados en la conexión. (Cano Lagos & Zumaeta Escobedo, 2012, pág. 43)

#### 2.5. HIPÓTESIS:

#### 2.5.1. HIPÓTESIS GENERAL

Los resultados del análisis del reforzamiento de las edificaciones de concreto armado, con disipadores de fluido viscoelásticos, disminuyen las derivas máxima.

#### 2.5.2. HIPÓTESIS ESPECÍFICOS:

- a) El nivel de desempeño de las edificaciones de concreto armado con disipadores de fluido viscoelásticos, es evitar se presenta fisuramiento en sus elementos estructurales.
- b) La norma mas eficiente es la ASCE/SEI 7-10 para las edificaciones de concreto armado con disipadores de fluido viscoelásticos.
- c) Los beneficios al emplear los disipadores de fluidos viscoelásticos, ya no necesitan reparaciones de los elementos estructuras ya que lo mantienen a la estructura en el rango elástico.

#### 2.6. VARIABLES:

#### 2.6.1. DEFINICIÓN CONCEPTUAL DE LAS VARIABLES

#### 2.6.1.1. VARIABLE INDEPENDIENTE (X):

Disipadores de Fluido viscoelásticos

## 2.6.1.2. VARIABLE DEPENDIENTE (Y):

Derivas máximas.

## 2.6.2. DEFINICIÓN OPERACIONAL DE LAS VARIABLES

| TIPO DE<br>VARIABLE        |                                         | DEFINICIÓN CONCEPTUAL                                                                                                                                                                                                                                          | DIMENSIONES                                                                                                                                                 | DEFINICIÓN<br>OPERACIONAL                              | INDICADORES                                                                                 |
|----------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------|
| VARIABLE INDEPENDIENTE (X) | Disipadores de Fluido<br>viscoelásticos | Los disipadores tienen<br>como función, como su<br>nombre lo expresa,<br>disipar las acumulaciones<br>de energía asegurándose<br>que otros elementos de<br>la estructura no sean<br>sobre exigidos, lo que<br>podría provocar daños<br>severos a la estructura | <ul> <li>Amortigua<br/>miento<br/>Sísmico</li> <li>Coeficiente<br/>de<br/>viscosidad<br/>del fluido.</li> <li>Capacidad<br/>del<br/>Disipadores.</li> </ul> | Diseño del<br>Disipador de<br>Fluido<br>viscoelásticos | <ul> <li>Amortiguami<br/>ento= %.</li> <li>μ = kg·m-1·s-<br/>1</li> <li>P = ton.</li> </ul> |
| VARIABLE DEPENDIENTE (Y)   | Derivas máximas                         | Representaunacondiciónlimiteotolerableestablecidaenfuncióndelosposiblesdañosposiblesdelaedificación,laamenazasobrelaseguridaddeocupantesdelaedificaciónincluidosporestosdañosylafuncionalidaddeladespuésdel sismo.                                             | <ul> <li>Deriva de<br/>entrepiso</li> <li>Nivel de<br/>daño<br/>estructural</li> </ul>                                                                      | Reforzamiento                                          | <ul> <li>Desplazamie<br/>ntos de<br/>entrepiso=<br/>m.</li> </ul>                           |

## **CAPITULO III**

## 3. METODOLOGÍA DE LA INVESTIGACION:

#### 3.1. MÉTODO DE INVESTIGACIÓN

El método general de investigación es el Científico, como métodos específicos se empleo el analítico - sintético, inductivo – deductivo y con un enfoque cuantitativo.

#### 3.2. TIPO DE LA INVESTIGACIÓN

El tipo de investigacion es aplicada por la determinacion de las variables propuestas, en el objetivo general y especifico.

#### 3.3. NIVEL DE LA INVESTIGACIÓN

El nivel de investigación es Descriptivo - Explicativo, porque se relaciona con las variables independientes y dependientes.

#### 3.4. DISEÑO DE LA INVESTIGACIÓN

El diseño de la investigacion es No Experimental.

#### 3.5. POBLACIÓN Y MUESTRA:

#### 3.5.1. POBLACIÓN

La población esta conformada por las edificaciones de concreto armado mayores a 8 pisos construidos en ciudad de Huancayo.

#### 3.5.2. MUESTRA

El tipo de muestreo es el no aleatorio o dirigido, se eligió dos edificaciones de concreto armado: Edificación 1 de 10 pisos ubicada en la Cooperativa el Centenario, y la edificación 2 de 10 pisos ubicada en la intersección de la Av. Centenario y el Pasaje San Antonio en el distrito de Huancayo.

## 3.6. ANÁLISIS Y DISEÑO UTILIZANDO DISIPADORES SÍSMICOS VISCOELÁSTICOS DEL TIPO FLUIDO VISCOSO

#### a) Objetivos De Desempeño

Para seleccionar estos objetivos es necesario tomar en consideración algunos factores como la importancia de las funciones que ocurren dentro del edificio, consideraciones económicas como el costo de interrupción de las actividades, así como costos de reparación.

#### b) Niveles de Desempeño

Los niveles de desempeño pueden ser cuantificados en términos de cantidad de daño directo a la estructura y al impacto indirecto posterior sobre las actividades en el edificio.

#### c) Sismos de Diseño

Los movimientos sísmicos de diseño son expresados por el comité VISION 2000 en términos de un intervalo de recurrencia medio o de una probabilidad de excedencia, agrupa las estructuras en tres grandes grupos de acuerdo a su grado de importancia durante y después del sismo, así, para un sismo raro, el nivel de desempeño mínimo es el de Seguridad.

#### d) Relación Desempeño-Deriva

Se ha demostrado que el daño en un edificio es función principal del desplazamiento en vez de función de la fuerza. Así se observa que cuando la estructura ingresa al rango inelástico, el aumento de daño se debe al aumento de desplazamientos aun cuando la fuerza que actúa en ella se mantenga constante.

#### e) Deriva Objetivo

La relación existente entre Daño y Deriva en edificios ha sido estudiada y cuantificada por el FEMA Mitigation Divition del gobierno estadounidense en su documento Multihazard Loss Estimation Methodology HAZUS. Este documento presenta los estados de daño y sus correspondientes derivas características de diversos sistemas estructurales.

#### f) Amortiguamiento Objetivo

Si la deriva máxima obtenida del análisis del edificio sin disipadores es mayor que la deriva objetivo, entonces se determina el cociente *B*, este es el factor de reducción de respuesta para llegar a la deriva objetivo. Con este factor *B* podemos determinar el amortiguamiento efectivo necesario  $\beta_{eff}$  que desarrollará la estructura para alcanzar la deriva objetivo mediante la fórmula de Newmark.

#### g) Ubicación y Disposición de los Amortiguadores

Se recomienda ubicar los dispositivos en los pórticos extremos y estos deberán ser constantes en toda la altura. La cantidad de dispositivos dispuestos en la dirección "X" e "Y" deberá ser semejante y su ubicación, se recomienda, deberá ser simétrica en planta. Además, se siguen los criterios descritos en el acápite 2.4.5.

#### 3.7. PROCEDIMIENTO DE LA INFORMACION:

## a) Análisis Estructural del Edificio sin el sistema de protección sísmica para el sismo máximo de diseño.

- Definir el sismo de diseño. Para el caso de la Norma Peruana corresponde a un evento de 500 años de periodo de retorno.
- Analizar el edificio usando procedimientos de Análisis Espectral.
- Como resultado del estudio se obtendrá la deriva máxima de entrepiso en cada dirección (Dmax)

#### b) Elección del desempeño deseado y la deriva objetivo

- Definir el desempeño deseado ante el sismo de diseño. (Comité Vision 2000, SEAOC). El desempeño depende de la importancia del edificio.
- Elegir la deriva objetivo. Según las características del sistema estructural y el objetivo de desempeño (Manual Técnico HAZUS, FEMA) se fija la deriva objetivo (D<sub>obj</sub>)

#### c) Amortiguamiento Efectivo del Sistema de Protección.

- Determinar el factor de reducción de deriva que el sistema de disipación debe lograr como B = D<sub>max</sub>/D<sub>obj</sub>
- En función del factor de reducción se estima el amortiguamiento efectivo como:

$$B = \frac{2.31 - 0.41 \ln 5}{2.31 - 0.41 \ln \beta_{efectivo}} = \frac{1.65}{2.31 - 0.41 \ln \beta_{efectivo}}$$

#### d) Proponer una disposición de los dispositivos.

- Ubicar los disipadores en coordinación con la arquitectura.
- Se debe tratar de ubicar los dispositivos en el perímetro del edificio, guardando criterios de simetría.
- Anotar los ángulos de inclinación de los instrumentos.

#### e) Predimensionamiento de los instrumentos para cada dirección.

- Definir un valor de alfa.
- Obtener el valor preliminar de C asumiendo dispositivos iguales en todos los niveles y empleando el modo fundamental de cada dirección para el Caso Lineal (Ecuación 5) y Caso No Lineal (Ecuación 6)

#### f) Incorporar los disipadores en el modelo de computación

- Empleando elementos link unidimensionales, se definen los disipadores como elementos tipo Damper asignándole los valores de C y alfa obtenidos del predimensionamiento.
- La rigidez axial para el caso no lineal será el valor AE/L, correspondiente al perfil metálico donde se montará el disipador.
- Para la rigidez en el caso lineal, considerar el valor de cero.

#### g) Verificación del amortiguamiento efectivo

• Dejando a la estructura en vibración libre puede estimarse el amortiguamiento efectivo obtenido con el sistema de disipación.

#### h) Cálculo de la respuesta del edificio protegido con disipadores

- Seleccionar registros representativos del terremoto de diseño y las condiciones del suelo.
- Calcular la respuesta en el tiempo del edificio protegido.
- Identificación de la deriva máxima para el conjunto de acelerogramas (Dmáx).

## i) Determinar la reducción en la respuesta estructural lograda por los amortiguadores

• Calcular el menor factor de reducción entre todas las señales.

#### j) Obtener el espectro de diseño reducido

 Con el menor valor del factor de reducción, construir el espectro de diseño.

#### 3.8. MODELAMIENTO DEL SISTEMA DE AMORTIGUAMIENTO:

El modelo del sistema estructural será del tipo lineal considerando secciones fisuradas en vigas y columnas; mientras que los dispositivos de amortiguación corresponderán a elementos no lineales.

En cuanto a los dispositivos de amortiguación, la Imagen 27 muestra la manera de introducir las propiedades expuestas en el acápite 3.6. en el software de cálculo ETABS v16.0.0.

Una vez definido el elemento se procede con la ubicación y disposición de los dispositivos según el acápite 2.4.5.



Imagen 27. Propiedades del dispositivo en el software ETABS.

• Definir el sismo de diseño. Para el caso de la Norma Peruana corresponde a un evento de 500 años de periodo de retorno.

- Analizar el edificio usando procedimientos de Análisis Espectral.
- Como resultado del estudio se obtendrá la deriva máxima de entrepiso en cada dirección (Dmax).

#### 3.8.1. OBJETIVOS DE DESEMPEÑO

Se procede a la elección de los objetivos de desempeño sísmico. Estos objetivos corresponden a expresiones de acoplamiento entre los niveles de desempeño deseados y el nivel de movimiento sísmico esperado. "Para seleccionar estos objetivos es necesario tomar en consideración algunos factores como la importancia de las funciones que ocurren dentro del edificio, consideraciones económicas como el costo de interrupción de las actividades, así como costos de reparación". (Cano Lagos & Zumaeta Escobedo, 2012, pág. 46)

#### 3.8.2. NIVELES DE DESEMPEÑO

Los niveles de desempeño pueden ser cuantificados en términos de cantidad de daño directo a la estructura y al impacto indirecto posterior sobre las actividades en el edificio. A continuación, se presenta una descripción detallada de los 4 niveles de desempeño establecidos por uno de los trabajos más completos realizados hasta el momento: el del comité VISION 2000 del SEAOC.

a) Totalmente Operacional

Es un nivel en el que prácticamente no ocurren daños. El edificio permanece estable y seguro para sus ocupantes. No se requieren reparaciones.

b) Operacional

Se presentan daños estructurales leves y daños moderados en el contenido de la edificación y algunos elementos no estructurales. En realidad, el daño es limitado y el edificio puede ser ocupado inmediatamente después del evento sísmico. Los daños no estructurales pueden limitar parcialmente el funcionamiento normal de la edificación.

c) Seguridad

A este nivel, ocurren daños moderados en los elementos estructurales y en el contenido de la edificación. La rigidez lateral es reducida posiblemente en un gran porcentaje, sin embargo, aún existe un margen de seguridad frente al colapso. Los daños pueden resultar en una interrupción de las actividades en el edificio. Se requiere rehabilitación siempre en cuando sea viable y justificable desde el punto de vista económico.

d) Próximo al Colapso

La estructura se acerca al colapso debido a la gran degradación de la rigidez lateral y disminución significativa de la estabilidad. Bajo estas condiciones la edificación es insegura y el costo de rehabilitación puede ser injustificable desde el punto de vista económico.

#### 3.8.3. SISMOS DE DISEÑO

Los movimientos sísmicos de diseño son expresados por el comité VISION 2000 en términos de un intervalo de recurrencia medio o de una probabilidad de excedencia. El Cuadro 1 muestra los intervalos de ocurrencia y la probabilidad de excedencia para cada uno de los movimientos sísmicos de diseño considerados por el comité VISION 2000.

| Cuadro | 1. | Movimientos | Sísmicos | de | Diseño | (SEAOC | Vision | 2000 | Commite | е, |
|--------|----|-------------|----------|----|--------|--------|--------|------|---------|----|
|        |    |             |          | 1  | 995).  |        |        |      |         |    |

| Movimiento Sísmico<br>de Diseño | Periodo de<br>Retorno (años) | Probabilidad de excedencia -<br>aceleración máxima esperada |
|---------------------------------|------------------------------|-------------------------------------------------------------|
| Frecuente                       | 43                           | 50% en 30 años                                              |
| Ocasional                       | 72                           | 50% en 50 años                                              |
| Raro                            | 475                          | 10% en 50 años                                              |
| Muy raro                        | 950                          | 10% en 100 años                                             |

El comité VISION 2000 agrupa las estructuras en tres grandes grupos de acuerdo a su grado de importancia durante y después del sismo:

- a) Estructuras Críticas: Aquellas que contienen materiales peligrosos que podrían resultar en una amenaza inaceptable para un amplio sector de la comunidad.
- b) Estructuras Esenciales: Aquellas encargadas de todas las operaciones post-terremoto como hospitales, estaciones de bomberas, estaciones de policía, etc.
- c) Estructuras Básicas: Aquellas estructuras no consideradas en los grupos anteriores.

El Cuadro 2 muestra la matriz propuesta por el comité VISION 2000 para definir los objetivos de desempeño. Los números representan los tres tipos de estructuras considerados. El Cuadro 3 da a conocer la definición de los objetivos de desempeño para estructuras básicas. Así, para un sismo raro, el nivel de desempeño mínimo es el de Seguridad.

# Cuadro 2. Objetivos de desempeño sísmico recomendado para estructuras (SEAOC Vision 2000 Commitee, 1995).

| Movimiento     | Nivel de Desempeño |             |           |            |  |  |
|----------------|--------------------|-------------|-----------|------------|--|--|
| Sísmico de     | Totalmente         | Operacional | Seguridad | Próximo al |  |  |
| Diseño         | Operacional        |             |           | colapso    |  |  |
| Sismo          | 1                  | 0           | 0         | 0          |  |  |
| Sismo          | 2                  | 1           | 0         | 0          |  |  |
| Sismo Raro     | 3                  | 2           | 1         | 0          |  |  |
| Sismo Muy Raro | 0                  | 3           | 2         | 1          |  |  |

| 0 | : Desempeño Inaceptable              |
|---|--------------------------------------|
| 1 | : Estructuras Básicas                |
| 2 | : Estructuras Esenciales / Riesgosas |
| 3 | : Estructuras Críticas               |

#### Cuadro 3. Objetivos de desempeño para estructuras básicas.

| Movimiento Sísmico de Diseño | Nivel de desempeño mínimo |
|------------------------------|---------------------------|
| Sismo Frecuente              | Totalmente Operacional    |
| Sismo Ocasional              | Operacional               |
| Sismo Raro                   | Seguridad                 |
| Sismo Muy raro               | Próximo a colapso         |

#### 3.9. DEFINICIÓN DE LOS OBJETIVOS DE DISEÑO:

#### 3.9.1. RELACIÓN DESEMPEÑO-DERIVA

Se ha demostrado que el daño en un edificio es función principal del desplazamiento en vez de función de la fuerza. Así se observa que cuando la estructura ingresa al rango inelástico, el aumento de daño se debe al aumento de desplazamientos aun cuando la fuerza que actúa en ella se mantenga constante. El comité VISION 2000 hace una descripción detallada del daño correspondiente a cada uno de los 5 niveles de desempeño para los elementos estructurales resistentes de cargas verticales y de cargas laterales,

así como para elementos no estructurales. El Cuadro 4 presenta un resumen de la relación entre nivel de desempeño y estado de daño. (Guevara Huatuco & Torres Arias, 2012, pág. 31)

## Cuadro 4. Descripción de daño para cada nivel de desempeño (SEAOC Vision

| Estado de Nivel de |             |                                               |  |  |
|--------------------|-------------|-----------------------------------------------|--|--|
| Daño               | Desempeño   | Descripción de Daño                           |  |  |
|                    |             | Daño estructural y no estructural             |  |  |
| Despreciable       | Totalmente  | despreciable o nulo. Los sistemas de          |  |  |
| ·                  | Operacional | evacuación y todas las instalaciones          |  |  |
|                    |             | continúan prestando servicios.                |  |  |
|                    |             | Agrietamientos en elementos estructurales.    |  |  |
|                    |             | Daño entre leve y moderado en los             |  |  |
| Leve               | Operacional | elementos arquitectónicos. Los sistemas de    |  |  |
|                    |             | seguridad y evacuación funcional con          |  |  |
|                    |             | normalidad.                                   |  |  |
|                    |             | Daños moderados en algunos elementos.         |  |  |
|                    |             | Pérdida de resistencia y rigidez en los       |  |  |
|                    |             | elementos parte del sistema resistente de     |  |  |
| Madarada           |             | cargas laterales. El sistema permanece        |  |  |
| woderado           | Segundad    | funcional. Algunos elementos no               |  |  |
|                    |             | estructurales y contenidos pueden dañarse.    |  |  |
|                    |             | Puede ser necesario cerrar el edificio por    |  |  |
|                    |             | algún tiempo.                                 |  |  |
|                    |             | Daños severos en elementos no                 |  |  |
| Sovoro             | Pro colonso | estructurales. Fallo de elementos             |  |  |
| Severo             | rie-colapso | secundarios, no estructurales y contenidos.   |  |  |
|                    |             | Puede ser necesario demoler el edificio.      |  |  |
| Complete           | Colanso     | Pérdida parcial o total de soporte. Colapso   |  |  |
| Completo           | Culapsu     | total o parcial. No es posible la reparación. |  |  |

2000)

#### 3.9.2. DERIVA OBJETIVO

La relación existente entre Daño y Deriva en edificios ha sido estudiada y cuantificada por el FEMA Mitigation Divition del gobierno estadounidense en su documento Multihazard Loss Estimation Methodology HAZUS. Este documento presenta los estados de daño y sus correspondientes derivas características de diversos sistemas estructurales. (Guevara Huatuco & Torres Arias, 2012, pág. 32)

Cuadro 5. Relación Daño-Deriva según el tipo de la estructura (extraído de "Multihazard Loss Estimation Methodology- HAZUS").

| Descripción                        | Nombre   | Número de<br>Pisos | Designación |
|------------------------------------|----------|--------------------|-------------|
|                                    | Bajos    | 1-3                | C1L         |
| armado (C1)                        | Medianos | 4-7                | C1M         |
|                                    | Altos    | 8+                 | C1H         |
| <b>.</b>                           | Bajos    | 1-3                | C2L         |
| Muros de corte de<br>concreto (C2) | Medianos | 4-7                | C2M         |
|                                    | Altos    | 8+                 | C2H         |
| Pórticos de Concreto               | Bajos    | 1-3                | C3L         |
| Armado rellenos con                | Medianos | 4-7                | C3M         |
| (C3)                               | Altos    | 8+                 | СЗН         |

En cuanto al nivel de diseño estructural, Hazus considera 4 niveles de exigencia: alto, moderado, bajo y pre-código. Los tipos de daño se dividen en leve, moderados, severos y completos.

## Cuadro 6. Relación Daño-Deriva según el tipo de la estructura sugeridos por HAZUS para edificios de concreto.

|            |      | Distorsión Angular de Entrepiso en el Límite |              |              |           |  |  |
|------------|------|----------------------------------------------|--------------|--------------|-----------|--|--|
| Nivol do   |      | de Daño                                      | Estructural, | , δab en edi | ficios de |  |  |
| Disoño     | Тіро |                                              | concreto     | armado       |           |  |  |
| DISEIIO    |      | Daño leve                                    | Daño         | Daño         | Daño      |  |  |
|            |      |                                              | moderado     | severo       | Completo  |  |  |
|            | C1L  | 0.005                                        | 0.01         | 0.03         | 0.08      |  |  |
|            | C1M  | 0.0033                                       | 0.0067       | 0.02         | 0.0533    |  |  |
| Alto       | C1H  | 0.0025                                       | 0.005        | 0.015        | 0.04      |  |  |
|            | C2L  | 0.004                                        | 0.01         | 0.03         | 0.08      |  |  |
|            | C2M  | 0.0027                                       | 0.0067       | 0.02         | 0.0533    |  |  |
|            | C2H  | 0.002                                        | 0.005        | 0.015        | 0.04      |  |  |
|            | C1L  | 0.005                                        | 0.0087       | 0.0233       | 0.06      |  |  |
| Moderado   | C1M  | 0.0033                                       | 0.0058       | 0.0156       | 0.04      |  |  |
| Moderado   | C1H  | 0.0025                                       | 0.0043       | 0.0117       | 0.03      |  |  |
|            | C2L  | 0.004                                        | 0.0084       | 0.0232       | 0.06      |  |  |
|            | C2M  | 0.0027                                       | 0.0056       | 0.0154       | 0.04      |  |  |
|            | C2H  | 0.002                                        | 0.0042       | 0.0116       | 0.03      |  |  |
|            | C1L  | 0.005                                        | 0.008        | 0.02         | 0.05      |  |  |
|            | C1M  | 0.0033                                       | 0.0053       | 0.0133       | 0.0333    |  |  |
|            | C1H  | 0.0025                                       | 0.004        | 0.01         | 0.025     |  |  |
| Baio       | C2L  | 0.004                                        | 0.0076       | 0.0197       | 0.05      |  |  |
| Bajo       | C2M  | 0.0027                                       | 0.0051       | 0.0132       | 0.0333    |  |  |
|            | C2H  | 0.002                                        | 0.0038       | 0.0099       | 0.025     |  |  |
|            | C3L  | 0.003                                        | 0.006        | 0.015        | 0.035     |  |  |
|            | C3M  | 0.002                                        | 0.004        | 0.01         | 0.0233    |  |  |
|            | C3H  | 0.0015                                       | 0.003        | 0.0075       | 0.0175    |  |  |
|            | C1L  | 0.004                                        | 0.0064       | 0.016        | 0.04      |  |  |
| Pre-Código | C1M  | 0.0027                                       | 0.0043       | 0.0107       | 0.0267    |  |  |
|            | C1H  | 0.002                                        | 0.0032       | 0.008        | 0.02      |  |  |

|          |      | Distorsión Angular de Entrepiso en el Límite |          |        |          |  |  |
|----------|------|----------------------------------------------|----------|--------|----------|--|--|
| Nivol do |      | de Daño Estructural, δab en edificios de     |          |        |          |  |  |
| Diseño   | Тіро | concreto armado                              |          |        |          |  |  |
|          |      | Daño leve                                    | Daño     | Daño   | Daño     |  |  |
|          |      | Dano leve                                    | moderado | severo | Completo |  |  |
|          | C2L  | 0.0032                                       | 0.0061   | 0.0158 | 0.04     |  |  |
|          | C2M  | 0.0021                                       | 0.0041   | 0.0105 | 0.0267   |  |  |
|          | C2H  | 0.0016                                       | 0.0031   | 0.0079 | 0.02     |  |  |
|          | C3L  | 0.0024                                       | 0.0048   | 0.012  | 0.028    |  |  |
|          | C3M  | 0.0016                                       | 0.0032   | 0.008  | 0.0187   |  |  |
|          | C3H  | 0.0012                                       | 0.0024   | 0.006  | 0.014    |  |  |

#### 3.9.3. AMORTIGUAMIENTO OBJETIVO

Si la deriva máxima obtenida del análisis del edificio sin disipadores es mayor que la deriva objetivo, entonces se determina el cociente:

 $B = \frac{DerivaMáxima}{DerivaObjetivo}$ 

Ecuación 11

Este es el factor de reducción de respuesta para llegar a la deriva objetivo. Con este factor *B* podemos determinar el amortiguamiento efectivo necesario  $\beta_{eff}$  que desarrollará la estructura para alcanzar la deriva objetivo mediante la fórmula de Newmark:

 $B = \frac{2.31 - 0.41 ln(5)}{2.31 - 0.41 ln(\beta_{eff})} = \frac{1.65}{2.31 - 0.41 ln(\beta_{eff})}$  Ecuación 12

En el siguiente gráfico se muestra las relaciones entre algunos valores del factor de reducción B y su correspondiente  $\beta_{eff}$ :



Imagen 28. Relación Factor B y Amortiguamiento efectivo  $\beta_{eff}$ .

 $\beta_{eff}$ , es el amortiguamiento objetivo que debe desarrollar la estructura con la adición de los disipadores de energía. La participación que tendrán los disipadores en el amortiguamiento ( $\beta_{visc}$ ) puede obtenerse descontando el amortiguamiento inherente de la estructura, 5% para edificios de concreto armado, del valor  $\beta_{eff}$ : (Cano Lagos & Zumaeta Escobedo, 2012)

 $\beta_{visc} = \beta_{eff} - 5\%$  Ecuación 13

#### 3.9.4. REDUCCIÓN DE LA RESPUESTA, COEFICIENTE "B"

Según el ASCE 7-10, la respuesta de la estructura ante una solicitud sísmica puede ser reducida debido al incremento del amortiguamiento proporcionado por los disipadores. Esta reducción de la fuerza cortante basal se expresa mediante:

$$V_{min} = rac{V}{B_{V+I}}$$
 Ecuación 14

Donde V es la fuerza cortante basal obtenida sin la aplicación de disipadores y B es el factor de reducción de respuesta en función del amortiguamiento equivalente cuyo valor mínimo es:

$$V_{min} = 0.75V$$
 Ecuación 15

Si se elige el análisis espectral, el factor B puede interpretarse como una reducción del espectro de seudoaceleraciones, de desplazamientos y de fuerza cortante. La Imagen 29, extraída del FEMA 368 y 369, ilustra este hecho.



Imagen 29. Reducción del espectro por incremento del amortiguamiento viscoso.

#### **3.9.5.** AMORTIGUAMIENTO EQUIVALENTE, FACTOR "β"

ΕI amortiguamiento equivalente es una sumatoria del inherente, amortiguamiento amortiguamiento histerético y amortiguamiento viscoso, expresada en fórmulas expuestas en el ASCE 7-10 Capítulo 18. A cada valor de "
ß" corresponde un factor de reducción "B", es decir, para cada porcentaje de amortiguamiento que presenta la estructura, habrá un factor por el que reducir su respuesta. El Cuadro 7, extraída del ASCE 7-10 Capítulo 18, indica estas relaciones.

| Effective Damping, β     | $B_{\nu+i}, B_{1D}, B_N, B_{1M}, B_{mD}, B_{mM}$ (where |
|--------------------------|---------------------------------------------------------|
| (percentage of critical) | period of the structure $\geq T_D$                      |
| ≤ 2                      | 0.8                                                     |
| 5                        | 1.0                                                     |
| 10                       | 1.2                                                     |
| 20                       | 1.5                                                     |
| 30                       | 1.8                                                     |
| 40                       | 2.1                                                     |
| 50                       | 2.4                                                     |
| 60                       | 2.7                                                     |
| 70                       | 3.0                                                     |
| 80                       | 3.3                                                     |
| 90                       | 3.6                                                     |
| ≥100                     | 4.0                                                     |

Cuadro 7. Coeficiente de amortiguamiento en función del amortiguamiento equivalente (Cuadro extraída del ASCE 7-10, capítulo 18)

#### 3.9.6. DEFINICIÓN DE LAS PROPIEDADES DEL AMORTIGUADOR

#### a) Rigidez del Brazo Metálico "K"

Cuando los amortiguadores están adosados a la estructura usando brazos metálicos en posición diagonal, la rigidez axial de este brazo metálico gobierna la rigidez axial del sistema brazodisipador y puede hallarse mediante la fórmula:

$$K = \frac{EA}{L}$$
 Ecuación 16

Donde:

E: Coeficiente de Elasticidad del material.

A: Área de la sección del brazo metálico.

L: Longitud del brazo metálico.

Los especialistas de MIYAMOTO INTERNATIONAL recomiendan iniciar con el proceso de iteración planteando un valor de 2000

kips/in, el cual será posteriormente afinado. (Cano Lagos & Zumaeta Escobedo, 2012, pág. 52)

#### b) Coeficiente de Amortiguamiento "C"

Asumiendo que todos los disipadores en la estructura tienen las mismas propiedades, la obtención del coeficiente "C" se desarrolla mediante una estimación del factor en las ecuaciones 17 y 18 cuyos términos se expusieron en la Sección 2.4.4.

Para amortiguadores Lineales:

$$\xi_d = \frac{T \sum j C_j \phi_{rj}^2 (\cos \theta_j)^2}{4\pi \sum i m_i (\phi_i)^2}$$
 Ecuación 17

Para amortiguadores No Lineales:

$$\xi_d = \frac{T \sum j \lambda C_j \phi_{rj}^{1+\alpha} (\cos \theta_j)^{1+\alpha}}{2\pi A^{1-\alpha} W^{2-\alpha} \sum i m_i (\phi_i)^2} \qquad \text{Ecuación 18}$$

#### c) Exponente de Velocidad "a"

El exponente de velocidad es inicialmente estimado por el proyectista de acuerdo a la reacción del dispositivo que desee obtener. Siempre será menor que 1 para amortiguadores no lineales y su influencia en el comportamiento del amortiguador se describe en la sección 2.4.4.2.

#### 3.9.7. UBICACIÓN Y DISPOSICIÓN DE LOS AMORTIGUADORES

Se recomienda ubicar los dispositivos en los pórticos extremos y estos deberán ser constantes en toda la altura. La cantidad de dispositivos dispuestos en la dirección "X" e "Y" deberá ser semejante y su ubicación, se recomienda, deberá ser simétrica en planta.

#### 3.10. MODELAMIENTO DEL SISTEMA DE AMORTIGUAMIENTO

El modelo del sistema estructural será del tipo lineal considerando secciones fisuradas en vigas y columnas; mientras que los dispositivos de amortiguación corresponderán a elementos no lineales.

En cuanto a los dispositivos de amortiguación, La Imagen 27 muestra la manera de introducir las propiedades expuestas en el software de cálculo ETABS v16.0.

## 3.11. PROCEDIMIENTO RESPUESTA-SPECTRUM CON SISTEMA DE AMORTIGUAMIENTO:

Cuando se utilice el procedimiento de respuesta de espectro para analizar una estructura con un sistema de amortiguación, se aplicarán los requisitos de esta sección.

#### 3.11.1. MODELADO

Un modelo matemático del sistema resistente a fuerza sísmica y sistema de amortiguación se construye de tal manera que representa la distribución espacial de la masa, la rigidez y la amortiguación a lo largo de la estructura. Las propiedades de rigidez y amortiguación de los dispositivos de amortiguación utilizados en los modelos serán verificadas por pruebas de los dispositivos de amortiguación.

La rigidez elástica de los elementos del sistema de amortiguación y de los medios de amortiguación se puede modelar de forma explícita. La rigidez de los dispositivos de amortiguación deberá ser modelada en función de amortiguación de tipo de dispositivo como sigue:

 a) Los dispositivos de Amortiguación dependientes del Desplazamiento: los dispositivos de amortiguación dependientes del desplazamiento- deberán ser modelados con una rigidez efectiva que representa la fuerza de amortiguación del dispositivo en la respuesta de desplazamiento de interés (por ejemplo, deriva de piso de diseño).

b) Los dispositivos de Amortiguación Dependiente de la Velocidad: Velocidad amortiguamiento en función de los dispositivos que tienen un componente de rigidez (por ejemplo, dispositivos de amortiguación visco elástico) se modelan con una rigidez efectiva correspondiente a la amplitud y la frecuencia de interés.

## 3.11.2. RECOMENDACIONES SOBRE EL USO DEL SISTEMA DE AMORTIGUAMIENTO EN EDIFICACIONES.

El presente acápite busca recomendar el uso de este moderno sistema de protección sísmica por disipadores de fluido viscoelásticos en función de las variables más importantes dentro de un Proyecto de Edificaciones.

#### a) En Función del Tipo de Sistema Estructural

La capacidad de disipar energía de estos dispositivos se incrementa conforme el desplazamiento relativo en su interior aumenta. Estos dispositivos permiten aquellos desplazamientos gracias al fluido que llevan en el interior el cual se activa una vez que inicia el movimiento que es el que somete la estructura a aceleraciones generando así altas velocidades en los amortiguadores.

Este comportamiento nos lleva a la conclusión de que la conveniencia en el uso de estos dispositivos depende exclusivamente de la flexibilidad o rigidez de la estructura. Así un sistema de muros tendría dispositivos destinados a controlar el daño con efectividad únicamente en las primeras etapas de agrietamiento, mientras que un sistema de pórticos

o dual tendría la ventaja de controlar las derivas de entrepiso y el daño estructural generados durante todo el proceso.

#### b) En Función del Nivel de Desempeño Deseado

Para este punto de vista se propone comparar el sistema de amortiguamiento con respecto a otro igualmente moderno, pero con un enfoque diferente, se trata del sistema de aislamiento sísmico.

El capítulo 9 del FEMA 274 nos muestra algunas recomendaciones en el uso de ambos sistemas de acuerdo a los diversos niveles de desempeño deseados. Por ejemplo, para los niveles de desempeño: Operativo, Inmediatamente ocupable y resguardo de la vida, los amortiguadores son especialmente útiles. Para el nivel Cerca al colapso es mejor recurrir a otros sistemas de reforzamiento o a la combinación de ambos.

A continuación, reproducimos una adaptación al castellano del Cuadro de referencia publicada en el FEMA 274.

Cuadro 8. Recomendaciones de la aplicación del Sistema de amortiguamiento y de aislamiento de la base según el Nivel de Desempeño Deseado.

| Desem           | peño         | Aislamiento de | Amortiguamiento |  |
|-----------------|--------------|----------------|-----------------|--|
| Nivel Rango     |              |                |                 |  |
| Operativo       | Control de   | Muy            | Recomendable    |  |
| operative       | daño         | recomendable   | Recomendable    |  |
| Inmediatamente  | Control de   | Recomendable   | Recomendable    |  |
| Ocupable        | daño         |                | 1 Coomentadore  |  |
| Resguardo de la | Seguridad al | Limitado       | Recomendable    |  |
| vida            | límite       | Linitado       | Recomendable    |  |
| Cerca al        | Seguridad al | No             | Limitado        |  |
| Colapso         | límite       | Recomendable   |                 |  |

En muchos países se usan estos dispositivos con fines de reforzamiento de estructuras existentes. Ciertamente esta es una opción atractiva porque se mejora el desempeño de la estructura sin adicionar elementos rigidizantes tales como muros de concreto armado y arriostres metálicos.

Adicionalmente su instalación demanda menores implicancias porque generalmente son adosadas a los pórticos. Aquí reside una gran ventaja en comparación con los sistemas de aislamiento sísmico.

En edificios nuevos, los amortiguadores han sido usados para controlar la excesiva vibración que pudiera ocasionar daño en los elementos no estructurales como equipos y/o artefactos. Inclusive su aplicación nos permite reducir secciones del casco estructural logrando así una reducción en el costo total del proyecto.

#### c) En Función de la Estética o Arquitectura del proyecto

Debido a que estos dispositivos son generalmente integrados dentro del marco de un pórtico, pueden esconderse fácilmente detrás de muros de drywall y así tener un mínimo efecto en la integridad arquitectónica del edificio.

A pesar de esto cabe mencionar que algunos expertos del tema consideran una mejora arquitectónica la exposición de los amortiguadores, inclusive un incremento considerable del valor del proyecto.

#### d) En Función del Mantenimiento o Vida Útil

Los dispositivos de visco-elástico TAYLOR DEVICES no requieren de ningún tipo de mantenimiento inclusive luego de algún evento sísmico. Esta afirmación cuenta con el respaldo

de la industria militar que participó directamente en la investigación, inclusive existen muchas edificaciones a nivel mundial que demuestran la veracidad de esta propiedad.

#### e) En Función del Costo y las condiciones del proyecto

El costo del análisis, diseño, fabricación e instalación de los amortiguadores en una estructura está en función de los siguientes factores:

- Movimiento del suelo y condiciones de suelo.
- Tipo de estructura.
- Desempeño deseado.
- Número de amortiguadores.
- Capacidad de cada disipador en fuerza, desplazamiento y velocidad.
- Refuerzo requerido de elementos estructurales existentes, conexiones o cimentaciones.
- Detalles de construcción e instalación.
- Interrupción en la ocupación del edificio durante la construcción o reforzamiento.

Se recomienda contar con especialistas en todos los campos de manera que pueda controlarse a la mayor medida todos estos factores.

Adicionalmente se debe tener en cuenta que el proyectista encargado debe contar con dos importantes requerimientos en función de minimizar los costos y seleccionar adecuadamente un amortiguador. El primero, un entendimiento claro de las propiedades de este sistema y segundo, un racional proceso de diseño teniendo muy en claro los objetivos de diseño establecidos.

#### f) En Función de la Importancia de la Estructura

En estructuras importantes y esenciales, el costo relativo de implementar un sistema de amortiguamiento es relativamente bajo en comparación con los gastos que se tendrían que asumir en reparación estructural después del evento sísmico y los gastos originados por los daños del contenido del edificio.

La aplicación de sistemas modernos de amortiguamiento es un valor agregado también desde el punto de vista comercial para aquellos edificios destinados a oficinas o departamentos. El costo de venta de una oficina o departamento en un edificio con disipadores de energía siempre será superior al de un edificio convencional.

#### g) En Función del tipo de Dispositivo seleccionado

Si se desea incrementar el amortiguamiento para movimientos sísmicos desde pequeños hasta severos, entonces los disipadores solidos viscoelásticos y disipadores de fluido viscoelásticos son apropiados porque estos disipan energía en todos los niveles de movimiento. Disipadores histeréticos y de fricción requieren de suficiente movimiento relativo para empezar su acción de disipación.

Si se desea aumentar la resistencia y rigidez lateral en un edificio, entonces el uso de dispositivos viscoelásticos o histereticos es recomendable.

#### 3.11.3. DERIVAS

Se evalúan si las derivas máximas de entrepiso obtenidas usando el sistema de amortiguamiento caracterizados por el factor "C" y " $\alpha$ " estimados en la primera iteración han alcanzado la deriva objetivo. Si no fuera el caso, se procede a iterar el valor de las constantes "C" y " $\alpha$ ", la cantidad de dispositivos e inclusive la posición o disposición de los mismos; en este orden de importancia cuantas veces sea necesario. (Cano Lagos & Zumaeta Escobedo, 2012, pág. 54)

#### 3.11.4. BALANCE ENERGÉTICO

Se evalúa el balance energético de la estructura con el sistema de amortiguamiento. Un balance energético gráfico permite apreciar la participación de los amortiguadores y de la estructura en la disipación de la energía total. Además, puede evaluarse la efectividad de la ubicación y disposición de los amortiguadores. (Cano Lagos & Zumaeta Escobedo, 2012, pág. 55)

#### 3.12. TÉCNICAS Y ANALISIS DE DATOS:

Llamamos datos a los elementos básicos de la información primaria que se obtiene directamente de la realidad

#### 3.12.1. TÉCNICAS

La principal técnica fue la observación, ya que la mayor ventaja de esta es su relación directa con la realidad. Una vez identificada la edificación que se utilizara para el análisis sísmico, se determinaron los parámetros sísmicos de la Norma Sismorresistente E030. para generar el espectro de diseño, para analizar con este las derivas de entrepiso permisibles según la Norma.

A partir de los resultados del análisis sísmico espectral y las derivas obtenidas planteamos una deriva objetivo para diseñar los disipadores de fluido viscoelásticos, que ayudaran para la elaboración de conclusiones y recomendaciones de la investigación.

#### 3.12.2. ANALISIS DE DATOS:

Para el analisis de datos que se utilizaron para la presente investigación fueron los siguientes: software Etabs 2016, para el

análisis sísmico espectral de la edificación en estudio, equipo de cómputo (para el proceso de datos), planos de la edificación, información bibliográfica, calculadoras y materiales de apunte

## CAPITULO IV:

## 4. ANÁLISIS DE RESULTADOS DE LAS EDIFICACIÓN CON SISTEMA DE DISIPADORES DE FLUIDO VISCOELASTICOS:

#### 4.1. MODELO BASE:

#### 4.1.1. SISTEMA ESTRUCTURAL DEL EDIFICIO

Se eligió un edificio regular de uso oficinas de 10 niveles y un edificio de uso vivienda de 10 niveles, ambos con sistema dual de concreto armado. Las características físicas del edificio son señaladas en las Cuadros 9 y 10. Las cargas consideradas en la estructura son descritas en el Cuadro 11.

## Cuadro 9. Datos Generales.

| Función   |    | Edificio de Oficinas  |       |    | Edificio de Vivienda  |      |  |  |
|-----------|----|-----------------------|-------|----|-----------------------|------|--|--|
| Ubicación |    | Huancayo, Junín, Perú |       |    | Huancayo, Junín, Perú |      |  |  |
| Área      |    | 518 m2 por nivel      |       |    | 402 m2 por nivel      |      |  |  |
| Niveles   | 10 | Altura 1er Nivel      | 3.4 m | 10 | Altura 1er Nivel      | 3.00 |  |  |
|           |    | Altura piso           | 2.8 m |    | Altura piso Típico    | 2.80 |  |  |

## Cuadro 10. Sistema Estructural.

| VIGAS Y COLUMNAS DE EDIFICIO 01 (10 PISOS) |                |                      |      |      |      |  |  |  |  |  |
|--------------------------------------------|----------------|----------------------|------|------|------|--|--|--|--|--|
| TABLE: Frame Sections                      |                |                      |      |      |      |  |  |  |  |  |
| Name                                       | Material       | Shane                | t3   | t2   | Area |  |  |  |  |  |
| Nume                                       | material       | onape                | m    | m    | m²   |  |  |  |  |  |
| C1                                         | F'C=210 KG/CM2 | SD Section           |      |      | 0.34 |  |  |  |  |  |
| C2                                         | F'C=210 KG/CM2 | SD Section           |      |      | 0.31 |  |  |  |  |  |
| C3                                         | F'C=210 KG/CM2 | SD Section           |      |      | 0.37 |  |  |  |  |  |
| C4                                         | F'C=210 KG/CM2 | SD Section           |      |      | 0.42 |  |  |  |  |  |
| C5                                         | F'C=210 KG/CM2 | Concrete Rectangular | 0.30 | 1.20 | 0.36 |  |  |  |  |  |
| C6                                         | F'C=210 KG/CM2 | Concrete Rectangular | 0.30 | 0.90 | 0.27 |  |  |  |  |  |
| C7                                         | F'C=210 KG/CM2 | SD Section           |      |      | 0.27 |  |  |  |  |  |
| C7-1                                       | F'C=210 KG/CM2 | SD Section           |      |      | 0.27 |  |  |  |  |  |
| V20X25                                     | F'C=210 KG/CM2 | Concrete Rectangular | 0.25 | 0.20 | 0.05 |  |  |  |  |  |
| V25X25                                     | F'C=210 KG/CM2 | Concrete Rectangular | 0.25 | 0.25 | 0.06 |  |  |  |  |  |
| V30X50                                     | F'C=210 KG/CM2 | Concrete Rectangular | 0.50 | 0.30 | 0.15 |  |  |  |  |  |
| V30X60                                     | F'C=210 KG/CM2 | Concrete Rectangular | 0.60 | 0.30 | 0.18 |  |  |  |  |  |
|        | VIGAS Y COLUMNAS DE EDIFICIO 02 (10 PISOS) |                      |      |      |      |  |  |  |  |
|--------|--------------------------------------------|----------------------|------|------|------|--|--|--|--|
| TABLE: | TABLE: Frame Sections                      |                      |      |      |      |  |  |  |  |
| Name   | Material                                   | t3                   | t2   | Area |      |  |  |  |  |
|        |                                            |                      | m    | m    | m²   |  |  |  |  |
| C30x30 | f'c=210kg/cm2                              | Concrete Rectangular | 0.30 | 0.30 | 0.09 |  |  |  |  |
| C30x70 | f'c=210kg/cm2                              | Concrete Rectangular | 0.30 | 0.70 | 0.21 |  |  |  |  |
| C30x80 | f'c=210kg/cm2                              | Concrete Rectangular | 0.30 | 0.80 | 0.24 |  |  |  |  |
| V20x20 | f'c=210kg/cm2                              | Concrete Rectangular | 0.20 | 0.20 | 0.04 |  |  |  |  |
| V30x60 | f'c=210kg/cm2                              | Concrete Rectangular | 0.60 | 0.30 | 0.18 |  |  |  |  |

## Cuadro 11. Cargas Consideradas.

| CARGAS CONSIDERADAS EN EDIFICIO 01 |               |            |  |  |  |  |
|------------------------------------|---------------|------------|--|--|--|--|
|                                    | CARGA MUERTA  | CARGA VIVA |  |  |  |  |
| PISOS TIPICOS                      | 387.024 kg/m2 | 250 kg/m2  |  |  |  |  |
| AZOTEA                             | 177.024 kg/m2 | 100 kg/m2  |  |  |  |  |
| PASADISO                           | 177.024 kg/m2 | 400 kg/m2  |  |  |  |  |
| ESCALERA                           | 699.83 kg/m2  | 400 kg/m2  |  |  |  |  |
| DESCANSO                           | 460.00 kg/m2  | 400 kg/m2  |  |  |  |  |
| TECHO DE TANQUE                    | 100.00 kg/m2  | 100 kg/m2  |  |  |  |  |
| CARGA DE TANQUE                    | 100.00 kg/m2  | 1550 kg/m2 |  |  |  |  |

| CARGAS CONSIDERADAS EN EDIFICIO 02 |               |           |  |  |  |  |
|------------------------------------|---------------|-----------|--|--|--|--|
| CARGA MUERTA CARGA                 |               |           |  |  |  |  |
| PISOS TIPICOS                      | 387.024 kg/m2 | 250 kg/m2 |  |  |  |  |
| AZOTEA                             | 177.024 kg/m2 | 100 kg/m2 |  |  |  |  |
| PASADISO                           | 177.024 kg/m2 | 400 kg/m2 |  |  |  |  |
| ESCALERA                           | 759.60 kg/m2  | 400 kg/m2 |  |  |  |  |
| DESCANSO                           | 460.00 kg/m2  | 400 kg/m2 |  |  |  |  |
| TECHO DE ESCALERA                  | 100.00 kg/m2  | 100 kg/m2 |  |  |  |  |

Esquema isométrico y planta típica.



Imagen 30. Esquema del edificio 1, modelo en el software de cálculo ETABS.



Imagen 31. Esquema del edificio 2, modelo en el software de cálculo ETABS

# 4.1.2. DEFINICIÓN DEL ESPECTRO DE ACELERACIONES PARA EL ANÁLISIS DINÁMICO.

Para las edificaciones, el tipo de análisis estructural que comúnmente se usa es el análisis dinámico espectral o el análisis tiempo historia. Actualmente en nuestro país se viene usando el análisis tiempo historia como un complemento del análisis dinámico espectral, por lo que es necesario al momento de evaluar las edificaciones empleando disipadores de energía.

Uno de los objetivos del análisis estructural es determinar las fuerzas internas en los elementos estructurales con el propósito de diseñarlos, así también permite estimar los desplazamientos laterales en la edificación.

En el RNE, la norma de diseño sismo resistente E.030, específica que para edificaciones de concreto armado el límite permisible de desplazamiento lateral es del 0.7%, esto se conoce como deriva.

#### • Zonificación Sísmicas (Z)

La edificación se encuentra en una zona de media sismicidad, ya que está ubicada en la ciudad de Huancayo que pertenece a la ZONA 3, por lo tanto, le corresponde un factor de zonificación de Z = 0.35g.

#### • Condiciones Geotécnicas (Tp y S)

Debido a que el estudio de suelos en la zona, se puede inferir que es del Tipo 2, por lo tanto: S = 1.15, TP =0.6 y TL = 2.0 seg.

#### • Factor de Amplificación Sísmica (C)

Representa el cociente entre el valor máximo de la aceleración en la estructura y el valor pico de la aceleración en su base.

Con ello, la aceleración máxima en la estructura se puede representar por el producto ZSC.

$$C = 2.5x \left(\frac{T_p}{T}\right); C \le 2.5$$

#### • Categoría de la Edificación (U)

La edificación en estudio está destinada para oficinas, lo cual le corresponde una categoría de edificaciones importantes con un factor de uso de U = 1.

#### • Periodo fundamental de vibración (T)

Se puede estimar para cada dirección con la siguiente expresión:

$$T = \frac{h_n}{C_T}$$

Donde:

 $h_n$ : Altura total del edificio

 $C_T$ : Coeficiente para estimar el periodo predominante del edificio

#### • Sistema Estructural (R)

Para determinar el coeficiente de reducción sísmica se basa en la Norma E 030 – 2016.

De un análisis previo se puede obtener las cortantes para ver la participación de las columnas y muros estructurales en la respuesta a la cortante sísmica.

| 4 |
|---|
| 5 |
|   |

| Rx=    | 7     | Rx=    | 6     |
|--------|-------|--------|-------|
| Ry=    | 6     | Ry=    | 6     |
| Cx/Rx= | 0.289 | Cx/Rx= | 0.297 |
| Cy/Ry= | 0.270 | Cy/Ry= | 0.237 |

**Para el edificio 1** se obtiene que el edificio trabaja con un sistema dual, corresponde el coeficiente de reducción R = 7 en la dirección X y con un R=6 en la dirección Y por tratarse de muros estructurales.

Cuadro 12. Cortante dinámico en la base – edificio 1.

| TABLE: Story Forces |            |          |          |          |  |  |  |  |
|---------------------|------------|----------|----------|----------|--|--|--|--|
| Story               | Load       | Location | VX       | VY       |  |  |  |  |
|                     | Case/Combo |          | tonf     | tonf     |  |  |  |  |
| PISO 1              | EQ-XX Max  | Bottom   | 377.6172 | 72.423   |  |  |  |  |
| PISO 1              | EQ-YY Max  | Bottom   | 84.4936  | 430.9319 |  |  |  |  |
|                     | Vxdinamico | 377.617  | tn       |          |  |  |  |  |
|                     | Vydinamico | 430.932  | tn       |          |  |  |  |  |

Cuadro 13. Cortante dinámico que absorbe los muros estructurales – edificio 1.

| TABLE: Pier Forces                   |       |            |          |          |            |  |  |
|--------------------------------------|-------|------------|----------|----------|------------|--|--|
| Story Pier Load                      |       | Location   | V2       | V3       |            |  |  |
| otory                                | 1 101 | Case/Combo | Location | tonf     | tonf       |  |  |
| PISO 1                               | P1    | EQ-XX Max  | Bottom   | 24.3946  | 256.9182   |  |  |
| PISO 1                               | P1    | EQ-YY Max  | Bottom   | 316.3247 | 56.5471    |  |  |
| Vmurosxx= 256.918 tn 68.0% R= 7 dual |       |            |          |          |            |  |  |
| Vmurosyy= 316.325 tn                 |       |            | 73.4% R= | 6 muro e | structural |  |  |

**Para el edificio 2** se obtiene que el edificio trabaja con sistema estructural en ambas direcciones X y Y, R=6.

| Cuadro 14. Cortante dinámico en la base – edificio 2 | 2. |
|------------------------------------------------------|----|
|------------------------------------------------------|----|

| TABLE: Story Forces |            |          |          |          |  |  |  |  |
|---------------------|------------|----------|----------|----------|--|--|--|--|
| Story               | Load       | Location | VX       | VY       |  |  |  |  |
| otory               | Case/Combo | Location | tonf     | tonf     |  |  |  |  |
| PISO1               | EQ-X Max   | Bottom   | 340.7816 | 31.0622  |  |  |  |  |
| PISO1               | EQ-Y Max   | Bottom   | 31.0666  | 245.5051 |  |  |  |  |

| Vxdinamico | 340.782 | tn |
|------------|---------|----|
| Vydinamico | 245.505 | tn |

| Cuadro 15 | Cortante | dinamico | que | absorbe | los | muros | estructurales - | - edificio 2. |
|-----------|----------|----------|-----|---------|-----|-------|-----------------|---------------|
|-----------|----------|----------|-----|---------|-----|-------|-----------------|---------------|

| TABLE: Pier Forces |       |            |               |          |          |  |  |
|--------------------|-------|------------|---------------|----------|----------|--|--|
| Story              | Pier  | Load       | Load Location |          | V3       |  |  |
| otory              | 1 101 | Case/Combo | Location      | tonf     | tonf     |  |  |
| PISO1              | P1    | EQ-X Max   | Bottom        | 295.9274 | 26.7883  |  |  |
| PISO1              | P1    | EQ-Y Max   | Bottom        | 25.2288  | 194.1284 |  |  |
|                    |       |            | •             |          |          |  |  |

| Vmurosxx= | 295.927 tn | 86.8% | R= | 6 muro estructural |
|-----------|------------|-------|----|--------------------|
| Vmurosyy= | 194.128 tn | 79.1% | R= | 6 muro estructural |

# 4.1.3. ANÁLISIS ESTÁTICO

Para realizar el análisis estático de la estructura se debe calcular el peso de la edificación.

El peso de la edificación 1 de 10 pisos se presenta en el Cuadro 16.

| TABLE: Centers of Mass and Rigidity |            |        |        |  |  |  |
|-------------------------------------|------------|--------|--------|--|--|--|
| Story                               | Dianhragm  | Mass X | Mass Y |  |  |  |
| otory                               | Diapinagin | tonf   | tonf   |  |  |  |
| PISO 1                              | D1         | 495.53 | 495.53 |  |  |  |
| PISO 2                              | D2         | 522.55 | 522.55 |  |  |  |
| PISO 3                              | D3         | 522.55 | 522.55 |  |  |  |
| PISO 4                              | D4         | 522.55 | 522.55 |  |  |  |
| PISO 5                              | D5         | 522.55 | 522.55 |  |  |  |
| PISO 6                              | D6         | 522.55 | 522.55 |  |  |  |
| PISO 7                              | D7         | 522.55 | 522.55 |  |  |  |
| PISO 8                              | D8         | 522.55 | 522.55 |  |  |  |
| PISO 9                              | D9         | 522.55 | 522.55 |  |  |  |
| PISO 10                             | D10        | 372.02 | 372.02 |  |  |  |
| PISO 11                             | D11        | 42.52  | 42.52  |  |  |  |
| TECHO                               | D12        | 23.05  | 23.05  |  |  |  |

Cuadro 16. Peso de la edificación por cada nivel – eficicio 1.

El peso de la edificación se obtiene mediante:

## P= (peso propio + CM) + 0.25 LIVE + 0.25LIVEUP

Así mismo, es necesario el cálculo la fórmula expresada en la norma E.030:

$$Z \times U \times S \frac{C}{R}$$

De los parámetros sísmicos, se obtiene los siguientes valores:

$$ZxUxS\frac{C_x}{R_x} = 0.35x1x1.15x0.289 = 0.116240$$
$$ZxUxS\frac{C_y}{R_y} = 0.35x1x1.15x0.270 = 0.108666$$

|  | Cuadro 17. | Cortarte | estático | en la | base – | edificio | 1. |
|--|------------|----------|----------|-------|--------|----------|----|
|--|------------|----------|----------|-------|--------|----------|----|

| TABLE: Auto Seismic - User Coefficients |      |         |             |           |          |            |        |            |          |          |                |               |
|-----------------------------------------|------|---------|-------------|-----------|----------|------------|--------|------------|----------|----------|----------------|---------------|
| Load                                    | Туре | Directi | Ecce<br>nt. | Ecc.      | Ecc. Top | Top Bottom | Top    | Top Bottom | с        | ĸ        | Weight<br>Used | Base<br>Shear |
| Fallen                                  |      | on      | %           | Overnuuen | Story    | Story      |        |            | tonf     | tonf     |                |               |
| Sismo X                                 | Seis | X+Ecc.  | 5           | No        | TECHO    | Base       | 0.1162 | 1          | 5124.883 | 595.7158 |                |               |
|                                         | mic  | Y       |             |           |          |            | 4      |            |          |          |                |               |
| Sismo Y                                 | Seis | Y+Ecc.  | 5           | No        | TECHO    | Base       | 0.1086 | 1          | 5124.883 | 556.9021 |                |               |
|                                         | mic  | Х       |             |           |          |            | 66     |            |          |          |                |               |

| CORTANTE   | Peso | 5,124.88 | tn |
|------------|------|----------|----|
| ESTATICO   | Vx=  | 595.72   | tn |
| EN LA BASE | Vy=  | 556.90   | tn |

El peso de la edificación 2 de 10 pisos se presenta en el Cuadro 18.

| Cuadro 18. Peso de la | edificación p | oor cada nivel | edificio 2. |
|-----------------------|---------------|----------------|-------------|
|-----------------------|---------------|----------------|-------------|

| TABLE: Centers of Mass and Rigidity |            |        |        |  |  |  |  |
|-------------------------------------|------------|--------|--------|--|--|--|--|
| Story                               | Diaphragm  | Mass X | Mass Y |  |  |  |  |
| Otory                               | Diapinagin | tonf   | tonf   |  |  |  |  |
| PISO1                               | D1         | 409.75 | 409.75 |  |  |  |  |
| PISO2                               | D2         | 367.56 | 367.56 |  |  |  |  |
| PISO3                               | D3         | 367.56 | 367.56 |  |  |  |  |
| PISO4                               | D4         | 367.56 | 367.56 |  |  |  |  |
| PISO5                               | D5         | 367.56 | 367.56 |  |  |  |  |
| PISO6                               | D6         | 367.56 | 367.56 |  |  |  |  |
| PISO7                               | D7         | 367.56 | 367.56 |  |  |  |  |

| TABLE: Centers of Mass and Rigidity |            |        |        |  |  |  |  |  |
|-------------------------------------|------------|--------|--------|--|--|--|--|--|
| Story                               | Dianhragm  | Mass X | Mass Y |  |  |  |  |  |
| Clory                               | Biapinagin | tonf   | tonf   |  |  |  |  |  |
| PISO8                               | D8         | 367.56 | 367.56 |  |  |  |  |  |
| PISO9                               | D9         | 367.56 | 367.56 |  |  |  |  |  |
| AZOTEA                              | D10        | 264.41 | 264.41 |  |  |  |  |  |
| TECH.ESCALERA                       | D11        | 14.52  | 14.52  |  |  |  |  |  |

Con las mismas formulas del anterior obtenemos del edificio 2.

$$ZxUxS\frac{C_x}{R_x} = 0.35x1x1.15x0.297 = 0.119365$$
$$ZxUxS\frac{C_y}{R_y} = 0.35x1x1.15x0.237 = 0.095289$$

| TABLE               | TABLE: Auto Seismic - User Coefficients |                  |                      |                        |               |                     |                  |   |                 |               |
|---------------------|-----------------------------------------|------------------|----------------------|------------------------|---------------|---------------------|------------------|---|-----------------|---------------|
| Load<br>Patter<br>n | Typ<br>e                                | Dire<br>ction    | Ecce<br>ntricit<br>y | Ecc.<br>Overrid<br>den | Top<br>Story  | Botto<br>m<br>Story | с                | ĸ | Weigh<br>t Used | Base<br>Shear |
|                     |                                         |                  | 70                   |                        |               |                     |                  |   | loni            | toni          |
| Sismo<br>X          | Sei<br>smi<br>c                         | X +<br>Ecc.<br>Y | 5                    | No                     | TECH<br>.ESC. | Base                | 0.11<br>936<br>5 | 1 | 3766.0<br>213   | 449.5<br>325  |
| Sismo<br>Y          | Sei<br>smi<br>c                         | Y +<br>Ecc.<br>X | 5                    | No                     | TECH<br>.ESC. | Base                | 0.09<br>528<br>9 | 1 | 3766.0<br>213   | 358.8<br>598  |

| CORTANTE   | Peso | 3,766.02 | tn |
|------------|------|----------|----|
| ESTATICO   | Vx=  | 449.53   | tn |
| EN LA BASE | Vy=  | 358.86   | tn |

#### 4.1.4. ANÁLISIS DINÁMICO ESPECTRAL

Hasta el momento se logró modelar geométricamente las estructuras, ahora realizaremos el análisis estructural de las edificaciones; para ello, seguiremos el siguiente procedimiento:

a) Determinamos los parámetros sísmicos:

**Factor de Zona (Z)**, la ciudad de Huancayo se encuentra ubicada en la zona sísmica 3, por lo tanto, según la Tabla N.º 1 de la Norma E030-2016 le corresponde un valor de Z=0.35.

**Parámetros del Suelo (S) y (Tp),** según la descripción de las edificaciones, las estructuras estarán ubicada sobre un suelo tipo S2 (Suelos Intermedios), al mismo que le corresponde un factor de amplificación del suelo S=1.15 y un período Tp=0.6s como se indica en la Tabla N.º 3 y 4 de la Norma E030-2016.

**Categoría de la Edificación (U),** según la Tabla N.º 5 de la Norma E030-2016, la edificación 1 (oficinas) y la edificación 2 (vivienda) son edificaciones comunes, les corresponde un factor U=1.

**Factor de Reducción (R),** al realizar el análisis dinámico espectral de la edificación y calcular las derivas de entrepiso considerando el coeficiente de reducción sísmica R=1, esta reducción del valor de R se realiza para que las edificaciones entren al rango inelástico ante un sismo severo. Es importante tener en cuenta que, para la obtención de distorsiones, los desplazamientos laterales calculados en el análisis ya no se multiplican por 0.75\*R sino simplemente por 1. (Fuente: ASCE 7-10 Capítulo 16, también recomendado por la CDV ingeniería antisísmica).

| PARAMETROS | EDIFICACION 1     | EDIFICACION 2     |  |  |
|------------|-------------------|-------------------|--|--|
|            | Direcciones X y Y | Direcciones X y Y |  |  |
| Z          | 0.35              | 0.35              |  |  |
| U          | 1                 | 1                 |  |  |
| S          | 1.15              | 1.15              |  |  |
| TP         | 0.6               | 0.6               |  |  |
| T∟         | 2                 | 2                 |  |  |
| Rx = Ry    | 1                 | 1                 |  |  |

Cuadro 20. Parámetros Sísmicos.

$$T < T_P \quad \rightarrow \quad C = 2.5$$

$$T_P < T < T_L \quad \rightarrow \quad C = 2.5 \times \left(\frac{T_P}{T}\right)$$

$$T > T_L \quad \rightarrow \quad C = 2.5 \times \left(\frac{T_P \times T_L}{T^2}\right)$$

Donde:

C: Factor de amplificación sísmica.

*T*: Periodo fundamental de vibración.

El factor de amplificación será:

Cuadro 21. Datos del Espectro Respuesta - Edificación 1 y 2.

| T (s) | С    |
|-------|------|
| 0.0   | 2.50 |
| 0.1   | 2.50 |
| 0.2   | 2.50 |
| 0.3   | 2.50 |
| 0.4   | 2.50 |
| 0.5   | 2.50 |
| 0.6   | 2.50 |
| 0.7   | 2.14 |

| T (s) | С    |
|-------|------|
| 4.0   | 0.19 |
| 4.1   | 0.18 |
| 4.2   | 0.17 |
| 4.3   | 0.16 |
| 4.4   | 0.15 |
| 4.5   | 0.15 |
| 4.6   | 0.14 |
| 4.7   | 0.14 |

| T (s) | С    |  |
|-------|------|--|
| 0.8   | 1.88 |  |
| 0.9   | 1.67 |  |
| 1.0   | 1.50 |  |
| 1.1   | 1.36 |  |
| 1.2   | 1.25 |  |
| 1.3   | 1.15 |  |
| 1.4   | 1.07 |  |
| 1.5   | 1.00 |  |
| 1.6   | 0.94 |  |
| 1.7   | 0.88 |  |
| 1.8   | 0.83 |  |
| 1.9   | 0.79 |  |
| 2.0   | 0.75 |  |
| 2.1   | 0.68 |  |
| 2.2   | 0.62 |  |
| 2.3   | 0.57 |  |
| 2.4   | 0.52 |  |
| 2.5   | 0.48 |  |
| 2.6   | 0.44 |  |
| 2.7   | 0.41 |  |
| 2.8   | 0.38 |  |
| 2.9   | 0.36 |  |
| 3.0   | 0.33 |  |
| 3.1   | 0.31 |  |
| 3.2   | 0.29 |  |
| 3.3   | 0.28 |  |
| 3.4   | 0.26 |  |
| 3.5   | 0.24 |  |
| 3.6   | 0.23 |  |
| 3.7   | 0.22 |  |
| 3.8   | 0.21 |  |

| T (s) | С    |
|-------|------|
| 4.8   | 0.13 |
| 4.9   | 0.12 |
| 5.0   | 0.12 |
| 5.1   | 0.12 |
| 5.2   | 0.11 |
| 5.3   | 0.11 |
| 5.4   | 0.10 |
| 5.5   | 0.10 |
| 5.6   | 0.10 |
| 5.7   | 0.09 |
| 5.8   | 0.09 |
| 5.9   | 0.09 |
| 6.0   | 0.08 |
| 6.1   | 0.08 |
| 6.2   | 0.08 |
| 6.3   | 0.08 |
| 6.4   | 0.07 |
| 6.5   | 0.07 |
| 6.6   | 0.07 |
| 6.7   | 0.07 |
| 6.8   | 0.06 |
| 6.9   | 0.06 |
| 7.0   | 0.06 |
| 7.1   | 0.06 |
| 7.2   | 0.06 |
| 7.3   | 0.06 |
| 7.4   | 0.05 |
| 7.5   | 0.05 |
| 7.6   | 0.05 |
| 7.7   | 0.05 |
| 7.8   | 0.05 |
|       |      |

| T (s) | С    | T (s) | С    |
|-------|------|-------|------|
| 3.9   | 0.20 | 7.9   | 0.05 |
| 4.0   | 0.19 | 8.0   | 0.05 |





Definida el espectro de diseño, se analiza la estructura convencional sin disipadores sísmicos para obtener el cálculo del periodo fundamental.

| TABLE: Modal Participating Mass Ratios |      |        |       |       |       |         |        |        |
|----------------------------------------|------|--------|-------|-------|-------|---------|--------|--------|
| Case Mode                              | Mode | Period | ux    | UY    | RZ    | Sum RX  | Sum RY | Sum RZ |
|                                        |      | sec    | •     | •     |       | ••••••• |        | •••••  |
| Modal                                  | 1    | 0.926  | 0.005 | 0.725 | 0.018 | 0.262   | 0.002  | 0.018  |
| Modal                                  | 2    | 0.888  | 0.219 | 0.008 | 0.572 | 0.262   | 0.060  | 0.590  |
| Modal                                  | 3    | 0.742  | 0.541 | 0.019 | 0.209 | 0.266   | 0.252  | 0.799  |
| Modal                                  | 4    | 0.273  | 0.028 | 0.011 | 0.069 | 0.316   | 0.369  | 0.867  |
| Modal                                  | 5    | 0.234  | 0.004 | 0.132 | 0.009 | 0.730   | 0.386  | 0.876  |
| Modal                                  | 6    | 0.217  | 0.098 | 0.000 | 0.037 | 0.730   | 0.723  | 0.913  |
| Modal                                  | 7    | 0.145  | 0.011 | 0.004 | 0.027 | 0.738   | 0.745  | 0.941  |

Cuadro 22. Revisión de los modos de vibración del edificio 1.

| TABLE: Modal Participating Mass Ratios |      |        |       |       |       |        |        |        |
|----------------------------------------|------|--------|-------|-------|-------|--------|--------|--------|
| Case                                   | Mode | Period | ux    | UY    | RZ    | Sum RX | Sum RY | Sum RZ |
|                                        |      | sec    | •     | •     |       |        |        |        |
| Modal                                  | 8    | 0.112  | 0.021 | 0.029 | 0.000 | 0.796  | 0.790  | 0.941  |
| Modal                                  | 9    | 0.108  | 0.016 | 0.021 | 0.015 | 0.834  | 0.824  | 0.956  |
| Modal                                  | 10   | 0.091  | 0.006 | 0.002 | 0.014 | 0.842  | 0.843  | 0.970  |
| Modal                                  | 11   | 0.071  | 0.015 | 0.007 | 0.001 | 0.864  | 0.891  | 0.971  |
| Modal                                  | 12   | 0.067  | 0.003 | 0.016 | 0.006 | 0.917  | 0.899  | 0.977  |
| Modal                                  | 13   | 0.064  | 0.004 | 0.002 | 0.007 | 0.922  | 0.910  | 0.984  |
| Modal                                  | 14   | 0.050  | 0.009 | 0.003 | 0.000 | 0.930  | 0.937  | 0.984  |
| Modal                                  | 15   | 0.047  | 0.000 | 0.001 | 0.007 | 0.931  | 0.938  | 0.991  |
| Modal                                  | 16   | 0.047  | 0.003 | 0.009 | 0.000 | 0.955  | 0.946  | 0.992  |
| Modal                                  | 17   | 0.039  | 0.006 | 0.001 | 0.000 | 0.960  | 0.964  | 0.992  |
| Modal                                  | 18   | 0.037  | 0.000 | 0.000 | 0.003 | 0.960  | 0.966  | 0.995  |
| Modal                                  | 19   | 0.036  | 0.001 | 0.005 | 0.001 | 0.979  | 0.968  | 0.996  |
| Modal                                  | 20   | 0.031  | 0.004 | 0.000 | 0.000 | 0.980  | 0.981  | 0.996  |
| Modal                                  | 21   | 0.030  | 0.000 | 0.000 | 0.002 | 0.981  | 0.981  | 0.998  |
| Modal                                  | 22   | 0.030  | 0.000 | 0.003 | 0.001 | 0.989  | 0.981  | 0.998  |
| Modal                                  | 23   | 0.029  | 0.000 | 0.000 | 0.000 | 0.989  | 0.982  | 0.998  |
| Modal                                  | 24   | 0.029  | 0.000 | 0.000 | 0.000 | 0.989  | 0.982  | 0.998  |
| Modal                                  | 25   | 0.029  | 0.000 | 0.000 | 0.000 | 0.989  | 0.982  | 0.998  |
| Modal                                  | 26   | 0.029  | 0.000 | 0.000 | 0.000 | 0.989  | 0.982  | 0.998  |
| Modal                                  | 27   | 0.029  | 0.000 | 0.000 | 0.000 | 0.989  | 0.982  | 0.998  |
| Modal                                  | 28   | 0.029  | 0.000 | 0.000 | 0.000 | 0.989  | 0.982  | 0.998  |
| Modal                                  | 29   | 0.029  | 0.000 | 0.000 | 0.000 | 0.989  | 0.982  | 0.998  |
| Modal                                  | 30   | 0.029  | 0.000 | 0.000 | 0.000 | 0.989  | 0.982  | 0.998  |
| Modal                                  | 31   | 0.029  | 0.000 | 0.000 | 0.000 | 0.989  | 0.982  | 0.998  |
| Modal                                  | 32   | 0.029  | 0.000 | 0.000 | 0.000 | 0.989  | 0.983  | 0.998  |
| Modal                                  | 33   | 0.026  | 0.002 | 0.000 | 0.000 | 0.990  | 0.989  | 0.998  |
| Modal                                  | 34   | 0.026  | 0.000 | 0.000 | 0.001 | 0.991  | 0.989  | 0.999  |
| Modal                                  | 35   | 0.026  | 0.001 | 0.001 | 0.001 | 0.996  | 0.991  | 0.999  |
| Modal                                  | 36   | 0.024  | 0.000 | 0.000 | 0.000 | 0.996  | 0.991  | 1.000  |

Periodos Fundamentales:

• Modo fundamental en la dirección X edificio 1: Tx=0.742



Imagen 33. Modo fundamental edificio 1 en la dirección X

• Modo fundamental en la dirección Y edificio 1: Ty=0.926



Imagen 34. Modo fundamental edificio 1 en la dirección Y

| TABLE: Modal Participating Mass Ratios |      |        |        |        |        |         |        |        |
|----------------------------------------|------|--------|--------|--------|--------|---------|--------|--------|
| Caso                                   | Mode | Period |        |        | R7     | Sum BX  | Sum BV | Sum B7 |
| Case                                   | WOUG | sec    |        | 01     |        | Sum IXX | Sumrer | Sum Kz |
| Modal                                  | 1    | 1.0560 | 0.0040 | 0.5941 | 0.1776 | 0.1967  | 0.0008 | 0.1776 |
| Modal                                  | 2    | 0.8430 | 0.7234 | 0.0038 | 0.0000 | 0.1989  | 0.2855 | 0.1776 |
| Modal                                  | 3    | 0.7080 | 0.0005 | 0.1525 | 0.5931 | 0.2630  | 0.2863 | 0.7707 |
| Modal                                  | 4    | 0.3280 | 0.0009 | 0.0923 | 0.0250 | 0.5885  | 0.2931 | 0.7956 |
| Modal                                  | 5    | 0.2330 | 0.1350 | 0.0030 | 0.0001 | 0.5974  | 0.6693 | 0.7957 |
| Modal                                  | 6    | 0.2040 | 0.0021 | 0.0296 | 0.0932 | 0.6885  | 0.6739 | 0.8889 |
| Modal                                  | 7    | 0.1770 | 0.0004 | 0.0349 | 0.0064 | 0.7600  | 0.6744 | 0.8953 |
| Modal                                  | 8    | 0.1190 | 0.0010 | 0.0112 | 0.0080 | 0.7964  | 0.6772 | 0.9033 |
| Modal                                  | 9    | 0.1090 | 0.0529 | 0.0048 | 0.0002 | 0.8066  | 0.7804 | 0.9035 |
| Modal                                  | 10   | 0.0990 | 0.0018 | 0.0091 | 0.0314 | 0.8225  | 0.7839 | 0.9349 |
| Modal                                  | 11   | 0.0980 | 0.0021 | 0.0124 | 0.0046 | 0.8513  | 0.7884 | 0.9396 |
| Modal                                  | 12   | 0.0850 | 0.0003 | 0.0064 | 0.0038 | 0.8685  | 0.7890 | 0.9433 |
| Modal                                  | 13   | 0.0690 | 0.0001 | 0.0048 | 0.0026 | 0.8822  | 0.7892 | 0.9460 |
| Modal                                  | 14   | 0.0640 | 0.0277 | 0.0023 | 0.0004 | 0.8888  | 0.8650 | 0.9464 |
| Modal                                  | 15   | 0.0630 | 0.0006 | 0.0002 | 0.0003 | 0.8894  | 0.8666 | 0.9467 |
| Modal                                  | 16   | 0.0630 | 0.0000 | 0.0001 | 0.0000 | 0.8896  | 0.8666 | 0.9467 |
| Modal                                  | 17   | 0.0630 | 0.0000 | 0.0000 | 0.0000 | 0.8896  | 0.8666 | 0.9467 |
| Modal                                  | 18   | 0.0630 | 0.0000 | 0.0000 | 0.0000 | 0.8896  | 0.8667 | 0.9468 |
| Modal                                  | 19   | 0.0630 | 0.0000 | 0.0000 | 0.0000 | 0.8897  | 0.8667 | 0.9468 |
| Modal                                  | 20   | 0.0630 | 0.0000 | 0.0000 | 0.0000 | 0.8897  | 0.8667 | 0.9468 |
| Modal                                  | 21   | 0.0630 | 0.0000 | 0.0000 | 0.0000 | 0.8897  | 0.8667 | 0.9468 |
| Modal                                  | 22   | 0.0630 | 0.0002 | 0.0002 | 0.0001 | 0.8903  | 0.8673 | 0.9469 |
| Modal                                  | 23   | 0.0620 | 0.0000 | 0.0003 | 0.0001 | 0.8912  | 0.8673 | 0.9470 |
| Modal                                  | 24   | 0.0620 | 0.0000 | 0.0000 | 0.0000 | 0.8912  | 0.8673 | 0.9470 |
| Modal                                  | 25   | 0.0620 | 0.0002 | 0.0002 | 0.0006 | 0.8916  | 0.8678 | 0.9476 |
| Modal                                  | 26   | 0.0610 | 0.0000 | 0.0000 | 0.0000 | 0.8916  | 0.8678 | 0.9476 |
| Modal                                  | 27   | 0.0590 | 0.0030 | 0.0120 | 0.0180 | 0.9253  | 0.8758 | 0.9655 |

## Cuadro 23. Revisión de los modos de vibración del edificio 2.

| TABLE: Modal Participating Mass Ratios |      |               |        |        |        |         |        |        |
|----------------------------------------|------|---------------|--------|--------|--------|---------|--------|--------|
| Case                                   | Mode | Period<br>sec | ux     |        | R7     | Sum RX  | Sum BV | Sum RZ |
|                                        | mode |               | UN     | 0.     |        | Camitor | Callin |        |
| Modal                                  | 28   | 0.0570        | 0.0002 | 0.0000 | 0.0000 | 0.9253  | 0.8762 | 0.9655 |
| Modal                                  | 29   | 0.0550        | 0.0000 | 0.0028 | 0.0034 | 0.9342  | 0.8764 | 0.9689 |
| Modal                                  | 30   | 0.0520        | 0.0000 | 0.0000 | 0.0000 | 0.9342  | 0.8764 | 0.9689 |
| Modal                                  | 31   | 0.0450        | 0.0019 | 0.0021 | 0.0001 | 0.9403  | 0.8815 | 0.9691 |
| Modal                                  | 32   | 0.0450        | 0.0000 | 0.0026 | 0.0009 | 0.9477  | 0.8815 | 0.9700 |
| Modal                                  | 33   | 0.043         | 0.0157 | 0.0004 | 0.0006 | 0.9487  | 0.9234 | 0.9706 |

Periodos Fundamentales:



• Modo fundamental en la dirección X edificio 2: Tx=0.843

Imagen 35. Modo fundamental edificio 2 en la dirección X

• Modo fundamental en la dirección Y edificio 2: Ty=1.056



Imagen 36. Modo fundamental edificio 2 en la dirección Y

# 4.1.5. ESCALAMIENTO DE ACELEROGRAMAS AL ESPECTRO DE DISEÑO

La amenaza sísmica será representada por registros tiempo historia de sismos de gran importancia ocurridos en nuestro país, que serán escaladas a nuestro espectro de diseño (Sismomatch 2016).

Se realizó el análisis tiempo historia con los acelerogramas de los sismos peruanos:

| SISMOS                | UBICACIÓN DE LA ESTACION                       |
|-----------------------|------------------------------------------------|
| 17 de octubre de 1966 | Parque de Reserva (Lima)                       |
| 31 de mayo de 1970    | Parque de Reserva (Lima)                       |
| 03 de octubre de 1974 | Parque de Reserva (Lima)                       |
| 15 de agosto de 2007  | Universidad Nacional de San Luis Gonzaga (Ica) |

#### Cuadro 24. Ubicación de las Estaciones.

Para el análisis se usarán como mínimo tres conjuntos de registros de aceleraciones del terreno, cada uno de los cuales incluirá dos componentes en direcciones ortogonales, Para cada par de componentes horizontales de movimiento del suelo, se construirá un espectro de pseudo aceleraciones tomando la raíz cuadrada de la suma de los cuadrados (SRSS) de los valores espectrales calculados para cada componente por separado, con 5 % de amortiguamiento. Ambas componentes se escalarán por un mismo factor, de modo que en el rango de períodos entre 0,2 T y 1,5 T (siendo T el período fundamental).

La Norma Peruana señala que estos registros deben ser escalados a un espectro de diseño, este espectro de pseudo-aceleraciones debe ser calculado fijando el valor del coeficiente de reducción sísmica R=1.

• Para el edificio 1:

T = 0.926s0.2T = 0.1852s1.5T = 1.389s



Imagen 37. Asignación Periodo fundamental (T) máximo y mínimo - edificación

1.

• Para el edificio 2:

T = 1.056s0.2T = 0.2112s

1.5T = 1.584s



Imagen 38. Asignación Periodo fundamental (T) máximo y mínimo - edificación

| 1. INFORMATION ABOUT THE | SEISMIC STATION                               |
|--------------------------|-----------------------------------------------|
| STATION NAME             | : Parque de la Reserva                        |
| STATION CODE             | : PRQ                                         |
| STATION LOCATION         | : Parque de la Reserva, Cercado de Lima, Lima |
| LATITUDE                 | : -12.07                                      |
| LONGITUDE                | : -77.04                                      |
| ALTITUDE (m)             | : 130                                         |
| ACCELEROMETER MODEL      | : Acelerógrafo Analógico                      |
| SAMPLING FREQUENCY (Hz)  | : 50                                          |
| 2. INFORMATION ABOUT THE | EARTHQUAKE                                    |
| DATE                     | : October 17, 1966                            |
| ORIGIN TIME (Local)      | : 16:41:00                                    |
| LATITUDE                 | : -10.70                                      |
| LONGITUDE                | : -78.70                                      |
| DEPTH (km)               | : 24.00                                       |
| MAGNITUDE                | : 8.1 Mw                                      |
| INFORMATION SOURCE       | : IGP                                         |
| 3. INFORMATION ABOUT THE | RECORD                                        |
| RECORD TIME (Local)      | : 16:41:00                                    |
| NUMBER OF SAMPLES        | : 3283                                        |
| MAXIMUM ACCELERATION     | : -180.56 -268.24 94.29                       |
| DATA UNITS               | : cm/s2                                       |
| 4. COMMENTS              |                                               |
| BASELINE CORRECTED       |                                               |
| 5. ACCELERATION DATA     |                                               |
| Т                        | EW NS UD                                      |
| 0.0000                   | -11.3771 -13.1543 4.1991                      |
| 0.0200                   | -2.6551 -6.6753 -4.9569                       |
| 0.0400                   | -3.0481 -5.1973 -4.5209                       |
| 0.0600                   | -4.9621 2.5887 0.9491                         |
| 0.0800                   | 0.2979 4.0947 9.0771                          |

Imagen 39. Modelos de registros sísmicos.

Para nuestro espectro de pseudo aceleraciones se tomará la siguiente formula teniendo encuentra R=1:

$$Sa = \frac{Z \times U \times C \times S}{R} \times g$$
$$Sa = \frac{0.35 \times 1 \times 2.5 \times 1.15}{1} \times 1 = 1.0063$$

Cuadro 25. Datos del Espectro de Pseudo aceleraciones para escalamiento -

|       |      | Edificad | ción 1 y 2.  |
|-------|------|----------|--------------|
| T (s) | С    | Sa       | <b>T (</b> 9 |
| 0.0   | 2.50 | 1.0063   | 4.(          |
| 0.1   | 2.50 | 1.0063   | 4.1          |
| 0.2   | 2.50 | 1.0063   | 4.2          |
| 0.3   | 2.50 | 1.0063   | 4.3          |
| 0.4   | 2.50 | 1.0063   | 4.4          |

| T (s) | С    | Sa     |
|-------|------|--------|
| 4.0   | 0.19 | 0.0755 |
| 4.1   | 0.18 | 0.0718 |
| 4.2   | 0.17 | 0.0685 |
| 4.3   | 0.16 | 0.0653 |
| 4.4   | 0.15 | 0.0624 |

| T (s) | С    | Sa     | T (s) | С    | Sa     |
|-------|------|--------|-------|------|--------|
| 0.5   | 2.50 | 1.0063 | 4.5   | 0.15 | 0.0596 |
| 0.6   | 2.50 | 1.0063 | 4.6   | 0.14 | 0.0571 |
| 0.7   | 2.14 | 0.8625 | 4.7   | 0.14 | 0.0547 |
| 0.8   | 1.88 | 0.7547 | 4.8   | 0.13 | 0.0524 |
| 0.9   | 1.67 | 0.6708 | 4.9   | 0.12 | 0.0503 |
| 1.0   | 1.50 | 0.6038 | 5.0   | 0.12 | 0.0483 |
| 1.1   | 1.36 | 0.5489 | 5.1   | 0.12 | 0.0464 |
| 1.2   | 1.25 | 0.5031 | 5.2   | 0.11 | 0.0447 |
| 1.3   | 1.15 | 0.4644 | 5.3   | 0.11 | 0.0430 |
| 1.4   | 1.07 | 0.4313 | 5.4   | 0.10 | 0.0414 |
| 1.5   | 1.00 | 0.4025 | 5.5   | 0.10 | 0.0399 |
| 1.6   | 0.94 | 0.3773 | 5.6   | 0.10 | 0.0385 |
| 1.7   | 0.88 | 0.3551 | 5.7   | 0.09 | 0.0372 |
| 1.8   | 0.83 | 0.3354 | 5.8   | 0.09 | 0.0359 |
| 1.9   | 0.79 | 0.3178 | 5.9   | 0.09 | 0.0347 |
| 2.0   | 0.75 | 0.3019 | 6.0   | 0.08 | 0.0335 |
| 2.1   | 0.68 | 0.2738 | 6.1   | 0.08 | 0.0325 |
| 2.2   | 0.62 | 0.2495 | 6.2   | 0.08 | 0.0314 |
| 2.3   | 0.57 | 0.2283 | 6.3   | 0.08 | 0.0304 |
| 2.4   | 0.52 | 0.2096 | 6.4   | 0.07 | 0.0295 |
| 2.5   | 0.48 | 0.1932 | 6.5   | 0.07 | 0.0286 |
| 2.6   | 0.44 | 0.1786 | 6.6   | 0.07 | 0.0277 |
| 2.7   | 0.41 | 0.1656 | 6.7   | 0.07 | 0.0269 |
| 2.8   | 0.38 | 0.1540 | 6.8   | 0.06 | 0.0261 |
| 2.9   | 0.36 | 0.1436 | 6.9   | 0.06 | 0.0254 |
| 3.0   | 0.33 | 0.1342 | 7.0   | 0.06 | 0.0246 |
| 3.1   | 0.31 | 0.1257 | 7.1   | 0.06 | 0.0240 |
| 3.2   | 0.29 | 0.1179 | 7.2   | 0.06 | 0.0233 |
| 3.3   | 0.28 | 0.1109 | 7.3   | 0.06 | 0.0227 |
| 3.4   | 0.26 | 0.1045 | 7.4   | 0.05 | 0.0221 |
| 3.5   | 0.24 | 0.0986 | 7.5   | 0.05 | 0.0215 |

| T (s) | С    | Sa     |  |
|-------|------|--------|--|
| 3.6   | 0.23 | 0.0932 |  |
| 3.7   | 0.22 | 0.0882 |  |
| 3.8   | 0.21 | 0.0836 |  |
| 3.9   | 0.20 | 0.0794 |  |
| 4.0   | 0.19 | 0.0755 |  |

| T (s) | С    | Sa     |
|-------|------|--------|
| 7.6   | 0.05 | 0.0209 |
| 7.7   | 0.05 | 0.0204 |
| 7.8   | 0.05 | 0.0198 |
| 7.9   | 0.05 | 0.0193 |
| 8.0   | 0.05 | 0.0189 |



Imagen 40. Espectro de Pseudo aceleraciones para escalamiento - norma E030-2016

Las imagenes 41, 42, 43 y 44 muestran los unos pares de registros escalados utilizados en el modelamiento (demás registros en anexos):



Imagen 41. Comparación de acelerograma original vs escalado. Sismo 1966 EW– edificio 1.



Imagen 42. Comparación de registros sísmico original vs escalado. Sismo 1966 EW– edificio 1.



Imagen 43. Comparación de acelerograma original vs escalado. Sismo 1966 EW– edificio 2.



Imagen 44. Comparación de registros sísmico original vs escalado. Sismo 1966 EW– edificio 2.

#### 4.1.6. RESPUESTA DEL EDIFICIO SIN DISIPADORES:

A partir del modelo tridimensional y el espectro de aceleraciones incorporado, se obtuvieron los siguientes resultados para la edificación sin disipadores sísmicos.

#### 4.1.6.1. MODELAMIENTO DINAMICO CONVENCIONAL.

*Los desplazamientos máximos* obtenidos en la edificación 1 se muestran en el Cuadro 26 y 27, mientras que para el edificio 2 se detalla en el Cuadro 28 y 29.

*Cuadro 26. Desplazamiento máximo del edificio 1 por nivel modelamiento dinamico convencional, Dirección x-x:* 

| TABLE: Story Max/Avg Displacements |            |           |         |  |  |
|------------------------------------|------------|-----------|---------|--|--|
| Story                              | Load       | Direction | Maximum |  |  |
|                                    | Case/Combo |           | mm      |  |  |
| TECHO                              | EQ-XX Max  | Х         | 23.8206 |  |  |
| PISO 11                            | EQ-XX Max  | Х         | 22.6637 |  |  |
| PISO 10                            | EQ-XX Max  | Х         | 25.9195 |  |  |
| PISO 9                             | EQ-XX Max  | Х         | 24.1518 |  |  |
| PISO 8                             | EQ-XX Max  | Х         | 22.0504 |  |  |
| PISO 7                             | EQ-XX Max  | Х         | 19.604  |  |  |
| PISO 6                             | EQ-XX Max  | Х         | 16.8404 |  |  |
| PISO 5                             | EQ-XX Max  | Х         | 13.8275 |  |  |
| PISO 4                             | EQ-XX Max  | Х         | 10.6643 |  |  |
| PISO 3                             | EQ-XX Max  | Х         | 7.4824  |  |  |
| PISO 2                             | EQ-XX Max  | Х         | 4.4559  |  |  |
| PISO 1                             | EQ-XX Max  | Х         | 1.8345  |  |  |



Imagen 45. Desplazamiento máximo del edificio 1 en dirección x = 25.92 mm. Estructura sin disipadores

| Cuadro 27 | . Desplazamiento | máximo de   | l edificio | 1 por  | nivel r | nodelan | niento |
|-----------|------------------|-------------|------------|--------|---------|---------|--------|
|           | dinamico d       | convenciona | al, Direcc | ión y- | y:      |         |        |

| TABLE: Story Max/Avg Displacements |                               |           |         |  |  |
|------------------------------------|-------------------------------|-----------|---------|--|--|
| Story                              | ory Load Case/Combo Direction |           |         |  |  |
|                                    |                               | Direction | mm      |  |  |
| TECHO                              | EQ-YY Max                     | Y         | 34.7685 |  |  |
| PISO 11                            | EQ-YY Max                     | Y         | 34.0422 |  |  |
| PISO 10                            | EQ-YY Max                     | Y         | 33.8406 |  |  |
| PISO 9                             | EQ-YY Max                     | Y         | 31.4442 |  |  |
| PISO 8                             | EQ-YY Max                     | Y         | 28.4387 |  |  |
| PISO 7                             | EQ-YY Max                     | Y         | 24.8772 |  |  |

| TABLE: Story Max/Avg Displacements |                           |   |         |  |  |
|------------------------------------|---------------------------|---|---------|--|--|
| Story                              | Load Case/Combo Direction |   | Maximum |  |  |
|                                    |                           |   | mm      |  |  |
| PISO 6                             | EQ-YY Max                 | Y | 20.8758 |  |  |
| PISO 5                             | EQ-YY Max                 | Y | 16.5969 |  |  |
| PISO 4                             | EQ-YY Max                 | Y | 12.2502 |  |  |
| PISO 3                             | EQ-YY Max                 | Y | 8.093   |  |  |
| PISO 2                             | EQ-YY Max                 | Y | 4.7258  |  |  |
| PISO 1                             | EQ-YY Max                 | Y | 1.8927  |  |  |



Imagen 46. Desplazamiento máximo del edificio 1 en dirección y = 34.77mm. Estructura sin disipadores.

De la misma manera se obtiene los desplazamientos máximos del edifico 2, tanto en dirección X como en dirección Y.

| TABLE: Story Max/Avg Displacements |            |           |         |  |  |
|------------------------------------|------------|-----------|---------|--|--|
| Story                              | Load       | Direction | Maximum |  |  |
| otory                              | Case/Combo | Diroction | mm      |  |  |
| TECH.ESCALERA                      | EQ-X Max   | Х         | 32.262  |  |  |
| AZOTEA                             | EQ-X Max   | Х         | 30.085  |  |  |
| PISO9                              | EQ-X Max   | Х         | 27.465  |  |  |
| PISO8                              | EQ-X Max   | Х         | 24.581  |  |  |
| PISO7                              | EQ-X Max   | Х         | 21.62   |  |  |
| PISO6                              | EQ-X Max   | Х         | 18.428  |  |  |
| PISO5                              | EQ-X Max   | Х         | 14.927  |  |  |
| PISO4                              | EQ-X Max   | Х         | 11.243  |  |  |
| PISO3                              | EQ-X Max   | Х         | 7.554   |  |  |
| PISO2                              | EQ-X Max   | Х         | 4.125   |  |  |
| PISO1                              | EQ-X Max   | Х         | 1.35    |  |  |

Cuadro 28. Desplazamiento máximo del edificio 2 por nivel modelamiento dinamico convencional, Dirección x-x:



Imagen 47. Desplazamiento máximo del edificio 2 en dirección x = 32.262 mm. Estructura sin disipadores.

| TABLE: Story Max/Avg Displacements |            |           |         |  |  |
|------------------------------------|------------|-----------|---------|--|--|
| Story                              | Load       | Direction | Maximum |  |  |
| Clory                              | Case/Combo | Direction | mm      |  |  |
| TECH.ESCALERA                      | EQ-Y Max   | Y         | 44.939  |  |  |
| AZOTEA                             | EQ-Y Max   | Y         | 42.374  |  |  |
| PISO9                              | EQ-Y Max   | Y         | 40.036  |  |  |
| PISO8                              | EQ-Y Max   | Y         | 37.101  |  |  |
| PISO7                              | EQ-Y Max   | Y         | 33.464  |  |  |
| PISO6                              | EQ-Y Max   | Y         | 29.189  |  |  |
| PISO5                              | EQ-Y Max   | Y         | 24.37   |  |  |
| PISO4                              | EQ-Y Max   | Y         | 19.129  |  |  |
| PISO3                              | EQ-Y Max   | Y         | 13.615  |  |  |
| PISO2                              | EQ-Y Max   | Y         | 8.077   |  |  |
| PISO1                              | EQ-Y Max   | Y         | 2.987   |  |  |

Cuadro 29. Desplazamiento máximo del edificio 2 por nivel modelamiento dinamico convencional, Dirección y-y:



Imagen 48. Desplazamiento máximo del edificio 2 en dirección Y = 46.74 mm. Estructura sin disipadores.

*Las derivas máximas* calculados para el edificio 1 se detallan en el Cuadro 30 y 31 mientras que para el edificio 2 se muestran en las Cuadros 32 y 33.

| Cuadro 30. Revisión de deriva máxima edificio 1(Dirección | X | $\langle \rangle$ | ) |
|-----------------------------------------------------------|---|-------------------|---|
|-----------------------------------------------------------|---|-------------------|---|

| TABLE: Story Drifts |                    |           |                   |                     |  |  |
|---------------------|--------------------|-----------|-------------------|---------------------|--|--|
| Story               | Load<br>Case/Combo | Direction | Drift<br>elastico | Drift<br>inelastico |  |  |
| TECHO               | EQ-XX Max          | Х         | 0.0006            | 0.0031              |  |  |
| PISO 11             | EQ-XX Max          | Х         | 0.0006            | 0.0031              |  |  |
| PISO 10             | EQ-XX Max          | X         | 0.0007            | 0.0034              |  |  |
| PISO 9              | EQ-XX Max          | X         | 0.0008            | 0.0041              |  |  |
| PISO 8              | EQ-XX Max          | X         | 0.0009            | 0.0047              |  |  |
| PISO 7              | EQ-XX Max          | X         | 0.0010            | 0.0053              |  |  |
| PISO 6              | EQ-XX Max          | X         | 0.0011            | 0.0057              |  |  |
| PISO 5              | EQ-XX Max          | X         | 0.0011            | 0.0060              |  |  |
| PISO 4              | EQ-XX Max          | X         | 0.0011            | 0.0060              |  |  |
| PISO 3              | EQ-XX Max          | X         | 0.0011            | 0.0058              |  |  |
| PISO 2              | EQ-XX Max          | X         | 0.0010            | 0.0051              |  |  |
| PISO 1              | EQ-XX Max          | Х         | 0.0005            | 0.0028              |  |  |

## Cuadro 31. Revisión de deriva máxima edificio 1(Dirección Y)

| TABLE: Story Drifts |                 |           |                   |                     |  |
|---------------------|-----------------|-----------|-------------------|---------------------|--|
| Story               | Load Case/Combo | Direction | Drift<br>elastico | Drift<br>inelastico |  |
| TECHO               | EQ-YY Max       | Y         | 0.0004            | 0.0016              |  |
| PISO 11             | EQ-YY Max       | Y         | 0.0004            | 0.0020              |  |
| PISO 10             | EQ-YY Max       | Y         | 0.0009            | 0.0039              |  |
| PISO 9              | EQ-YY Max       | Y         | 0.0011            | 0.0048              |  |
| PISO 8              | EQ-YY Max       | Y         | 0.0013            | 0.0057              |  |

| TABLE: Story Drifts |                 |           |                   |                     |  |
|---------------------|-----------------|-----------|-------------------|---------------------|--|
| Story               | Load Case/Combo | Direction | Drift<br>elastico | Drift<br>inelastico |  |
| PISO 7              | EQ-YY Max       | Y         | 0.0014            | 0.0064              |  |
| PISO 6              | EQ-YY Max       | Y         | 0.0015            | 0.0069              |  |
| PISO 5              | EQ-YY Max       | Y         | 0.0016            | 0.0070              |  |
| PISO 4              | EQ-YY Max       | Y         | 0.0015            | 0.0067              |  |
| PISO 3              | EQ-YY Max       | Y         | 0.0012            | 0.0054              |  |
| PISO 2              | EQ-YY Max       | Y         | 0.0010            | 0.0046              |  |
| PISO 1              | EQ-YY Max       | Y         | 0.0006            | 0.0025              |  |

De la misma manera se obtiene las derivas máximas del edifico 2, tanto en dirección X como en dirección Y.

| TABLE: Story Drifts |                    |           |                   |                     |
|---------------------|--------------------|-----------|-------------------|---------------------|
| Story               | Load<br>Case/Combo | Direction | Drift<br>elastico | Drift<br>inelastico |
| TECH.ESCALERA       | EQ-X Max           | Х         | 0.0009            | 0.0041              |
| AZOTEA              | EQ-X Max           | Х         | 0.0010            | 0.0043              |
| PISO9               | EQ-X Max           | Х         | 0.0011            | 0.0047              |
| PISO8               | EQ-X Max           | Х         | 0.0012            | 0.0052              |
| PISO7               | EQ-X Max           | Х         | 0.0013            | 0.0057              |
| PISO6               | EQ-X Max           | Х         | 0.0013            | 0.0060              |
| PISO5               | EQ-X Max           | Х         | 0.0014            | 0.0061              |
| PISO4               | EQ-X Max           | Х         | 0.0013            | 0.0059              |
| PISO3               | EQ-X Max           | Х         | 0.0012            | 0.0055              |
| PISO2               | EQ-X Max           | Х         | 0.0010            | 0.0045              |
| PISO1               | EQ-X Max           | Х         | 0.0005            | 0.0020              |

Cuadro 32. Revisión de deriva máxima edificio 2 (Dirección X)

| TABLE: Story Drifts |                    |           |                   |                     |  |
|---------------------|--------------------|-----------|-------------------|---------------------|--|
| Story               | Load<br>Case/Combo | Direction | Drift<br>elastico | Drift<br>inelastico |  |
| TECH.ESCALERA       | EQ-Y Max           | Y         | 0.0004            | 0.0020              |  |
| AZOTEA              | EQ-Y Max           | Y         | 0.0008            | 0.0038              |  |
| PISO9               | EQ-Y Max           | Y         | 0.0010            | 0.0047              |  |
| PISO8               | EQ-Y Max           | Y         | 0.0013            | 0.0058              |  |
| PISO7               | EQ-Y Max           | Y         | 0.0015            | 0.0069              |  |
| PISO6               | EQ-Y Max           | Y         | 0.0017            | 0.0077              |  |
| PISO5               | EQ-Y Max           | Y         | 0.0019            | 0.0084              |  |
| PISO4               | EQ-Y Max           | Y         | 0.0020            | 0.0089              |  |
| PISO3               | EQ-Y Max           | Y         | 0.0020            | 0.0089              |  |
| PISO2               | EQ-Y Max           | Y         | 0.0018            | 0.0082              |  |
| PISO1               | EQ-Y Max           | Y         | 0.0005            | 0.0022              |  |

## Cuadro 33. Revisión de deriva máxima edificio 2 (Dirección Y)

# 4.1.6.2. MODELAMIENTO DINAMICO CON REDUCCION SISMICA R=1.

*Los desplazamientos máximos* obtenidos en la edificación 1 se muestran en el Cuadro 34 y 35, mientras que para el edificio 2 se detalla en el Cuadro 36 y 37.

Cuadro 34. Desplazamiento máximo del edificio 1 por nivel modelamiento dinamico R=1, Dirección x-x:

| TABLE: Story Max/Avg Displacements |                 |           |          |  |
|------------------------------------|-----------------|-----------|----------|--|
| Story                              | Load Case/Combo | Direction | Maximum  |  |
| otory                              |                 | Direction | mm       |  |
| TECHO                              | EQ-XX Max       | Х         | 166.7428 |  |
| PISO 11                            | EQ-XX Max       | Х         | 158.6447 |  |
| PISO 10                            | EQ-XX Max       | X         | 181.4354 |  |
| PISO 9                             | EQ-XX Max       | X         | 169.0619 |  |

| TABLE: Story Max/Avg Displacements |                                 |           |          |  |
|------------------------------------|---------------------------------|-----------|----------|--|
| Story                              | Story Load Case/Combo Direction | Direction | Maximum  |  |
|                                    |                                 |           | mm       |  |
| PISO 8                             | EQ-XX Max                       | X         | 154.3518 |  |
| PISO 7                             | EQ-XX Max                       | Х         | 137.227  |  |
| PISO 6                             | EQ-XX Max                       | Х         | 117.8819 |  |
| PISO 5                             | EQ-XX Max                       | Х         | 96.7922  |  |
| PISO 4                             | EQ-XX Max                       | Х         | 74.6496  |  |
| PISO 3                             | EQ-XX Max                       | Х         | 52.3765  |  |
| PISO 2                             | EQ-XX Max                       | X         | 31.1911  |  |
| PISO 1                             | EQ-XX Max                       | X         | 12.8415  |  |



Imagen 49. Desplazamiento máximo del edificio 1 en dirección x = 181.4354 mm. Estructura sin disipadores

| TABLE: Story Max/Avg Displacements |                 |           |          |  |
|------------------------------------|-----------------|-----------|----------|--|
| Story                              | Load Caso/Combo | Direction | Maximum  |  |
| Otory                              |                 |           | mm       |  |
| TECHO                              | EQ-YY Max       | Y         | 208.6042 |  |
| PISO 11                            | EQ-YY Max       | Y         | 204.2465 |  |
| PISO 10                            | EQ-YY Max       | Y         | 203.0372 |  |
| PISO 9                             | EQ-YY Max       | Y         | 188.6592 |  |
| PISO 8                             | EQ-YY Max       | Y         | 170.6268 |  |
| PISO 7                             | EQ-YY Max       | Y         | 149.2585 |  |
| PISO 6                             | EQ-YY Max       | Y         | 125.2505 |  |
| PISO 5                             | EQ-YY Max       | Y         | 99.5784  |  |
| PISO 4                             | EQ-YY Max       | Y         | 73.4988  |  |
| PISO 3                             | EQ-YY Max       | Y         | 48.5568  |  |
| PISO 2                             | EQ-YY Max       | Y         | 28.3536  |  |
| PISO 1                             | EQ-YY Max       | Y         | 11.3559  |  |

# Cuadro 35. Desplazamiento máximo del edificio 1 por nivel modelamiento dinamico R=1, Dirección Y-Y:


Imagen 50. Desplazamiento máximo del edificio 1 en dirección Y =208.604 mm. Estructura sin disipadores

De la misma manera se obtiene los desplazamientos máximos del edifico 2, tanto en dirección X como en dirección Y.

Cuadro 36. Desplazamiento máximo del edificio 2 por nivel modelamiento dinamico R=1, Dirección X-X:

| TABLE: Story Max/Avg Displacements |                 |           |         |  |  |  |  |
|------------------------------------|-----------------|-----------|---------|--|--|--|--|
| Story                              | Load Case/Combo | Direction | Maximum |  |  |  |  |
| otory                              |                 |           |         |  |  |  |  |
| TECH.ESCALERA                      | EQ-X Max        | Х         | 193.57  |  |  |  |  |
| AZOTEA                             | EQ-X Max        | Х         | 180.508 |  |  |  |  |
| PISO9                              | EQ-X Max        | Х         | 164.785 |  |  |  |  |
| PISO8                              | EQ-X Max        | Х         | 147.483 |  |  |  |  |
| PISO7                              | EQ-X Max        | Х         | 129.721 |  |  |  |  |

| TABLE: Story Max/Avg Displacements |                                 |   |         |  |  |  |
|------------------------------------|---------------------------------|---|---------|--|--|--|
| Story                              | Story Load Case/Combo Direction |   | Maximum |  |  |  |
|                                    |                                 |   | mm      |  |  |  |
| PISO6                              | EQ-X Max                        | Х | 110.567 |  |  |  |
| PISO5                              | EQ-X Max                        | Х | 89.562  |  |  |  |
| PISO4                              | EQ-X Max                        | Х | 67.455  |  |  |  |
| PISO3                              | EQ-X Max                        | Х | 45.324  |  |  |  |
| PISO2                              | EQ-X Max                        | Х | 24.747  |  |  |  |
| PISO1                              | EQ-X Max                        | Х | 8.098   |  |  |  |



Imagen 51. Desplazamiento máximo del edificio 2 en dirección X = 193.57 mm. Estructura sin disipadores

| TABLE: Story Max/Avg Displacements |                 |           |         |  |  |  |  |
|------------------------------------|-----------------|-----------|---------|--|--|--|--|
| Story                              | Load Case/Combo | Direction | Maximum |  |  |  |  |
| otory                              |                 | Direction | mm      |  |  |  |  |
| TECH.ESCALERA                      | EQ-Y Max        | Y         | 269.657 |  |  |  |  |
| AZOTEA                             | EQ-Y Max        | Y         | 254.266 |  |  |  |  |
| PISO9                              | EQ-Y Max        | Y         | 240.239 |  |  |  |  |
| PISO8                              | EQ-Y Max        | Y         | 222.626 |  |  |  |  |
| PISO7                              | EQ-Y Max        | Y         | 200.805 |  |  |  |  |
| PISO6                              | EQ-Y Max        | Y         | 175.15  |  |  |  |  |
| PISO5                              | EQ-Y Max        | Y         | 146.235 |  |  |  |  |
| PISO4                              | EQ-Y Max        | Y         | 114.786 |  |  |  |  |
| PISO3                              | EQ-Y Max        | Y         | 81.698  |  |  |  |  |
| PISO2                              | EQ-Y Max        | Y         | 48.463  |  |  |  |  |
| PISO1                              | EQ-Y Max        | Y         | 17.924  |  |  |  |  |

# Cuadro 37. Desplazamiento máximo del edificio 2 por nivel modelamiento dinamico R=1, Dirección Y-Y:



Imagen 52. Desplazamiento máximo del edificio 2 en dirección Y = 280.44 mm. Estructura sin disipadores

*Las derivas máximas* calculados para el edificio 1 se detallan en el Cuadro 38 y 39 mientras que para el edificio 2 se muestran en las Cuadros 40 y 41.

Cuadro 38. Revisión de deriva máxima edificio 1 por nivel modelamiento dinamico R=1, (Dirección X)

| TABLE: Story Drifts |                 |           |                  |  |  |  |
|---------------------|-----------------|-----------|------------------|--|--|--|
| Story               | Load Case/Combo | Direction | Drift inelastico |  |  |  |
| TECHO               | EQ-XX Max       | Х         | 0.0041           |  |  |  |
| PISO 11             | EQ-XX Max       | Х         | 0.0042           |  |  |  |
| PISO 10             | EQ-XX Max       | Х         | 0.0046           |  |  |  |
| PISO 9              | EQ-XX Max       | X         | 0.0054           |  |  |  |

| TABLE: Story Drifts |                 |           |                  |  |  |  |
|---------------------|-----------------|-----------|------------------|--|--|--|
| Story               | Load Case/Combo | Direction | Drift inelastico |  |  |  |
| PISO 8              | EQ-XX Max       | х         | 0.0063           |  |  |  |
| PISO 7              | EQ-XX Max       | Х         | 0.0070           |  |  |  |
| PISO 6              | EQ-XX Max       | Х         | 0.0076           |  |  |  |
| PISO 5              | EQ-XX Max       | X         | 0.0080           |  |  |  |
| PISO 4              | EQ-XX Max       | Х         | 0.0080           |  |  |  |
| PISO 3              | EQ-XX Max       | X         | 0.0077           |  |  |  |
| PISO 2              | EQ-XX Max       | X         | 0.0068           |  |  |  |
| PISO 1              | EQ-XX Max       | X         | 0.0038           |  |  |  |

Cuadro 39. Revisión de deriva máxima edificio 1 por nivel modelamiento dinamico R=1, (Dirección Y)

| TABLE: Story Drifts |                 |           |                  |  |  |  |  |
|---------------------|-----------------|-----------|------------------|--|--|--|--|
| Story               | Load Case/Combo | Direction | Drift inelastico |  |  |  |  |
| TECHO               | EQ-YY Max       | Y         | 0.0022           |  |  |  |  |
| PISO 11             | EQ-YY Max       | Y         | 0.0036           |  |  |  |  |
| PISO 10             | EQ-YY Max       | Y         | 0.0052           |  |  |  |  |
| PISO 9              | EQ-YY Max       | Y         | 0.0066           |  |  |  |  |
| PISO 8              | EQ-YY Max       | Y         | 0.0078           |  |  |  |  |
| PISO 7              | EQ-YY Max       | Y         | 0.0087           |  |  |  |  |
| PISO 6              | EQ-YY Max       | Y         | 0.0093           |  |  |  |  |
| PISO 5              | EQ-YY Max       | Y         | 0.0094           |  |  |  |  |
| PISO 4              | EQ-YY Max       | Y         | 0.0089           |  |  |  |  |
| PISO 3              | EQ-YY Max       | Y         | 0.0079           |  |  |  |  |
| PISO 2              | EQ-YY Max       | Y         | 0.0061           |  |  |  |  |
| PISO 1              | EQ-YY Max       | Y         | 0.0033           |  |  |  |  |

De la misma manera se obtiene las derivas máximas del edifico 2, tanto en dirección X como en dirección Y.

| TABLE: Story Drifts |                      |   |                     |  |  |  |  |
|---------------------|----------------------|---|---------------------|--|--|--|--|
| Story               | Story Load Direction |   | Drift<br>inelastico |  |  |  |  |
| TECH.ESCALERA       | EQ-X Max             | Х | 0.0054              |  |  |  |  |
| AZOTEA              | EQ-X Max             | Х | 0.0057              |  |  |  |  |
| PISO9               | EQ-X Max             | Х | 0.0063              |  |  |  |  |
| PISO8               | EQ-X Max             | Х | 0.0070              |  |  |  |  |
| PISO7               | EQ-X Max             | Х | 0.0076              |  |  |  |  |
| PISO6               | EQ-X Max             | Х | 0.0080              |  |  |  |  |
| PISO5               | EQ-X Max             | Х | 0.0081              |  |  |  |  |
| PISO4               | EQ-X Max             | Х | 0.0079              |  |  |  |  |
| PISO3               | EQ-X Max             | Х | 0.0074              |  |  |  |  |
| PISO2               | EQ-X Max             | Х | 0.0059              |  |  |  |  |
| PISO1               | EQ-X Max             | Х | 0.0027              |  |  |  |  |

Cuadro 40. Revisión de deriva máxima edificio 2 por nivel modelamiento dinamico R=1, (Dirección X)

Cuadro 41. Revisión de deriva máxima edificio 2 por nivel modelamiento dinamico R=1, (Dirección Y)

| TABLE: Story Drifts |                    |           |                     |  |  |  |  |
|---------------------|--------------------|-----------|---------------------|--|--|--|--|
| Story               | Load<br>Case/Combo | Direction | Drift<br>inelastico |  |  |  |  |
| TECH.ESCALERA       | EQ-Y Max           | Х         | 0.0057              |  |  |  |  |
| AZOTEA              | EQ-Y Max           | Х         | 0.0055              |  |  |  |  |
| PISO9               | EQ-Y Max           | Х         | 0.0069              |  |  |  |  |
| PISO8               | EQ-Y Max           | Х         | 0.0085              |  |  |  |  |
| PISO7               | EQ-Y Max           | Х         | 0.0099              |  |  |  |  |

| TABLE: Story Drifts |                    |           |                     |  |  |  |  |
|---------------------|--------------------|-----------|---------------------|--|--|--|--|
| Story               | Load<br>Case/Combo | Direction | Drift<br>inelastico |  |  |  |  |
| PISO6               | EQ-Y Max           | Х         | 0.0110              |  |  |  |  |
| PISO5               | EQ-Y Max           | Х         | 0.0118              |  |  |  |  |
| PISO4               | EQ-Y Max           | Х         | 0.0124              |  |  |  |  |
| PISO3               | EQ-Y Max           | Х         | 0.0124              |  |  |  |  |
| PISO2               | EQ-Y Max           | Х         | 0.0114              |  |  |  |  |
| PISO1               | EQ-Y Max           | Х         | 0.0060              |  |  |  |  |

#### 4.1.6.3. MODELAMIENTO LINEAL TIEMPO-HISTORIA

Una vez que tengamos nuestros acelerogramas escalados al espectro de diseño en sus dos componentes podremos realizar el Modelamiento Lineal Tiempo- Historia.

*Los desplazamientos máximos* obtenidos en la edificación 1 se muestran en el Cuadro 42 y 43, mientras que para el edificio 2 se detalla en el Cuadro 44 y 45.

Cuadro 42. Desplazamiento máximo del edificio 1 por nivel modelamiento tiempo-historia, Dirección X-X:

|         | DESPLAZAMIENTO MAXIMO (mm) EN X |                 |                 |                 |                 |                 |                 |                 |        |
|---------|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------|
| Nivel   | SXT66-EW<br>Max                 | SXT66-NS<br>Max | SXT70-EW<br>Max | SXT70-NS<br>Max | SXT74-EW<br>Max | SXT74-NS<br>Max | SXT07-EW<br>Max | SXT07-NE<br>Max | XAM    |
| TECHO   | 175.81                          | 176.45          | 169.07          | 168.04          | 178.27          | 167.56          | 179.09          | 154.87          | 179.09 |
| AZOTEA  | 167.18                          | 168.06          | 161.02          | 158.66          | 169.76          | 159.30          | 170.21          | 147.54          | 170.21 |
| PISO 10 | 163.38                          | 169.25          | 173.13          | 194.69          | 174.69          | 184.16          | 192.67          | 160.66          | 194.69 |
| PISO 9  | 152.98                          | 158.49          | 161.09          | 180.29          | 162.06          | 171.40          | 179.42          | 149.05          | 180.29 |
| PISO 8  | 140.39                          | 146.49          | 147.17          | 163.07          | 147.75          | 156.20          | 163.89          | 135.28          | 163.89 |
| PISO 7  | 125.65                          | 131.70          | 130.93          | 143.19          | 131.38          | 138.48          | 146.30          | 119.36          | 146.30 |

|        | DESPLAZAMIENTO MAXIMO (mm) EN X |                 |                 |                 |                 |                 |                     |                 |        |
|--------|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|---------------------|-----------------|--------|
| Nivel  | SXT66-EW<br>Max                 | SXT66-NS<br>Max | SXT70-EW<br>Max | SXT70-NS<br>Max | SXT74-EW<br>Max | SXT74-NS<br>Max | SXT07-EW<br>Max     | SXT07-NE<br>Max | MAX    |
| PISO 6 | 108.93                          | 114.10          | 112.49          | 121.12          | 113.01          | 118.47          | 126.31              | 101.56          | 126.31 |
| PISO 5 | 91.13                           | 94.21           | 92.32           | 98.15           | 92.96           | 96.71           | <mark>104.25</mark> | 82.42           | 104.25 |
| PISO 4 | 72.07                           | 72.76           | 71.08           | 74.90           | 71.78           | 74.01           | 80.95               | 62.69           | 80.95  |
| PISO 3 | 51.53                           | 50.76           | 49.72           | 51.93           | 50.32           | 51.44           | 57.08               | 43.92           | 57.08  |
| PISO 2 | 30.91                           | 30.38           | 29.46           | 30.75           | 29.85           | 30.30           | 34.06               | 26.28           | 34.06  |
| PISO 1 | 12.40                           | 12.63           | 12.03           | 12.68           | 12.21           | 12.33           | 14.00               | 10.86           | 14.00  |
| MAX    | 175.81                          | 176.45          | 173.13          | 194.69          | 178.27          | 184.16          | 192.67              | 160.66          | 194.69 |



Imagen 53. Desplazamiento máximo del edificio 1 en dirección X = 194.69 mm. Estructura sin disipadores

|         | DESPLAZAMIENTO MAXIMO (mm) EN Y |                 |                 |                 |                 |                 |                 |                 |        |
|---------|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------|
| Nivel   | SYT66-EW<br>Max                 | SYT66-NS<br>Max | SYT70-EW<br>Max | SYT70-NS<br>Max | SYT74-EW<br>Max | SYT74-NS<br>Max | SYT07-EW<br>Max | SYT07-NS<br>Max | MAX    |
| TECHO   | 188.72                          | 206.70          | 165.41          | 215.43          | 168.67          | 158.86          | 186.38          | 106.90          | 215.43 |
| AZOTEA  | 185.12                          | 202.29          | 162.00          | 210.41          | 164.79          | 155.41          | 182.69          | 104.53          | 210.41 |
| PISO 10 | 189.27                          | 199.45          | 161.38          | 207.13          | 159.60          | 154.64          | 182.01          | 104.21          | 207.13 |
| PISO 9  | 178.32                          | 185.33          | 150.03          | 191.04          | 148.44          | 143.24          | 169.75          | 96.26           | 191.04 |
| PISO 8  | 164.52                          | 167.61          | 135.71          | 171.36          | 134.39          | 128.95          | 154.24          | 86.30           | 171.36 |
| PISO 7  | 147.74                          | 146.61          | 118.62          | 148.39          | 117.66          | 112.10          | 135.63          | 76.13           | 148.39 |
| PISO 6  | 127.63                          | 123.00          | 99.36           | 124.54          | 98.75           | 94.14           | 114.40          | 65.16           | 127.63 |
| PISO 5  | 104.59                          | 97.76           | 78.78           | 99.51           | 78.46           | 75.79           | 91.36           | 53.51           | 104.59 |
| PISO 4  | 79.54                           | 72.10           | 57.97           | 74.28           | 59.70           | 56.92           | 67.66           | 41.08           | 79.54  |
| PISO 3  | 54.07                           | 49.32           | 39.11           | 49.57           | 41.45           | 38.31           | 44.78           | 28.55           | 54.07  |
| PISO 2  | 30.93                           | 28.79           | 22.77           | 27.38           | 24.27           | 21.38           | 26.07           | 16.75           | 30.93  |
| PISO 1  | 12.62                           | 11.51           | 9.06            | 10.46           | 9.74            | 8.38            | 10.45           | 6.76            | 12.62  |
| MAX     | 189.27                          | 206.70          | 165.41          | 215.43          | 168.67          | 158.86          | 186.38          | 106.90          | 215.43 |

# Cuadro 43. Desplazamiento máximo del edificio 1 por nivel modelamiento tiempo-historia, Dirección Y-Y:



Imagen 54. Desplazamiento máximo del edificio 1 en dirección Y = 215.43 mm. Estructura sin disipadores

De la misma manera se obtiene los desplazamientos máximos del edifico 2, tanto en dirección X como en dirección Y.

Cuadro 44.Desplazamiento máximo del edificio 2 por nivel modelamiento tiempo-historia, Dirección X-X:

|           | DESPLAZAMIENTO MAXIMO (mm) EN X |                 |                 |                 |                 |                 |                 |                 |        |
|-----------|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------|
| Nivel     | SXT66-EW<br>Max                 | SXT66-NS<br>Max | SXT70-EW<br>Max | SXT70-NS<br>Max | SXT74-EW<br>Max | SXT74-NS<br>Max | SXT07-EW<br>Max | SXT07-NS<br>Max | MAX    |
| TECH.ESC. | 194.06                          | 188.38          | 200.25          | 183.10          | 183.10          | 190.60          | 146.03          | 146.18          | 200.25 |
| AZOTEA    | 179.97                          | 178.50          | 186.94          | 154.36          | 171.72          | 176.77          | 137.00          | 134.78          | 186.94 |
| PISO9     | 163.96                          | 163.72          | 170.62          | 139.43          | 156.42          | 161.13          | 124.88          | 125.15          | 170.62 |
| PISO8     | 148.42                          | 147.28          | 152.56          | 123.13          | 139.56          | 145.10          | 111.49          | 113.81          | 152.56 |
| PISO7     | 131.64                          | 128.80          | 133.35          | 106.63          | 121.03          | 128.19          | 96.68           | 100.55          | 133.35 |
| PISO6     | 112.48                          | 108.30          | 113.31          | 89.65           | 100.88          | 108.98          | 80.55           | 86.47           | 113.31 |
| PISO5     | 91.27                           | 86.31           | 91.43           | 72.04           | 80.24           | 87.97           | 64.45           | 70.71           | 91.43  |
| PISO4     | 69.40                           | 64.98           | 68.54           | 54.53           | 60.05           | 65.95           | 48.16           | 53.77           | 69.40  |
| PISO3     | 47.19                           | 43.49           | 45.82           | 36.93           | 40.32           | 44.07           | 32.10           | 36.49           | 47.19  |

|       | DESPLAZAMIENTO MAXIMO (mm) EN X |                 |                 |                 |                 |                 |                 |                 |        |
|-------|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------|
| Nivel | SXT66-EW<br>Max                 | SXT66-NS<br>Max | SXT70-EW<br>Max | SXT70-NS<br>Max | SXT74-EW<br>Max | SXT74-NS<br>Max | SXT07-EW<br>Max | SXT07-NS<br>Max | MAX    |
| PISO2 | 26.11                           | 23.56           | 24.89           | 20.39           | 21.97           | 23.91           | 17.66           | 20.13           | 26.11  |
| PISO1 | 8.65                            | 7.62            | 8.10            | 6.72            | 7.16            | 7.78            | 5.84            | 6.67            | 8.65   |
| MAX   | 194.06                          | 188.38          | 200.25          | 183.10          | 183.10          | 190.60          | 146.03          | 146.18          | 200.25 |



Imagen 55. Desplazamiento máximo del edificio 2 en dirección X = 200.25 mm. Estructura sin disipadores

| DESPLAZAMIENTO MAXIMO (mm) EN Y |                 |                 |                 |                 |                 |                 |                 |                 |        |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------|
| Nivel                           | SYT66-EW<br>Max | SYT66-NS<br>Max | SYT70-EW<br>Max | SYT70-NS<br>Max | SYT74-EW<br>Max | SYT74-NS<br>Max | SYT07-EW<br>Max | SYT07-NS<br>Max | XAM    |
| TECH.ESCA                       | 288.47          | 217.08          | 281.57          | 301.12          | 301.12          | 237.47          | 241.18          | 279.12          | 301.12 |
| AZOTEA                          | 270.38          | 204.81          | 265.88          | 255.62          | 283.44          | 223.62          | 228.75          | 262.15          | 283.44 |
| PISO9                           | 254.38          | 193.60          | 251.49          | 241.81          | 267.38          | 210.84          | 217.77          | 246.58          | 267.38 |
| PISO8                           | 234.24          | 179.61          | 233.30          | 224.27          | 247.04          | 195.32          | 203.70          | 227.00          | 247.04 |
| PISO7                           | 210.38          | 162.12          | 210.50          | 202.24          | 221.66          | 176.12          | 185.88          | 203.29          | 221.66 |
| PISO6                           | 186.43          | 141.36          | 183.39          | 176.12          | 191.79          | 153.38          | 164.39          | 175.92          | 191.79 |
| PISO5                           | 157.51          | 117.86          | 152.62          | 146.64          | 158.55          | 127.72          | 139.47          | 145.75          | 158.55 |
| PISO4                           | 124.45          | 92.29           | 119.15          | 114.66          | 123.17          | 99.94           | 111.30          | 113.46          | 124.45 |
| PISO3                           | 88.79           | 65.46           | 84.19           | 81.20           | 86.83           | 70.91           | 80.51           | 80.07           | 88.79  |
| PISO2                           | 52.55           | 38.70           | 49.53           | 47.88           | 51.09           | 41.93           | 48.51           | 46.97           | 52.55  |
| PISO1                           | 19.30           | 14.28           | 18.18           | 17.60           | 18.77           | 15.48           | 18.18           | 17.18           | 19.30  |
| MAX                             | 288.47          | 217.08          | 281.57          | 301.12          | 301.12          | 237.47          | 241.18          | 279.12          | 301.12 |

# Cuadro 45. Desplazamiento máximo del edificio 2 por nivel modelamiento

tiempo-historia, Dirección Y-Y:



Imagen 56. Desplazamiento máximo del edificio 2 en dirección Y = 301.12 mm. Estructura sin disipadores

*Las derivas máximas* calculados para el edificio 1 se detallan en el Cuadro 46 y 47 mientras que para el edificio 2 se muestran en las Cuadros 48 y 49.

Cuadro 46. Revisión de deriva máxima edificio 1 por nivel modelamiento tiempo-historia, (Dirección X)

|         | REGISTROS TIEMPO HISTORIA DERIVA ‰ EN X |                 |                 |                 |                 |                 |                 |                 |        |
|---------|-----------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------|
| Nivel   | SXT66-EW<br>Max                         | SXT66-NS<br>Max | SXT70-EW<br>Max | SXT70-NS<br>Max | SXT74-EW<br>Max | SXT74-NS<br>Max | SXT07-EW<br>Max | SXT07-NE<br>Max | XAM    |
| TECHO   | 0.0045                                  | 0.0044          | 0.0040          | 0.0047          | 0.0043          | 0.0041          | 0.0045          | 0.0037          | 0.0047 |
| AZOTEA  | 0.0045                                  | 0.0044          | 0.0041          | 0.0048          | 0.0043          | 0.0042          | 0.0046          | 0.0037          | 0.0048 |
| PISO 10 | 0.0044                                  | 0.0044          | 0.0043          | 0.0053          | 0.0046          | 0.0046          | 0.0049          | 0.0041          | 0.0053 |
| PISO 9  | 0.0050                                  | 0.0051          | 0.0051          | 0.0063          | 0.0053          | 0.0055          | 0.0057          | 0.0049          | 0.0063 |
| PISO 8  | 0.0057                                  | 0.0059          | 0.0059          | 0.0072          | 0.0061          | 0.0063          | 0.0066          | 0.0057          | 0.0072 |
| PISO 7  | 0.0065                                  | 0.0067          | 0.0066          | 0.0079          | 0.0068          | 0.0071          | 0.0073          | 0.0064          | 0.0079 |
| PISO 6  | 0.0071                                  | 0.0073          | 0.0072          | 0.0084          | 0.0073          | 0.0078          | 0.0080          | 0.0068          | 0.0084 |

|        | REGISTROS TIEMPO HISTORIA DERIVA ‰ EN X |                 |                 |                 |                 |                 |                     |                 |        |
|--------|-----------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|---------------------|-----------------|--------|
| Nivel  | SXT66-EW<br>Max                         | SXT66-NS<br>Max | SXT70-EW<br>Max | SXT70-NS<br>Max | SXT74-EW<br>Max | SXT74-NS<br>Max | SXT07-EW<br>Max     | SXT07-NE<br>Max | XAM    |
| PISO 5 | 0.0075                                  | 0.0078          | 0.0076          | 0.0085          | 0.0076          | 0.0081          | 0.0084              | 0.0070          | 0.0085 |
| PISO 4 | 0.0076                                  | 0.0080          | 0.0076          | 0.0082          | 0.0077          | 0.0081          | <mark>0.0085</mark> | 0.0069          | 0.0085 |
| PISO 3 | 0.0077                                  | 0.0077          | 0.0072          | 0.0076          | 0.0073          | 0.0076          | 0.0082              | 0.0064          | 0.0082 |
| PISO 2 | 0.0069                                  | 0.0066          | 0.0062          | 0.0066          | 0.0063          | 0.0064          | 0.0072              | 0.0055          | 0.0072 |
| PISO 1 | 0.0036                                  | 0.0037          | 0.0035          | 0.0037          | 0.0036          | 0.0036          | 0.0041              | 0.0032          | 0.0041 |
| MAX    | 0.0077                                  | 0.0080          | 0.0076          | 0.0085          | 0.0077          | 0.0081          | 0.0085              | 0.0070          | 0.0085 |

Cuadro 47. Revisión de deriva máxima edificio 1 por nivel modelamiento

tiempo-historia, (Dirección Y)

|         | REGISTROS TIEMPO HISTORIA DERIVA ‰ EN Y |                 |                 |                 |                 |                 |                 |                 |        |
|---------|-----------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------|
| Nivel   | SYT66-EW<br>Max                         | SYT66-NS<br>Max | SYT70-EW<br>Max | SYT70-NS<br>Max | SYT74-EW<br>Max | SYT74-NS<br>Max | SYT07-EW<br>Max | SYT07-NS<br>Max | MAX    |
| TECHO   | 0.0021                                  | 0.0022          | 0.0017          | 0.0025          | 0.0019          | 0.0017          | 0.0018          | 0.0012          | 0.0025 |
| AZOTEA  | 0.0034                                  | 0.0036          | 0.0028          | 0.0041          | 0.0032          | 0.0029          | 0.0030          | 0.0020          | 0.0041 |
| PISO 10 | 0.0050                                  | 0.0051          | 0.0041          | 0.0059          | 0.0045          | 0.0041          | 0.0044          | 0.0029          | 0.0059 |
| PISO 9  | 0.0062                                  | 0.0064          | 0.0051          | 0.0074          | 0.0056          | 0.0052          | 0.0056          | 0.0036          | 0.0074 |
| PISO 8  | 0.0073                                  | 0.0075          | 0.0061          | 0.0086          | 0.0065          | 0.0061          | 0.0067          | 0.0042          | 0.0086 |
| PISO 7  | 0.0080                                  | 0.0084          | 0.0069          | 0.0094          | 0.0071          | 0.0068          | 0.0076          | 0.0047          | 0.0094 |
| PISO 6  | 0.0085                                  | 0.0090          | 0.0074          | 0.0097          | 0.0074          | 0.0071          | 0.0082          | 0.0049          | 0.0097 |
| PISO 5  | 0.0090                                  | 0.0092          | 0.0074          | 0.0094          | 0.0074          | 0.0071          | 0.0085          | 0.0048          | 0.0094 |
| PISO 4  | 0.0091                                  | 0.0088          | 0.0071          | 0.0089          | 0.0070          | 0.0067          | 0.0082          | 0.0046          | 0.0091 |
| PISO 3  | 0.0084                                  | 0.0077          | 0.0062          | 0.0079          | 0.0062          | 0.0060          | 0.0072          | 0.0042          | 0.0084 |
| PISO 2  | 0.0068                                  | 0.0062          | 0.0049          | 0.0062          | 0.0052          | 0.0048          | 0.0056          | 0.0036          | 0.0068 |
| PISO 1  | 0.0037                                  | 0.0034          | 0.0027          | 0.0031          | 0.0029          | 0.0025          | 0.0031          | 0.0020          | 0.0037 |
| MAX     | 0.0091                                  | 0.0092          | 0.0074          | 0.0097          | 0.0074          | 0.0071          | 0.0085          | 0.0049          | 0.0097 |

De la misma manera se obtiene las derivas máximas del edifico 2, tanto en dirección X como en dirección Y.

| Cuadro 48. | Revisión | de deriva | máxima      | edificio | 2 por l | nivel n | nodelam | iento |
|------------|----------|-----------|-------------|----------|---------|---------|---------|-------|
|            |          | tiempo-h  | istoria, (L | Direcció | n X)    |         |         |       |

| REGISTROS TIEMPO HISTORIA DERIVA ‰ EN X |                  |                  |                  |                  |                  |                  |                  |                  |        |
|-----------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|--------|
| Nivel                                   | SXT66-<br>EW Max | SXT66-<br>NS Max | SXT70-<br>EW Max | SXT70-<br>NS Max | SXT74-<br>EW Max | SXT74-<br>NS Max | SXT07-<br>EW Max | SXT07-<br>NS Max | MAX    |
| TECH.ESC                                | 0.0055           | 0.0050           | 0.0056           | 0.0052           | 0.0052           | 0.0053           | 0.0041           | 0.0041           | 0.0056 |
| AZOTEA                                  | 0.0059           | 0.0053           | 0.0059           | 0.0055           | 0.0055           | 0.0056           | 0.0043           | 0.0043           | 0.0059 |
| PISO9                                   | 0.0064           | 0.0059           | 0.0065           | 0.0060           | 0.0060           | 0.0062           | 0.0048           | 0.0047           | 0.0065 |
| PISO8                                   | 0.0071           | 0.0066           | 0.0072           | 0.0065           | 0.0067           | 0.0068           | 0.0053           | 0.0051           | 0.0072 |
| PISO7                                   | 0.0076           | 0.0073           | 0.0078           | 0.0068           | 0.0072           | 0.0074           | 0.0058           | 0.0056           | 0.0078 |
| PISO6                                   | 0.0080           | 0.0079           | 0.0083           | 0.0069           | 0.0076           | 0.0078           | 0.0061           | 0.0059           | 0.0083 |
| PISO5                                   | 0.0081           | 0.0081           | 0.0084           | 0.0067           | 0.0077           | 0.0079           | 0.0061           | 0.0062           | 0.0084 |
| PISO4                                   | 0.0080           | 0.0079           | 0.0081           | 0.0065           | 0.0073           | 0.0078           | 0.0058           | 0.0062           | 0.0081 |
| PISO3                                   | 0.0075           | 0.0071           | 0.0075           | 0.0060           | 0.0066           | 0.0072           | 0.0053           | 0.0058           | 0.0075 |
| PISO2                                   | 0.0062           | 0.0057           | 0.0060           | 0.0049           | 0.0053           | 0.0058           | 0.0042           | 0.0048           | 0.0062 |
| PISO1                                   | 0.0029           | 0.0025           | 0.0027           | 0.0022           | 0.0024           | 0.0026           | 0.0019           | 0.0022           | 0.0029 |
| MAX                                     | 0.0081           | 0.0081           | 0.0084           | 0.0069           | 0.0077           | 0.0079           | 0.0061           | 0.0062           | 0.0084 |

Cuadro 49. Revisión de deriva máxima edificio 2 por nivel modelamiento

tiempo-historia, (Dirección Y)

| <b>REGISTROS TIEMPO HISTORIA DERIVA ‰ EN Y</b> |                 |                 |                 |                 |                 |                 |                 |                 |        |
|------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------|
| Nivel                                          | SYT66-EW<br>Max | SYT66-NS<br>Max | SYT70-EW<br>Max | SYT70-NS<br>Max | SYT74-EW<br>Max | SYT74-NS<br>Max | SYT07-EW<br>Max | SYT07-NS<br>Max | XAM    |
| TECH.ESC                                       | 0.0062          | 0.0045          | 0.0054          | 0.0052          | 0.0061          | 0.0052          | 0.0057          | 0.0060          | 0.0062 |
| AZOTEA                                         | 0.0061          | 0.0043          | 0.0053          | 0.0051          | 0.0060          | 0.0051          | 0.0055          | 0.0059          | 0.0061 |

|       | RE              | GISTRO          | OS TIEM         | PO HIST         | ORIA DI         | ERIVA %         | • EN Y          |                 |        |
|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------|
| Nivel | SYT66-EW<br>Max | SYT66-NS<br>Max | SYT70-EW<br>Max | SYT70-NS<br>Max | SYT74-EW<br>Max | SYT74-NS<br>Max | SYT07-EW<br>Max | SYT07-NS<br>Max | XAM    |
| PISO9 | 0.0077          | 0.0055          | 0.0067          | 0.0066          | 0.0077          | 0.0065          | 0.0068          | 0.0074          | 0.0077 |
| PISO8 | 0.0095          | 0.0066          | 0.0084          | 0.0082          | 0.0096          | 0.0081          | 0.0082          | 0.0091          | 0.0096 |
| PISO7 | 0.0110          | 0.0077          | 0.0100          | 0.0096          | 0.0112          | 0.0093          | 0.0092          | 0.0105          | 0.0112 |
| PISO6 | 0.0121          | 0.0087          | 0.0114          | 0.0109          | 0.0125          | 0.0101          | 0.0099          | 0.0115          | 0.0125 |
| PISO5 | 0.0126          | 0.0094          | 0.0124          | 0.0118          | 0.0133          | 0.0107          | 0.0108          | 0.0121          | 0.0133 |
| PISO4 | 0.0133          | 0.0099          | 0.0130          | 0.0124          | 0.0136          | 0.0110          | 0.0117          | 0.0124          | 0.0136 |
| PISO3 | 0.0135          | 0.0099          | 0.0129          | 0.0124          | 0.0134          | 0.0107          | 0.0121          | 0.0123          | 0.0135 |
| PISO2 | 0.0124          | 0.0090          | 0.0116          | 0.0112          | 0.0121          | 0.0098          | 0.0114          | 0.0110          | 0.0124 |
| PISO1 | 0.0064          | 0.0048          | 0.0061          | 0.0059          | 0.0063          | 0.0052          | 0.0061          | 0.0057          | 0.0064 |
| MAX   | 0.0135          | 0.0099          | 0.0130          | 0.0124          | 0.0136          | 0.0110          | 0.0121          | 0.0124          | 0.0136 |

## 4.1.6.4. RESUMEN DE REVISION DE DESPLAZAMIENTOS RELATIVOS DE ENTREPISO

La investigación se enfoca en esta parte pues es el objetivo principal reducir las derivas, por tal motivo se procede a la revisión de desplazamientos laterales con los análisis que se desarrollaron anteriormente. Distorsión de entrepiso permitida  $\leq$  0.007.

El resumen de las derivas máximas calculados para el edificio 1 se detallan en el Cuadro 50 y 51 mientras que para el edificio 2 se muestran en las Cuadros 52 y 53.

| REVISIO | ON DE DERIVAS                      | 6 MAXIMAS                 | EDIFICIO 1 X-X           |
|---------|------------------------------------|---------------------------|--------------------------|
| PISOS   | Drift<br>Espectral<br>Convencional | Drift<br>Espectral<br>R=1 | Drift<br>Tiempo-Historia |
| TECHO   | 0.0031                             | 0.0041                    | 0.0047                   |
| PISO 11 | 0.0031                             | 0.0042                    | 0.0048                   |
| PISO 10 | 0.0034                             | 0.0046                    | 0.0053                   |
| PISO 9  | 0.0041                             | 0.0054                    | 0.0063                   |
| PISO 8  | 0.0047                             | 0.0063                    | 0.0072                   |
| PISO 7  | 0.0053                             | 0.0070                    | 0.0079                   |
| PISO 6  | 0.0057                             | 0.0076                    | 0.0084                   |
| PISO 5  | 0.0060                             | 0.0080                    | 0.0085                   |
| PISO 4  | 0.0060                             | 0.0080                    | 0.0085                   |
| PISO 3  | 0.0058                             | 0.0077                    | 0.0082                   |
| PISO 2  | 0.0051                             | 0.0068                    | 0.0072                   |
| PISO 1  | 0.0028                             | 0.0038                    | 0.0041                   |
|         | ∆max=                              | 0.0085                    |                          |

Cuadro 50. Comparación de Revisión de deriva máxima edificio 1, (Dirección X)

La deriva máxima obtenida en este caso es de **0.0085** por lo que NO CUMPLE la deriva recomendada por la norma E030 2016.

Cuadro 51. Comparación de Revisión de deriva máxima edificio 1, (Dirección Y)

| <b>REVISION DE DERIVAS MAXIMAS EDIFICIO 1 Y-Y</b> |                                    |                           |                          |  |  |  |  |  |
|---------------------------------------------------|------------------------------------|---------------------------|--------------------------|--|--|--|--|--|
| PISOS                                             | Drift<br>Espectral<br>Convencional | Drift<br>Espectral<br>R=1 | Drift<br>Tiempo-Historia |  |  |  |  |  |
| TECHO                                             | 0.0016                             | 0.0022                    | 0.0025                   |  |  |  |  |  |
| PISO 11                                           | 0.0020                             | 0.0036                    | 0.0041                   |  |  |  |  |  |
| PISO 10                                           | 0.0039                             | 0.0052                    | 0.0059                   |  |  |  |  |  |
| PISO 9                                            | 0.0048                             | 0.0066                    | 0.0074                   |  |  |  |  |  |
| PISO 8                                            | 0.0057                             | 0.0078                    | 0.0086                   |  |  |  |  |  |
| PISO 7                                            | 0.0064                             | 0.0087                    | 0.0094                   |  |  |  |  |  |

| REVISIO | ON DE DERIVAS | S MAXIMAS | EDIFICIO 1 Y-Y  |  |
|---------|---------------|-----------|-----------------|--|
|         | Drift         | Drift     | Drift           |  |
| PISOS   | Espectral     | Espectral | Tiempo-Historia |  |
|         | Convencional  | R=1       | nempo-matoria   |  |
| PISO 6  | 0.0069        | 0.0093    | 0.0097          |  |
| PISO 5  | 0.0070        | 0.0094    | 0.0094          |  |
| PISO 4  | 0.0067        | 0.0089    | 0.0091          |  |
| PISO 3  | 0.0054        | 0.0079    | 0.0084          |  |
| PISO 2  | 0.0046        | 0.0061    | 0.0068          |  |
| PISO 1  | 0.0025        | 0.0033    | 0.0037          |  |
| •       | ∆max=         | 0.0097    |                 |  |

De igual manera en la dirección Y tampoco se cumple con la deriva limite ya que se obtiene una deriva de 0.0097.

De la misma manera se obtiene el resumen de derivas máximas del edifico 2, tanto en dirección X como en dirección Y.

Cuadro 52. Comparación de Revisión de deriva máxima edificio 2, (Dirección X)

| REVISION D    | E DERIVAS MA                       | XIMAS EDI                 | FICIO 2 X-X              |
|---------------|------------------------------------|---------------------------|--------------------------|
| PISOS         | Drift<br>Espectral<br>Convencional | Drift<br>Espectral<br>R=1 | Drift<br>Tiempo-Historia |
| TECH.ESCALERA | 0.0041                             | 0.0054                    | 0.0056                   |
| AZOTEA        | 0.0043                             | 0.0057                    | 0.0059                   |
| PISO9         | 0.0047                             | 0.0063                    | 0.0065                   |
| PISO8         | 0.0052                             | 0.0070                    | 0.0072                   |
| PISO7         | 0.0057                             | 0.0076                    | 0.0078                   |
| PISO6         | 0.0060                             | 0.0080                    | 0.0083                   |
| PISO5         | 0.0061                             | 0.0081                    | 0.0084                   |
| PISO4         | 0.0059                             | 0.0079                    | 0.0081                   |
| PISO3         | 0.0055                             | 0.0074                    | 0.0075                   |

| REVISION D | E DERIVAS MA       | XIMAS EDI          | FICIO 2 X-X              |
|------------|--------------------|--------------------|--------------------------|
| PISOS      | Drift<br>Espectral | Drift<br>Espectral | Drift<br>Tiempo-Historia |
|            | Convencional       | R=1                | nempe-metona             |
| PISO2      | 0.0045             | 0.0059             | 0.0062                   |
| PISO1      | 0.0020             | 0.0027             | 0.0029                   |
|            | ∆max=              | 0.0084             |                          |

La deriva máxima obtenida en este caso es de 0.0084 por lo que NO CUMPLE la deriva recomendada por la norma E030 2016.

Cuadro 53. Comparación de Revisión de deriva máxima edificio 2, (Dirección Y)

| REVISION DE DERIVAS MAXIMAS EDIFICIO 2 Y-Y |                                    |                           |                          |  |  |  |
|--------------------------------------------|------------------------------------|---------------------------|--------------------------|--|--|--|
| PISOS                                      | Drift<br>Espectral<br>Convencional | Drift<br>Espectral<br>R=1 | Drift<br>Tiempo-Historia |  |  |  |
| TECH.ESCALERA                              | 0.0020                             | 0.0057                    | 0.0062                   |  |  |  |
| AZOTEA                                     | 0.0038                             | 0.0055                    | 0.0061                   |  |  |  |
| PISO9                                      | 0.0047                             | 0.0069                    | 0.0077                   |  |  |  |
| PISO8                                      | 0.0058                             | 0.0085                    | 0.0096                   |  |  |  |
| PISO7                                      | 0.0069                             | 0.0099                    | 0.0112                   |  |  |  |
| PISO6                                      | 0.0077                             | 0.0110                    | 0.0125                   |  |  |  |
| PISO5                                      | 0.0084                             | 0.0118                    | 0.0133                   |  |  |  |
| PISO4                                      | 0.0089                             | 0.0124                    | 0.0136                   |  |  |  |
| PISO3                                      | 0.0089                             | 0.0124                    | 0.0135                   |  |  |  |
| PISO2                                      | 0.0082                             | 0.0114                    | 0.0124                   |  |  |  |
| PISO1                                      | 0.0022                             | 0.0060                    | 0.0064                   |  |  |  |
|                                            | ∆max=                              | 0.0136                    |                          |  |  |  |

De igual manera en la dirección Y tampoco se cumple con la deriva limite ya que se obtiene una deriva de 0.0136. Estos valores son mayores al valor de 0.007, establecido como máximo por la norma peruana sismorresistente E.030, para edificios de concreto armado.

#### 4.2. DISEÑO ESTRUCTURAL CON DISIPADORES:

#### 4.2.1. ELECCIÓN DEL OBJETIVO DE DESEMPEÑO

Para tener una dirección en la investigación se tuvieron en cuenta algunos aspectos de normas entre ellas la clasificación del SEAOC, y según la cual el edificio en estudio es una Estructura Básica. Elegimos como sismo de diseño un Sismo de 500 años de periodo de retorno.

El Cuadro 54 ilustra la definición de los niveles de desempeño para estructuras básicas (oficinas y viviendas). Puede observarse que el nivel de desempeño elegido es el de Seguridad o Resguardo de la vida que corresponde para un movimiento sísmico de diseño de sismo raro.

| Movimiento Sísmico de Diseño | Nivel de desempeño mínimo |
|------------------------------|---------------------------|
| Sismo Frecuente              | Totalmente Operacional    |
| Sismo Ocasional              | Operacional               |
| Sismo Raro                   | Seguridad                 |
| Sismo Muy raro               | Próximo a colapso         |

Cuadro 54. Objetivos de desempeño para estructuras básicas.

Por lo tanto, se obtienen los niveles de desempeño y sus correspondientes derivas características haciendo uso, además, de las equivalencias de las Cuadros 5 y 6 anteriormente enunciadas. En el Cuadro 55 se expone las relaciones desempeño-deriva para edificios CH2. Se elige la deriva objetivo del Nivel de Desempeño Seguridad: 0.005.

| Nivel de Desempeño Objetivo | Deriva Objetivo |
|-----------------------------|-----------------|
| Totalmente Operacional      | 0.002           |
| Operacional                 |                 |
| Seguridad                   | 0.005           |
| Pre-Colapso                 | 0.015           |
| Colapso                     | 0.040           |

Cuadro 55. Niveles de desempeño y derivas objetivo para edificios tipo CH2 (HAZUS Y SEAOC VISION 2000).

#### 4.2.2. UBICACIÓN DE LOS DISPOSITIVOS DE DISIPACION

El ASCE 7-10 exige como mínimo 2 dispositivos por dirección de análisis en cada piso y en arreglo tal que no genere torsión. En el caso del edificio 1, considerando un margen razonable de seguridad proponemos 6 dispositivos por piso, 3 en la dirección X y 3 en la dirección Y, todos ubicados en los pórticos exteriores del edificio. Cuando los amortiguadores están alejados del centro de masa, nos brindan la ventaja de trabajar en la zona de máximas velocidades (zona de mayor efectividad de los dispositivos de fluido viscoso). Otra ventaja de esta ubicación es la simetría y regularidad, factores que permiten un mejor control de los efectos de la torsión. Para controlar la torsión se optó por colocar un disipador en los pórticos posterior y pórtico del eje "I"

Para el edificio 2 se propone 5 dispositivos por nivel, 3 en la dirección X y 2 en la dirección Y por tener más placas en este sentido.

La ubicación y disposición de los amortiguadores puede observarse en las imagenes siguientes.



Imagen 57. Dispositivos en el eje 1, Dirección X Edificio 1.



Imagen 58. Dispositivos en el eje en diagonal, Dirección XY Edificio 1.



Imagen 59. Dispositivos en el eje A, Dirección Y Edificio 1.



Imagen 60. Dispositivos en el eje I, Dirección Y Edificio 1.

Edificio 2:



Imagen 61. Dispositivos en el eje en diagonal, Dirección XY Edificio 2.



Imagen 62. Dispositivos en el eje en diagonal, Dirección XY Edificio 2.



Imagen 63. Dispositivos en el eje A, Dirección Y Edificio 2.



Imagen 64. Dispositivos en el eje en diagonal, Dirección XY Edificio 2.

#### 4.2.3. ANALISIS LINEAL DE DISIPADORES:

# 4.2.3.1. ESTIMACIÓN DEL COEFICIENTE "C" – DISPOSITIVOS LINEALES

El primer paso corresponde a la definición del exponente de velocidad "  $\alpha$ ". Para este caso, por tratarse de un dispositivo lineal se considerará como "  $\alpha$  = 1". Una vez culminado esta elección, se procede a utilizar la siguiente ecuación:

$$\beta_{visc} = \frac{T\sum_{j} C_{j} \, \phi_{rj}^{2} Cos^{2} \theta_{j}}{4\pi \sum_{i} m_{i} \, \phi_{i}^{2}}$$

Para predimensionar el sistema de amortiguador se asume que todos los amortiguadores tendrán un coeficiente "C" constante, procedemos a despejar la variable "C" de la ecuación base para un amortiguamiento viscoso objetivo, el cual se le asignará en el programa a todos los amortiguadores, la disposición de los amortiguadores será en forma diagonal.

$$c_{Piso} = nC = \left(\xi_{ef} - \xi_I\right) \frac{4\pi \Sigma_i m_i \phi_i^2}{T \Sigma_j \phi_{rj}^2 \cos^2 \theta_j}$$

| agona   |
|---------|
| en x di |
|         |
| icio    |
| ₩.      |
| Щ       |
| nto     |
| nier    |
| iuan    |
| ortig   |
| am      |
| de      |
| nte     |
| iciel   |
| coet    |
| (D      |
| o d     |
| ento    |
| nie     |
| nai     |
| sio     |
| nər     |
| din     |
| Pre     |
| 56.     |
| 2       |
| lad     |
| С       |

| Piso   | Masa<br>(ton.s2/m) | θ      | Cost  | φ          | <pre> pi normalizado </pre> | φrj   | $\phi_{rj}^2 cos_{\hat{\theta}_i}^2$ | miφi <sup>2</sup><br>(ton.s2/m) |
|--------|--------------------|--------|-------|------------|-----------------------------|-------|--------------------------------------|---------------------------------|
| <br>-  | 50.512             | 32.195 | 0.846 | 0.0011000  | 0.058                       | 0.058 | 0.0024                               | 0.171                           |
| 2      | 53.267             | 27.40  | 0.888 | 0.0028000  | 0.148                       | 0.090 | 0.0064                               | 1.169                           |
| <br>ŝ  | 53.267             | 27.40  | 0.888 | 0.0049000  | 0.259                       | 0.111 | 2600.0                               | 3.580                           |
| 4      | 53.267             | 27.40  | 0.888 | 0.0072000  | 0.381                       | 0.122 | 0.0117                               | 7.730                           |
| 5      | 53.267             | 27.40  | 0.888 | 0.005600.0 | 0.503                       | 0.122 | 0.0117                               | 13.458                          |
| 9      | 53.267             | 27.40  | 0.888 | 0.0117000  | 0.619                       | 0.116 | 0.0107                               | 20.413                          |
| 7      | 53.267             | 27.40  | 0.888 | 0.0138000  | 0.730                       | 0.111 | 2600.0                               | 28.399                          |
| <br>8  | 53.267             | 27.40  | 0.888 | 0.0157000  | 0.831                       | 0.101 | 0.0080                               | 36.757                          |
| 6      | 53.267             | 27.40  | 0.888 | 0.0173000  | 0.915                       | 0.085 | 0.0056                               | 44.630                          |
| <br>10 | 37.923             | 27.40  | 0.888 | 0.0189000  | 1.000                       | 0.085 | 0.0056                               | 37.923                          |
|        |                    |        |       |            |                             | Suma  | 0.0816                               | 194.231                         |

| $\ln \xi_I$    | In <i>Eef</i>  |
|----------------|----------------|
| 2.31 - 0.41    | 2.31 - 0.41    |
| 1              | 1              |
| $\Delta_{max}$ | $\Delta_{obj}$ |
| 1              | E              |
| 0              | 9              |

| Direccion y | 0.0097 | 0.005 | 1.9350000 | 5  | 34.96 |  |
|-------------|--------|-------|-----------|----|-------|--|
| Direccion x | 0.0085 | 0.005 | 1.7096000 | 5  | 26.57 |  |
|             | Amax   | Δobj  | 8         | ξI | Eef   |  |

| eriodo fundamental                   | T           | 0.742      | s       |
|--------------------------------------|-------------|------------|---------|
| mortiguamiento del sistema estructu  | ξo          | 5          | %       |
| mortiguamiento efectivo total        | ξef         | 26.57      | %       |
| mortiguamiento viscoso               | <i>fvis</i> | 21.57      | %       |
| oeficiente de amortiguamiento por pi | C piso      | 8,702.14 t | ton.s/m |
| umero ded disipadores por piso       | u           | 3          |         |
|                                      | c           | 2,900.71 t | ton.s/m |
|                                      | α           | 1          |         |
|                                      | k           | 0          | ton/m   |

Por lo tanto, se obtiene:

# Cxx = 2,900.71 Tn-s/m = 2.90 Tn-s/mm

0 ton/m

| $\succ$    |
|------------|
| en         |
| 7          |
| Edificio   |
| 0          |
| amient     |
| mortigua   |
| de al      |
| nte        |
| <u>e</u> . |
| <u></u>    |
| coei       |
| e/         |
| 0          |
| ento       |
| amie       |
| nsion      |
| redime     |
| Ē          |
| 57.        |
| adrc       |
| 5          |
| <u> </u>   |

|   | Piso | Masa<br>(ton.s2/m) | θ     | Cos0  | ē        | φi<br>normalizado | φrj   | $\phi_{rj}^2 cos_{\theta_i}^2$ | $mi\phi i^2$ |
|---|------|--------------------|-------|-------|----------|-------------------|-------|--------------------------------|--------------|
| - |      | 50.512             | 32.68 | 0.842 | 0.001200 | 0.055             | 0.055 | 0.0021                         | 0.1530546    |
| 2 |      | 53.267             | 27.85 | 0.884 | 0.003100 | 0.142             | 0.087 | 0.0059                         | 1.0771398    |
| m |      | 53.267             | 27.85 | 0.884 | 0.005500 | 0.252             | 0.110 | 0.0095                         | 3.3905805    |
| 4 |      | 53.267             | 27.85 | 0.884 | 0.008200 | 0.376             | 0.124 | 0.0120                         | 7.5366159    |
| 5 |      | 53.267             | 27.85 | 0.884 | 0.011000 | 0.505             | 0.128 | 0.0129                         | 13.562322    |
| 9 |      | 53.267             | 27.85 | 0.884 | 0.013700 | 0.628             | 0.124 | 0.0120                         | 21.037291    |
| 2 |      | 53.267             | 27.85 | 0.884 | 0.016300 | 0.748             | 0.119 | 0.0111                         | 29.779944    |
| œ |      | 53.267             | 27.85 | 0.884 | 0.018500 | 0.849             | 0.101 | 0.0080                         | 38.361195    |
| െ |      | 53.267             | 27.85 | 0.884 | 0.020300 | 0.931             | 0.083 | 0.0053                         | 46.189233    |
| 9 |      | 37.923             | 27.85 | 0.884 | 0.021800 | 1.000             | 0.069 | 0.0037                         | 37.922909    |
|   |      |                    |       |       |          |                   | Suma  | 0.0826                         | 199.0103     |
|   |      |                    |       |       |          |                   |       |                                |              |

| 151                | Sef               |
|--------------------|-------------------|
| $2.31 - 0.41 \ lm$ | $.31 - 0.41 \ ln$ |
| ∆máx _             | Aobj 2            |
| 1                  | 9                 |

| Direccion y | 0.0097 | 0.005 | 1.9350000 | 9  | 34.96 |  |
|-------------|--------|-------|-----------|----|-------|--|
| Direccion x | 0.0085 | 0.005 | 1.7096000 | 5  | 26.57 |  |
|             | Amax   | Δobj  | в         | ŝ, | Sef   |  |

| 1             |
|---------------|
| Ψ             |
|               |
| d)            |
| :Ξ            |
| ਨ             |
| $\overline{}$ |
| 0             |
| ወ             |
| õ             |
|               |
|               |
| ć             |
| ģ             |
| nto,          |
| anto,         |
| tanto,        |
| o tanto,      |
| lo tanto,     |
| r lo tanto,   |
| or lo tanto,  |
| Por lo tanto, |

| Periodo fundamental                  | T      | 0.926    | s       |
|--------------------------------------|--------|----------|---------|
| Amortiguamiento del sistema estruct  | ξo     | 5        | %       |
| Amortiguamiento efectivo total       | ξef    | 34.96    | %       |
| Amortiguamiento viscoso              | Evis   | 29.96    | %       |
| Coeficiente de amortiguamiento por p | C piso | 9,801.10 | ton.s/m |
| Numero ded disipadores por piso      | ч      | 3        |         |
|                                      | c      | 3,267.03 | ton.s/m |
|                                      | α      | 1        |         |
|                                      | k      | 0        | ton/m   |
| •                                    |        |          |         |

Cyy = 3,267.03 Tn-s/m = 3.27 Tn-s/mm

172

| $\mathbf{\mathbf{x}}$ |
|-----------------------|
| $\sim$                |
| 5                     |
| Φ                     |
| $\sim$                |
| 0                     |
| ·Χ                    |
| 2                     |
| 1                     |
| 10                    |
| ш                     |
| 0                     |
| 4                     |
| 6                     |
| .ĭ                    |
| 2                     |
| g                     |
| n                     |
| .0                    |
| セ                     |
| 0                     |
| 3                     |
| đ                     |
|                       |
| Å                     |
| 0                     |
| Ð                     |
| 5                     |
| Ð                     |
| .5                    |
| Ĕ                     |
| Ð                     |
| 0                     |
| S                     |
|                       |
| ž                     |
| č                     |
| 5                     |
| 2                     |
| Ð.                    |
| 2                     |
| 7                     |
| ŝ                     |
| 0                     |
| 3                     |
| č                     |
| ð                     |
| ă                     |
| 1                     |
| 0                     |
| δ                     |
| D_                    |
|                       |
| 00                    |
| S                     |
| 0                     |
| Ľ                     |
| Q                     |
| Q                     |
| 5                     |
|                       |

| Piso | Masa       | θ     | Cos0  | ē          | ¢i normalizado | φrj   | $\phi_{r_j}^2 cos_{\theta_i}^2$ | $mi\phi i^2$ |
|------|------------|-------|-------|------------|----------------|-------|---------------------------------|--------------|
|      | (ton.sz/m) |       |       |            |                |       | 1- 1                            | (ton. s2/m)  |
| -    | 41.768     | 24.75 | 0.908 | -0.0010000 | 0.037          | 0.037 | 0.0011                          | 0.0572953    |
| 2    | 37.468     | 23.30 | 0.918 | -0.0030000 | 0.111          | 0.074 | 0.0046                          | 0.4625652    |
| 3    | 37.468     | 23.30 | 0.918 | -0.0060000 | 0.222          | 0.111 | 0.0104                          | 1.8502609    |
| 4    | 37.468     | 23.30 | 0.918 | -0.0100000 | 0.370          | 0.148 | 0.0185                          | 5.1396137    |
| 5    | 37.468     | 23.30 | 0.918 | -0.0130000 | 0.481          | 0.111 | 0.0104                          | 8.6859472    |
| 9    | 37.468     | 23.30 | 0.918 | -0.0160000 | 0.593          | 0.111 | 0.0104                          | 13.157411    |
| 7    | 37.468     | 23.30 | 0.918 | -0.0190000 | 0.704          | 0.111 | 0.0104                          | 18.554005    |
| 8    | 37.468     | 23.30 | 0.918 | -0.0220000 | 0.815          | 0.111 | 0.0104                          | 24.87573     |
| 6    | 37.468     | 23.30 | 0.918 | -0.0250000 | 0.926          | 0.111 | 0.0104                          | 32.122586    |
| 10   | 26.953     | 23.30 | 0.918 | -0.0270000 | 1.000          | 0.074 | 0.0046                          | 26.953122    |
|      |            |       |       |            |                | Suma  | 0.0914                          | 131.8585     |
|      |            |       |       |            |                |       |                                 |              |

 $B = \frac{\Delta_{max}}{\Delta_{obj}} = \frac{2.31 - 0.41 \ln \xi_l}{2.31 - 0.41 \ln \xi_{of}}$ 

| _           | _       | _     | _         | _  | _     |
|-------------|---------|-------|-----------|----|-------|
| Direccion y | 0.01363 | 0.005 | 2.7260000 | 5  | 63.93 |
| Direccion x | 0.00838 | 0.005 | 1.6766000 | 5  | 25.37 |
|             | Amax    | Δobj  | 8         | ξı | Sef   |

| Periodo fundamental                   | T      | 0.843 s          |  |
|---------------------------------------|--------|------------------|--|
| Amortiguamiento del sistema estructu  | ξ0     | 5 %              |  |
| Amortiguamiento efectivo total        | ξef    | 25.37 %          |  |
| Amortiguamiento viscoso               | Evis   | 20.37 %          |  |
| Coeficiente de amortiguamiento por pi | C piso | 4,381.89 ton.s/m |  |
| Numero ded disipadores por piso       | u      | 3                |  |
|                                       | c      | 1,460.63 ton.s/m |  |
|                                       | α      | 1                |  |
|                                       | k      | 0 ton/m          |  |

Por lo tanto, se obtiene:

Cxx = 1,460.63 Tn-s/m =1.46 Tn-s/mm

0 ton/m

173

| $\succ$    |
|------------|
| ы          |
| Ň          |
| 0          |
| 1CI        |
| qij        |
| Ш          |
| nto        |
| iei        |
| m          |
| uð         |
| tig        |
| 0          |
| E          |
| (U)<br>(L) |
| đ          |
| te         |
| en         |
| <u>S</u>   |
| ef         |
| S          |
| e/         |
| 0          |
| 50         |
| ē          |
| Ē          |
| ٦a         |
| 0          |
| ns         |
| he         |
| lin        |
| ě          |
| đ          |
| 6          |
| 5          |
| Z          |
| la(        |
| С          |

|    | Piso | Masa       | θ     | Cost  | ē        | ē.          | ŵri   | $\phi_{2}^{2}$ , cos $\overline{a}_{2}$ | $mi\phi i^2$ |
|----|------|------------|-------|-------|----------|-------------|-------|-----------------------------------------|--------------|
|    |      | (ton.s2/m) |       |       | -        | normalizado |       | 10 111                                  | (ton.s2/m)   |
| -  |      | 41.768     | 39.04 | 0.777 | 0.001000 | 0.043       | 0.043 | 0.0011                                  | 0.0789571    |
| 2  |      | 37.468     | 37.12 | 0.797 | 0.004000 | 0.174       | 0.130 | 0.0108                                  | 1.1332411    |
| m  |      | 37.468     | 37.12 | 0.797 | 0.007000 | 0.304       | 0.130 | 0.0108                                  | 3.4705509    |
| 4  |      | 37.468     | 37.12 | 0.797 | 0.010000 | 0.435       | 0.130 | 0.0108                                  | 7.0827569    |
| 9  |      | 37.468     | 37.12 | 0.797 | 0.012000 | 0.522       | 0.087 | 0.0048                                  | 10.19917     |
| ی  |      | 37.468     | 37.12 | 0.797 | 0.015000 | 0.652       | 0.130 | 0.0108                                  | 15.936203    |
| 2  |      | 37.468     | 37.12 | 0.797 | 0.017000 | 0.739       | 0.087 | 0.0048                                  | 20.469167    |
| 00 |      | 37.468     | 37.12 | 0.797 | 0.019000 | 0.826       | 0.087 | 0.0048                                  | 25.568752    |
| ൭  |      | 37.468     | 37.12 | 0.797 | 0.021000 | 0.913       | 0.087 | 0.0048                                  | 31.234958    |
| 10 |      | 26.953     | 37.12 | 0.797 | 0.023000 | 1.000       | 0.087 | 0.0048                                  | 26.953122    |
|    |      |            |       |       |          |             | Suma  | 0.0685                                  | 142.1269     |
|    |      |            |       |       |          |             |       |                                         |              |

| $\ln \xi_I$   | $\ln \xi_{ef}$ |  |  |  |
|---------------|----------------|--|--|--|
| -0.41         | - 0.41         |  |  |  |
| 2.31          | 2.31           |  |  |  |
| Ш             |                |  |  |  |
| $\Delta m$ áx | $\Delta_{obj}$ |  |  |  |
| 1             |                |  |  |  |
| 0             | 9              |  |  |  |
|               |                |  |  |  |

|   | Direccion y | 0.01363 | 0.005 | 2.7260000 | 9  | 63.93 |  |
|---|-------------|---------|-------|-----------|----|-------|--|
| - | Direccion x | 0.00838 | 0.005 | 1.6766000 | 9  | 25.37 |  |
|   |             | Amax    | Δobj  | 8         | ξı | Sef   |  |

| Periodo fundamental                  | T      | 1.056 s           |
|--------------------------------------|--------|-------------------|
| Amortiguamiento del sistema estruct  | ξo     | 5 %               |
| Amortiguamiento efectivo total       | ξef    | 63.93 %           |
| Amortiguamiento viscoso              | Evis   | 58.93 %           |
| Coeficiente de amortiguamiento por p | C piso | 14,559.37 ton.s/m |
| Numero ded disipadores por piso      | u      | 3                 |
|                                      | С      | 4,853.12 ton.s/m  |
|                                      | α      | 1                 |
|                                      | k      | 0 ton/m           |
|                                      |        |                   |

Por lo tanto, se obtiene:

Cyy = 4,853.12 Tn-s/m = 4.85 Tn-s/mm

# 4.2.3.2. ASIGNACIÓN DE PARÁMETROS DE DISIPADORES PARA EL MODELAMIENTO EN ETABS CASO LINEAL

En cuanto a los dispositivos de amortiguación en el caso lineal, la Imagen 65 y 66 muestra la manera de introducir las propiedades expuestas en el acápite 3.8. en el software de cálculo ETABS v16.0.0.

| Link/Sup            | port Directional Properties | >  |
|---------------------|-----------------------------|----|
| Identification      |                             |    |
| Property Name       | DX                          | _  |
| Direction           | U1                          | _  |
| Туре                | Damper - Exponential        |    |
| NonLinear           | No                          |    |
| Linear Properties   |                             |    |
| Effective Stiffness | 1 tonf/mr                   | n  |
| Effective Damping   | 2.9 tonf-s/n                | nm |
|                     |                             |    |
| 0                   | K Cancel                    |    |

(a)

| Identification                                                |                           |
|---------------------------------------------------------------|---------------------------|
| Property Name                                                 | DY                        |
| Direction                                                     | U1                        |
| Туре                                                          | Damper - Exponential      |
| NonLinear                                                     | No                        |
| Linear Properties<br>Effective Stiffness<br>Effective Damping | tonf/mm<br>3.27 tonf-s/mm |
|                                                               |                           |
|                                                               |                           |

(b)

Imagen 65. Asignación propiedades del dispositivo Edificio 1. (a) en la dirección x y (b) en la dirección Y.

| Link/Suppo          | rt Directional Properties |    |  |  |
|---------------------|---------------------------|----|--|--|
| Identification      |                           |    |  |  |
| Property Name       | DX                        |    |  |  |
| Direction           | U1                        |    |  |  |
| Туре                | Damper - Exponential      | _  |  |  |
| NonLinear           | No                        |    |  |  |
| Linear Properties   |                           |    |  |  |
| Effective Stiffness | 1 tonf/mm                 | n  |  |  |
| Effective Damping   | 1.46 tonf-s/n             | nm |  |  |
| ОК                  | Cancel                    |    |  |  |

(a)

| Identification      | · · · · · · · · · · · · · · · · · · · |
|---------------------|---------------------------------------|
| Property Name       | DY                                    |
| Direction           | U1                                    |
| Туре                | Damper - Exponential                  |
| NonLinear           | No                                    |
| Linear Properties   |                                       |
| Effective Stiffness | tonf/mm                               |
| Effective Damping   | 4.85 tonf-s/mm                        |
| 01                  | Const                                 |

(b)

Imagen 66. Asignación propiedades del dispositivo Edificio 2. (a) en la dirección x y (b) en la dirección Y.

- Se recomienda incluir la dirección en que trabaja el disipador dentro del mismo nombre del elemento link para facilidad de identificación
- Se asigna el modelo Damper Exponential para la representación lineal del dispositivo.

La dirección será la misma a la disposición de los disipadores donde se desarrollará el comportamiento del disipador, las propiedades lineales deberán incluirse para U1.

#### 4.2.3.3. PRIMERA ALTERNATIVA DE DISEÑO

Las Cuadros 60, 61, 62 y 63 muestran las derivas obtenidas con valor C calculados en el 4.2.3.1.

|         | RE                  | GISTRO          | OS TIEM         | IPO HIS         |                 | DERIVA          | ‰ EN X          |                 |        |
|---------|---------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------|
| Nivel   | SXT66-EW<br>Max     | SXT66-NS<br>Max | SXT70-EW<br>Max | SXT70-NS<br>Max | SXT74-EW<br>Max | SXT74-NS<br>Max | SXT07-EW<br>Max | SXT07-NE<br>Max | MAX    |
| TECHO   | 0.0023              | 0.0017          | 0.0013          | 0.0015          | 0.0019          | 0.0016          | 0.0018          | 0.0014          | 0.0023 |
| AZOTEA  | 0.0024              | 0.0017          | 0.0013          | 0.0015          | 0.0019          | 0.0016          | 0.0018          | 0.0014          | 0.0024 |
| PISO 10 | 0.0026              | 0.0019          | 0.0014          | 0.0017          | 0.0021          | 0.0018          | 0.0019          | 0.0015          | 0.0026 |
| PISO 9  | 0.0030              | 0.0022          | 0.0017          | 0.0020          | 0.0024          | 0.0021          | 0.0023          | 0.0018          | 0.0030 |
| PISO 8  | 0.0034              | 0.0025          | 0.0019          | 0.0023          | 0.0028          | 0.0024          | 0.0026          | 0.0020          | 0.0034 |
| PISO 7  | 0.0038              | 0.0028          | 0.0022          | 0.0026          | 0.0031          | 0.0027          | 0.0029          | 0.0023          | 0.0038 |
| PISO 6  | 0.0041              | 0.0030          | 0.0024          | 0.0027          | 0.0032          | 0.0029          | 0.0031          | 0.0024          | 0.0041 |
| PISO 5  | <mark>0.0042</mark> | 0.0031          | 0.0025          | 0.0028          | 0.0033          | 0.0030          | 0.0032          | 0.0026          | 0.0042 |
| PISO 4  | 0.0041              | 0.0031          | 0.0025          | 0.0028          | 0.0032          | 0.0030          | 0.0031          | 0.0026          | 0.0041 |
| PISO 3  | 0.0038              | 0.0029          | 0.0024          | 0.0026          | 0.0029          | 0.0028          | 0.0029          | 0.0025          | 0.0038 |
| PISO 2  | 0.0031              | 0.0024          | 0.0020          | 0.0022          | 0.0025          | 0.0023          | 0.0024          | 0.0022          | 0.0031 |
| PISO 1  | 0.0017              | 0.0013          | 0.0012          | 0.0012          | 0.0014          | 0.0013          | 0.0013          | 0.0013          | 0.0017 |
| MAX     | 0.0042              | 0.0031          | 0.0025          | 0.0028          | 0.0033          | 0.0030          | 0.0032          | 0.0026          | 0.0042 |

### Cuadro 60. Derivas máximas Edificio 1 incorporadas coeficiente de

amortiguamiento Dirección X

Cuadro 61. Derivas máximas Edificio 1 incorporadas coeficiente de

amortiguamiento Dirección Y

|         | <b>REGISTROS TIEMPO HISTORIA DERIVA ‰ EN Y</b> |                 |                 |                 |                 |                 |                 |                 |        |  |  |
|---------|------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------|--|--|
| Nivel   | SYT66-EW<br>Max                                | SYT66-NS<br>Max | SYT70-EW<br>Max | SYT70-NS<br>Max | SYT74-EW<br>Max | SYT74-NS<br>Max | SYT07-EW<br>Max | SYT07-NS<br>Max | XAM    |  |  |
| TECHO   | 0.0011                                         | 0.0008          | 0.0007          | 0.0007          | 0.0008          | 0.0008          | 0.0009          | 0.0008          | 0.0011 |  |  |
| AZOTEA  | 0.0018                                         | 0.0013          | 0.0011          | 0.0012          | 0.0014          | 0.0012          | 0.0014          | 0.0013          | 0.0018 |  |  |
| PISO 10 | 0.0025                                         | 0.0018          | 0.0016          | 0.0017          | 0.0019          | 0.0018          | 0.0020          | 0.0019          | 0.0025 |  |  |
| PISO 9  | 0.0032                                         | 0.0023          | 0.0020          | 0.0021          | 0.0024          | 0.0022          | 0.0025          | 0.0024          | 0.0032 |  |  |
| PISO 8  | 0.0038                                         | 0.0027          | 0.0024          | 0.0025          | 0.0029          | 0.0026          | 0.0029          | 0.0028          | 0.0038 |  |  |

|        | R                   | EGISTR          | OS TIEN         | IPO HIS         | TORIA           | DERIVA          | ‰ EN Y          | ,               |        |
|--------|---------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------|
| Nivel  | SYT66-EW<br>Max     | SYT66-NS<br>Max | SYT70-EW<br>Max | SYT70-NS<br>Max | SYT74-EW<br>Max | SYT74-NS<br>Max | SYT07-EW<br>Max | SYT07-NS<br>Max | XAM    |
| PISO 7 | 0.0042              | 0.0031          | 0.0027          | 0.0028          | 0.0033          | 0.0029          | 0.0033          | 0.0032          | 0.0042 |
| PISO 6 | 0.0044              | 0.0033          | 0.0029          | 0.0029          | 0.0035          | 0.0031          | 0.0035          | 0.0035          | 0.0044 |
| PISO 5 | <mark>0.0044</mark> | 0.0033          | 0.0030          | 0.0030          | 0.0035          | 0.0031          | 0.0035          | 0.0036          | 0.0044 |
| PISO 4 | 0.0042              | 0.0031          | 0.0028          | 0.0029          | 0.0033          | 0.0029          | 0.0033          | 0.0035          | 0.0042 |
| PISO 3 | 0.0037              | 0.0027          | 0.0025          | 0.0025          | 0.0029          | 0.0025          | 0.0029          | 0.0032          | 0.0037 |
| PISO 2 | 0.0029              | 0.0022          | 0.0019          | 0.0021          | 0.0023          | 0.0020          | 0.0024          | 0.0026          | 0.0029 |
| PISO 1 | 0.0016              | 0.0012          | 0.0011          | 0.0012          | 0.0012          | 0.0011          | 0.0014          | 0.0015          | 0.0016 |
| MAX    | 0.0044              | 0.0033          | 0.0030          | 0.0030          | 0.0035          | 0.0031          | 0.0035          | 0.0036          | 0.0044 |

Cuadro 62. Derivas máximas Edificio 2 incorporadas coeficiente de

| <b>REGISTROS TIEMPO HISTORIA DERIVA ‰ EN X</b> |                     |                  |                  |                  |                  |                  |                  |                  |        |  |  |
|------------------------------------------------|---------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|--------|--|--|
| Nivel                                          | SXT66-<br>EW Max    | SXT66-<br>NS Max | SXT70-<br>EW Max | SXT70-<br>NS Max | SXT74-<br>EW Max | SXT74-<br>NS Max | SXT07-<br>EW Max | SXT07-<br>NS Max | MAX    |  |  |
| TECH.ESC.                                      | 0.0035              | 0.0028           | 0.0024           | 0.0024           | 0.0027           | 0.0029           | 0.0023           | 0.0023           | 0.0035 |  |  |
| AZOTEA                                         | 0.0037              | 0.0029           | 0.0025           | 0.0026           | 0.0028           | 0.0031           | 0.0024           | 0.0024           | 0.0037 |  |  |
| PISO9                                          | 0.0041              | 0.0032           | 0.0028           | 0.0028           | 0.0031           | 0.0034           | 0.0026           | 0.0027           | 0.0041 |  |  |
| PISO8                                          | 0.0045              | 0.0036           | 0.0031           | 0.0032           | 0.0035           | 0.0037           | 0.0029           | 0.0030           | 0.0045 |  |  |
| PISO7                                          | 0.0048              | 0.0039           | 0.0034           | 0.0035           | 0.0038           | 0.0041           | 0.0031           | 0.0033           | 0.0048 |  |  |
| PISO6                                          | <mark>0.0051</mark> | 0.0041           | 0.0036           | 0.0037           | 0.0040           | 0.0043           | 0.0033           | 0.0036           | 0.0051 |  |  |
| PISO5                                          | 0.0050              | 0.0041           | 0.0037           | 0.0038           | 0.0041           | 0.0044           | 0.0033           | 0.0037           | 0.0050 |  |  |
| PISO4                                          | 0.0049              | 0.0041           | 0.0036           | 0.0038           | 0.0040           | 0.0043           | 0.0033           | 0.0037           | 0.0049 |  |  |
| PISO3                                          | 0.0044              | 0.0037           | 0.0033           | 0.0036           | 0.0037           | 0.0039           | 0.0031           | 0.0036           | 0.0044 |  |  |
| PISO2                                          | 0.0035              | 0.0029           | 0.0027           | 0.0029           | 0.0030           | 0.0031           | 0.0026           | 0.0030           | 0.0035 |  |  |
| PISO1                                          | 0.0016              | 0.0013           | 0.0012           | 0.0013           | 0.0014           | 0.0014           | 0.0012           | 0.0014           | 0.0016 |  |  |
| MAX                                            | 0.0051              | 0.0041           | 0.0037           | 0.0038           | 0.0041           | 0.0044           | 0.0033           | 0.0037           | 0.0051 |  |  |

amortiguamiento Dirección X

|           | REC             | GISTRO          | S TIEMF         | PO HIST         | ORIA DI         | ERIVA %         | EN Y            |                     |        |
|-----------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|---------------------|--------|
| Nivel     | SYT66-EW<br>Max | SYT66-NS<br>Max | SYT70-EW<br>Max | SYT70-NS<br>Max | SYT74-EW<br>Max | SYT74-NS<br>Max | SYT07-EW<br>Max | SYT07-NS<br>Max     | MAX    |
| TECH.ESC. | 0.0008          | 0.0009          | 0.0007          | 0.0009          | 0.0010          | 0.0008          | 0.0010          | 0.0011              | 0.0011 |
| AZOTEA    | 0.0008          | 0.0009          | 0.0007          | 0.0008          | 0.0009          | 0.0008          | 0.0009          | 0.0011              | 0.0011 |
| PISO9     | 0.0010          | 0.0011          | 0.0008          | 0.0010          | 0.0011          | 0.0009          | 0.0012          | 0.0014              | 0.0014 |
| PISO8     | 0.0012          | 0.0013          | 0.0010          | 0.0013          | 0.0014          | 0.0012          | 0.0014          | 0.0017              | 0.0017 |
| PISO7     | 0.0014          | 0.0016          | 0.0012          | 0.0015          | 0.0017          | 0.0014          | 0.0017          | 0.0020              | 0.0020 |
| PISO6     | 0.0015          | 0.0018          | 0.0014          | 0.0017          | 0.0019          | 0.0016          | 0.0020          | 0.0023              | 0.0023 |
| PISO5     | 0.0017          | 0.0020          | 0.0016          | 0.0019          | 0.0021          | 0.0018          | 0.0022          | 0.0026              | 0.0026 |
| PISO4     | 0.0017          | 0.0021          | 0.0017          | 0.0021          | 0.0023          | 0.0019          | 0.0024          | 0.0029              | 0.0029 |
| PISO3     | 0.0018          | 0.0021          | 0.0018          | 0.0021          | 0.0024          | 0.0020          | 0.0025          | <mark>0.0030</mark> | 0.0030 |
| PISO2     | 0.0017          | 0.0019          | 0.0017          | 0.0020          | 0.0022          | 0.0018          | 0.0023          | 0.0028              | 0.0028 |
| PISO1     | 0.0010          | 0.0010          | 0.0010          | 0.0011          | 0.0012          | 0.0010          | 0.0013          | 0.0016              | 0.0016 |
| MAX       | 0.0018          | 0.0021          | 0.0018          | 0.0021          | 0.0024          | 0.0020          | 0.0025          | 0.0030              | 0.0030 |

#### Cuadro 63. Derivas máximas Edificio 2 incorporadas coeficiente de

amortiguamiento Dirección Y

Los valores máximos de deriva alcanzados en la dirección X e Y con la inclusión de amortiguadores fueron: para el edificio 1 de 4.2 y 4.4 por mil. Estos valores son menores a 7 por mil, establecido como máximo por la norma peruana sismorresistente E.030, para edificios de concreto armado, se toma como un valor aceptable. Para el edificio 2 se obtuvo la deriva máxima de 5.1 y 3.0 por mil lo cual cumple con las derivas de la norma.

#### 4.2.3.4. REVISIÓN DE DESPLAZAMIENTOS DE PISO

Una vez incorporado los amortiguadores se logra reducir los desplazamientos máximos.


Imagen 67. Revisión de desplazamiento máxima Edificio 1 (eje x) =







Imagen 69. Revisión de desplazamiento máxima Edificio 2 (eje x) = 122.18 mm





# 4.2.3.5. REVISIÓN DE DESPLAZAMIENTOS RELATIVOS DE ENTREPISO



Estas derivas se obtuvieron después que se añadieran las señales sísmicas.

Imagen 71. Deriva máxima Edificio 1 (dirección X) = 0.42 – CUMPLE



Imagen 72. Deriva máxima Edificio 1 (dirección Y) = 0.44 – CUMPLE



Imagen 73. Deriva máxima Edificio 2 (dirección X) = 0.51 – CUMPLE



Imagen 74. Deriva máxima Edificio 2 (dirección Y) = 0.30 – CUMPLE

# 4.2.3.6. REVISIÓN DE LAS DERIVAS Y DESPLAZAMIENTOS PARA LOS ACELEROGRAMAS.

En ambos casos se han promediado la respuesta de 4 registros de aceleraciones de sismos peruanos (C6610, C7005, C7410, C0708), todos estos escalados para la zona 3.

Cuadro 64. Resultados del análisis tiempo historia para la dirección X - X,

|        | Acolorograma         | Deriva   | Desplazamiento |
|--------|----------------------|----------|----------------|
|        | Acelerograma         | Max. (‰) | Max. (mm)      |
|        | Octubre de 1966 (EW) | 4.2      | 96.01          |
|        | Octubre de 1966 (NS) | 3.1      | 71.35          |
| Tie    | Mayo de 1970 (EW)    | 2.5      | 57.06          |
| mpc    | Mayo de 1970 (NS)    | 2.8      | 64.31          |
| His    | Octubre de 1974 (EW) | 3.3      | 75.28          |
| itoria | Octubre de 1974 (NS) | 3.0      | 68.00          |
| Ψ.     | Agosto de 2007 (EW)  | 3.2      | 73.09          |
|        | Agosto de 2007 (NS)  | 2.6      | 59.59          |

edificio 1

Cuadro 65. Resultados del análisis tiempo historia para la dirección Y – Y,

### edificio 1

|        | Acolorograma         | Deriva   | Desplazamiento |  |  |
|--------|----------------------|----------|----------------|--|--|
|        | Acelerograma         | Max. (‰) | Max. (mm)      |  |  |
|        | Octubre de 1966 (EW) | 4.4      | 100.19         |  |  |
|        | Octubre de 1966 (NS) | 3.3      | 73.86          |  |  |
| Tie    | Mayo de 1970 (EW)    | 3.0      | 66.51          |  |  |
| mpc    | Mayo de 1970 (NS)    | 3.0      | 67.03          |  |  |
| His    | Octubre de 1974 (EW) | 3.5      | 78.02          |  |  |
| itoria | Octubre de 1974 (NS) | 3.1      | 69.58          |  |  |
| ш      | Agosto de 2007 (EW)  | 3.5      | 79.15          |  |  |
|        | Agosto de 2007 (NS)  | 3.6      | 80.55          |  |  |

| edifici              | io 2                                                                                                                                                                                                            |                                                                                                                                                                                                                          |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Acolorograma         | Deriva                                                                                                                                                                                                          | Desplazamiento                                                                                                                                                                                                           |
| Aceleiografila       | Max. (‰)                                                                                                                                                                                                        | Max. (mm)                                                                                                                                                                                                                |
| Octubre de 1966 (EW) | 5.1                                                                                                                                                                                                             | 122.18                                                                                                                                                                                                                   |
| Octubre de 1966 (NS) | 4.1                                                                                                                                                                                                             | 99.46                                                                                                                                                                                                                    |
| Mayo de 1970 (EW)    | 3.7                                                                                                                                                                                                             | 87.40                                                                                                                                                                                                                    |
| Mayo de 1970 (NS)    | 3.8                                                                                                                                                                                                             | 97.50                                                                                                                                                                                                                    |
| Octubre de 1974 (EW) | 4.1                                                                                                                                                                                                             | 97.50                                                                                                                                                                                                                    |
| Octubre de 1974 (NS) | 4.4                                                                                                                                                                                                             | 104.63                                                                                                                                                                                                                   |
| Agosto de 2007 (EW)  | 3.3                                                                                                                                                                                                             | 80.27                                                                                                                                                                                                                    |
| Agosto de 2007 (NS)  | 3.7                                                                                                                                                                                                             | 88.01                                                                                                                                                                                                                    |
|                      | edifici<br>Acelerograma<br>Octubre de 1966 (EW)<br>Octubre de 1966 (NS)<br>Mayo de 1970 (EW)<br>Mayo de 1970 (NS)<br>Octubre de 1974 (EW)<br>Octubre de 1974 (NS)<br>Agosto de 2007 (EW)<br>Agosto de 2007 (NS) | edificio 2AcelerogramaDeriva<br>Max. (%)Octubre de 1966 (EW)5.1Octubre de 1966 (NS)4.1Mayo de 1970 (EW)3.7Mayo de 1970 (NS)3.8Octubre de 1974 (EW)4.1Octubre de 1974 (NS)4.4Agosto de 2007 (EW)3.3Agosto de 2007 (NS)3.7 |

Cuadro 66. Resultados del análisis tiempo historia para la dirección X - X,

Cuadro 67. Resultados del análisis tiempo historia para la dirección Y - Y,

|       | Acolorograma         | Deriva   | Desplazamiento |  |  |
|-------|----------------------|----------|----------------|--|--|
|       | Acelei ografila      | Max. (‰) | Max. (mm)      |  |  |
|       | Octubre de 1966 (EW) | 1.8      | 38.16          |  |  |
|       | Octubre de 1966 (NS) | 2.1      | 45.42          |  |  |
| Tie   | Mayo de 1970 (EW)    | 1.8      | 35.91          |  |  |
| mpc   | Mayo de 1970 (NS)    | 2.1      | 48.38          |  |  |
| ) His | Octubre de 1974 (EW) | 2.4      | 48.38          |  |  |
| toria | Octubre de 1974 (NS) | 2.0      | 40.65          |  |  |
| E C   | Agosto de 2007 (EW)  | 2.5      | 51.81          |  |  |
|       | Agosto de 2007 (NS)  | 3.0      | 61.68          |  |  |
|       |                      |          | •              |  |  |

edificio 2

Los valores máximos de deriva alcanzados en la dirección X e Y en el edificio 1 con la inclusión de amortiguadores lineales fueron de 4.2 y 4.4 por mil respectivamente. Y en el edificio 2 fueron de 5.1 y 3.0 Estos valores son menores al valor de 7 por mil, establecido como máximo por la norma peruana sismorresistente E.030, para edificios aporticados de concreto armado.

Se observa que los amortiguadores no lineales y lineales logran prácticamente reducir la deriva.

### 4.2.3.7. CURVA DE HISTÉRESIS

A partir de estos gráficos podemos identificar el comportamiento fuerza- desplazamiento del amortiguador. Se observa una tendencia semi-elíptica (subrayada alrededor de las curvas). Esta tendencia se expuso previamente en el acápite 2.4.1.



Imagen 75. Edificio 1 - Histéresis de Dispositivos Lineales.



Imagen 76. Edificio 2 - Histéresis de Dispositivos Lineales.

### 4.2.4. ANALISIS NO LINEAL DE DISIPADORES:

# 4.2.4.1. ESTIMACIÓN DEL COEFICIENTE "C" – DISPOSITIVOS NO LINEALES

El primer paso corresponde a la definición del exponente de velocidad "  $\alpha$ ". Para este caso, por tratarse de un dispositivo no lineal se considerará como "  $\alpha$  = 0.5". Una vez culminado esta elección, se procede a utilizar la siguiente ecuación:

$$\beta_{visc} = \frac{\sum_{j} \lambda C_{j} \, \phi_{rj}^{1+\alpha} Cos^{1+\alpha} \theta_{j}}{2\pi A^{1-\alpha} \omega^{2-\alpha} \Sigma_{i} m_{i} \phi_{i}^{2}}$$

Para predimensionar el sistema de amortiguador se asume que todos los amortiguadores tendrán un coeficiente "C" constante, procedemos a despejar la variable "C" de la ecuación base para un amortiguamiento viscoso objetivo, el cual se le asignará en el programa a todos los amortiguadores, la disposición de los amortiguadores será en forma diagonal.

$$c_{Piso} = nC = \left(\xi_{ef} - \xi_I\right) \frac{2\pi A^{1-\alpha} \omega^{2-\alpha} \Sigma_i m_i \phi_i^2}{\Sigma_i \lambda \phi_{rj}^{1+\alpha} \cos^{1+\alpha} \theta_j}$$

| <br>                                            |             | _           | _           | _           | _          | _           | _           | _           |             | _           |          |
|-------------------------------------------------|-------------|-------------|-------------|-------------|------------|-------------|-------------|-------------|-------------|-------------|----------|
| $mi\phi i^2$<br>(ton.s2/m)                      | 0.171103376 | 1.169106611 | 3.580388997 | 7.730419226 | 13.4581469 | 20.41313827 | 28.39855396 | 36.75677151 | 44.63034665 | 37.92290928 | 194.2309 |
| $\phi_{rj}^{1+\alpha}cos_{\theta_i}^{1+\alpha}$ | 0.0109      | 0.0226      | 0.0310      | 0.0355      | 0.0355     | 0.0332      | 0.0310      | 0.0267      | 0.0206      | 0.0206      | 0.2676   |
| φrj                                             | 0.058       | 0.090       | 0.111       | 0.122       | 0.122      | 0.116       | 0.111       | 0.101       | 0.085       | 0.085       | Suma     |
| ф /<br>ncumalitado                              | 0.058       | 0.148       | 0.259       | 0.381       | £05°0      | 0.619       | 052.0       | 0.831       | 0.915       | 1.000       |          |
| φ/                                              | 0.001100    | 0.002800    | 0.004900    | 0.007200    | 0.009500   | 0.011700    | 0.013800    | 0.015700    | 0.017300    | 0.018900    |          |
| Cos8                                            | 0.846       | 0.888       | 0.888       | 0.888       | 0.888      | 0.888       | 0.888       | 0.888       | 0.888       | 0.888       |          |
| 8                                               | 32.20       | 27.40       | 27.40       | 27.40       | 27.40      | 27.40       | 27.40       | 27.40       | 27.40       | 27.40       |          |
| Masa<br>(ton.sz/m)                              | 50.512      | 53.267      | 53.267      | 53.267      | 53.267     | 53.267      | 53.267      | 53.267      | 53.267      | 37-923      |          |
| Piso                                            | 1           | 2           | 8           | 4           | 5          | 9           | 7           | 8           | 9           | 10          |          |

Cuadro 68. Predimensionamiento del coeficiente de amortiguamiento Edificio 1 en x diagonal

 $B = \frac{\Delta_{max}}{\Delta_{obj}} = \frac{2.31 - 0.41 \ln \xi_I}{2.31 - 0.41 \ln \xi_{of}}$ 

| ion x Direccion y | 85 0.0097  | 0.005     | 3000 1.9350000 | 5                | 37 34.96 |  |
|-------------------|------------|-----------|----------------|------------------|----------|--|
| Direcci           | Amax 0.008 | 100j 0.00 | 3 1.7096       | ξ <sub>1</sub> 5 | ξef 26.5 |  |

| Periodo fundamental                     | T      | 0.742    | 8              |
|-----------------------------------------|--------|----------|----------------|
| Amortiguamiento del sistema estructural | ξo     | 5        | 94             |
| Amortiguamiento efectivo total          | Şef    | 26.57    | 96             |
| Amortiguamiento viscoso                 | Evis   | 21.57    | 96             |
| Frecuencia de la señal                  | 3      | 8.47     | rad/seg        |
| Amplitud                                | A      | 0.11     | m              |
| Lambda                                  | ٧      | 3.50     |                |
| Coeficiente de amortiguamiento por piso | C piso | 2,340.44 | ton.s/m        |
| Numero ded disipadores por piso         | u      | 3        |                |
|                                         | C      | 780.15   | ton.(s/m)^Cexp |

 $\lambda = 2^{2+\alpha} \frac{\Gamma^2(1+\alpha/2)}{\Gamma(2+\alpha)} \qquad \frac{\alpha}{k}$ 

ton/m

0.5 0

Por lo tanto, se obtiene:

# Cxx = 780.15 Tn-(s/m)^Cexp = 24.67 Tn-(s/mm)^Cexp

| Piso | Masa<br>(ton.s2/m) | 8     | Cos8  | /Φ       | ф /<br>ncvmalirado | φrj   | $\phi_{rj}^{1+\alpha}cos_{\theta_i}^{1+\alpha}$ | mi¢i <sup>2</sup><br>(ton. s2/m) |
|------|--------------------|-------|-------|----------|--------------------|-------|-------------------------------------------------|----------------------------------|
| 1    | 50.512             | 32.68 | 0.842 | 0.001200 | 0.055              | 0.055 | 0.0100                                          | 0.153054577                      |
| 2    | 53.267             | 27.85 | 0.884 | 0.003100 | 0.142              | 0.087 | 0.0214                                          | 1.077139774                      |
| 3    | 53.267             | 27.85 | 0.884 | 0.005500 | 0.252              | 0.110 | 0.0304                                          | 3.390580453                      |
| 4    | 53.267             | 27.85 | 0.884 | 0.008200 | 0.376              | 0.124 | 0.0362                                          | 7.536615856                      |
| 5    | 53.267             | 27.85 | 0.884 | 0.011000 | 0.505              | 0.128 | 0.0383                                          | 13.56232181                      |
| 9    | 53.267             | 27.85 | 0.884 | 0.013700 | 0.628              | 0.124 | 0.0362                                          | 21.03729075                      |
| 7    | 53.267             | 27.85 | 0.884 | 0.016300 | 0.748              | 0.119 | 0.0342                                          | 29.77994448                      |
| 8    | 53.267             | 27.85 | 0.884 | 0.018500 | 0.849              | 0.101 | 0.0267                                          | 38.36119537                      |
| 9    | 53.267             | 27.85 | 0.884 | 0.020300 | 0.931              | 0.083 | 0.0197                                          | 46.18923302                      |
| 10   | 37-923             | 27.85 | 0.884 | 0.021800 | 1.000              | 0.069 | 0.0150                                          | 37.92290928                      |
|      |                    |       |       |          |                    | Suma  | 0.2681                                          | 100.0103                         |

Cuadro 69. Predimensionamiento del coeficiente de amortiguamiento Edificio 1 en Y

Γ. т Т Т т Т

Т

| $\frac{0.41 \ln \xi_I}{.41 \ln \xi_{ef}}$                           | Direccion y | 0.0097 | 0.005 | 1.9350000 | 5  |
|---------------------------------------------------------------------|-------------|--------|-------|-----------|----|
| $B = \frac{\Delta_{max}}{\Delta_{obj}} = \frac{2.31 - 0}{2.31 - 0}$ | Direccion x | 0.0085 | 0.005 | 1.7096000 | 5  |
|                                                                     |             | Amax   | Δobj  | в         | ξI |

| Periodo fundamental                     | T      | 0.926    | 2              |
|-----------------------------------------|--------|----------|----------------|
| Amortiguamiento del sistema estructural | 50     | 5        | 96             |
| Amortiguamiento efectivo total          | ξef    | 34.96    | 96             |
| Amortiguamiento viscoso                 | Evis   | 29.96    | 96             |
| Frecuencia de la señal                  | 3      | 6.79     | rad/seg        |
| Amplitud                                | A      | 0.11     | ш              |
| Lambda                                  | ٧      | 3-50     |                |
| Coeficiente de amortiguamiento por piso | C piso | 2,311.17 | ton.s/m        |
| Numero ded disipadores por piso         | n      | З        |                |
|                                         | c      | 270.3909 | ton.(s/m)^Cexp |

Por lo tanto, se obtiene:

34.96 9

26.57

Sel 25

Cyy = 770.39 Tn-(s/m)^Cexp = 24.36 Tn-(s/mm)^Cexp

o ton/m

0.5

в 4 191

|   | mi¢i <sup>2</sup><br>(ton.s2/m)                 | 0.057295344 | 0.462565233 | 1.850260933 | 5.139613703 | 8.685947158 | 13.15741108 | 18.55400547 | 24.87573032 | 32.12258564 | 26.95312232 | 131.8585 |
|---|-------------------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|----------|
|   | $\phi_{rj}^{1+\alpha}cos_{\theta_i}^{1+\alpha}$ | 0.0062      | 0.0177      | 0.0326      | 0.0502      | 0.0326      | 0.0326      | 0.0326      | 0.0326      | 0.0326      | 0.0177      | 0.2874   |
|   | φrj                                             | 0.037       | 0.074       | 0.111       | 0.148       | 0.111       | 0.111       | 0.111       | 0.111       | 0.111       | 0.074       | Suma     |
| ) | ф /<br>ncumalitado                              | 150.0       | 0.111       | 0.222       | 0.370       | 0.481       | £65°0       | 0.704       | 0.815       | 0.926       | 1.000       |          |
|   | /Φ                                              | -0.001000   | -0.003000   | -0.006000   | -0.010000   | -0.013000   | -0.016000   | -0.019000   | -0.022000   | -0.025000   | -0.027000   |          |
| ) | Cos8                                            | 0.908       | 0.918       | 0.918       | 0.918       | 0.918       | 0.918       | 0.918       | 0.918       | 0.918       | 0.918       |          |
|   | 8                                               | 24-75       | 23.30       | 23.30       | 23.30       | 23-30       | 23-30       | 23.30       | 23.30       | 23.30       | 23.30       |          |
|   | Masa<br>(ton.sz/m)                              | 41.768      | 37.468      | 37.468      | 37.468      | 37.468      | 37.468      | 37.468      | 37.468      | 37.468      | 26.953      |          |
|   | Piso                                            | 1           | 2           | 8           | 4           | 2           | 9           | 2           | 8           | 6           | 10          |          |

| $\mathbf{X}$            |
|-------------------------|
| 2                       |
| S                       |
| Ð                       |
| 01                      |
| • •                     |
| 0                       |
| 5                       |
| 2                       |
|                         |
| 0                       |
| ш                       |
|                         |
| 0                       |
| 5                       |
| 3                       |
| Ŀ.                      |
| 3                       |
| 2                       |
| 5                       |
| 2                       |
| <u>.</u> 0              |
| +                       |
| 2                       |
| ž                       |
| 5                       |
| G                       |
|                         |
| Ð                       |
| 0                       |
| <b>a</b> \              |
| 5                       |
| Ē                       |
| 6                       |
| ·×                      |
| <u>9</u> .              |
| Ϋ́                      |
| Φ                       |
| 0                       |
| S                       |
| -                       |
| Ð                       |
| σ                       |
| $\sim$                  |
| 5                       |
| 2                       |
| 3                       |
| Щ.                      |
| 3                       |
| 3                       |
| 2                       |
| 2                       |
| 9.                      |
| S                       |
| ć                       |
| d)                      |
| ž                       |
| 2                       |
| 1                       |
| ž                       |
| Ϋ́                      |
| $\overline{\mathbf{n}}$ |
| 4                       |
| <u> </u>                |
| 2                       |
| $\sim$                  |
| 0                       |
| Ľ                       |
| 0                       |
| ā                       |
| 5                       |
| ~                       |
| ()                      |

| $-0.41 \ln \xi_I$ | $-0.41 \ln \xi_{ef}$ |
|-------------------|----------------------|
| 2.31              | 2.31                 |
| $\Delta_{max}$    | Aobj                 |
| 1                 |                      |
|                   | 9                    |

| 1 1         | <b>,</b>   1 | - I ' | 4         |    | <u> </u> | ~ |
|-------------|--------------|-------|-----------|----|----------|---|
|             |              |       |           |    |          |   |
| Direccion y | 0.01363      | 0.005 | 2.7260000 | 5  | 63.93    |   |
| Direccion x | 0.00838      | 0.005 | 1.6766000 | 9  | 25.37    |   |
|             | Amax         | Δobj  | 8         | ξ, | Sef      |   |

| Periodo fundamental                     | T      | 0.843    | 5              |
|-----------------------------------------|--------|----------|----------------|
| Amortiguamiento del sistema estructural | eş     | 5        | 96             |
| Amortiguamiento efectivo total          | Şef    | 25.37    | 96             |
| Amortiguamiento viscoso                 | Evis   | 20.37    | 96             |
| Frecuencia de la señal                  | 3      | 7-45     | rad/seg        |
| Amplitud                                | A      | 0.11     | m              |
| Lambda                                  | ٧      | 3.50     |                |
| Coeficiente de amortiguamiento por piso | C piso | 1,141.19 | ton.s/m        |
| Numero ded disipadores por piso         | n      | З        |                |
|                                         | C      | 380.40   | ton.(s/m)^Cexp |
| -21 01 )                                | α      | 0.5      |                |
| $21+\alpha \frac{1^{-}(1+m/2)}{2}$      | k      | 31965.96 | ton/m          |

 $\lambda = 2^{1+\alpha} \frac{\Gamma^2(1+\alpha/2)}{\Gamma(2+\alpha)}$ 

Por lo tanto, se obtiene:

# Cxx = 380.40 Tn-(s/m)^Cexp = 12.03 Tn-(s/mm)^Cexp

|                                                 | -         | _           | _           | _          | _           | _           | _           | _           |             | _           | _        |
|-------------------------------------------------|-----------|-------------|-------------|------------|-------------|-------------|-------------|-------------|-------------|-------------|----------|
| mi¢i²<br>(ton.s2/m)                             | 0.0789571 | 1.133241101 | 3.470550871 | 7.08275688 | 10.19916991 | 15.93620298 | 20.46916738 | 25.56875234 | 31.23495784 | 26.95312232 | 142.1269 |
| $\phi_{rj}^{1+\alpha}cos_{\theta_i}^{1+\alpha}$ | 0.0062    | 0.0335      | 0.0335      | 0.0335     | 0.0183      | 0.0335      | 0.0183      | 0.0183      | 0.0183      | 0.0183      | 0.2317   |
| φrj                                             | 0.043     | 0.130       | 0.130       | 0.130      | 0.087       | 0.130       | 0.087       | 0.087       | 0.087       | 0.087       | Suma     |
| ф /<br>ncrmalizado                              | 0.043     | 0.174       | 0.304       | 0.435      | 0.522       | 0.652       | 0.739       | 0.826       | 0.913       | 1.000       |          |
| ) <del>\</del>                                  | 0.001000  | 0.004000    | 0.007000    | 0.010000   | 0.012000    | 0.015000    | 0.017000    | 0.019000    | 0.021000    | 0.023000    |          |
| Cos <del>0</del>                                | 0.777     | 0.797       | 0.797       | 0.797      | 262.0       | 0.797       | 0.797       | 0.797       | 0.797       | 0.797       |          |
| 8                                               | 39.04     | 37.12       | 37.12       | 37.12      | 37.12       | 37.12       | 37.12       | 37.12       | 37.12       | 37.12       |          |
| Masa<br>(ton.s2/m)                              | 41.768    | 37.468      | 37-468      | 37.468     | 37.468      | 37.468      | 37.468      | 37.468      | 37.468      | 26.953      |          |
| Piso                                            | 1         | 2           |             | 4          | 5           | 6           | 2           | 8           | 9           | 10          |          |

Cuadro 71. Predimensionamiento del coeficiente de amortiguamiento Edificio 2 en Y

| $\ln\xi_I$     | In Ear      |
|----------------|-------------|
| 2.31 - 0.41    | 2.31 - 0.41 |
| - 1            | 1           |
| $\Delta_{max}$ | Anbi        |
| 1              |             |
| 0              | 0           |
|                |             |

|     | Direccion x | Direccion y |
|-----|-------------|-------------|
| nax | 0.00838     | 0.01363     |
| bj  | 0.005       | 0.005       |
|     | 1.6766000   | 2.7260000   |
| ξ,  | 9           | 5           |
| Sef | 25.37       | 63.93       |
|     |             |             |

| Periodo fundamental                     | T      | 1.056    | s              |
|-----------------------------------------|--------|----------|----------------|
| Amortiguamiento del sistema estructural | ξo     | 5        | 96             |
| Amortiguamiento efectivo total          | ξef    | 63.93    | 26             |
| Amortiguamiento viscoso                 | Evis   | 58.93    | 96             |
| Frecuencia de la señal                  | 3      | 5-95     | rad/seg        |
| Amplitud                                | A      | 0.10     | ш              |
| Lambda                                  | v      | 3.50     |                |
| Coeficiente de amortiguamiento por piso | C piso | 3,040.52 | ton.s/m        |
| Numero ded disipadores por piso         | n      | З        |                |
|                                         | c      | 1,013.51 | ton.(s/m)^Cexp |
|                                         | α      | 0.5      |                |

Por lo tanto, se obtiene:

# Cyy = 1,013.51 Tn-(s/m)^Cexp = 32.05 Tn-(s/mm)^Cexp

61978.47 ton/m

4

0.5

# 4.2.4.2. ESTIMACIÓN PRELIMINAR DE RIGIDEZ "K"– DISPOSITIVOS NO LINEALES

Se inicia la iteración considerando un perfil metálico estándar HSS o PIPE STD, por ejemplo:

Cuadro 72. Las propiedades del perfil del tipo HSS 11.250 – Edificio 1 Dirección X-X

|    | Nominal<br>Outside<br>Diameter | Size<br>Wall                                       | Weight<br>per<br>Foot                              | Wall<br>Thickness<br>t                    | D/t                                                 | Cross<br>Sectional<br>Area                   | I                                       | S                                            | r                                                   | Z                                            | Torsional<br>Stiffness<br>Constant<br>J       | Torsional<br>Shear<br>Constant<br>C          | Surface<br>Area<br>Per Foot                          |
|----|--------------------------------|----------------------------------------------------|----------------------------------------------------|-------------------------------------------|-----------------------------------------------------|----------------------------------------------|-----------------------------------------|----------------------------------------------|-----------------------------------------------------|----------------------------------------------|-----------------------------------------------|----------------------------------------------|------------------------------------------------------|
| IĽ | in.                            | in.                                                | lb.                                                | in.                                       |                                                     | in.2                                         | in.4                                    | in. <sup>3</sup>                             | in.                                                 | in. <sup>3</sup>                             | in.4                                          | in. <sup>3</sup>                             | ft.2                                                 |
|    | (11.250)                       | 0.625<br>0.500<br>0.375<br>0.312<br>0.250<br>0.188 | 70.99<br>57.46<br>43.60<br>36.48<br>29.40<br>22.23 | 0.465<br>0.349<br>0.291<br>0.233<br>0.174 | <b>19.4</b><br>24.2<br>32.2<br>38.7<br>48.3<br>64.7 | 19.5<br>15.8<br>12.0<br>10.0<br>8.06<br>6.05 | 278<br>229<br>178<br>151<br>122<br>92.9 | 49.4<br>40.8<br>31.6<br>26.8<br>21.8<br>16.5 | <b>3.78</b><br>3.82<br>3.86<br>3.88<br>3.90<br>3.92 | 66 2<br>54.1<br>41.5<br>35.0<br>28.3<br>21.3 | <b>556</b><br>459<br>355<br>301<br>245<br>186 | 98.8<br>81.6<br>63.2<br>53.5<br>43.5<br>33.0 | 2.95<br>2.95<br>2.95<br>2.95<br>2.95<br>2.95<br>2.95 |

Con los datos del perfil y la geometría de la estructura, se procede a definir la rigidez del sistema:

$$K = \frac{E \cdot A}{L}$$

| Radio del perfil i                                                                  | metálico ( r)                                                                          |          | 3.78                                             | in                             |                           |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|----------|--------------------------------------------------|--------------------------------|---------------------------|
| Módulo de elast                                                                     | icidad del acero (Ea                                                                   | .)       | 29000                                            | ksi                            |                           |
| Área del perfil m                                                                   | netálico                                                                               |          | 19.5                                             | in^2                           |                           |
| Longitud de braz                                                                    | o metálico 1er piso                                                                    |          | 252.53                                           | in                             |                           |
| Longitud de braz                                                                    | o metálico tipico                                                                      |          | 240.84                                           | in                             |                           |
| Esfuerzo de flue                                                                    | ncia (Fy)                                                                              |          | 35                                               | ksi                            |                           |
| Resistencia en te                                                                   | ensión (Fu)                                                                            |          | 50                                               | ksi                            |                           |
| factor de reducc                                                                    | ion (Φ)                                                                                |          | 0.90                                             |                                | _                         |
|                                                                                     |                                                                                        |          |                                                  |                                |                           |
| Módulo de elast                                                                     | icidad del acero                                                                       |          | 20389017.77                                      | tn/m2                          |                           |
| Módulo de elasti<br>Área del perfil m                                               | icidad del acero<br>netálico                                                           |          | 20389017.77<br>0.012581                          | tn/m2<br>m2                    |                           |
| Módulo de elasti<br>Área del perfil m                                               | icidad del acero<br>netálico                                                           |          | 20389017.77<br>0.012581                          | tn/m2<br>m2                    |                           |
| Módulo de elasti<br>Área del perfil m<br>Longitud de braz                           | icidad del acero<br>netálico<br>to metálico 1er piso                                   |          | 20389017.77<br>0.012581<br>6.4142                | tn/m2<br>m2<br>m               | 6.4142                    |
| Módulo de elasti<br>Área del perfil m<br>Longitud de braz<br>Longitud de braz       | icidad del acero<br>netálico<br>co metálico 1er piso<br>co metálico tipico             |          | 20389017.77<br>0.012581<br>6.4142<br>6.1174      | tn/m2<br>m2<br>m               | 6.4142<br>6.1174          |
| Módulo de elasti<br>Área del perfil m<br>Longitud de braz<br>Longitud de braz       | icidad del acero<br>netálico<br>to metálico 1er piso<br>to metálico tipico             |          | 20389017.77<br>0.012581<br>6.4142<br>6.1174      | tn/m2<br>m2<br>m<br>m          | 6.4142<br>6.1174          |
| Módulo de elast<br>Área del perfil m<br>Longitud de braz<br>Longitud de braz<br>K14 | icidad del acero<br>netálico<br>no metálico 1er piso<br>no metálico tipico<br>er 39990 | .41 tn/r | 20389017.77<br>0.012581<br>6.4142<br>6.1174<br>n | tn/m2<br>m2<br>m<br>m<br>39·99 | 6.4142<br>6.1174<br>tn/mm |

| $Fe = \frac{\pi^2 x E}{(\frac{L}{r})^2} Fe(ter) = Fe(tipico) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 64.1304<br>70.5042            | ksi<br>ksi |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------|
| $Fcr = \left(0.658 \frac{Fy}{Fe}\right) x Fy  Fcr (ter)=Fcr (tipico)=Fcr (tipico)$ | 27.85<br>28.43                | ksi<br>ksi |
| $\emptyset$ Pn = $\emptyset$ x Fcr x A $\Phi$ Pn (1er)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 488.809                       | kips       |
| $\Phi$ Pn (tipico)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 499.009                       | kips       |
| $\emptyset$ Tn = $\emptyset$ x Fy x A $\Phi$ Tn (1er)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 614.250                       | kips       |
| $\Phi$ Tn (tipico)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 614.250                       | kips       |
| ΦPn (1er)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 221.724                       | tn         |
| ΦPn (tipico)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 226.350                       | tn         |
| ΦTn (1er)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 278.624                       | tn         |
| ΦTn (tipico)=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 278.624                       | tn         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 278.624<br>243.6177<br>cumple | tn<br>tn   |

Cuadro 73. Las propiedades del perfil del tipo HSS 12.250 – Edificio 1 Dirección Y-Y

| Nomina<br>Outside<br>Diameter | al Size<br>Wall                                    | Weight<br>per<br>Foot                              | Wall<br>Thickness<br>t                             | D/t                                          | Cross<br>Sectional<br>Area                                | I                                                   | S                                            | r                                                         | Z                                                         | Torsional<br>Stiffness<br>Constant<br>J | Torsional<br>Shear<br>Constant<br>C         | Surface<br>Area<br>Per Foot                                       |
|-------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------------|----------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|----------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------|---------------------------------------------|-------------------------------------------------------------------|
| in.                           | in.                                                | lb.                                                | in.                                                |                                              | in. <sup>2</sup>                                          | in.4                                                | in. <sup>3</sup>                             | in.                                                       | in. <sup>3</sup>                                          | in. <sup>4</sup>                        | in. <sup>3</sup>                            | ft. <sup>2</sup>                                                  |
| <mark>(12.250) o</mark>       | 0.625<br>0.500<br>0.375<br>0.312<br>0.250<br>0.188 | 77.67<br>62.80<br>47.60<br>39.82<br>32.07<br>24.24 | 0.581<br>0.465<br>0.349<br>0.291<br>0.233<br>0.174 | 21.1<br>26.3<br>35.1<br>42.1<br>52.6<br>70.4 | <mark>21.3</mark><br>17.2<br>13.0<br>10.9<br>8.80<br>6.60 | <mark>363</mark><br>299<br>231<br>196<br>159<br>120 | 59.3<br>48.9<br>37.7<br>31.9<br>25.9<br>19.6 | <mark>4.13</mark><br>4.17<br>4.21<br>4.23<br>4.25<br>4.27 | <mark>79.2</mark><br>64.6<br>49.4<br>41.6<br>33.7<br>25.4 | 727<br>599<br>462<br>391<br>318<br>241  | 119<br>97.7<br>75.5<br>63.9<br>51.9<br>39.3 | <mark>3.21</mark><br>3.21<br>3.21<br>3.21<br>3.21<br>3.21<br>3.21 |

Con los datos del perfil y la geometría de la estructura, se procede a definir la rigidez del sistema:

| $K = \frac{E \cdot A}{L}$           |             |         |        |
|-------------------------------------|-------------|---------|--------|
| Radio del perfil metálico ( r)      | 4.13        | in      |        |
| Módulo de elasticidad del acero     | 29000       | ksi     |        |
| Área del perfil metálico            | 21.3        | in^2    |        |
| Longitud de brazo metálico 1er piso | 247.91      | in      |        |
| Longitud de brazo metálico tipico   | 235.99      | in      |        |
| Esfuerzo de fluencia (Fy)           | 35          | ksi     |        |
| Resistencia en tensión (Fu)         | 50          | ksi     |        |
| factor de reduccion ( $\Phi$ )      | 0.90        | 2002/06 |        |
| Módulo de elasticidad del acero     | 20389017.77 | tn/m2   |        |
| Área del perfil metálico            | 0.013742    | m2      |        |
|                                     |             |         |        |
| Longitud de brazo metálico 1er piso | 6.2968      | m       | 6.2968 |
| Longitud de brazo metálico tipico   | 5.9942      | m       | 5.9942 |
|                                     |             |         |        |
| K1er 44496.253                      | tn/m        | 44.50   | tn/mm  |
| Ktipico 46742.519                   | tn/m        | 46.74   | tn/mm  |

$$Fe = \frac{\pi^2 \times E}{(\frac{L}{r})^2} Fe(1er) = 79.4375 \text{ ksi}$$

$$Fe(1pico) = 87.6603 \text{ ksi}$$

$$Fcr = \left(0.658 \frac{Fe}{Fe}\right) x Fy \qquad Fcr (1er) = 29.11 \text{ ksi}$$

$$Fcr (tipico) = 29.61 \text{ ksi}$$

| $\emptyset$ Pn = | Ø x Fcr x A | ΦPn (1er)=   | 557-957 | kips |
|------------------|-------------|--------------|---------|------|
|                  | đ           | Pn (tipico)= | 567.693 | kips |

 $\emptyset$  Tn =  $\emptyset$  x Fy x A  $\Phi$ Tn (1er)= 670.950 kips  $\Phi$ Tn (tipico)= 670.950 kips

| ΦPn (1er)=    | 253.089 | tn |
|---------------|---------|----|
| ΦPn (tipico)= | 257.505 | tn |
| ΦTn (1er)=    | 304.343 | tn |
| ΦTn (tipico)= | 304.343 | tn |

304.343 tn 272.5591 tn cumple

### Cuadro 74. Las propiedades del perfil del tipo HSS 10.000 – Edificio 2

Nominal Size Torsional Stiffness Torsional Shear Weight per Foot Cross Sectional Area Wall Surface Thickness t Area Per Foot Constant J Outside Wall Constant D/t Diameter Т S Ζ C in. lb. in. in.2 in.4 in.3 in. in.<sup>3</sup> in.4 in.3 ft.2 in. 3.34 3.38 3.41 3.43 3.45 3.45 3.47 10.000 x 191 159 123 105 85.3 64.8 38.3 31.7 24.7 20.9 17.1 13.0 51.6 42.3 32.5 27.4 22.2 16.8 13.9 10.6 8.88 7.15 5.37 383 317 247 209 171 130 21.5 28.7 34.4 42.9 57.5 0.500 0.375 0.312 0.250 0.188 63.5 49.3 41.9 34.1 25.9 50.78 38.58 32.31 26.06 19.72 0.465 0.349 0.291 0.233 0.174 2.62 2.62 2.62 2.62 2.62 2.62

Dirección X-X

Con los datos del perfil y la geometría de la estructura, se procede a definir la rigidez del sistema:

$$K = \frac{E \cdot A}{L}$$

| Radio del perfil metálico ( r)        | 3.34        | in    |        |
|---------------------------------------|-------------|-------|--------|
| Módulo de elasticidad del acero (Eac) | 29000       | ksi   |        |
| Área del perfil metálico              | 17.2        | in^2  |        |
| Longitud de brazo metálico 1er piso   | 281.87      | in    |        |
| Longitud de brazo metálico tipico     | 278.66      | in    |        |
| Esfuerzo de fluencia (Fy)             | 35          | ksi   |        |
| Resistencia en tensión (Fu)           | 50          | ksi   |        |
| factor de reduccion ( $\Phi$ )        | 0.90        |       | _      |
| Módulo de elasticidad del acero       | 20389017.77 | tn/m2 | 1      |
| Área del perfil metálico              | 0.011097    | m2    |        |
| Longitud de brazo metálico 1er piso   | 7.1594      | m     | 7.1594 |
| Longitud de brazo metálico tipico     | 7.0779      | m     | 7.0779 |
| Kier 21602.072                        | tn/m        | 21.60 | tn/mm  |

| K1er    | 31602.072 tn/m | 31.60 tn/mm |  |
|---------|----------------|-------------|--|
| Ktipico | 31965.961 tn/m | 31.97 tn/mm |  |

|      |          | 2                                                         |
|------|----------|-----------------------------------------------------------|
| ksi  | 40.1888  | $\pi^2 \times E$ Fe(1er)=                                 |
| ksi  | 41.1196  | $Fe = \frac{1}{(\frac{L}{r})^2} Fe(tipico) =$             |
| ksi  | 24.31    | $Fcr = \left(0.658 \frac{Fy}{Fe}\right) x Fy$ Fcr (1er)=  |
| ksi  | 24.51    | Fcr (tipico)=                                             |
| kips | 376.300  |                                                           |
| kips | 379.418  | ΦPn (tipico)=                                             |
| kips | 541.800  | $\emptyset$ Tn = $\emptyset$ x Fy x A $\varphi$ Tn (1er)= |
| kips | 541.800  | ΦTn (tipico)=                                             |
|      |          |                                                           |
| tn   | 170.690  | ΦPn (1er)=                                                |
| tn   | 172.104  | ΦPn (tipico)=                                             |
| tn   | 245.760  | ФТп (1er)=                                                |
| tn   | 245.760  | ΦTn (tipico)=                                             |
| tn   | 245.760  |                                                           |
| tn   | 139.2307 |                                                           |
|      | cumple   |                                                           |
|      |          |                                                           |

Cuadro 75. Las propiedades del perfil del tipo HSS 16.000 – Edificio 2 Dirección Y-Y

|   | Nomina<br>Outside<br>Diameter | l Size<br>Wall                   | Weight<br>per<br>Foot            | Wall<br>Thickness<br>t           | D/t                          | Cross<br>Sectional<br>Area   | I                        | s                                   | r                            | Z                                  | Torsional<br>Stiffness<br>Constant<br>J | Torsional<br>Shear<br>Constant<br>C | Surface<br>Area<br>Per Foot                 |
|---|-------------------------------|----------------------------------|----------------------------------|----------------------------------|------------------------------|------------------------------|--------------------------|-------------------------------------|------------------------------|------------------------------------|-----------------------------------------|-------------------------------------|---------------------------------------------|
| I | in.                           | in.                              | lb.                              | in.                              |                              | in. <sup>2</sup>             | in.4                     | in. <sup>3</sup>                    | in.                          | in. <sup>3</sup>                   | in.4                                    | in. <sup>3</sup>                    | ft. <sup>2</sup>                            |
|   | (16.000) 🗴                    | 0.500<br>0.438<br>0.375<br>0.312 | 82.85<br>72.86<br>62.64<br>52.32 | 0.465<br>0.407<br>0.349<br>0.291 | 34.4<br>39.3<br>45.8<br>55.0 | 22.7<br>19.9<br>17.2<br>14.4 | 685<br>606<br>526<br>443 | <b>85.7</b><br>75.8<br>65.7<br>55.4 | 5.49<br>5.51<br>5.53<br>5.55 | <b>112</b><br>99.0<br>85.5<br>71.8 | 1370)<br>1210<br>1050<br>886            | 171<br>152<br>131<br>111            | <b>4.19</b><br>4.19<br>4.19<br>4.19<br>4.19 |

Con los datos del perfil y la geometría de la estructura, se procede a definir la rigidez del sistema:

| $K = \frac{E}{2}$              | · A<br>L    |             |       |          |
|--------------------------------|-------------|-------------|-------|----------|
| Radio del perfil metálico      | (r)         | 5-49        | in    |          |
| Módulo de elasticidad de       | lacero      | 29000       | ksi   |          |
| Área del perfil metálico       |             | 22.7        | in^2  |          |
| Longitud de brazo metáli       | co 1er piso | 194.36      | in    |          |
| Longitud de brazo metáli       | co tipico   | 189.68      | in    |          |
| Esfuerzo de fluencia (Fy)      |             | 35          | ksi   |          |
| Resistencia en tensión (F      | u)          | 50          | ksi   |          |
| factor de reduccion ( $\phi$ ) |             | 0.90        |       | -        |
| Módulo de elasticidad de       | lacero      | 20389017.77 | tn/m2 |          |
| Área del perfil metálico       |             | 0.014645    | m2    |          |
| Longitud da braza matéli       |             |             |       |          |
| Longitua de brazo metallo      | co ier piso | 4.9307      | m     | 4.9367   |
| Longitud de brazo metáli       | co tipico   | 4.8178      | m     | 4.8178   |
| Kim                            | 6           | techno      | 6     | Andrews  |
| VIE!                           | 00405./21   | LINIII      | 00.49 | CONTRACT |

| $Fe = \frac{(L - L)^2}{(L - r)^2} Fe(tipico) = \frac{100}{239.7797} ksi$ | $Fe = \frac{\pi^2 \times E}{(\frac{L}{r})^2} \frac{Fe(ter)}{Fe(tipico)}$ | 228.3686 ksi<br>239.7797 ksi |
|--------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------|
|--------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------|

$$Fcr = \left(0.658 \frac{Fy}{Fe}\right) x Fy Fcr (1er) = 32.83 ksi$$
  
Fcr (tipico) = 32.93 ksi

61978.467 tn/m

Ktipico

| $\emptyset$ Pn = | ØxFcrxA ØPn (1er)= | 670.622 kips |
|------------------|--------------------|--------------|
|                  | ΦPn (tipico)=      | 672.672 kips |

| Ø Tn = | ØxFyxA | ΦTn (1er)=    | 715.050 | kips |
|--------|--------|---------------|---------|------|
|        | 0      | DTn (tipico)= | 715.050 | kips |

| ΦPn (1er)=    | 304.1 | 194 tn |
|---------------|-------|--------|
| ΦPn (tipico)= | 305.  | 124 tn |
| ΦTn (1er)=    | 324.3 | 47 tn  |
| ΦTn (tipico)= | 324.3 | 47 tn  |
|               | 324.3 | 847 tn |

323.7084 tn cumple

61.98 tn/mm

# 4.2.4.3. ASIGNACIÓN DE PARÁMETROS DE DISIPADORES PARA EL MODELAMIENTO EN ETABS CASO NO LINEAL

En cuanto a los dispositivos de amortiguación en el caso lineal, la Imagen 77 y 78 muestra la manera de introducir las propiedades expuestas en el acápite 3.8. en el software de cálculo ETABS v16.0.0

| Link/Support         | Directional | Properties ×     |
|----------------------|-------------|------------------|
| Identification       |             |                  |
| Property Name        | DX          |                  |
| Direction            | U1          |                  |
| Туре                 | Damper - Ex | ponential        |
| NonLinear            | Yes         |                  |
| Linear Properties    |             |                  |
| Effective Stiffness  | 0           | tonf/mm          |
| Effective Damping    | 0           | tonf-s/mm        |
| Nonlinear Properties |             |                  |
| Stiffness            | 41.93       | tonf/mm          |
| Damping              | 24.67       | tonf*(s/mm)^Cexp |
| Damping Exponent     | 0.5         |                  |

(a)

| Link/Suppo           | ort Directional I | Properties       |
|----------------------|-------------------|------------------|
| Identification       |                   |                  |
| Property Name        | DY                |                  |
| Direction            | U1                |                  |
| Туре                 | Damper - Exp      | ponential        |
| NonLinear            | Yes               |                  |
| Linear Properties    |                   |                  |
| Effective Stiffness  | 0                 | tonf/mm          |
| Effective Damping    | 0                 | tonf-s/mm        |
| Nonlinear Properties |                   |                  |
| Stiffness            | 46.74             | tonf/mm          |
| Damping              | 24.36             | tonf*(s/mm)^Cexp |
| Damping Exponent     | 0.5               |                  |

(b)

Imagen 77. Asignación propiedades del dispositivo Edificio 1. (a) en la dirección x y (b) en la dirección Y.

| Link/Suppo           | ort Directional I | Properties       |
|----------------------|-------------------|------------------|
| Identification       |                   |                  |
| Property Name        | DX                |                  |
| Direction            | U1                |                  |
| Туре                 | Damper - Exp      | ponential        |
| NonLinear            | Yes               |                  |
| Linear Properties    |                   |                  |
| Effective Stiffness  | 0                 | tonf/mm          |
| Effective Damping    | 0                 | tonf-s/mm        |
| Nonlinear Properties |                   |                  |
| Stiffness            | 31.97             | tonf/mm          |
| Damping              | 12.03             | tonf*(s/mm)^Cexp |
| Damping Exponent     | 0.5               |                  |

| Link/Suppo           | ort Directional I | Properties       |  |
|----------------------|-------------------|------------------|--|
| Identification       |                   |                  |  |
| Property Name        | DY                |                  |  |
| Direction            | U1                |                  |  |
| Туре                 | Damper - Exp      | ponential        |  |
| NonLinear            | Yes               |                  |  |
| Linear Properties    |                   |                  |  |
| Effective Stiffness  | 0                 | tonf/mm          |  |
| Effective Damping    | 0                 | tonf-s/mm        |  |
| Nonlinear Properties |                   |                  |  |
| Stiffness            | 61.98             | tonf/mm          |  |
| Damping              | 32.05             | tonf*(s/mm)^Cexp |  |
| Damping Exponent     | 0.5               |                  |  |

(b)

Imagen 78. Asignación propiedades del dispositivo Edificio 2. (a) en la dirección x y (b) en la dirección Y.

- Se recomienda incluir la dirección en que trabaja el disipador dentro del mismo nombre del elemento link para facilidad de identificación
- Se asigna el modelo Damper Exponential para la representación no lineal del dispositivo.
- La dirección será la misma a la disposición de los disipadores donde se desarrollará el comportamiento del disipador, las propiedades no lineales deberán incluirse para U1.

### 4.2.4.4. SEGUNDA ALTERNATIVA DE DISEÑO

Las Cuadros 76, 77, 78 y 79 muestran las derivas obtenidas con valor C calculados en el 4.2.4.1.

|         | REGISTROS TIEMPO HISTORIA DERIVA ‰ EN X |                 |                 |                 |                 |                 |                 |                 |        |
|---------|-----------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------|
| Nivel   | SXT66-EW<br>Max                         | SXT66-NS<br>Max | SXT70-EW<br>Max | SXT70-NS<br>Max | SXT74-EW<br>Max | SXT74-NS<br>Max | SXT07-EW<br>Max | SXT07-NE<br>Max | MAX    |
| TECHO   | 0.0033                                  | 0.0026          | 0.0020          | 0.0022          | 0.0028          | 0.0023          | 0.0026          | 0.0021          | 0.0033 |
| AZOTEA  | 0.0033                                  | 0.0026          | 0.0020          | 0.0023          | 0.0028          | 0.0023          | 0.0026          | 0.0022          | 0.0033 |
| PISO 10 | 0.0033                                  | 0.0026          | 0.0020          | 0.0023          | 0.0028          | 0.0023          | 0.0026          | 0.0022          | 0.0033 |
| PISO 9  | 0.0038                                  | 0.0031          | 0.0023          | 0.0027          | 0.0032          | 0.0027          | 0.0031          | 0.0025          | 0.0038 |
| PISO 8  | 0.0044                                  | 0.0036          | 0.0027          | 0.0031          | 0.0037          | 0.0032          | 0.0036          | 0.0029          | 0.0044 |
| PISO 7  | 0.0049                                  | 0.0040          | 0.0030          | 0.0035          | 0.0041          | 0.0036          | 0.0040          | 0.0033          | 0.0049 |
| PISO 6  | 0.0053                                  | 0.0044          | 0.0033          | 0.0038          | 0.0044          | 0.0039          | 0.0044          | 0.0036          | 0.0053 |
| PISO 5  | <mark>0.0055</mark>                     | 0.0046          | 0.0034          | 0.0039          | 0.0046          | 0.0041          | 0.0046          | 0.0039          | 0.0055 |
| PISO 4  | 0.0054                                  | 0.0046          | 0.0034          | 0.0038          | 0.0044          | 0.0040          | 0.0046          | 0.0039          | 0.0054 |
| PISO 3  | 0.0050                                  | 0.0042          | 0.0031          | 0.0035          | 0.0042          | 0.0037          | 0.0042          | 0.0037          | 0.0050 |
| PISO 2  | 0.0043                                  | 0.0035          | 0.0026          | 0.0029          | 0.0036          | 0.0033          | 0.0036          | 0.0032          | 0.0043 |
| PISO 1  | 0.0023                                  | 0.0019          | 0.0014          | 0.0016          | 0.0019          | 0.0018          | 0.0019          | 0.0018          | 0.0023 |
| MAX     | 0.0055                                  | 0.0046          | 0.0034          | 0.0039          | 0.0046          | 0.0041          | 0.0046          | 0.0039          | 0.0055 |

### Cuadro 76. Derivas máximas Edificio 1 incorporadas coeficiente de

amortiguamiento Dirección X

Cuadro 77. Derivas máximas Edificio 1 incorporadas coeficiente de

amortiguamiento Dirección Y

|         | <b>REGISTROS TIEMPO HISTORIA DERIVA ‰ EN Y</b> |                 |                 |                 |                 |                 |                 |                 |        |
|---------|------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------|
| Nivel   | SYT66-EW<br>Max                                | SYT66-NS<br>Max | SYT70-EW<br>Max | SYT70-NS<br>Max | SYT74-EW<br>Max | SYT74-NS<br>Max | SYT07-EW<br>Max | SYT07-NS<br>Max | XAM    |
| TECHO   | 0.0013                                         | 0.0009          | 0.0008          | 0.0008          | 0.0010          | 0.0009          | 0.0009          | 0.0008          | 0.0013 |
| AZOTEA  | 0.0022                                         | 0.0015          | 0.0014          | 0.0014          | 0.0017          | 0.0015          | 0.0016          | 0.0014          | 0.0022 |
| PISO 10 | 0.0033                                         | 0.0024          | 0.0021          | 0.0021          | 0.0026          | 0.0024          | 0.0024          | 0.0021          | 0.0033 |
| PISO 9  | 0.0042                                         | 0.0030          | 0.0027          | 0.0027          | 0.0033          | 0.0030          | 0.0030          | 0.0026          | 0.0042 |
| PISO 8  | 0.0051                                         | 0.0037          | 0.0033          | 0.0033          | 0.0040          | 0.0037          | 0.0037          | 0.0032          | 0.0051 |

|        | <b>REGISTROS TIEMPO HISTORIA DERIVA ‰ EN Y</b> |                 |                 |                 |                 |                 |                 |                 |        |
|--------|------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------|
| Nivel  | SYT66-EW<br>Max                                | SYT66-NS<br>Max | SYT70-EW<br>Max | SYT70-NS<br>Max | SYT74-EW<br>Max | SYT74-NS<br>Max | SYT07-EW<br>Max | SYT07-NS<br>Max | XAM    |
| PISO 7 | 0.0059                                         | 0.0043          | 0.0038          | 0.0038          | 0.0047          | 0.0042          | 0.0043          | 0.0037          | 0.0059 |
| PISO 6 | 0.0063                                         | 0.0048          | 0.0042          | 0.0042          | 0.0051          | 0.0046          | 0.0047          | 0.0041          | 0.0063 |
| PISO 5 | <mark>0.0064</mark>                            | 0.0049          | 0.0044          | 0.0043          | 0.0053          | 0.0047          | 0.0049          | 0.0044          | 0.0064 |
| PISO 4 | 0.0062                                         | 0.0048          | 0.0043          | 0.0042          | 0.0051          | 0.0045          | 0.0048          | 0.0044          | 0.0062 |
| PISO 3 | 0.0055                                         | 0.0044          | 0.0039          | 0.0038          | 0.0046          | 0.0041          | 0.0043          | 0.0040          | 0.0055 |
| PISO 2 | 0.0043                                         | 0.0035          | 0.0031          | 0.0030          | 0.0036          | 0.0032          | 0.0035          | 0.0033          | 0.0043 |
| PISO 1 | 0.0022                                         | 0.0017          | 0.0015          | 0.0015          | 0.0018          | 0.0016          | 0.0018          | 0.0017          | 0.0022 |
| MAX    | 0.0064                                         | 0.0049          | 0.0044          | 0.0043          | 0.0053          | 0.0047          | 0.0049          | 0.0044          | 0.0064 |

Cuadro 78. Derivas máximas Edificio 2 incorporadas coeficiente de

amortiguamiento Dirección X

|           | <b>REGISTROS TIEMPO HISTORIA DERIVA ‰ EN X</b> |                 |                 |                 |                 |                 |                 |                 |        |
|-----------|------------------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------|
| Nivel     | SXT66-EW<br>Max                                | SXT66-NS<br>Max | SXT70-EW<br>Max | SXT70-NS<br>Max | SXT74-EW<br>Max | SXT74-NS<br>Max | SXT07-EW<br>Max | SXT07-NS<br>Max | MAX    |
| TECH.ESC. | 0.0038                                         | 0.0032          | 0.0023          | 0.0023          | 0.0028          | 0.0029          | 0.0027          | 0.0023          | 0.0038 |
| AZOTEA    | 0.0041                                         | 0.0034          | 0.0025          | 0.0025          | 0.0030          | 0.0031          | 0.0029          | 0.0024          | 0.0041 |
| PISO9     | 0.0045                                         | 0.0038          | 0.0028          | 0.0028          | 0.0033          | 0.0035          | 0.0033          | 0.0027          | 0.0045 |
| PISO8     | 0.0052                                         | 0.0043          | 0.0032          | 0.0032          | 0.0038          | 0.0040          | 0.0037          | 0.0031          | 0.0052 |
| PISO7     | 0.0057                                         | 0.0048          | 0.0036          | 0.0035          | 0.0043          | 0.0045          | 0.0042          | 0.0036          | 0.0057 |
| PISO6     | 0.0060                                         | 0.0052          | 0.0039          | 0.0038          | 0.0047          | 0.0048          | 0.0045          | 0.0040          | 0.0060 |
| PISO5     | <mark>0.0061</mark>                            | 0.0054          | 0.0041          | 0.0039          | 0.0049          | 0.0050          | 0.0046          | 0.0043          | 0.0061 |
| PISO4     | 0.0058                                         | 0.0053          | 0.0040          | 0.0039          | 0.0048          | 0.0048          | 0.0045          | 0.0043          | 0.0058 |
| PISO3     | 0.0051                                         | 0.0047          | 0.0037          | 0.0035          | 0.0043          | 0.0043          | 0.0040          | 0.0040          | 0.0051 |
| PISO2     | 0.0038                                         | 0.0036          | 0.0028          | 0.0028          | 0.0033          | 0.0033          | 0.0031          | 0.0032          | 0.0038 |
| PISO1     | 0.0017                                         | 0.0016          | 0.0013          | 0.0013          | 0.0015          | 0.0015          | 0.0014          | 0.0015          | 0.0017 |

|       | RE              | GISTRO          | S TIEMF         | PO HIST         | ORIA D          | ERIVA %         | ω EN X          |                 |        |
|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------|
| Nivel | SXT66-EW<br>Max | SXT66-NS<br>Max | SXT70-EW<br>Max | SXT70-NS<br>Max | SXT74-EW<br>Max | SXT74-NS<br>Max | SXT07-EW<br>Max | SXT07-NS<br>Max | MAX    |
| MAX   | 0.0061          | 0.0054          | 0.0041          | 0.0039          | 0.0049          | 0.0050          | 0.0046          | 0.0043          | 0.0061 |

Cuadro 79. Derivas máximas Edificio 2 incorporadas coeficiente de

amortiguamiento Dirección Y

|           | REGISTROS TIEMPO HISTORIA DERIVA ‰ EN Y |                 |                 |                 |                 |                 |                 |                 |        |
|-----------|-----------------------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------|
| Nivel     | SYT66-EW<br>Max                         | SYT66-NS<br>Max | SYT70-EW<br>Max | SYT70-NS<br>Max | SYT74-EW<br>Max | SYT74-NS<br>Max | SYT07-EW<br>Max | SYT07-NS<br>Max | MAX    |
| TECH.ESC. | 0.0014                                  | 0.0011          | 0.0008          | 0.0009          | 0.0014          | 0.0010          | 0.0011          | 0.0009          | 0.0014 |
| AZOTEA    | 0.0011                                  | 0.0009          | 0.0006          | 0.0007          | 0.0011          | 0.0008          | 0.0009          | 0.0007          | 0.0011 |
| PISO9     | 0.0015                                  | 0.0012          | 0.0009          | 0.0010          | 0.0016          | 0.0011          | 0.0012          | 0.0010          | 0.0016 |
| PISO8     | 0.0022                                  | 0.0018          | 0.0013          | 0.0014          | 0.0022          | 0.0016          | 0.0018          | 0.0015          | 0.0022 |
| PISO7     | 0.0029                                  | 0.0023          | 0.0017          | 0.0018          | 0.0028          | 0.0021          | 0.0023          | 0.0019          | 0.0029 |
| PISO6     | 0.0034                                  | 0.0029          | 0.0020          | 0.0022          | 0.0033          | 0.0025          | 0.0028          | 0.0023          | 0.0034 |
| PISO5     | 0.0039                                  | 0.0034          | 0.0023          | 0.0026          | 0.0037          | 0.0029          | 0.0034          | 0.0027          | 0.0039 |
| PISO4     | 0.0042                                  | 0.0037          | 0.0025          | 0.0029          | 0.0040          | 0.0032          | 0.0037          | 0.0030          | 0.0042 |
| PISO3     | <mark>0.0043</mark>                     | 0.0039          | 0.0026          | 0.0031          | 0.0041          | 0.0034          | 0.0039          | 0.0031          | 0.0043 |
| PISO2     | 0.0042                                  | 0.0039          | 0.0026          | 0.0032          | 0.0040          | 0.0035          | 0.0039          | 0.0032          | 0.0042 |
| PISO1     | 0.0024                                  | 0.0023          | 0.0016          | 0.0019          | 0.0023          | 0.0021          | 0.0023          | 0.0019          | 0.0024 |
| MAX       | 0.0043                                  | 0.0039          | 0.0026          | 0.0032          | 0.0041          | 0.0035          | 0.0039          | 0.0032          | 0.0043 |

Los valores máximos de deriva alcanzados en la dirección X e Y con la inclusión de amortiguadores fueron: para el edificio 1 de 5.5 y 6.4 por mil. Estos valores son menores a 7 por mil, establecido como máximo por la norma peruana sismorresistente E.030, para edificios de concreto armado, se toma como un valor aceptable. Para el edificio 2 se obtuvo la deriva máxima de 6.1 y 4.3 por mil lo cual cumple con las derivas de la norma.

### 4.2.4.5. REVISIÓN DE DESPLAZAMIENTOS DE PISO

Una vez incorporado los amortiguadores se logra reducir los desplazamientos máximos.







Imagen 80. Revisión de desplazamiento máxima Edificio 1 (eje y) =

138.81 mm



Imagen 81. Revisión de desplazamiento máxima Edificio 2 (eje x) = 139.23 mm





## 4.2.4.6. REVISIÓN DE DESPLAZAMIENTOS RELATIVOS DE ENTREPISO

Estas derivas se obtuvieron después que se añadieran las señales sísmicas.



Imagen 83. Deriva máxima Edificio 1 (dirección X) = 0.54 – CUMPLE



Imagen 84. Deriva máxima Edificio 1 (dirección Y) = 0.64 – CUMPLE



Imagen 85. Deriva máxima Edificio 2 (dirección X) = 0.61 – CUMPLE



Imagen 86. Deriva máxima Edificio 2 (dirección Y) = 0.43 – CUMPLE

# 4.2.4.7. REVISIÓN DE LAS DERIVAS Y DESPLAZAMIENTOS PARA LOS ACELEROGRAMAS

En ambos casos se han promediado la respuesta de 4 registros de aceleraciones de sismos peruanos (C6610, C7005, C7410, C0708), todos estos escalados para la zona 3.

| edificio 1 |                      |          |                |  |  |  |
|------------|----------------------|----------|----------------|--|--|--|
|            | Acolorograma         | Deriva   | Desplazamiento |  |  |  |
|            | Acelei ografila      | Max. (‰) | Max. (mm)      |  |  |  |
|            | Octubre de 1966 (EW) | 5.5      | 136.07         |  |  |  |
| Tie        | Octubre de 1966 (NS) | 4.6      | 111.59         |  |  |  |
|            | Mayo de 1970 (EW)    | 3.4      | 84.12          |  |  |  |
| mpc        | Mayo de 1970 (NS)    | 3.9      | 94.21          |  |  |  |
| 0 His      | Octubre de 1974 (EW) | 4.6      | 114.40         |  |  |  |
| storia     | Octubre de 1974 (NS) | 4.1      | 98.87          |  |  |  |
|            | Agosto de 2007 (EW)  | 4.6      | 112.96         |  |  |  |
|            | Agosto de 2007 (NS)  | 3.9      | 94.00          |  |  |  |

Cuadro 80. Resultados del análisis tiempo historia para la dirección X - X,

| Cuadro 81. Resultados del análisis tiempo historia para la dirección Y – Y | Υ, |
|----------------------------------------------------------------------------|----|
|----------------------------------------------------------------------------|----|

edificio 1

|        | Acolorograma         | Deriva   | Desplazamiento |
|--------|----------------------|----------|----------------|
|        | Acelei ografila      | Max. (‰) | Max. (mm)      |
|        | Octubre de 1966 (EW) | 6.4      | 138.81         |
| Tiempo | Octubre de 1966 (NS) | 4.9      | 105.63         |
|        | Mayo de 1970 (EW)    | 4.4      | 93.68          |
|        | Mayo de 1970 (NS)    | 4.3      | 92.23          |
| His    | Octubre de 1974 (EW) | 5.3      | 112.44         |
| storia | Octubre de 1974 (NS) | 4.7      | 101.00         |
|        | Agosto de 2007 (EW)  | 4.9      | 105.28         |
|        | Agosto de 2007 (NS)  | 4.4      | 92.87          |

| edificio 2      |                      |          |                |  |  |  |
|-----------------|----------------------|----------|----------------|--|--|--|
|                 | Acelerograma         | Deriva   | Desplazamiento |  |  |  |
|                 |                      | Max. (‰) | Max. (mm)      |  |  |  |
| Tiempo Historia | Octubre de 1966 (EW) | 6.1      | 139.23         |  |  |  |
|                 | Octubre de 1966 (NS) | 5.4      | 122.06         |  |  |  |
|                 | Mayo de 1970 (EW)    | 4.1      | 91.93          |  |  |  |
|                 | Mayo de 1970 (NS)    | 3.9      | 109.20         |  |  |  |
|                 | Octubre de 1974 (EW) | 4.9      | 109.20         |  |  |  |
|                 | Octubre de 1974 (NS) | 5.0      | 111.97         |  |  |  |
|                 | Agosto de 2007 (EW)  | 4.6      | 104.15         |  |  |  |
|                 | Agosto de 2007 (NS)  | 4.3      | 93.31          |  |  |  |

Cuadro 82. Resultados del análisis tiempo historia para la dirección X - X,

Cuadro 83. Resultados del análisis tiempo historia para la dirección Y – Y,

| Acolorograma         | Deriva                                                                                                                                                                        | Desplazamiento                                                                                                                                                                                                 |  |  |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Acelerograma         | Max. (‰)                                                                                                                                                                      | Max. (mm)                                                                                                                                                                                                      |  |  |
| Octubre de 1966 (EW) | 4.3                                                                                                                                                                           | 86.88                                                                                                                                                                                                          |  |  |
| Octubre de 1966 (NS) | 3.9                                                                                                                                                                           | 75.96                                                                                                                                                                                                          |  |  |
| Mayo de 1970 (EW)    | 2.6                                                                                                                                                                           | 51.17                                                                                                                                                                                                          |  |  |
| Mayo de 1970 (NS)    | 3.2                                                                                                                                                                           | 83.19                                                                                                                                                                                                          |  |  |
| Octubre de 1974 (EW) | 4.1                                                                                                                                                                           | 83.19                                                                                                                                                                                                          |  |  |
| Octubre de 1974 (NS) | 3.5                                                                                                                                                                           | 65.32                                                                                                                                                                                                          |  |  |
| Agosto de 2007 (EW)  | 3.9                                                                                                                                                                           | 75.17                                                                                                                                                                                                          |  |  |
| Agosto de 2007 (NS)  | 3.2                                                                                                                                                                           | 61.02                                                                                                                                                                                                          |  |  |
|                      | Acelerograma<br>Octubre de 1966 (EW)<br>Octubre de 1966 (NS)<br>Mayo de 1970 (EW)<br>Mayo de 1970 (NS)<br>Octubre de 1974 (EW)<br>Octubre de 1974 (NS)<br>Agosto de 2007 (EW) | AcelerogramaDeriva<br>Max. (‰)Octubre de 1966 (EW)4.3Octubre de 1966 (NS)3.9Mayo de 1970 (EW)2.6Mayo de 1970 (NS)3.2Octubre de 1974 (EW)4.1Octubre de 1974 (NS)3.5Agosto de 2007 (EW)3.9Agosto de 2007 (NS)3.2 |  |  |

edificio 2

Los valores máximos de deriva alcanzados en la dirección X e Y en el edificio 1 con la inclusión de amortiguadores no lineales fueron de 5.5 y 6.4 por mil respectivamente. Y en el edificio 2 fueron de 6.1 y 4.3 Estos valores son menores al valor de 7 por mil, establecido como máximo por la norma peruana sismorresistente E.030, para edificios aporticados de concreto armado.

### 4.2.4.8. CURVA DE HISTÉRESIS

A partir de estos gráficos podemos identificar el comportamiento fuerza- desplazamiento del amortiguador. Se observa una tendencia semi-elíptica (subrayada alrededor de las curvas). Esta tendencia se expuso previamente en el acápite 2.4.1.



Imagen 87. Edificio 1 - Histéresis de Dispositivos No Lineales.



Imagen 88. Edificio 2 - Histéresis de Dispositivos No Lineales.

Se puede identificar que la curva se encuentra algo inclinada, pero mantiene la forma predefinida de los dispositivos no lineales. A diferencia de los dispositivos lineales, no trabajan completamente a desfase con la estructura lo cual genera cierto esfuerzo remanente en los elementos estructurales.

# **CAPITULO V:**

### 5. DISCUSION DE RESULTADOS

### 5.1. EVALUACIÓN DE LOS RESULTADOS:

### 5.1.1. COMPARACIÓN DE DESPLAZAMIENTOS

Luego de comparar los resultados obtenidos se puede observar que el uso de amortiguadores tipo fluido viscoelásticos se reduce los desplazamientos de entrepiso en un rango del 24 a 45 % en el edificio 1 y de 27 % hasta un 71 % en el edificio 2.

Para el edificio 1 en la dirección X obtenemos una variación de hasta un 44.84% en el nivel inferior de la edificación 1.

|         | Desplazamiento máximo en el sentido X-X |                                   |                             |
|---------|-----------------------------------------|-----------------------------------|-----------------------------|
| PISO    | Sin<br>disipadores                      | Con<br>disipadores<br>no lineales | Porcentaje<br>variación (%) |
| TECHO   | 179.09                                  | 136.07                            | -24.02%                     |
| AZOTEA  | 170.21                                  | 129.52                            | -23.91%                     |
| PISO 10 | 194.69                                  | 123.56                            | -36.54%                     |
| PISO 9  | 180.29                                  | 114.39                            | -36.55%                     |
| PISO 8  | 163.89                                  | 103.75                            | -36.70%                     |
| PISO 7  | 146.30                                  | 91.46                             | -37.48%                     |
| PISO 6  | 126.31                                  | 77.94                             | -38.29%                     |
| PISO 5  | 104.25                                  | 63.38                             | -39.20%                     |
| PISO 4  | 80.95                                   | 48.15                             | -40.52%                     |
| PISO 3  | 57.08                                   | 33.49                             | -41.32%                     |
| PISO 2  | 34.06                                   | 19.65                             | -42.32%                     |
| PISO 1  | 14.00                                   | 7.72                              | -44.84%                     |

Cuadro 84. Variación del desplazamiento máximo edificio 1 en dirección X.




Mientras que en la dirección Y obtenemos una variación de hasta 40.27% en el nivel inferior de la edificación 1.

|         | Desplazamiento máximo en el sentido Y-Y |                                   |                             |  |  |  |
|---------|-----------------------------------------|-----------------------------------|-----------------------------|--|--|--|
| PISO    | Sin<br>disipadores                      | Con<br>disipadores<br>no lineales | Porcentaje<br>variación (%) |  |  |  |
| TECHO   | 215.4303                                | 134.409                           | -37.61%                     |  |  |  |
| AZOTEA  | 210.407                                 | 131.777                           | -37.37%                     |  |  |  |
| PISO 10 | 207.13                                  | 138.805                           | -32.99%                     |  |  |  |
| PISO 9  | O 9 191.0398 129.586                    |                                   | -32.17%                     |  |  |  |
| PISO 8  | 171.3583                                | 117.919                           | -31.19%                     |  |  |  |
| PISO 7  | 148.3911                                | 103.703                           | -30.12%                     |  |  |  |
| PISO 6  | 127.6342                                | 87.411                            | -31.51%                     |  |  |  |
| PISO 5  | 104.5888                                | 69.793                            | -33.27%                     |  |  |  |

Cuadro 85. Variación del desplazamiento máximo edificio 1 en dirección Y.

|        | Desplazamiento máximo en el sentido Y-Y |                                   |                             |  |  |  |
|--------|-----------------------------------------|-----------------------------------|-----------------------------|--|--|--|
| PISO   | Sin<br>disipadores                      | Con<br>disipadores<br>no lineales | Porcentaje<br>variación (%) |  |  |  |
| PISO 4 | 79.5378                                 | 51.742                            | -34.95%                     |  |  |  |
| PISO 3 | 54.0697                                 | 34.628                            | -35.96%                     |  |  |  |
| PISO 2 | 30.9309                                 | 19.634                            | -36.52%                     |  |  |  |
| PISO 1 | 12.6175                                 | 7.536                             | -40.27%                     |  |  |  |



Imagen 90. Comparación de desplazamiento máximo edifico 1 en dirección Y.

Para el edificio 2 en la dirección X obtenemos una variación de hasta un 40.52% en el nivel inferior.

|           | Desplazamiento máximo en el sentido X-X |                                   |                             |  |  |  |
|-----------|-----------------------------------------|-----------------------------------|-----------------------------|--|--|--|
| PISO      | Sin<br>disipadores                      | Con<br>disipadores<br>no lineales | Porcentaje<br>variación (%) |  |  |  |
| TECH.ESC. | 200.254                                 | 139.228                           | -30.47%                     |  |  |  |
| AZOTEA    | 186.94                                  | 134.637                           | -27.98%                     |  |  |  |
| PISO9     | 170.615                                 | 123.293                           | -27.74%                     |  |  |  |
| PISO8     | 152.555                                 | 110.561                           | -27.53%                     |  |  |  |
| PISO7     | 133.35                                  | 96.136                            | -27.91%                     |  |  |  |
| PISO6     | 113.311                                 | 80.211                            | -29.21%                     |  |  |  |
| PISO5     | 91.426                                  | 63.335                            | -30.73%                     |  |  |  |
| PISO4     | 69.401                                  | 46.304                            | -33.28%                     |  |  |  |
| PISO3     | 47.186                                  | 30.077                            | -36.26%                     |  |  |  |
| PISO2     | 26.111                                  | 15.844                            | -39.32%                     |  |  |  |
| PISO1     | 8.654                                   | 5.147                             | -40.52%                     |  |  |  |

Cuadro 86. Variación del desplazamiento máximo edificio 2 en dirección X.



Imagen 91. Comparación de desplazamiento máximo edifico 2 en dirección X

Mientras que en la dirección Y obtenemos una variación de hasta 71.15% en el nivel superior de la edificación 1.

|           | Desplazamiento máximo en el sentido Y-Y |                                   |                             |  |  |
|-----------|-----------------------------------------|-----------------------------------|-----------------------------|--|--|
| PISO      | Sin<br>disipadores                      | Con<br>disipadores<br>no lineales | Porcentaje<br>variación (%) |  |  |
| TECH.ESC. | 301.118                                 | 86.883                            | -71.15%                     |  |  |
| AZOTEA    | 283.442                                 | 82.706                            | -70.82%                     |  |  |
| PISO9     | 267.375                                 | 79.72                             | -70.18%                     |  |  |
| PISO8     | 247.039                                 | 75.55                             | -69.42%                     |  |  |
| PISO7     | 221.656                                 | 69.399                            | -68.69%                     |  |  |
| PISO6     | 191.788                                 | 61.737                            | -67.81%                     |  |  |
| PISO5     | 158.547                                 | 52.544                            | -66.86%                     |  |  |
| PISO4     | 124.454                                 | 41.892                            | -66.34%                     |  |  |
| PISO3     | 88.794                                  | 30.374                            | -65.79%                     |  |  |
| PISO2     | 52.553                                  | 18.707                            | -64.40%                     |  |  |
| PISO1     | 19.298                                  | 7.248                             | -62.44%                     |  |  |

Cuadro 87. Variación del desplazamiento máximo edificio 2 en dirección Y. .



Imagen 92. Comparación de desplazamiento máximo edifico 2 en dirección Y.

Así también se puede ver los desplazamientos máximos que se presentan al interactuar las señales sísmicas es de 136.07 mm en la dirección X y de 138.81 mm en la dirección Y, esto para el edificio 1 mientras que para el edificio 2 es de 139.23 mm en la dirección X y de 86.88 mm en la dirección Y tal como se muestran en las imagenes siguientes.



Imagen 93. Desplazamientos máximos con las señales sísmicas de edificio 1 en dirección X.



Imagen 94. Desplazamientos máximos con las señales sísmicas de edificio 1 en dirección Y.



Imagen 95. Desplazamientos máximos con las señales sísmicas edificio 2 en dirección X.



Imagen 96. Desplazamientos máximos con las señales sísmicas edificio 2 en dirección Y.

### 5.1.2. COMPARACIÓN DE DERIVAS

Para el edificio 1 se obtiene un gran porcentaje de reducción de derivas con el uso de amortiguadores hasta un 44.9% en la dirección X y hasta una reducción de 47.65% en la dirección Y. Esta reducción

logra su máximo valor en el piso 1 y tiene una tendencia a la baja conforme la altura del edificio desciende.

|         | Derivas máximas en el sentido X-X (‰) |                                   |                               |  |  |  |
|---------|---------------------------------------|-----------------------------------|-------------------------------|--|--|--|
| PISO    | Sin<br>disipadores                    | Con<br>disipadores<br>no lineales | Porcentaje<br>de<br>variación |  |  |  |
| TECHO   | 4.7                                   | 3.3                               | -29.98%                       |  |  |  |
| AZOTEA  | 4.8                                   | 3.3                               | -30.67%                       |  |  |  |
| PISO 10 | 5.3                                   | 3.3                               | -38.54%                       |  |  |  |
| PISO 9  | 6.3                                   | 3.8                               | -39.80%                       |  |  |  |
| PISO 8  | 7.2                                   | 4.4                               | -39.20%                       |  |  |  |
| PISO 7  | 7.9                                   | 4.9                               | -38.03%                       |  |  |  |
| PISO 6  | 8.4                                   | 5.3                               | -36.74%                       |  |  |  |
| PISO 5  | 8.5                                   | 5.5                               | -35.59%                       |  |  |  |
| PISO 4  | 8.5                                   | 5.4                               | -36.92%                       |  |  |  |
| PISO 3  | 8.2                                   | 5.0                               | -39.28%                       |  |  |  |
| PISO 2  | 7.2                                   | 4.3                               | -40.49%                       |  |  |  |
| PISO 1  | 4.1                                   | 2.3                               | -44.90%                       |  |  |  |

Cuadro 88. Comparación de derivas de entrepiso (‰) Edificio 1 dirección X.



Imagen 97. Comparación de derivas edificio 1 en dirección X.

|         | Derivas máximas en el sentido Y-Y |             |            |  |  |  |
|---------|-----------------------------------|-------------|------------|--|--|--|
|         |                                   | (‰)         |            |  |  |  |
|         | Sin                               | Con         | Porcentaje |  |  |  |
| PISO    | disinadoros                       | disipadores | de         |  |  |  |
|         | uisipauores                       | no lineales | variación  |  |  |  |
| TECHO   | 2.5                               | 1.3         | -47.65%    |  |  |  |
| AZOTEA  | 4.1                               | 2.2         | -46.92%    |  |  |  |
| PISO 10 | 5.9                               | 3.3         | -44.54%    |  |  |  |
| PISO 9  | 7.4                               | 4.2         | -43.19%    |  |  |  |
| PISO 8  | 8.6                               | 5.1         | -40.59%    |  |  |  |
| PISO 7  | 9.4                               | 5.9         | -37.78%    |  |  |  |
| PISO 6  | 9.7                               | 6.3         | -34.77%    |  |  |  |
| PISO 5  | 9.4                               | 6.4         | -31.48%    |  |  |  |
| PISO 4  | 9.1                               | 6.2         | -31.93%    |  |  |  |

Cuadro 89. Comparación de derivas de entrepiso (‰) Edificio 1 dirección Y.

|        | Derivas máximas en el sentido Y-Y |             |            |  |  |
|--------|-----------------------------------|-------------|------------|--|--|
|        |                                   | (‰)         |            |  |  |
|        | Sin                               | Con         | Porcentaje |  |  |
| PISO   | disinadoros                       | disipadores | de         |  |  |
|        | uisipauores                       | no lineales | variación  |  |  |
| PISO 3 | 8.4                               | 5.5         | -35.08%    |  |  |
| PISO 2 | 6.8                               | 4.3         | -36.16%    |  |  |
| PISO 1 | 3.7                               | 2.2         | -40.29%    |  |  |



Imagen 98. Comparación de derivas edificio 1 en la dirección Y.

En el edificio 2 se obtiene un gran porcentaje de reducción de derivas con el uso de amortiguadores hasta un 40.52% en la dirección x y hasta una reducción de 76.92% en la dirección Y.

|          | Derivas máximas en el sentido X-X (‰) |             |            |  |  |
|----------|---------------------------------------|-------------|------------|--|--|
|          | Sin                                   | Con         | Porcentaje |  |  |
| PISO     | disinadoros                           | disipadores | de         |  |  |
|          | disipadores                           | no lineales | variación  |  |  |
| TECH.ESC | 5.6                                   | 3.8         | -31.48%    |  |  |
| AZOTEA   | 5.9                                   | 4.1         | -30.91%    |  |  |
| PISO9    | 6.5                                   | 4.5         | -29.71%    |  |  |
| PISO8    | 7.2                                   | 5.2         | -28.19%    |  |  |
| PISO7    | 7.8                                   | 5.7         | -27.46%    |  |  |
| PISO6    | 8.3                                   | 6.0         | -27.26%    |  |  |
| PISO5    | 8.4                                   | 6.1         | -27.41%    |  |  |
| PISO4    | 8.1                                   | 5.8         | -28.55%    |  |  |
| PISO3    | 7.5                                   | 5.1         | -32.44%    |  |  |
| PISO2    | 6.2                                   | 3.8         | -38.72%    |  |  |
| PISO1    | 2.9                                   | 1.7         | -40.52%    |  |  |

Cuadro 90. Comparación de derivas de entrepiso (‰) Edificio 2 dirección X.



Imagen 99. Comparación de derivas edificio 2 en dirección X.

|          | Derivas máximas en el sentido Y-Y |             |            |  |  |  |  |
|----------|-----------------------------------|-------------|------------|--|--|--|--|
|          | (‰)                               |             |            |  |  |  |  |
|          | Sin                               | Con         | Porcentaje |  |  |  |  |
| PISO     | disinadoros                       | disipadores | de         |  |  |  |  |
|          | uisipauores                       | no lineales | variación  |  |  |  |  |
| TECH.ESC | 6.2                               | 1.4         | -76.92%    |  |  |  |  |
| AZOTEA   | 6.1                               | 1.1         | -81.37%    |  |  |  |  |
| PISO9    | 7.7                               | 1.6         | -79.70%    |  |  |  |  |
| PISO8    | 9.6                               | 2.2         | -76.64%    |  |  |  |  |
| PISO7    | 11.2                              | 2.9         | -74.54%    |  |  |  |  |
| PISO6    | 12.5                              | 3.4         | -72.58%    |  |  |  |  |
| PISO5    | 13.3                              | 3.9         | -70.47%    |  |  |  |  |
| PISO4    | 13.6                              | 4.2         | -69.25%    |  |  |  |  |
| PISO3    | 13.5                              | 4.3         | -68.23%    |  |  |  |  |
| PISO2    | 12.4                              | 4.2         | -66.35%    |  |  |  |  |
| PISO1    | 6.4                               | 2.4         | -62.44%    |  |  |  |  |

Cuadro 91. Comparación de derivas de entrepiso (‰) Edificio 2 dirección Y.



Imagen 100. Comparación de derivas edificio 2 en la dirección Y.

### 5.1.3. RESUMEN DE LA COMPARACION DE DATOS

El Cuadro 92 muestra una comparación entre el edificio disipado y el edificio convencional respecto al comportamiento sísmico de este. Los resultados corresponden a la envolvente de los registros sísmicos considerados para el sismo de diseño mediante el análisis tiempo historia.

Cuadro 92. Comparación de respuestas globales entre el edificio con disipador y sin disipador.

|                  |                     | Edificio 1 |       |       |       |         |         | Edificio 2 |       |       |      |           |         |
|------------------|---------------------|------------|-------|-------|-------|---------|---------|------------|-------|-------|------|-----------|---------|
|                  |                     | S          | Sin   | C     | on    | Redu    | cción   | S          | in    | Con   |      | Reducción |         |
| etro             |                     | disip      | bador | disip | ador  | Q       | 6       | disip      | ador  | disip | ador |           | %       |
| Parám            |                     | х          | Y     | x     | Y     | х       | Y       | х          | Y     | х     | Y    | х         | Y       |
| Desplazamiento   | máximo de piso (cm) | 19.47      | 21.54 | 13.61 | 13.88 | -30.11% | -35.57% | 20.03      | 30.11 | 13.92 | 69.8 | -30.47%   | -71.15% |
| Deriva máxima de | entrepiso (‰)       | 8.5        | 2.6   | 5.5   | 6.4   | -35.90% | -33.34% | 8.4        | 13.6  | 6.1   | 4.3  | -27.41%   | -68.42% |

# 5.2. DISEÑO DE LOS DISPOSITIVOS DE AMORTIGUAMIENTO:

## 5.2.1. AGRUPACIÓN DE DISPOSITIVOS POR NIVELES DE FUERZA

| PISO    | K   | P (Ton) | P (KN)   | DISIPADOR |
|---------|-----|---------|----------|-----------|
| PISO 10 | K72 | 119.806 | 1175.292 | 1500      |
| PISO 10 | K77 | 115.805 | 1136.044 | 1500      |
| PISO 10 | K82 | 162.253 | 1591.704 | 2000      |
| PISO 9  | K11 | 140.167 | 1375.041 | 1500      |
| PISO 9  | K22 | 143.068 | 1403.497 | 1500      |
| PISO 9  | K32 | 174.244 | 1709.335 | 2000      |
| PISO 8  | K71 | 170.828 | 1675.822 | 2000      |
| PISO 8  | K76 | 161.899 | 1588.231 | 2000      |
| PISO 8  | K81 | 205.173 | 2012.748 | 3000      |
| PISO 7  | K7  | 190.088 | 1864.765 | 2000      |
| PISO 7  | K20 | 189.975 | 1863.657 | 2000      |
| PISO 7  | K30 | 213.559 | 2095.013 | 3000      |
| PISO 6  | K70 | 204.222 | 2003.415 | 3000      |
| PISO 6  | K75 | 207.808 | 2038.593 | 3000      |
| PISO 6  | K80 | 230.220 | 2258.462 | 3000      |
| PISO 5  | K5  | 229.748 | 2253.827 | 3000      |
| PISO 5  | K18 | 216.475 | 2123.621 | 3000      |
| PISO 5  | K28 | 240.326 | 2357.597 | 3000      |
| PISO 4  | K69 | 217.327 | 2131.982 | 3000      |
| PISO 4  | K74 | 237.507 | 2329.941 | 3000      |
| PISO 4  | K79 | 234.723 | 2302.631 | 3000      |
| PISO 3  | K3  | 243.618 | 2389.890 | 3000      |
| PISO 3  | K15 | 219.231 | 2150.660 | 3000      |
| PISO 3  | K26 | 237.321 | 2328.116 | 3000      |
| PISO 2  | K68 | 209.963 | 2059.736 | 3000      |
| PISO 2  | K73 | 223.327 | 2190.840 | 3000      |
|         |     |         |          |           |

Cuadro 93. Niveles de Fuerza en los amortiguadores Edificio 1 Eje X

| PISO   | K   | P (Ton) | P (KN)   | DISIPADOR |
|--------|-----|---------|----------|-----------|
| PISO 2 | K78 | 214.336 | 2102.636 | 3000      |
| PISO 1 | K1  | 175.065 | 1717.384 | 2000      |
| PISO 1 | K13 | 164.857 | 1617.250 | 2000      |
| PISO 1 | K24 | 165.586 | 1624.396 | 2000      |

Cuadro 94. Niveles de Fuerza en los amortiguadores Edificio 1 Eje Y

| PISO    | K   | P (Ton) | P (KN)   | DISIPADOR |
|---------|-----|---------|----------|-----------|
| PISO 10 | K45 | 184.154 | 1806.547 | 2000      |
| PISO 10 | K59 | 82.934  | 813.579  | 1000      |
| PISO 10 | K67 | 131.654 | 1291.521 | 1500      |
| PISO 9  | K42 | 135.994 | 1334.098 | 1500      |
| PISO 9  | K54 | 138.461 | 1358.301 | 1500      |
| PISO 9  | K64 | 204.591 | 2007.038 | 3000      |
| PISO 8  | K44 | 238.291 | 2337.636 | 3000      |
| PISO 8  | K53 | 141.556 | 1388.659 | 1500      |
| PISO 8  | K66 | 177.851 | 1744.713 | 2000      |
| PISO 7  | K40 | 183.817 | 1803.246 | 2000      |
| PISO 7  | K52 | 172.289 | 1690.157 | 2000      |
| PISO 7  | K62 | 249.261 | 2445.253 | 3000      |
| PISO 6  | K16 | 259.851 | 2549.139 | 3000      |
| PISO 6  | K51 | 166.764 | 1635.958 | 2000      |
| PISO 6  | K65 | 214.259 | 2101.877 | 3000      |
| PISO 5  | K38 | 213.800 | 2097.380 | 3000      |
| PISO 5  | K50 | 184.400 | 1808.961 | 2000      |
| PISO 5  | K60 | 272.559 | 2673.805 | 3000      |
| PISO 4  | K9  | 248.593 | 2438.697 | 3000      |
| PISO 4  | K49 | 181.686 | 1782.338 | 2000      |
| PISO 4  | K63 | 228.525 | 2241.833 | 3000      |
| PISO 3  | K36 | 215.293 | 2112.020 | 3000      |
| PISO 3  | K48 | 186.709 | 1831.615 | 2000      |

| PISO   | K   | P (Ton) | P (KN)   | DISIPADOR |
|--------|-----|---------|----------|-----------|
| PISO 3 | K58 | 255.548 | 2506.930 | 3000      |
| PISO 2 | K8  | 215.401 | 2113.083 | 3000      |
| PISO 2 | K46 | 163.609 | 1605.000 | 2000      |
| PISO 2 | K61 | 202.042 | 1982.035 | 2000      |
| PISO 1 | K34 | 157.978 | 1549.759 | 2000      |
| PISO 1 | K47 | 127.317 | 1248.979 | 1500      |
| PISO 1 | K56 | 159.551 | 1565.199 | 2000      |

Cuadro 95. Niveles de Fuerza en los amortiguadores Edificio 2 Eje X

| PISO    | К   | P (Ton) | P (KN)   | DISIPADOR |
|---------|-----|---------|----------|-----------|
| PISO 10 | K40 | 69      | 678.186  | 1000      |
| PISO 10 | K65 | 83      | 815.670  | 1000      |
| PISO 10 | K76 | 112     | 1098.660 | 1500      |
| PISO 9  | K9  | 80      | 786.740  | 1000      |
| PISO 9  | K29 | 120     | 1178.772 | 1500      |
| PISO 9  | K64 | 91      | 892.172  | 1000      |
| PISO 8  | K63 | 103     | 1010.948 | 1500      |
| PISO 8  | K74 | 126     | 1239.934 | 1500      |
| PISO 7  | K7  | 99      | 969.162  | 1000      |
| PISO 7  | K27 | 128     | 1254.166 | 1500      |
| PISO 7  | K62 | 106     | 1043.747 | 1500      |
| PISO 6  | K36 | 97      | 949.339  | 1000      |
| PISO 6  | K61 | 118     | 1160.422 | 1500      |
| PISO 6  | K73 | 138     | 1355.660 | 1500      |
| PISO 5  | K5  | 109     | 1073.592 | 1500      |
| PISO 5  | K25 | 133     | 1304.825 | 1500      |
| PISO 5  | K50 | 116     | 1141.040 | 1500      |
| PISO 4  | K48 | 125     | 1221.971 | 1500      |
| PISO 4  | K72 | 139     | 1365.853 | 1500      |
| PISO 3  | К3  | 109     | 1068.319 | 1500      |
| PISO 3  | K23 | 121     | 1184.972 | 1500      |

| PISO   | K   | P (Ton) | P (KN)   | DISIPADOR |
|--------|-----|---------|----------|-----------|
| PISO 3 | K46 | 110     | 1082.178 | 1500      |
| PISO 2 | K32 | 88      | 859.048  | 1000      |
| PISO 2 | K44 | 106     | 1044.306 | 1500      |
| PISO 2 | K71 | 113     | 1111.608 | 1500      |
| PISO 1 | K1  | 67      | 656.557  | 1000      |
| PISO 1 | K21 | 77      | 752.498  | 1000      |
| PISO 1 | K42 | 72      | 702.114  | 1000      |

Cuadro 96. Niveles de Fuerza en los amortiguadores Edificio 2 Eje Y

| PISO    | K   | P (Ton) | P (KN)   | DISIPADOR |
|---------|-----|---------|----------|-----------|
| PISO 10 | K15 | 75      | 733.734  | 1000      |
| PISO 10 | K20 | 109     | 1072.598 | 1500      |
| PISO 10 | K70 | 117     | 1146.452 | 1500      |
| PISO 9  | K39 | 141     | 1378.409 | 1500      |
| PISO 9  | K49 | 111     | 1087.785 | 1500      |
| PISO 9  | K59 | 169     | 1661.104 | 2000      |
| PISO 8  | K14 | 153     | 1502.805 | 2000      |
| PISO 8  | K19 | 172     | 1687.645 | 2000      |
| PISO 8  | K69 | 184     | 1809.410 | 2000      |
| PISO 7  | K37 | 221     | 2170.860 | 3000      |
| PISO 7  | K47 | 168     | 1648.715 | 2000      |
| PISO 7  | K57 | 241     | 2360.564 | 3000      |
| PISO 6  | K13 | 218     | 2134.302 | 3000      |
| PISO 6  | K18 | 226     | 2213.049 | 3000      |
| PISO 6  | K68 | 253     | 2486.570 | 3000      |
| PISO 5  | K35 | 283     | 2779.459 | 3000      |
| PISO 5  | K45 | 215     | 2112.012 | 3000      |
| PISO 5  | K55 | 301     | 2953.112 | 3000      |
| PISO 4  | K12 | 263     | 2576.472 | 3000      |
| PISO 4  | K17 | 268     | 2628.973 | 3000      |

| PISO   | K   | P (Ton) | P (KN)   | DISIPADOR |
|--------|-----|---------|----------|-----------|
| PISO 4 | K67 | 291     | 2850.749 | 3000      |
| PISO 3 | K33 | 324     | 3175.579 | 4000      |
| PISO 3 | K43 | 231     | 2262.375 | 3000      |
| PISO 3 | K53 | 316     | 3099.205 | 4000      |
| PISO 2 | K11 | 264     | 2586.825 | 3000      |
| PISO 2 | K16 | 285     | 2800.657 | 3000      |
| PISO 2 | K66 | 251     | 2465.854 | 3000      |
| PISO 1 | K31 | 250     | 2456.273 | 3000      |
| PISO 1 | K41 | 156     | 1533.182 | 2000      |
| PISO 1 | K51 | 218     | 2138.924 | 3000      |

Cuadro 97. Resumen cantidad de Amortiguadores.

|           | CANTID | AD EN | CANTI | DAD EN |
|-----------|--------|-------|-------|--------|
|           | EDIFIC |       | EDIF  | ICIO 2 |
| DISIPADOR | EN X   | EN Y  | EN X  | EN Y   |
| 250       |        |       |       |        |
| 500       |        |       |       |        |
| 750       |        |       |       |        |
| 1000      |        |       | 3     |        |
| 1500      |        |       | 27    | 3      |
| 2000      | 9      | 6     |       | 6      |
| 3000      | 21     | 24    |       | 18     |
| 4000      |        |       |       | 3      |
| 6500      |        |       |       |        |
| 8000      |        |       |       |        |
| SUB_TOTAL | 30     | 30    | 30    | 30     |
| TOTAL     | 60     | )     | 6     | 0      |
| BRAZO DE  |        |       |       |        |
| RIGIDEZ   | 11.25  | 12.25 | 10.00 | 16.00  |
| (Pulg)    |        |       |       |        |

### 5.2.2. ELECCIÓN DE LOS DISIPADORES DE ENERGÍA

De acuerdo con los resultados obtenidos y con la información obtenida de los Cuadro 93, 94, 95 y 96 se procede a definir las propiedades de los dispositivos de amortiguamiento con la ayuda de diferentes fabricantes.

El principal fabricante de los dispositivos de amortiguamiento es Taylor Devices, por lo que las Cuadros de dicho fabricante han sido empleadas para esta investigación.



Imagen 101. Dispositivos TAYLOR DEVICES – Argollas, elegidas



## FLUID VISCOUS DAMPERS & LOCK-UP DEVICES



NOTE:

VARIOUS STROKES ARE AVAILABLE, FROM ±50 TO ±900 mm. FORCE CAPACITY MAY BE REDUCED FOR STROKE LONGER THAN STROKE LISTED IN THE TABLE. ANY STROKE CHANGE FROM THE STANDARD STROKE VERSION DEPICTED CHANGES THE MIDSTROKE LENGTH BY 5 mm PER ±1 mm OF STROKE.

EX.:1000 kN±100 mm STROKE, MID-STROKE LG. IS 1048mm 1000 kN ± 150 mm STROKE, 150-100= 50, 50\*5=250 1048+250 = 1298 mm MID-STROKE LENGTH

BELLOWS MAY BE REPLACED WITH A STEEL SLEEVE AS DESIRED STROKE LENGTHS INCREASE. CONSULT TAYLOR DEVICES FOR STROKE OVER ±300 mm AND/OR FOR FORCE CAPACITIES FOR STROKE LONGER THAN LISTED IN TABLE.

| FORCE<br>(kN)       | TAYLOR<br>DEVICES<br>MODEL<br>NUMBER | SPHERICAL<br>BEARING<br>BORE<br>DIAMETER<br>(mm) | MID-<br>Stroke<br>Length<br>(mm) | STROKE<br>(mm) | CLEVIS<br>THICKNESS<br>(mm) | MAXIMUM<br>CLEVIS<br>WIDTH<br>(mm) | CLEVIS<br>DEPTH<br>(mm) | BEARING<br>THICKNESS<br>(mm) | MAXIMUM<br>CYLINDER<br>DIAMETER<br>(mm) | WEIGHT<br>(kg) | "A"<br>(mm) | "B"<br>(mm) | "C" (mm)  | "D"<br>(mm) | PLATE<br>THICKNESS<br>(mm) |
|---------------------|--------------------------------------|--------------------------------------------------|----------------------------------|----------------|-----------------------------|------------------------------------|-------------------------|------------------------------|-----------------------------------------|----------------|-------------|-------------|-----------|-------------|----------------------------|
| 250                 | 17120                                | 38.10                                            | 787                              | ±75            | 43                          | 100                                | 83                      | 33                           | 114                                     | 44             | 178±3       | 127±.25     | 1         | 20.6±.25    | 38±.76                     |
| 500                 | 17130                                | 50.80                                            | 997                              | ±100           | 55                          | 127                                | 102                     | 44                           | 150                                     | 98             | 282±3       | 203±.25     | †         | 31.8±.25    | 38±.76                     |
| 750                 | 17140                                | 57.15                                            | 1016                             | ±100           | 59                          | 155                                | 129                     | 50                           | 184                                     | 168            | 343±3       | 254±.25     | 127±.25   | 28.7±.25    | 61±.76                     |
| 1000                | 17150                                | 69.85                                            | 1048                             | ±100           | 71                          | 185                                | 150                     | 61                           | 210                                     | 254            | 419±3       | 318±.25     | 159±.25   | 31.8±.25    | 76±1.5                     |
| 1500                | 17160                                | 76.20                                            | 1105                             | ±100           | 77                          | 205                                | 162                     | 67                           | 241                                     | 306            | 432±3       | 330±.25     | 165±.25   | 34.9±.25    | 76±1.5                     |
| 2000                | 17170                                | 88.90                                            | 1346                             | ±125           | 91                          | 230                                | 191                     | 78                           | 286                                     | 500            | 457±3       | 343±.25     | 171.5±.25 | 38.1±.25    | 102±1.5                    |
| 3000                | 17180                                | 101.60                                           | 1441                             | ±125           | 117                         | 290                                | 203                     | 89                           | 350                                     | 800            | 508±3       | 406±.25     | 203±.25   | 41.4±.25    | 102±1.5                    |
| 4000                | 17190                                | 127.00                                           | 1645                             | ±125           | 142                         | 325                                | 273                     | 111                          | 425                                     | 1088           | **          | **          | **        | **          | **                         |
| 6500                | 17200                                | 152.40                                           | 1752                             | ±125           | 154                         | 350                                | 305                     | 121                          | 515                                     | 1930           | **          | **          | **        | **          | **                         |
| 8000                | 17210                                | 177.80                                           | 1867                             | ±125           | 178                         | 415                                | 317                     | 135                          | 565                                     | 2625           | **          | **          | **        | **          | **                         |
| † DENOT<br>** CONSU | ES 4 HOLE<br>JLT FACTOR              | PATTERN, MEA<br>RY FOR DIMENS                    | NING NO CE<br>SIONS.             | NTER HOL       | ES.                         |                                    |                         |                              |                                         |                |             |             |           |             |                            |

REV 9-2015

## Imagen 102. Dispositivos TAYLOR DEVICES" - Plancha Base, elegidas

Los dispositivos seleccionados son los de capacidades 1000 KN, 1500 KN, 2000KN, 3000KN y 4000KN. En las imagenes 101 y 102 se muestran las dimensiones de estos dispositivos.

El diseñador deberá brindar los valores de fuerzas obtenidas normalizadas a los valores del mercado, los cuales cuentan con su propio factor de seguridad, por lo que no se requerirá de ninguna amplificación adicional.

#### CONCLUSIONES

- Los resultados del análisis del reforzamiento de las edificaciones de concreto con disipadores de fluido viscoelásticos se disminuyen las derivas máximas donde se obtuvo en la EDIFICACIÓN 1 un 35.59% (0.0085 a 0.0055) en la dirección X y un 34.77% (0.0097 a 0.0063) en la dirección Y, en la EDIFICACIÓN 2 un 27.41% (0.0084 a 0.0061) en la dirección X y un 69.25% (0.0136 a 0.0042) en la dirección Y.
- El nivel de desempeño que se logra en las edificaciones de concreto armado con disipadores de fluido viscoelásticos en la ciudad de Huancayo, es proteger a sus ocupantes y contenidos, evitar la presencia de fisuramiento en sus elementos estructurales durante y despues de un sismo.
- 3. Con la incorporación de disipadores de fluido viscoelásticos se recomienda usar la Norma ASCE/SEI 7-10 cap.18, ya que en esta norma nos indica la cantidad mínima y como distribuir los disipadores en la estructura. En la actualidad ya se menciona en la norma peruana E.030 Diseño Sismorresistente en el ítem 3.9.
- 4. Con la Incorporación de disipadores de fluido viscoelásticos el beneficio es que no necesita mantenimiento en ser reemplazado luego de un terremoto severo y sus réplicas, solo requiere una nueva calibración por parte de un personal tecnico en disipadores o proveedor, caso contrario ocurre con el sistema de muros estructurales que, si necesita reparación y una reestructuración, producto de los daños estructurales generando gastos adicionales post-sismo.

#### RECOMENDACIONES

- Extender el análisis de diseño de disipadores de fluido viscoelásticos para edificaciones de albañilería confinada, debido a que, en la cuidad de Huancayo, la mayoría de las construcciones son de albañilería llegando hasta más de 5 niveles y muchas de ellas pueden estar en peligro de colapso o sufrir daños irreparables frente a un sismo severo.
- 2. Para la ciudad de Huancayo, investigar el reforzamiento con disipadores utilizando acelerogramas registradas en los alrededores de la ciudad (IGP).
- Hacer el análisis dinámico por viento a las edificaciones altas ya que en el Valle Mantaro hay vientos hasta de 85.00 Km/h. a 10m sobre el suelo periodo de recurrencia 50 años (Mapa Eólico del Perú E.020 ANEXO2).
- 4. Incorporar este tema en el curso de Diseño Sismorresistente y poner en práctica en nuestro laboratorio de sismo de la facultad.

## **REFERENCIAS BIBLIOGRÁFICAS**

- Aguiar, R., Bozzo, L., Coyago, H., & Andino, C. (2016). Análisis sísmico de bloque estructural 4 de ufa-espe con disipadores de energía shear link Bozzo. *Ciencia*.
- 2. American Society of Civil Engineers. (2010). *Minimum Design Loads for Buildings and Others Structures (ASCE/SEI 7-10).*
- 3. Arroyo, J. (2004). Metodología para calcular la respuesta de estructuras. *Rev. Int. de Desastres Naturales, Accidentes e Infraestructura Civil.*
- 4. Cano Lagos, H., & Zumaeta Escobedo, E. (2012). Diseño estructural de una edificación con disipadores de energía y análisis comparativo sísmico entre el edificio convencional y el edificio con disipadores de energía para un sismo severo. (*Tesis de Licenciatura*). Universidad Peruana de Ciencias Aplicadas, Lima.
- 5. Chacón Alvarez, R., & Ramírez Capa, E. (2014). *Análisis de una edificación de 4 pisos con disipadores de fluido viscoso.* Lima-Perú.
- Claros Stark, E. (2009). Método simplificado para el análisis y rehabilitación de edificios utilizando disipadores de energía viscosos. Mexico.
- Corporación de Desarrollo Tecnológico Cámara Chilena de la Construcción. (2011). Protección Sísmica de Estructuras Sistemas de Aislación Sísmica y Disipación de Energía. Santiago de Chile: Trama Impresores S.A.
- 8. Federal Emergency Management agency. (1997). *NEHRP Guidelines for the seismic rehabilitation of buildings FEMA.*
- Fernández, R., Holgado, C., Lozada, H., Mendoza, O., Meza, C., & Rivas, R. (2015). Uso de aisladores sísmicos en la construcción. *Universidad Catolica de Santa Maria*.

- 10. Fuentes Sadowski, J. C. (2015). *Análisis sísmico de una edificación.* Lima-Perú.
- Guevara Huatuco, D., & Torres Arias, P. (2012). Diseño de un edificio aporticado con amortiguadores de fluido-viscoso en disposición diagonal. (*Tesis de Licenciatura*). Pontificia Universidad Catolica del Peru, Lima.
- 12. Martinez Labra, E. (2016). *Análisis de un edificio de acero con amortiguadores viscosos.* D.F-México.
- Ministerio de Vivienda y Construcción. (2006). Norma Técnica E.020 "Cargas". Lima-Perú.
- Ministerio de Vivienda y Construcción. (2016). Norma Técnica E.030
   "Diseño Sismorresistente". Lima-Perú.
- 15. Oviedo, J. A., & Duque, M. (2006). Sistemas de control de respuesta sísmica en edificaciones. *Escuela de Ingeniería de Antioquia*, 105-120.
- Pimiento, J., Salas, A., & Ruiz, D. (2014). Desempeño sísmico de un pórtico con disipadores de energía pasivos de placas ranuradas de acero. *Revista Ingeniería de Construcción*, 283-298.
- 17. Segovia David, J. (2016). *Diseño de disipadores de energía metálicos para una edificación de baja altura de concreto armado.* Lima-Perú.
- 18. Sirve S.A. (2013). Sistema de Protección Sismica. Construcción, 13-21.
- Tavera, H. (25 de 08 de 2014). Silencio sísmico preocupa a limeños que temen un fuerte terremoto. Obtenido de http://www.americatv.com.pe/noticias/actualidad/silencio-sismicopreocupa-limenos-que-temen-fuerte-terremoto-n150424
- 20. Tecnoav. (s.f.). *Aisladores y Disipadores Sísmicos*. Obtenido de http://www.tecnoav.cl/4-aisladores-sismicos-y-disipadores-sismicos/
- Villareal Castro, G., & Diaz La Rosa Sanchez, M. (2016). *Edificaciones con Disipadores Viscosos.* Lima-Peru: Editora & Imprenta Gráfica Norte S.R.L.

ANEXOS

|                             |                             | ANEXU 1: MALKIZ DE CONSIS I                                         | ENCIA DEL PRUTECI C                |                  |                                         |
|-----------------------------|-----------------------------|---------------------------------------------------------------------|------------------------------------|------------------|-----------------------------------------|
| FORMULACIÓN DEL<br>PROBLEMA | OBJETIVOS                   | MARCO TEÓRICO                                                       | HIPÓTESIS                          | VARIABLE         | METODOLOGÍA DE LA<br>INVESTIGACIÓN      |
| <b>PROBLEMA GENERAL</b>     | <b>OBJETIVO GENERAL</b>     | ANTECEDENTES                                                        | HIPÓTESIS GENERAL                  | VARIABLES        | MÉTODO DE LA INVESTIGACIÓN:             |
|                             |                             |                                                                     |                                    | INDEPENDIENTE    | El método general de investigación      |
| ¿Cuáles son los resultados  | Determinar los resultados   | Nacionales                                                          | Los resultados del análisis del    |                  | es el Científico, como métodos          |
| del análisis del            | del análisis del            |                                                                     | reforzamiento de las               | Disipadores de   | específicos es analítico - sintético,   |
| reforzamiento de            | reforzamiento de            | <ul> <li>Recomendaciones Técnicas para</li> </ul>                   | edificaciones de concreto          | Fluido           | inductivo – deductivo y con un          |
| edificaciones de concreto   | edificaciones de concreto   | Mejorar la Seguridad Sísmica de                                     | armado, con disipadores de         | viscoelásticos   | enfoque cuantitativo.                   |
| armado con disipadores      | armado con disipadores de   | Viviendas de Albañilería Confinada de la                            | fluido viscoelásticos,             |                  |                                         |
| de fluido viscoelásticos en | fluido viscoelásticos en la | Costa Peruana. Lima - Perú. 2005.                                   | disminuyen las derivas             | VARIABLES        | TIPO DE INVESTIGACIÓN:                  |
| la ciudad de Huancayo?      | ciudad de Huancayo.         | Evaluación de la vulnerabilidad sísmica                             | máximas.                           | DEPENDIENTE      | Aplicada.                               |
| PROBLEMAS ESPECÍFICOS       | OBJETIVOS ESPECÍFICOS       | de un edificio existente: clínica San<br>Miguel, Piura. Piura 2004. | HIPÓTESIS ESPECIFICOS              | Derivas máximas. | NIVEL DE LA INVESTIGACIÓN:              |
|                             |                             | <ul> <li>Análisis de la vulnerabilidad sísmica de</li> </ul>        |                                    |                  | Descriptivo – explicativo               |
| a) ¿Cuál es el nivel de     | a) Identificar el nivel de  | las viviendas informales en la ciudad de                            | a) El nivel de desempeño de        |                  |                                         |
| desempeño que se            | desempeño que se            | Trujillo. Lima 2013.                                                | las edificaciones de               |                  | DISEÑO DE LA INVESTIGACIÓN:             |
| puede lograr en las         | puede lograr en las         | <ul> <li>Análisis de una Edificación de 4 pisos con</li> </ul>      | concreto armado con                |                  | No Experimental.                        |
| edificaciones de            | edificaciones de            | Disipadores de Fluido Viscoso. Lima -                               | disipadores de fluido              |                  |                                         |
| concreto armado con         | concreto armado con         | Perú. 2014.                                                         | viscoelásticos, es evitar se       |                  | POBLACIÓN:                              |
| disipadores de fluido       | disipadores de fluido.      |                                                                     | presenta fisuramiento en           |                  | La población está conformada por las    |
| viscoel ásticos?            | b) Describir la normativa   | Internacionales                                                     | sus elementos                      |                  | edificaciones de concreto armado        |
| b) ¿Qué normativa es más    | más eficiente para el       |                                                                     | estructurales.                     |                  | mayores a 8 pisos construidos en        |
| eficiente para el           | estudio y diseño de         | <ul> <li>Control de la respuesta dinámica de</li> </ul>             | b) La norma más eficiente es       |                  | ciudad de Huancayo.                     |
| estudio y diseño de         | edificaciones de            | estructuras mediante el uso de                                      | la ASCE/SEI 7-10 para las          |                  |                                         |
| edificaciones de            | concreto armado con         | disipadores de energía de fluido viscoso                            | edificaciones de concreto          |                  | MUESTRA:                                |
| concreto armado con         | disipadores de fluido       | del tipo lineal. Valdivia-Chile 2007.                               | armado con disipadores de          |                  | El tipo de muestreo es el no aleatorio  |
| disipadores de fluido       | viscoelásticos.             | <ul> <li>Vulnerabilidad sísmica estructural en</li> </ul>           | fluido viscoelásticos.             |                  | o dirigido, se eligió dos edificaciones |
| viscoel ásticos?            | c) Determinar los           | viviendas sociales. v evaluación                                    | c) Los beneficios al emplear       |                  | de concreto armado: Edificación 1 de    |
| c) ¿Cuáles son los          | beneficios de emplear       | preliminar de riesgo sísmico en la región                           | los disipadores de fluidos         |                  | 10 pisos ubicada en la Cooperativa el   |
| beneficios al emplear       | disipadores de fluido       | metropolitana. Santiago de Chile. 2011.                             | viscoelásticos, ya no              |                  | Centenario, y la edificación 2 de 10    |
| disipadores de fluido       | viscoelásticos.             | <ul> <li>Modelo estructural a escala utilizando</li> </ul>          | necesitan reparaciones de          |                  | pisos ubicada en la intersección de la  |
| viscoelásticos?             |                             | amortiguadores viscosos como sistemas                               | los elementos estructuras          |                  | Av. Centenario y el Pasaje San          |
|                             |                             | de disipación pasiva de energía. Quito -                            | ya que lo mantienen a la           |                  | Antonio en el distrito de Huancayo      |
|                             |                             | Ecuador 2015.                                                       | estructura en el rango<br>eláctico |                  |                                         |
|                             |                             |                                                                     | 0.000                              |                  |                                         |

**ANEXO 1: MATRIZ DE CONSISTENCIA DEL PROYECTO** 

ccxlii

### **ANEXO 2:** PROCEDIMIENTO DEL ANÁLISIS EN EL PROGRAMA ETABS 1. DIMENSIONAMIENTO.

• Iniciamos el programa.



• Cambiamos las unidades con los que vamos a trabajar.

| Model Init                        | tialization |     | x |
|-----------------------------------|-------------|-----|---|
| Initialization Options            |             |     |   |
| O Use Saved User Default Settings |             | 0   |   |
| O Use Settings from a Model File  |             | 0   |   |
| Use Built-in Settings With:       |             |     |   |
| Display Units                     | Metric MKS  | ~ 🗘 |   |
| Steel Section Database            | AISC14      | ~   |   |
| Steel Design Code                 | AISC 360-10 | v 🕕 |   |
| Concrete Design Code              | ACI 318-14  | v 🕕 |   |
| ок                                | Cancel      |     |   |

• Creamos un nuevo modelo. Ingresamos los espaciamientos entre ejes.

| àrid System Na                                                                  | ne                                                                                   | Story                                             | Range Option                                                            |          |                        | Click to Modi                              | fy/Show:                                             |                                                     |                                                                                      | _        |                        |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------------|----------|------------------------|--------------------------------------------|------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------|----------|------------------------|
| G1                                                                              |                                                                                      |                                                   | ) Default - All Sto                                                     | ries     |                        |                                            | Reference Points                                     |                                                     |                                                                                      |          | രങ്ങാ                  |
| System Origin                                                                   |                                                                                      | 0                                                 | ) User Specified<br>Top Story                                           |          |                        |                                            | Reference Planes                                     |                                                     |                                                                                      |          |                        |
| Global X                                                                        | 0                                                                                    | m                                                 | TECHO                                                                   |          |                        | Options                                    |                                                      |                                                     | () -<br>() -                                                                         |          |                        |
| Global Y                                                                        | 0                                                                                    | m                                                 | Bottom Story                                                            |          |                        | Bubble Si                                  | ze 1250                                              | mm                                                  | 9-                                                                                   |          |                        |
| Rotation                                                                        | 0                                                                                    | daa                                               | Base                                                                    |          |                        |                                            |                                                      |                                                     |                                                                                      |          |                        |
| Rectangular Gri                                                                 | ls<br>àrid Data as Ordinates                                                         |                                                   | ) Display Grid Da                                                       | ta as Sp | acing                  | Grid Color                                 |                                                      | Quick                                               | Start New Rectan                                                                     | ngular G | àrids                  |
| Rectangular Gri                                                                 | ls<br>àrid Data as Ordinates                                                         | C                                                 | ) Display Grid Da                                                       | ta as Sp | acing                  | Grid Color<br>Y Grid Data                  | [                                                    | Quick                                               | Start New Rectan                                                                     | ngular G | àrids                  |
| Rectangular Gri<br>Display<br>X Grid Data<br>Grid IE                            | ts<br>àrid Data as Ordinates<br>X Ordinate (m)                                       | Visible                                           | ) Display Grid Da<br>Bubble Loc                                         | ta as Sp | acing                  | Grid Color<br>Y Grid Data<br>Grid ID       | Y Ordinate (m)                                       | Quick<br>Visible                                    | Start New Rectan                                                                     | ngular ( | àrids                  |
| Rectangular Gri<br>Display I<br>X Grid Data<br>Grid IE<br>A                     | ds<br>Grid Data as Ordinates<br>X Ordinate (m)<br>0                                  | Visible<br>Yes                                    | ) Display Grid Da<br>Bubble Loc<br>End                                  | ta as Sp | Add                    | Y Grid Data<br>Grid ID                     | Y Ordinate (m)<br>0                                  | Quick<br>Visible<br>Yes                             | Start New Rectan<br>Bubble Loc<br>Start                                              | ngular G | ârids                  |
| Rectangular Gri<br>Display I<br>X Grid Data<br>Grid ID<br>A<br>B                | ds<br>ârid Data as Ordinates<br>X Ordinate (m)<br>0<br>5.4                           | Visible<br>Yes<br>Yes                             | ) Display Grid Da<br>Bubble Loc<br>End<br>End                           | ta as Sp | acing<br>Add           | Y Grid Data<br>Grid ID<br>1<br>2           | Y Ordinate (m)<br>0<br>5.3                           | Quick<br>Visible<br>Yes<br>Yes                      | Start New Rectan<br>Bubble Loc<br>Start<br>Start                                     | ngular ( | àrids<br>Add           |
| Rectangular Gri<br>Display I<br>X Grid Data<br>Grid IE<br>A<br>B<br>C           | ds<br>and Data as Ordinates<br>X Ordinate (m)<br>0<br>5.4<br>11.72                   | Visible<br>Yes<br>Yes<br>Yes                      | ) Display Grid Da<br>Bubble Loc<br>End<br>End<br>End                    | ta as Sp | acing<br>Add<br>Delete | Y Grid Data<br>Grid ID<br>2<br>3           | Y Ordinate (m)<br>0<br>5.3<br>10.6                   | Quick<br>Visible<br>Yes<br>Yes<br>Yes               | Start New Rectan<br>Bubble Loc<br>Start<br>Start<br>Start                            | ngular G | ârids<br>Add<br>Delete |
| Rectangular Gri<br>Display U<br>X Grid Data<br>Grid IE<br>A<br>B<br>C<br>D      | ds<br>and Data as Ordinates<br>X Ordinate (m)<br>0<br>5.4<br>11.72<br>15.01          | Visible<br>Yes<br>Yes<br>Yes<br>Yes               | Display Grid Da<br>Bubble Loc<br>End<br>End<br>End<br>End               | ta as Sp | Add Delete             | Grid Data<br>Grid ID<br>2<br>3<br>4        | Y Ordinate (m)<br>0<br>5.3<br>10.6<br>12.25          | Quick<br>Visible<br>Yes<br>Yes<br>Yes<br>Yes        | Start New Rectan<br>Bubble Loc<br>Start<br>Start<br>Start<br>Start<br>Start          | ngular G | ârids<br>Add<br>Delete |
| Rectangular Gri<br>Display I<br>X Grid Data<br>Grid ID<br>A<br>B<br>C<br>D<br>E | ds<br>and Data as Ordinates<br>X Ordinate (m)<br>0<br>5.4<br>11.72<br>15.01<br>16.29 | Visible<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes | Display Grid Da<br>Bubble Loc<br>End<br>End<br>End<br>End<br>End<br>End | ta as Sp | Add Delete Sort        | Y Grid Data<br>Grid ID<br>2<br>3<br>4<br>5 | Y Ordinate (m)<br>0<br>5.3<br>10.6<br>12.25<br>14.72 | Quick<br>Visible<br>Yes<br>Yes<br>Yes<br>Yes<br>Yes | Start New Rectan<br>Bubble Loc<br>Start<br>Start<br>Start<br>Start<br>Start<br>Start | ngular G | Add Delete             |

- 2. DEFINICIÓN DE LAS PROPIEDADES DE LOS MATERIALES
  - Concreto f'c=210kg/cm2.

|                                                                                                                                                                                                                  | Material Prope | erty Data                                                  |                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------|----------------------------------------------------------------|
| General Data                                                                                                                                                                                                     |                |                                                            |                                                                |
| Material Name                                                                                                                                                                                                    | F'C=210        | KG/CM2                                                     |                                                                |
| Material Type                                                                                                                                                                                                    | Concrete       |                                                            | ~                                                              |
| Directional Symmetry Typ                                                                                                                                                                                         | e Isotropic    |                                                            | ~                                                              |
| Material Display Color                                                                                                                                                                                           |                | Change                                                     |                                                                |
| Material Notes                                                                                                                                                                                                   | M              | odify/Show Notes                                           |                                                                |
| Material Weight and Mass                                                                                                                                                                                         |                |                                                            |                                                                |
| Caracter Wainht Dane                                                                                                                                                                                             |                | 2 B223 B                                                   |                                                                |
| Specify Weight Dens                                                                                                                                                                                              | ity O S        | Specify Mass Density                                       |                                                                |
| Weight per Unit Volume                                                                                                                                                                                           | ity () s       | Specify Mass Density<br>2400                               | kgf/m³                                                         |
| <ul> <li>Specify Weight Dens</li> <li>Weight per Unit Volume</li> <li>Mass per Unit Volume</li> </ul>                                                                                                            | ity () s       | 2400<br>2400                                               | kgf/m³<br>kg/m³                                                |
| Specify Weight Dens     Weight per Unit Volume     Mass per Unit Volume     Mechanical Property Data                                                                                                             | ity () s       | 2400<br>2400                                               | kgf/m³<br>kg/m³                                                |
| <ul> <li>Specify Weight Dens<br/>Weight per Unit Volume<br/>Mass per Unit Volume</li> <li>Mechanical Property Data<br/>Modulus of Elasticity, E</li> </ul>                                                       | ity () s       | 2400<br>2400<br>2400<br>2400<br>2188.2                     | kgf/m³<br>kg/m³<br>kgf/mm²                                     |
| <ul> <li>Specify Weight Dens<br/>Weight per Unit Volume<br/>Mass per Unit Volume</li> <li>Mechanical Property Data<br/>Modulus of Elasticity, E<br/>Poisson's Ratio, U</li> </ul>                                | ity () s       | 2400<br>2400<br>2400<br>2188.2<br>0.2                      | kgf/m³<br>kg/m³<br>kgf/mm²                                     |
| <ul> <li>Specify Weight Dens<br/>Weight per Unit Volume<br/>Mass per Unit Volume</li> <li>Mechanical Property Data<br/>Modulus of Elasticity, E<br/>Poisson's Ratio, U<br/>Coefficient of Thermal Exp</li> </ul> | pansion, A     | 2400<br>2400<br>2400<br>2400<br>2188.2<br>0.2<br>0.0000099 | kgf/m <sup>3</sup><br>kg/m <sup>3</sup><br>kgf/mm <sup>2</sup> |

• Acero grado 60.

| General Data                                                                 |          |                  |                    |
|------------------------------------------------------------------------------|----------|------------------|--------------------|
| Material Name                                                                | A615Gr60 |                  |                    |
| Material Type                                                                | Rebar    |                  | ~                  |
| Directional Symmetry Type                                                    | Uniaxial |                  |                    |
| Material Display Color                                                       |          | Change           |                    |
| Material Notes                                                               | Modify   | /Show Notes      |                    |
| Material Weight and Mass                                                     |          |                  |                    |
| Specify Weight Density                                                       | ⊖ Spec   | ify Mass Density |                    |
| Weight per Unit Volume                                                       |          | 7849.05          | kgf/m <sup>3</sup> |
|                                                                              |          | 7849.047         | kg/m³              |
| Mass per Unit Volume                                                         |          |                  |                    |
| Mass per Unit Volume<br>Mechanical Property Data                             |          | 1                |                    |
| Mass per Unit Volume<br>Mechanical Property Data<br>Modulus of Elasticity, E |          | 20389.02         | kgf/mm²            |

# 3. DEFINICIÓN DE LAS PROPIEDADES DE LOS SECCIONES

• Definimos columnas:

|                         | Frame Section Property Data | a                     |
|-------------------------|-----------------------------|-----------------------|
| General Data            |                             |                       |
| Property Name           | <b>E5</b>                   |                       |
| Material                | F'C=210 KG/CM2 🗸 🗸          | 2 🛉                   |
| Notional Size Data      | Modify/Show Notional Size   |                       |
| Display Color           | Change                      | ↓ ↓                   |
| Notes                   | Modify/Show Notes           |                       |
| Shape                   |                             | _                     |
| Section Shape           | Concrete Rectangular V      |                       |
| Section Property Source |                             |                       |
| Source: User Defined    |                             | Property Modifiers    |
| Casting Dimensions      |                             | Modify/Show Modifiers |
| Section Dimensions      |                             | Currently Default     |
| Depth                   | 300 mm                      | Reinforcement         |
| Width                   | 1200 mm                     | Modify/Show Rebar     |
|                         |                             |                       |

# • Definimos vigas:

|                         | Frame Section Property Data |                                  |
|-------------------------|-----------------------------|----------------------------------|
| General Data            |                             |                                  |
| Property Name           | V30×60                      |                                  |
| Material                | F'C=210 KG/CM2 ♥            | 2                                |
| Notional Size Data      | Modify/Show Notional Size   | 3                                |
| Display Color           | Change                      | <ul> <li>▲</li> <li>▲</li> </ul> |
| Notes                   | Modify/Show Notes           |                                  |
| Shape                   |                             |                                  |
| Section Shape           | Concrete Rectangular V      |                                  |
| Section Property Source |                             |                                  |
| Source: User Defined    |                             | Property Modifiers               |
| 0                       |                             | Modify/Show Modifiers            |
| Section Dimensions      |                             | Currently Default                |
| Depth                   | 600 mm                      | Reinforcement                    |
| Width                   | 300 mm                      | Modify/Show Rebar                |

| esign Type         |                    | Rebar Mat               | erial           |               |                  |                                       |
|--------------------|--------------------|-------------------------|-----------------|---------------|------------------|---------------------------------------|
| O P-M2-M3 Des      | ign (Column)       | Longitu                 | dinal Bars      | A615Gr6       | 0                | ×                                     |
| M3 Design Or       | nly (Beam)         | Confinement Bars (Ties) |                 | A615Gr60      |                  | · · · · · · · · · · · · · · · · · · · |
| overto Longitudina | al Rebar Group Cen | troid                   | Reinforcement A | vrea Overwrit | es for Ductile B | eams                                  |
| Top Bars           | 60                 | mm                      | Top Bars at I   | -End          | 0                | mm <sup>2</sup>                       |
| Bottom Bars        | 60                 | mm                      | Top Bars at J   | -End          | 0                | mm <sup>2</sup>                       |
|                    |                    |                         | Bottom Bars a   | at I-End      | 0                | mm <sup>2</sup>                       |
|                    |                    |                         | Bottom Bars a   | at J-End      | 0                | mm <sup>2</sup>                       |

Definir Muro del concreto armado:

•

• Definir losa:

|                                                                                                                                                  | Slab Property                  | Data                                          |                |
|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------|----------------|
| General Data                                                                                                                                     |                                |                                               |                |
| Property Name                                                                                                                                    | ALIG.A                         | \ esp=25                                      |                |
| Slab Material                                                                                                                                    | F'C=21                         | 10 KG/CM2                                     | ×              |
| Notional Size Data                                                                                                                               | Mo                             | dify/Show Notional Si                         | ze             |
| Modeling Type                                                                                                                                    | Membr                          | rane                                          | ~              |
| Modifiers (Currently Defa                                                                                                                        | ault)                          | Modify/Show                                   |                |
| Display Color                                                                                                                                    |                                | Change                                        |                |
|                                                                                                                                                  |                                |                                               |                |
| Property Notes<br>Vise Special One-W                                                                                                             | ay Load Distribution           | Modify/Show                                   |                |
| Property Notes  Use Special One-W Property Data                                                                                                  | ay Load Distribution           | Modify/Show                                   |                |
| Property Notes<br>Use Special One-W Property Data Type                                                                                           | ay Load Distribution           | Modify/Show                                   | ~              |
| Property Notes<br>Use Special One-W Property Data Type Overall Depth                                                                             | ay Load Distribution           | Modify/Show                                   | ~<br>mm        |
| Property Notes  Use Special One-W Property Data Type Overall Depth Slab Thickness                                                                | ay Load Distribution           | Modify/Show                                   |                |
| Property Notes  Use Special One-W  Property Data  Type  Overall Depth Slab Thickness Stem Width at Top                                           | ay Load Distribution           | Modify/Show<br>250<br>50<br>100               |                |
| Property Notes  Use Special One-W  Property Data Type Overall Depth Slab Thickness Stem Width at Top Stem Width at Bottom                        | ay Load Distribution           | Modify/Show<br>250<br>50<br>100<br>100        |                |
| Property Notes  Use Special One-W  Property Data Type Overall Depth Slab Thickness Stem Width at Top Stem Width at Bottom Rib Spacing (Perpendic | ay Load Distribution<br>Ribbed | Modify/Show<br>250<br>50<br>100<br>100<br>400 | mm mm mm mm mm |

- 4. DEFINICIÓN DE LOS ELEMENTOS ESTRUCTURALES Y CARGAS
  - Definimos un diafragma por cada piso:

|     | Shell Assignment - Diaphragms                           | 17%>       |
|-----|---------------------------------------------------------|------------|
| -   | Diaphragm Assignments                                   | a 3-D View |
|     | None<br>D1<br>D10                                       |            |
|     | D11<br>D12<br>D2<br>D3<br>D4<br>D4<br>D5                |            |
| 135 | Define Diaphragm                                        | ×          |
|     | Diaphragms Click to: Add New Diaphra Dia Diaphragm Data | agm        |
|     | Diaphragm D11<br>Rigidity                               |            |
|     | OK Cancel                                               |            |

• Definición del espectro de la norma.

|                                      | ction Name  | NE-0  | )30-201 | 6      |
|--------------------------------------|-------------|-------|---------|--------|
| unction Da                           | mping Ratio |       |         |        |
|                                      | 0           | .05   |         |        |
| efined Fun                           | ction       |       |         |        |
| Peri                                 | iod         | Value |         |        |
| 0                                    | 2.5         | ;     |         |        |
| 0                                    | ▲ 2.5       |       | ^       | Add    |
| 0.1                                  | 2.5         |       |         | 766    |
| 0.3                                  | 2.5         |       |         | Modify |
| 0.5                                  | 2.5         |       |         | Delete |
| 0.6                                  | * 2.0       | )     | •       |        |
| unction Gr                           | anh         |       |         |        |
| unction are                          | apri        |       |         |        |
|                                      |             |       |         |        |
| 2.80                                 |             |       |         |        |
| 2.80 -                               | 3           |       |         |        |
| 2.80 -<br>2.40 -<br>2.00 -           |             |       |         |        |
| 2.80 -<br>2.40 -<br>2.00 -<br>1.60 - |             |       |         |        |

• Definición de la fuente de masa.

| s Sources Click to: Add New Mass Source Add Copy of Mass Source Modify/Show Mass Source Mass Source Data | Jiers for Load Patter<br>.oad Pattern  | ns<br>Multiplier |        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------|--------|
| Mass Source Data Mass Source Data Mass Multipl Lo CM Element Self Mass                                                                                                       | pliers for Load Patter<br>.oad Pattern | ns<br>Multiplier |        |
| Ass Source Name Mass Multiple Lo                                                                                                                                             | pliers for Load Patter                 | ns<br>Multiplier |        |
| Source CM                                                                                                                                                                    |                                        | 4                |        |
| Element Self Mass                                                                                                                                                            |                                        | 1                | Add    |
| LiveUP                                                                                                                                                                       |                                        | 0.25             | Modify |
| Additional Mass                                                                                                                                                              |                                        |                  | Delete |
| Specified Load Patterns                                                                                                                                                      |                                        |                  |        |
| Adjust Diaphragm Lateral Mass to Move Mass Centroid by:                                                                                                                      | ons                                    |                  |        |
| This Ratio of Diaphragm Width in X Direction 0.05                                                                                                                            | de Lateral Mass                        |                  |        |
| This Ratio of Diaphragm Width in Y Direction 0.05                                                                                                                            | de Vertical Mass                       |                  |        |
| ✓ Lump I                                                                                                                                                                     | Lateral Mass at Stor                   | ry Levels        |        |

• Definimos los casos modales

|                                       | Modal Case Data                           |             |          |
|---------------------------------------|-------------------------------------------|-------------|----------|
| General                               |                                           |             |          |
| Modal Case Name                       | Modal                                     |             | Design   |
| Modal Case SubType                    | Eigen                                     |             | Notes    |
| Exclude Objects in this Group         | lude Objects in this Group Not Applicable |             |          |
| Mass Source                           | MsSrc1                                    |             |          |
| P-Delta/Nonlinear Stiffness           |                                           |             |          |
| Use Preset P-Delta Settings           | lone                                      | Modify/Show |          |
| O Use Nonlinear Case (Loads at End of | Case NOT Included)                        |             |          |
| Nonlinear Case                        |                                           |             |          |
| Loads Applied                         |                                           |             |          |
| Advanced Load Data Does NOT Exist     |                                           |             | Advanced |
| Other Parameters                      |                                           |             |          |
| Maximum Number of Modes               |                                           | 36          | ]        |
| Minimum Number of Modes               |                                           | 3           |          |
| Frequency Shift (Center)              |                                           | 0           | cyc/sec  |
| Cutoff Frequency (Radius)             |                                           | 0           | cyc/sec  |
| Convergence Tolerance                 |                                           | 1E-09       |          |
| Allow Auto Frequency Shifting         |                                           |             | -        |

• Definimos patrones de carga

| oads                                                      |                                                                         |                           |                                      | Click To:                          |
|-----------------------------------------------------------|-------------------------------------------------------------------------|---------------------------|--------------------------------------|------------------------------------|
| Load                                                      | Туре                                                                    | Self Weight<br>Multiplier | Auto<br>Lateral Load                 | Add New Load                       |
| Peso Propio                                               | Dead                                                                    | ✓ 1                       | ~                                    | Modify Load                        |
| Peso Propio<br>Live<br>LiveUP<br>CM<br>Sismo X<br>Sismo Y | Dead<br>Reducible Live<br>Roof Live<br>Super Dead<br>Seismic<br>Seismic |                           | User Coefficient<br>User Coefficient | Modify Lateral Load<br>Delete Load |
|                                                           |                                                                         |                           |                                      |                                    |

• Definimos casos de carga

| neral                                                                                                                                                  |                                                                                             |                                                                                                         |              |        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------|--------|
| Load Case Name                                                                                                                                         |                                                                                             | EQ-XX                                                                                                   | De           | esign  |
| Load Case Type                                                                                                                                         |                                                                                             | Response Spectru                                                                                        | um V No      | otes   |
| Exclude Objects in this Group<br>Mass Source                                                                                                           |                                                                                             | Not Applicable                                                                                          |              |        |
|                                                                                                                                                        |                                                                                             | Previous (MsSrc1                                                                                        | )            |        |
|                                                                                                                                                        |                                                                                             |                                                                                                         |              |        |
| ads Applied                                                                                                                                            |                                                                                             | _                                                                                                       |              |        |
| Load Type                                                                                                                                              | Load Name                                                                                   | Function                                                                                                | Scale Factor |        |
|                                                                                                                                                        |                                                                                             |                                                                                                         |              |        |
|                                                                                                                                                        |                                                                                             |                                                                                                         | - A          | dvance |
|                                                                                                                                                        |                                                                                             | _                                                                                                       | Ar           | dvance |
| ner Parameters                                                                                                                                         | _                                                                                           | Madal                                                                                                   | A            | dvance |
| ner Parameters<br>Modal Load Case<br>Modal Combination M                                                                                               | ethod                                                                                       | Modal                                                                                                   | - A          | dvance |
| ner Parameters<br>Modal Load Case<br>Modal Combination M                                                                                               | ethod                                                                                       | Modal<br>CQC                                                                                            | - A          | dvance |
| ner Parameters<br>Modal Load Case<br>Modal Combination M<br>Include Rig                                                                                | ethod<br>d Response                                                                         | Modal<br>CQC<br>Rigid Frequency, f1                                                                     | ▲ A          | dvance |
| ner Parameters<br>Modal Load Case<br>Modal Combination M<br>Include Rig                                                                                | ethod<br>d Response                                                                         | Modal<br>CQC<br>Rigid Frequency, f1<br>Rigid Frequency, f2                                              | ▲ A          | dvance |
| ner Parameters<br>Modal Load Case<br>Modal Combination M<br>Include Rig                                                                                | ethod<br>d Response                                                                         | Modal<br>CQC<br>Rigid Frequency, f1<br>Rigid Frequency, f2<br>Periodic + Rigid Type                     | ▲ A          | dvance |
| ner Parameters<br>Modal Load Case<br>Modal Combination M<br>Include Rig<br>Earthquake Du                                                               | ethod<br>d Response<br>ration, td                                                           | Modal<br>CQC<br>Rigid Frequency, f1<br>Rigid Frequency, f2<br>Periodic + Rigid Type                     | ▲            | dvance |
| ner Parameters<br>Modal Load Case<br>Modal Combination M<br>Include Rig<br>Earthquake Du<br>Directional Combinatio                                     | ethod<br>d Response<br>ration, td<br>yn Type                                                | Modal<br>CQC<br>Rigid Frequency, f1<br>Rigid Frequency, f2<br>Periodic + Rigid Type<br>SRSS             | ▲            | dvance |
| ner Parameters<br>Modal Load Case<br>Modal Combination M<br>Include Rig<br>Earthquake Du<br>Directional Combinatio<br>Absolute Direct                  | ethod<br>d Response<br>ration, td<br>on Type<br>ional Combination Scale                     | Modal<br>CQC<br>Rigid Frequency, f1<br>Rigid Frequency, f2<br>Periodic + Rigid Type<br>SRSS<br>e Factor | ▲ A          | dvance |
| ner Parameters<br>Modal Load Case<br>Modal Combination M<br>Include Rig<br>Earthquake Du<br>Directional Combinatio<br>Absolute Direct<br>Modal Damping | ethod<br>d Response<br>ration, td<br>on Type<br>ional Combination Scale<br>Constant at 0.05 | Modal<br>CQC<br>Rigid Frequency, f1<br>Rigid Frequency, f2<br>Periodic + Rigid Type<br>SRSS<br>e Factor | ▲ Ai         | dvance |

• Definición de las funciones tiempo historia

| Correspondencia Kevisar                            | Time History Function Definition - User Defined      |
|----------------------------------------------------|------------------------------------------------------|
| ETABS 2016 Ultimate 16                             |                                                      |
| lay Design Detailing Optic<br>d Pla el은 ③ 6성 🛧 🗣 🖫 | Time History Function Name T66-EW                    |
| N                                                  | Define Function Time Value                           |
| D 10 - Z = 28.6 (m)                                | 0 0                                                  |
| De De                                              | 0                                                    |
|                                                    | 0.04 -0.00266 Modify<br>0.06 -0.00305                |
| Functions                                          | 0.08 -0.00496<br>0.1 0.0003 Delete                   |
| T66EW                                              | 0.12 0.00362                                         |
| T66-NS<br>T70-EW                                   | 0.16 • -0.01822 •                                    |
| T74-EW<br>T74-NS                                   | Function Graph                                       |
| UnifTH                                             | E-3                                                  |
|                                                    | 600 -                                                |
|                                                    | 450                                                  |
|                                                    | 300                                                  |
|                                                    | 150                                                  |
|                                                    |                                                      |
|                                                    | -150                                                 |
|                                                    | -300                                                 |
|                                                    | -450                                                 |
|                                                    | 0.0 8.0 10.0 24.0 32.0 40.0 48.0 56.0 64.0 72.0 80.0 |

• Definimos combinaciones de carga.

| Load Combination Data        |               |                 |        | × |
|------------------------------|---------------|-----------------|--------|---|
| General Data                 |               |                 |        |   |
| Load Combination Name        | DE            | RIVA-XX         |        |   |
| Combination Type             | Line          | ear Add         | ~      |   |
| Notes                        |               | Modify/Show Not | tes    |   |
| Auto Combination             | No            |                 |        |   |
| Define Combination of Load C | Case/Combo Re | esults          |        |   |
| Load Name                    |               | Scale Factor    | ]      |   |
| Sismo X                      |               | 5.25            | Add    |   |
|                              |               |                 | Delete |   |
|                              |               |                 |        |   |
|                              |               |                 |        |   |
|                              |               |                 |        |   |
|                              |               |                 | -      |   |
|                              | OK            | Cancel          |        |   |

# • Estructuramos la edificación



- Revisión de periodos
- Revisión de desplazamientos relativos de entrepiso
- Revisión de la cortante basal


- 5. DEFINIR CARACTERÍSTICAS NO LINEALES DE LOS DISIPADORES DE FLUIDO VISCOELASTICOS
  - Asignación de parámetros para disipadores con características del laboratorio.

|                       |                                       |           | Link Pr              | operty Data         |                     |            |
|-----------------------|---------------------------------------|-----------|----------------------|---------------------|---------------------|------------|
| General               |                                       |           |                      |                     |                     |            |
| Link Property Name DX |                                       | Link Type | Damper - Exponential | $\vee$              |                     |            |
| Link Prop             | Link Property Notes Modify/Show Notes |           | Modify/Show Notes    | P-Delta Parameters  | Modify/Show         | <i></i>    |
| Total Mass a          | ind Weig                              | ht        |                      |                     |                     |            |
| Mass                  |                                       | 0         | kg                   | 🚹 Link/Su           | pport Directional I | Properties |
| Weight                |                                       | 0         | tonf                 | Identification      |                     |            |
|                       |                                       |           |                      | Property Name       | DX                  |            |
| Directional P         | roperties                             |           |                      | Direction           | U1                  |            |
| Direction             | Fixed                                 | NonLinear | Properties           | Туре                | Damper - Ex         | ponential  |
| ✓ U1                  |                                       |           | Modify/Show for U1   | NonLinear           | No                  |            |
| 🔲 U2                  |                                       |           | Modify/Show for U2   | Linear Properties   |                     |            |
| 🔲 U3                  |                                       |           | Modify/Show for U3   | Effective Stiffness | 0                   | tonf/mm    |
|                       |                                       |           | Fix All              | Effective Damping   | 2.9                 | tonf-s/mm  |
|                       |                                       |           |                      |                     |                     |            |
|                       |                                       |           | OK                   |                     | OK Car              | ncel       |



- Revisión de periodos
- Revisión de desplazamientos relativos de entrepiso
- Revisión de la fuerza cortante en disipadores de FLUIDO VISCOELASTICOS.
- Revisión de la cortante basal
- Elección final del disipador de energía

# **ANEXO 3:** PROCEDIMIENTO PARA EL ESCALAMIENTO DE ACELOGRAMAS A ESPECTRO DE DISEÑO EN EL PROGRAMA SISMOMATCH 2016.

- 1. Abrir Sismo mach.
- 2. Hacer click en Open Single.

|                                       | SeismoMatch * [Untitled.smp]            | - 0 ×           |
|---------------------------------------|-----------------------------------------|-----------------|
| File Edit View Tools Help             |                                         |                 |
| 🎾 🕼 😓 🌾 🕼                             | 🗐 🎒 Pa 😂 🔍 🗟 🏟 🔜 📥 🥹 🕗                  |                 |
| Step1: Input the Source Accelerograms | Input/Output Accs                       |                 |
| 💋 Open Sing                           | le Original Acceleration time histories |                 |
| 🍫 Open <u>M</u> ulti                  | pie                                     |                 |
| Select All                            |                                         |                 |
| Refresh                               | retism Cc                               |                 |
| Remove Select                         | Accele                                  |                 |
|                                       |                                         |                 |
| Step2: Define the Target Spectrum     |                                         |                 |
| Define Target Spectru                 | m                                       |                 |
| 500                                   | Matched Acceleration time-histories     |                 |
| 3 400<br>5                            |                                         |                 |
| 월 300<br>문 200                        |                                         |                 |
| ₹<br>100                              |                                         |                 |
| 0                                     |                                         |                 |
| Step3: Carry out Spectral Matching    |                                         |                 |
| Min Period: 0.05 Scale factor: 1      |                                         |                 |
| Max Period: 2 Tolerance: 0.3          |                                         |                 |
| Do Match                              | ing                                     |                 |
| Open an accelerogram                  | Acceleration: a Velocity confer         | Dirplacement cm |

3. Buscas los registros descargados.

|                                                                                                                                                                                                                |                                                         | SeismoMatch * [Untitled.smp]                                                                                                                                                                                                                                                                                                                                               | - 0                                                                                                                         |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                | 🖹 🍡 🤪 💽                                                 | a 🔅 🛃 🛃 🛛 😤 🌏 🥥                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                             |
| Step1: Input the Source Accelerograms                                                                                                                                                                          | Input/Output Accs<br>Original Acceleration time-histori | ss<br>Àbrir<br>(⊕ (⊕) → ↑ ()) → REGISTROS SISMICOS V2 →                                                                                                                                                                                                                                                                                                                    | <ul> <li>✓</li> <li>✓</li> <li>✓</li> <li>✓</li> <li>Ø</li> <li>Ø</li> <li>Buscar en REGISTROS SISMIC</li> <li>Ø</li> </ul> |
| Step2: Define the Target Spectrum Define Impet Spectrum Superior Impet Spectrum Nn Percei Out5 Scele faster. 1 | (B) unge apport                                         | Organizar ▼     Nueva carpeta       Favoritos     F       A 360 Drive     ESCALADOS V2       © Bescargas     Escritorio       Escritorio     0       Stois recientes     Bopcugeto 15-184058       Autodesk 360     PRQ_1970-05-3       PRQ_1974-10-4     Tamaño: 213 KB       PRQ_1974-10-4     Tamaño: 213 KB       Imaginaria     PRQ_1974-10-4       Música     Videos |                                                                                                                             |
| Max Period: 2 Tolerance: 0.3 Do Matching                                                                                                                                                                       |                                                         |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                             |

- 4. Los datos empiezan en la linea 38 hasta la linea 3320.
- 5. Los peridodos estan en un intervalor de 0.02.
- 6. Ya que el registro estan en unidades cm/s2, hay que convertir a gravedad: 1/981=0.001019368.

|                                                          |                                           |                                                                                                        | SeismoMatch * [Unt                                                                                                                                             | itled.smp]                                       |                                    |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 0 ×            |
|----------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| File Edit View Tools Help                                |                                           |                                                                                                        |                                                                                                                                                                |                                                  |                                    |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| 🎾 🔎 🔒 🏳 🖗                                                | 🖻 🏝 🏹                                     | > 🗟 🗟 🚳 🖍<br>N                                                                                         | Input File Paran                                                                                                                                               | eters                                            |                                    | × |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| Step1: Input the Source Accelerograms                    | Input/Output Ad                           |                                                                                                        | 1                                                                                                                                                              | 1                                                |                                    |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| Copen Single<br>Copen Multiple<br>Select All             | Original Accele<br>0.15<br>0.1<br>() 0.05 | First Line     38       Last Line     3320       Time Step dt     0.02       Scaling Factor     0.0010 | <ul> <li>Single Acceleration val</li> <li>Time &amp; Acceleration val</li> <li>Multiple Acceleration v</li> <li>SMC Format</li> <li>PEER NGA Format</li> </ul> | lue per line<br>alues per line<br>alues per line | OK     Cancel     Help             |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PRQ_19           |
| Befresh                                                  | o stion                                   |                                                                                                        | Acceleration Column                                                                                                                                            | 2 🚍                                              | Set As Default                     |   | millight prophers in a second s |                  |
| Remove Selected                                          | 90 -0.05                                  |                                                                                                        | Time Column                                                                                                                                                    | 1                                                |                                    |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| Step2: Define the Target Spectrum Define Target Spectrum | -0.1                                      | Frequency 1  Acceleration File NUMBER OF SAMPLES                                                       | Initial Values Skipped                                                                                                                                         | 0                                                |                                    | ^ | 3 48 50 52 54 56 58 60 62 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |
| 500                                                      | Matched Acce                              | MAXIMUM ACCELERATION<br>DATA UNITS                                                                     | : -180.56<br>: cm/s2                                                                                                                                           | -268.24                                          | 94.29                              |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| 명 400<br>턴 300                                           | Г                                         | 4. COMMENTS<br>BASELINE CORRECTED                                                                      |                                                                                                                                                                |                                                  |                                    |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| 8 200                                                    |                                           | 5. ACCELERATION DATA                                                                                   |                                                                                                                                                                |                                                  |                                    |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| <sup>2</sup> 100<br>0                                    | eration (g)                               | T<br>0.0000<br>0.0200<br>0.0400                                                                        | EW<br>-11.3771<br>-2.6551<br>-3.0481                                                                                                                           | NS<br>-13.1543<br>-6.6753<br>-5.1973             | UD<br>4.1991<br>-4.9569<br>-4.5209 |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| Step3: Carry out Spectral Matching                       | 00 F                                      | 0.0600                                                                                                 | -4.9621                                                                                                                                                        | 2.5887                                           | 0.9491                             | ~ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| Min Period: 0.05 Scale factor: 1                         |                                           | < 0.0800                                                                                               | 0.2979                                                                                                                                                         | 9.0947                                           | 9.0771                             | > |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| Max Period: 2 Tolerance: 0.3                             |                                           |                                                                                                        |                                                                                                                                                                | Line                                             | 39 Pos:10                          | đ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
| Do Matching                                              |                                           |                                                                                                        |                                                                                                                                                                |                                                  |                                    |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |
|                                                          | [                                         |                                                                                                        |                                                                                                                                                                |                                                  |                                    |   | Accelerations a Valacity em/cos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Displacements cm |

7. Para nuestro caso trabajaremos con este-oeste EW – columna 2.

8. Ya tenemos el acelograma en unidades gravedad.



- 9. Hacer click en define
- 10. Ahora necesitamos nuestro espectro elesatico deaceurdo ala norma

R=1

- 11. Amortiguamiewnto 5%.
- 12. Liego en open y cargar espectro elastico r=1
- 13. En piensa en la linea 1 termina en la linea 81 y ok.

| $\land$             |                                         | SeismoMatch * [Untitled.smp]                                 | - 0 ×                                             |
|---------------------|-----------------------------------------|--------------------------------------------------------------|---------------------------------------------------|
| File Edit View Tool | ls Help                                 |                                                              |                                                   |
| 🎾 🧊 🛃 🛛             | 🔽 👘 🎒 📮 🍙 🗞                             | ब्रे 🗟 🎆 🛃 🙆 😤 🚭 🥌<br>Set Target Spectrum                    | ×                                                 |
| Step1: Input the    | Type of Spectrum                        |                                                              |                                                   |
| PRQ_1966-10-17-1    |                                         | Input File Parameters                                        |                                                   |
|                     | O Use EC8 Spectrum                      | First Line 1 Period Column 1 💭 🗸 OK                          |                                                   |
|                     | PGA [g] U.5                             | Inthe Provide State                                          | - PRQ_19                                          |
|                     | Damping Value (%) 5 🗸                   | Lass Line 81                                                 |                                                   |
|                     | Ground Values for EC8 Spectrum          | Scaling Factor 1.0 Acceleration Column 2                     |                                                   |
|                     | ● Type 1 ◯ Type 2 🗛 🗸                   | Spectrum File                                                |                                                   |
|                     | <u>C</u> reate                          | 0.0000 1.0063 A                                              |                                                   |
| Step2: Define th    | O Use spectrum from loaded accelerogram | .3000 1.0063<br>.4000 1.0063<br>.5000 1.0063<br>.6000 1.0063 |                                                   |
| 500                 | Damping Value (%) 5 v                   | 0.7000 0.8225<br>0.8000 0.7547<br>0.9000 0.6708              |                                                   |
| 명 400<br>도<br>월 300 | Load Spectrum from file                 | 0000 0.6038<br>1000 0.5489                                   |                                                   |
| 90 200              | Damping Value (%) 5 v                   | .3000 0.4644<br>.4000 0.4313                                 |                                                   |
| 0                   | <u>O</u> pen                            | .5000 0.4025<br>.6000 0.3773<br>.7000 0.3551                 |                                                   |
|                     |                                         | .8000 0.3354 *                                               |                                                   |
| Step3: Carry out    |                                         | Line:81 Pos:4                                                |                                                   |
| Min Period: (       | Cancel I                                |                                                              |                                                   |
| Max Period:         |                                         | 0<br>Period (                                                | sec]                                              |
|                     |                                         |                                                              |                                                   |
|                     |                                         |                                                              | Acceleration: g Velocity: cm/sec Displacement: cm |

- 14. Tenemos el espectro cargardo R=1
- 15. Nuestro perido fundamental de la estructura edificio 1 es =0.926s
- 16. De aceurdo a la norma tenemos un rango de escalaimiento
- 17. Y ahora corremos.



18. En la parte infeiror tenemos el acelograma escalaldo .



19. Tenemos escalado a nuestro espectro.



20. Los datos escalados es el Cuadro a la derecha.

| $\sim$                    | Seisi                                                                                                                                        | moMatch [C:\    | Users\Edua      | rdo\Desktop\      | REGISTROS   | SISMICOS V2    | ESCALADO    | S V2\seismi    | imatch\PRQ    | 1966-10-17-6       | W.smp]    |                | -               | <b>a</b> × |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|-------------------|-------------|----------------|-------------|----------------|---------------|--------------------|-----------|----------------|-----------------|------------|
| File Edit View Tools He   | slp                                                                                                                                          |                 |                 |                   |             |                |             |                |               |                    |           |                |                 |            |
| 💭 🍋                       | 🌾 🎒 💾                                                                                                                                        | 📄 🔁 é           | è 🗟             | र्वे 🔅 [          | n 🕹 💑       | 2 😤            | 🗣 🌔         |                |               |                    |           |                |                 |            |
| Step1: Input the Source A | Step 1: input the Source Accelerograms / input/Output Accs   Time Seless   Response Spectra   Mean Matched Spectra   Ground Moton Parameters |                 |                 |                   |             |                |             |                |               |                    |           |                |                 |            |
| E 114_10010-10-104100.00  | 💋 Open Single                                                                                                                                | Damping Valu    | e 5%            | ¥                 |             | Refresh        |             |                |               |                    |           |                |                 |            |
|                           | 🍪 Open <u>M</u> ultiple                                                                                                                      | Original Accele | ograms Matc     | hed Accelerograms | Comparisons | Table          |             |                |               |                    |           |                |                 |            |
|                           | Select All                                                                                                                                   | PRQ_1966        | 10-17-' 🗸       |                   |             |                |             |                |               |                    |           |                |                 |            |
|                           | <u>R</u> efresh                                                                                                                              | Parameters fro  | m Original Acce | lerogram Spectrum |             |                |             | Parameters fro | m Matched Acc | slerogram Spectrum |           |                |                 |            |
|                           | Remove Selected                                                                                                                              | Period (s)      | Acc (g)         | Vel (cm/sec)      | Disp (cm)   | Pseudo-Acc (g) | Pseudo-Ve 🔨 | Period (s)     | Acc (g)       | Vel (cm/sec)       | Disp (cm) | Pseudo-Acc (g) | Pseudo-Vel (cm/ | ^          |
|                           |                                                                                                                                              | 0.00000         | 0.18056         | 0.00000           | 0.00000     | 0.18056        | 0.00000     | 0.00000        | 0.43443       | 0.00000            | 0.00000   | 0.43443        | 0.00000         |            |
|                           |                                                                                                                                              | 0.02000         | 0.18298         | 0.16779           | 0.00182     | 0.18293        | 0.57123     | 0.02000        | 0.44014       | 0.17451            | 0.00437   | 0.44004        | 1.37408         |            |
| Step2: Define the Target  | Spectrum                                                                                                                                     | 0.04000         | 0.21195         | 0.46686           | 0.00842     | 0.21178        | 1.32260     | 0.04000        | 0.45387       | 0.46590            | 0.01804   | 0.45370        | 2.83344         |            |
| De                        | fine Target Spectrum                                                                                                                         | 0.06000         | 0.34663         | 2.34219           | 0.03092     | 0.34561        | 3.23763     | 0.06000        | 0.51204       | 2.36127            | 0.04577   | 0.51162        | 4.79279         |            |
|                           |                                                                                                                                              | 0.08000         | 0.62796         | 6.89641           | 0.09951     | 0.62572        | 7.81558     | 0.08000        | 0.77553       | 6.76963            | 0.12298   | 0.77331        | 9.65905         |            |
| 1                         |                                                                                                                                              | 0.10000         | 0.57245         | 8.16718           | 0.14161     | 0.56988        | 8.89766     | 0.10000        | 0.59370       | 8.41045            | 0.14684   | 0.59093        | 9.22621         |            |
| 3                         |                                                                                                                                              | 0.12000         | 0.58299         | 9.85478           | 0.20772     | 0.58051        | 10.87632    | 0.12000        | 0.62961       | 9.65980            | 0.22487   | 0.62844        | 11.77435        |            |
|                           |                                                                                                                                              | 0.14000         | 0.43803         | 10.19821          | 0.21232     | 0.43594        | 9.52889     | 0.14000        | 0.50776       | 10.31104           | 0.24615   | 0.50539        | 11.04706        |            |
| aus l                     |                                                                                                                                              | 0.16000         | 0.48392         | 11.47241          | 0.30653     | 0.48186        | 12.03725    | 0.16000        | 0.80104       | 12.42274           | 0.50824   | 0.79895        | 19.95857        |            |
| ă.                        |                                                                                                                                              | 0.18000         | 0.42371         | 10.91164          | 0.33943     | 0.42160        | 11.84839    | 0.18000        | 0.75702       | 13.44174           | 0.60736   | 0.75439        | 21.20101        |            |
| o                         |                                                                                                                                              | 0.20000         | 0.40175         | 12.73136          | 0.39708     | 0.39949        | 12.47459    | 0.20000        | 0.73145       | 19.10924           | 0.72454   | 0.72894        | 22.76214        |            |
| 0 0.5 1 1.5               | 2 2.5 3 3.5 4                                                                                                                                | 0.22000         | 0.57314         | 18.10012          | 0.68586     | 0.57027        | 19.58810    | 0.22000        | 1.08002       | 32.15968           | 1.29307   | 1.07514        | 36.92994        |            |
| Step3: Carry out Spectral | Matching                                                                                                                                     | 0.24000         | 0.52000         | 19.21182          | 0.74083     | 0.51759        | 19.39475    | 0.24000        | 1.05605       | 35.34393           | 1.50470   | 1.05128        | 39.39298        |            |
| Min Period: 0.1852        | Scale factor: 1                                                                                                                              | 0.26000         | 0.37510         | 15.10934          | 0.62647     | 0.37294        | 15.13925    | 0.26000        | 1.00209       | 37.19437           | 1.67501   | 0.99715        | 40.47847        |            |
| Max Period: 1.389         | Tolerance: 0.3                                                                                                                               | 0.28000         | 0.39098         | 17.75695          | 0.75798     | 0.38907        | 17.00902    | 0.28000        | 1.04943       | 43.85816           | 2.03458   | 1.04436        | 45.65578        |            |
|                           | Do Matching                                                                                                                                  | <               |                 |                   |             |                | >           | 0.30000        | 1.07765       | 47.38687           | 2.40006   | 1.07317        | 50.26670        | ~          |

#### **ANEXO 4:** CUADROS EXTRAÍDAS DEL PROGRAMA (EDIFICIO 1) 1. RESPUESTA DEL EDIFICIO SIN AMORTIGUADORES

- a. DERIVAS
  - Deriva máxima x

| TABLE: Story Drifts |                 |           |          |            |  |  |  |  |  |  |
|---------------------|-----------------|-----------|----------|------------|--|--|--|--|--|--|
| Story               | Load Case/Combo | Direction | Drift    | Drift<br>‰ |  |  |  |  |  |  |
| TECHO               | SXT66-EW Max    | Х         | 0.004478 | 4.478      |  |  |  |  |  |  |
| TECHO               | SXT66-NS Max    | Х         | 0.004359 | 4.359      |  |  |  |  |  |  |
| TECHO               | SXT70-EW Max    | Х         | 0.004026 | 4.026      |  |  |  |  |  |  |
| TECHO               | SXT70-NS Max    | Х         | 0.004686 | 4.686      |  |  |  |  |  |  |
| TECHO               | SXT74-EW Max    | Х         | 0.004297 | 4.297      |  |  |  |  |  |  |
| TECHO               | SXT74-NS Max    | Х         | 0.004128 | 4.128      |  |  |  |  |  |  |
| TECHO               | SXT07-EW Max    | Х         | 0.004506 | 4.506      |  |  |  |  |  |  |
| TECHO               | SXT07-NE Max    | Х         | 0.003665 | 3.665      |  |  |  |  |  |  |
| PISO 11             | SXT66-EW Max    | Х         | 0.004498 | 4.498      |  |  |  |  |  |  |
| PISO 11             | SXT66-NS Max    | Х         | 0.004385 | 4.385      |  |  |  |  |  |  |
| PISO 11             | SXT70-EW Max    | Х         | 0.004076 | 4.076      |  |  |  |  |  |  |
| PISO 11             | SXT70-NS Max    | Х         | 0.004761 | 4.761      |  |  |  |  |  |  |
| PISO 11             | SXT74-EW Max    | Х         | 0.004344 | 4.344      |  |  |  |  |  |  |
| PISO 11             | SXT74-NS Max    | Х         | 0.004193 | 4.193      |  |  |  |  |  |  |
| PISO 11             | SXT07-EW Max    | Х         | 0.004562 | 4.562      |  |  |  |  |  |  |
| PISO 11             | SXT07-NE Max    | Х         | 0.003725 | 3.725      |  |  |  |  |  |  |
| PISO 10             | SXT66-EW Max    | Х         | 0.004416 | 4.416      |  |  |  |  |  |  |
| PISO 10             | SXT66-NS Max    | Х         | 0.004389 | 4.389      |  |  |  |  |  |  |
| PISO 10             | SXT70-EW Max    | Х         | 0.004336 | 4.336      |  |  |  |  |  |  |
| PISO 10             | SXT70-NS Max    | Х         | 0.005342 | 5.342      |  |  |  |  |  |  |
| PISO 10             | SXT74-EW Max    | Х         | 0.004557 | 4.557      |  |  |  |  |  |  |
| PISO 10             | SXT74-NS Max    | Х         | 0.00463  | 4.63       |  |  |  |  |  |  |
| PISO 10             | SXT07-EW Max    | Х         | 0.004892 | 4.892      |  |  |  |  |  |  |
| PISO 10             | SXT07-NE Max    | Х         | 0.004149 | 4.149      |  |  |  |  |  |  |
| PISO 9              | SXT66-EW Max    | Х         | 0.005031 | 5.031      |  |  |  |  |  |  |

| TABLE: Story Drifts |                 |           |          |            |  |  |  |  |  |  |
|---------------------|-----------------|-----------|----------|------------|--|--|--|--|--|--|
| Story               | Load Case/Combo | Direction | Drift    | Drift<br>‰ |  |  |  |  |  |  |
| PISO 9              | SXT66-NS Max    | Х         | 0.005069 | 5.069      |  |  |  |  |  |  |
| PISO 9              | SXT70-EW Max    | Х         | 0.005083 | 5.083      |  |  |  |  |  |  |
| PISO 9              | SXT70-NS Max    | Х         | 0.006324 | 6.324      |  |  |  |  |  |  |
| PISO 9              | SXT74-EW Max    | Х         | 0.005319 | 5.319      |  |  |  |  |  |  |
| PISO 9              | SXT74-NS Max    | Х         | 0.005482 | 5.482      |  |  |  |  |  |  |
| PISO 9              | SXT07-EW Max    | Х         | 0.005727 | 5.727      |  |  |  |  |  |  |
| PISO 9              | SXT07-NE Max    | Х         | 0.004916 | 4.916      |  |  |  |  |  |  |
| PISO 8              | SXT66-EW Max    | Х         | 0.005666 | 5.666      |  |  |  |  |  |  |
| PISO 8              | SXT66-NS Max    | Х         | 0.005899 | 5.899      |  |  |  |  |  |  |
| PISO 8              | SXT70-EW Max    | Х         | 0.00588  | 5.88       |  |  |  |  |  |  |
| PISO 8              | SXT70-NS Max    | Х         | 0.007229 | 7.229      |  |  |  |  |  |  |
| PISO 8              | SXT74-EW Max    | Х         | 0.006103 | 6.103      |  |  |  |  |  |  |
| PISO 8              | SXT74-NS Max    | Х         | 0.006349 | 6.349      |  |  |  |  |  |  |
| PISO 8              | SXT07-EW Max    | Х         | 0.006569 | 6.569      |  |  |  |  |  |  |
| PISO 8              | SXT07-NE Max    | Х         | 0.005685 | 5.685      |  |  |  |  |  |  |
| PISO 7              | SXT66-EW Max    | Х         | 0.006502 | 6.502      |  |  |  |  |  |  |
| PISO 7              | SXT66-NS Max    | Х         | 0.006708 | 6.708      |  |  |  |  |  |  |
| PISO 7              | SXT70-EW Max    | Х         | 0.006627 | 6.627      |  |  |  |  |  |  |
| PISO 7              | SXT70-NS Max    | Х         | 0.007927 | 7.927      |  |  |  |  |  |  |
| PISO 7              | SXT74-EW Max    | Х         | 0.006812 | 6.812      |  |  |  |  |  |  |
| PISO 7              | SXT74-NS Max    | Х         | 0.007147 | 7.147      |  |  |  |  |  |  |
| PISO 7              | SXT07-EW Max    | Х         | 0.007341 | 7.341      |  |  |  |  |  |  |
| PISO 7              | SXT07-NE Max    | Х         | 0.006359 | 6.359      |  |  |  |  |  |  |
| PISO 6              | SXT66-EW Max    | Х         | 0.007131 | 7.131      |  |  |  |  |  |  |
| PISO 6              | SXT66-NS Max    | Х         | 0.007258 | 7.258      |  |  |  |  |  |  |
| PISO 6              | SXT70-EW Max    | Х         | 0.007219 | 7.219      |  |  |  |  |  |  |
| PISO 6              | SXT70-NS Max    | Х         | 0.008372 | 8.372      |  |  |  |  |  |  |
| PISO 6              | SXT74-EW Max    | Х         | 0.007317 | 7.317      |  |  |  |  |  |  |
| PISO 6              | SXT74-NS Max    | Х         | 0.007771 | 7.771      |  |  |  |  |  |  |

| TABLE: Story Drifts |                 |           |          |            |  |  |  |  |  |  |
|---------------------|-----------------|-----------|----------|------------|--|--|--|--|--|--|
| Story               | Load Case/Combo | Direction | Drift    | Drift<br>% |  |  |  |  |  |  |
| DISO 6              | SXT07 EW/ Max   | Y         | 0.007060 | 7 060      |  |  |  |  |  |  |
|                     |                 | A V       | 0.007909 | 7.909      |  |  |  |  |  |  |
| PISO 6              | SXTU7-NE Max    | X         | 0.006835 | 6.835      |  |  |  |  |  |  |
| PISO 5              | SX166-EW Max    | Х         | 0.007461 | 7.461      |  |  |  |  |  |  |
| PISO 5              | SXT66-NS Max    | Х         | 0.007799 | 7.799      |  |  |  |  |  |  |
| PISO 5              | SXT70-EW Max    | Х         | 0.007584 | 7.584      |  |  |  |  |  |  |
| PISO 5              | SXT70-NS Max    | Х         | 0.008507 | 8.507      |  |  |  |  |  |  |
| PISO 5              | SXT74-EW Max    | Х         | 0.007615 | 7.615      |  |  |  |  |  |  |
| PISO 5              | SXT74-NS Max    | Х         | 0.008105 | 8.105      |  |  |  |  |  |  |
| PISO 5              | SXT07-EW Max    | Х         | 0.0084   | 8.4        |  |  |  |  |  |  |
| PISO 5              | SXT07-NE Max    | Х         | 0.007046 | 7.046      |  |  |  |  |  |  |
| PISO 4              | SXT66-EW Max    | Х         | 0.007591 | 7.591      |  |  |  |  |  |  |
| PISO 4              | SXT66-NS Max    | Х         | 0.00802  | 8.02       |  |  |  |  |  |  |
| PISO 4              | SXT70-EW Max    | Х         | 0.007631 | 7.631      |  |  |  |  |  |  |
| PISO 4              | SXT70-NS Max    | Х         | 0.008249 | 8.249      |  |  |  |  |  |  |
| PISO 4              | SXT74-EW Max    | Х         | 0.007665 | 7.665      |  |  |  |  |  |  |
| PISO 4              | SXT74-NS Max    | Х         | 0.008061 | 8.061      |  |  |  |  |  |  |
| PISO 4              | SXT07-EW Max    | Х         | 0.008548 | 8.548      |  |  |  |  |  |  |
| PISO 4              | SXT07-NE Max    | Х         | 0.00693  | 6.93       |  |  |  |  |  |  |
| PISO 3              | SXT66-EW Max    | Х         | 0.007653 | 7.653      |  |  |  |  |  |  |
| PISO 3              | SXT66-NS Max    | Х         | 0.00774  | 7.74       |  |  |  |  |  |  |
| PISO 3              | SXT70-EW Max    | Х         | 0.007236 | 7.236      |  |  |  |  |  |  |
| PISO 3              | SXT70-NS Max    | Х         | 0.007639 | 7.639      |  |  |  |  |  |  |
| PISO 3              | SXT74-EW Max    | Х         | 0.007317 | 7.317      |  |  |  |  |  |  |
| PISO 3              | SXT74-NS Max    | Х         | 0.00755  | 7.55       |  |  |  |  |  |  |
| PISO 3              | SXT07-EW Max    | Х         | 0.008222 | 8.222      |  |  |  |  |  |  |
| PISO 3              | SXT07-NE Max    | Х         | 0.00642  | 6.42       |  |  |  |  |  |  |
| PISO 2              | SXT66-EW Max    | Х         | 0.006895 | 6.895      |  |  |  |  |  |  |
| PISO 2              | SXT66-NS Max    | X         | 0.006619 | 6.619      |  |  |  |  |  |  |
| PISO 2              | SXT70-EW Max    | Х         | 0.006224 | 6.224      |  |  |  |  |  |  |

| TABLE: Story Drifts |                 |           |           |            |  |  |  |  |
|---------------------|-----------------|-----------|-----------|------------|--|--|--|--|
| Story               | Load Case/Combo | Direction | Drift     | Drift<br>‰ |  |  |  |  |
| PISO 2              | SXT70-NS Max    | Х         | 0.006588  | 6.588      |  |  |  |  |
| PISO 2              | SXT74-EW Max    | Х         | 0.006313  | 6.313      |  |  |  |  |
| PISO 2              | SXT74-NS Max    | Х         | 0.006419  | 6.419      |  |  |  |  |
| PISO 2              | SXT07-EW Max    | Х         | 0.007163  | 7.163      |  |  |  |  |
| PISO 2              | SXT07-NE Max    | Х         | 0.00551   | 5.51       |  |  |  |  |
| PISO 1              | SXT66-EW Max    | Х         | 0.003648  | 3.648      |  |  |  |  |
| PISO 1              | SXT66-NS Max    | Х         | 0.003714  | 3.714      |  |  |  |  |
| PISO 1              | SXT70-EW Max    | Х         | 0.003538  | 3.538      |  |  |  |  |
| PISO 1              | SXT70-NS Max    | Х         | 0.003728  | 3.728      |  |  |  |  |
| PISO 1              | SXT74-EW Max    | Х         | 0.003591  | 3.591      |  |  |  |  |
| PISO 1              | SXT74-NS Max    | Х         | 0.003627  | 3.627      |  |  |  |  |
| PISO 1              | SXT07-EW Max    | Х         | 0.004118  | 4.118      |  |  |  |  |
| PISO 1              | SXT07-NE Max    | Х         | 0.003193  | 3.193      |  |  |  |  |
|                     |                 | DERIVA    | MAX X (‰) | 8.54800    |  |  |  |  |

• Deriva máxima y

| TABLE: Story Drifts |                 |           |          |            |  |  |  |  |  |  |
|---------------------|-----------------|-----------|----------|------------|--|--|--|--|--|--|
| Story               | Load Case/Combo | Direction | Drift    | Drift<br>‰ |  |  |  |  |  |  |
| TECHO               | SYT66-EW Max    | Y         | 0.002067 | 2.067      |  |  |  |  |  |  |
| TECHO               | SYT66-NS Max    | Y         | 0.002202 | 2.202      |  |  |  |  |  |  |
| TECHO               | SYT70-EW Max    | Y         | 0.00171  | 1.71       |  |  |  |  |  |  |
| TECHO               | SYT70-NS Max    | Y         | 0.002514 | 2.514      |  |  |  |  |  |  |
| TECHO               | SYT74-EW Max    | Y         | 0.001942 | 1.942      |  |  |  |  |  |  |
| TECHO               | SYT74-NS Max    | Y         | 0.001746 | 1.746      |  |  |  |  |  |  |
| TECHO               | SYT07-EW Max    | Y         | 0.001845 | 1.845      |  |  |  |  |  |  |
| TECHO               | SYT07-NS Max    | Y         | 0.001188 | 1.188      |  |  |  |  |  |  |
| PISO 11             | SYT66-EW Max    | Y         | 0.003399 | 3.399      |  |  |  |  |  |  |

| TABLE: Story Drifts |                 |           |          |       |  |  |  |  |  |  |
|---------------------|-----------------|-----------|----------|-------|--|--|--|--|--|--|
| Story               | Load Case/Combo | Direction | Drift    | Drift |  |  |  |  |  |  |
| , <b>,</b>          |                 |           |          | ‰     |  |  |  |  |  |  |
| PISO 11             | SYT66-NS Max    | Y         | 0.003608 | 3.608 |  |  |  |  |  |  |
| PISO 11             | SYT70-EW Max    | Y         | 0.002829 | 2.829 |  |  |  |  |  |  |
| PISO 11             | SYT70-NS Max    | Y         | 0.004128 | 4.128 |  |  |  |  |  |  |
| PISO 11             | SYT74-EW Max    | Y         | 0.003167 | 3.167 |  |  |  |  |  |  |
| PISO 11             | SYT74-NS Max    | Y         | 0.002875 | 2.875 |  |  |  |  |  |  |
| PISO 11             | SYT07-EW Max    | Y         | 0.003047 | 3.047 |  |  |  |  |  |  |
| PISO 11             | SYT07-NS Max    | Y         | 0.001963 | 1.963 |  |  |  |  |  |  |
| PISO 10             | SYT66-EW Max    | Y         | 0.004991 | 4.991 |  |  |  |  |  |  |
| PISO 10             | SYT66-NS Max    | Y         | 0.005123 | 5.123 |  |  |  |  |  |  |
| PISO 10             | SYT70-EW Max    | Y         | 0.004078 | 4.078 |  |  |  |  |  |  |
| PISO 10             | SYT70-NS Max    | Y         | 0.005936 | 5.936 |  |  |  |  |  |  |
| PISO 10             | SYT74-EW Max    | Y         | 0.004543 | 4.543 |  |  |  |  |  |  |
| PISO 10             | SYT74-NS Max    | Y         | 0.004128 | 4.128 |  |  |  |  |  |  |
| PISO 10             | SYT07-EW Max    | Y         | 0.004404 | 4.404 |  |  |  |  |  |  |
| PISO 10             | SYT07-NS Max    | Y         | 0.002851 | 2.851 |  |  |  |  |  |  |
| PISO 9              | SYT66-EW Max    | Y         | 0.006223 | 6.223 |  |  |  |  |  |  |
| PISO 9              | SYT66-NS Max    | Y         | 0.006402 | 6.402 |  |  |  |  |  |  |
| PISO 9              | SYT70-EW Max    | Y         | 0.005127 | 5.127 |  |  |  |  |  |  |
| PISO 9              | SYT70-NS Max    | Y         | 0.007406 | 7.406 |  |  |  |  |  |  |
| PISO 9              | SYT74-EW Max    | Y         | 0.00564  | 5.64  |  |  |  |  |  |  |
| PISO 9              | SYT74-NS Max    | Y         | 0.005174 | 5.174 |  |  |  |  |  |  |
| PISO 9              | SYT07-EW Max    | Y         | 0.005566 | 5.566 |  |  |  |  |  |  |
| PISO 9              | SYT07-NS Max    | Y         | 0.003576 | 3.576 |  |  |  |  |  |  |
| PISO 8              | SYT66-EW Max    | Y         | 0.007252 | 7.252 |  |  |  |  |  |  |
| PISO 8              | SYT66-NS Max    | Y         | 0.007539 | 7.539 |  |  |  |  |  |  |
| PISO 8              | SYT70-EW Max    | Y         | 0.006103 | 6.103 |  |  |  |  |  |  |
| PISO 8              | SYT70-NS Max    | Y         | 0.008622 | 8.622 |  |  |  |  |  |  |
| PISO 8              | SYT74-EW Max    | Y         | 0.006523 | 6.523 |  |  |  |  |  |  |
| PISO 8              | SYT74-NS Max    | Y         | 0.006092 | 6.092 |  |  |  |  |  |  |

| TABLE: Story Drifts |                                       |   |          |       |  |  |
|---------------------|---------------------------------------|---|----------|-------|--|--|
| Storv               | Story Load Case/Combo Direction Drift |   |          |       |  |  |
| ,                   |                                       |   |          | ‰     |  |  |
| PISO 8              | SYT07-EW Max                          | Y | 0.006671 | 6.671 |  |  |
| PISO 8              | SYT07-NS Max                          | Y | 0.004205 | 4.205 |  |  |
| PISO 7              | SYT66-EW Max                          | Y | 0.007965 | 7.965 |  |  |
| PISO 7              | SYT66-NS Max                          | Y | 0.00843  | 8.43  |  |  |
| PISO 7              | SYT70-EW Max                          | Y | 0.006879 | 6.879 |  |  |
| PISO 7              | SYT70-NS Max                          | Y | 0.009408 | 9.408 |  |  |
| PISO 7              | SYT74-EW Max                          | Y | 0.00712  | 7.12  |  |  |
| PISO 7              | SYT74-NS Max                          | Y | 0.006754 | 6.754 |  |  |
| PISO 7              | SYT07-EW Max                          | Y | 0.007594 | 7.594 |  |  |
| PISO 7              | SYT07-NS Max                          | Y | 0.00465  | 4.65  |  |  |
| PISO 6              | SYT66-EW Max                          | Y | 0.008474 | 8.474 |  |  |
| PISO 6              | SYT66-NS Max                          | Y | 0.009018 | 9.018 |  |  |
| PISO 6              | SYT70-EW Max                          | Y | 0.007351 | 7.351 |  |  |
| PISO 6              | SYT70-NS Max                          | Y | 0.009675 | 9.675 |  |  |
| PISO 6              | SYT74-EW Max                          | Y | 0.007398 | 7.398 |  |  |
| PISO 6              | SYT74-NS Max                          | Y | 0.007084 | 7.084 |  |  |
| PISO 6              | SYT07-EW Max                          | Y | 0.008231 | 8.231 |  |  |
| PISO 6              | SYT07-NS Max                          | Y | 0.004859 | 4.859 |  |  |
| PISO 5              | SYT66-EW Max                          | Y | 0.008976 | 8.976 |  |  |
| PISO 5              | SYT66-NS Max                          | Y | 0.009164 | 9.164 |  |  |
| PISO 5              | SYT70-EW Max                          | Y | 0.007447 | 7.447 |  |  |
| PISO 5              | SYT70-NS Max                          | Y | 0.009412 | 9.412 |  |  |
| PISO 5              | SYT74-EW Max                          | Y | 0.007374 | 7.374 |  |  |
| PISO 5              | SYT74-NS Max                          | Y | 0.007083 | 7.083 |  |  |
| PISO 5              | SYT07-EW Max                          | Y | 0.008466 | 8.466 |  |  |
| PISO 5              | SYT07-NS Max                          | Y | 0.00478  | 4.78  |  |  |
| PISO 4              | SYT66-EW Max                          | Y | 0.009096 | 9.096 |  |  |
| PISO 4              | SYT66-NS Max                          | Y | 0.008769 | 8.769 |  |  |
| PISO 4              | SYT70-EW Max                          | Y | 0.007066 | 7.066 |  |  |

| TABLE: Story Drifts |                                 |   |          |       |  |
|---------------------|---------------------------------|---|----------|-------|--|
| Story               | Load Case/Combo Direction Drift |   |          |       |  |
| •                   |                                 |   |          | ‰     |  |
| PISO 4              | SYT70-NS Max                    | Y | 0.008878 | 8.878 |  |
| PISO 4              | SYT74-EW Max                    | Y | 0.007045 | 7.045 |  |
| PISO 4              | SYT74-NS Max                    | Y | 0.006701 | 6.701 |  |
| PISO 4              | SYT07-EW Max                    | Y | 0.008173 | 8.173 |  |
| PISO 4              | SYT07-NS Max                    | Y | 0.004627 | 4.627 |  |
| PISO 3              | SYT66-EW Max                    | Y | 0.008435 | 8.435 |  |
| PISO 3              | SYT66-NS Max                    | Y | 0.007707 | 7.707 |  |
| PISO 3              | SYT70-EW Max                    | Y | 0.00618  | 6.18  |  |
| PISO 3              | SYT70-NS Max                    | Y | 0.007923 | 7.923 |  |
| PISO 3              | SYT74-EW Max                    | Y | 0.00618  | 6.18  |  |
| PISO 3              | SYT74-NS Max                    | Y | 0.006047 | 6.047 |  |
| PISO 3              | SYT07-EW Max                    | Y | 0.007232 | 7.232 |  |
| PISO 3              | SYT07-NS Max                    | Y | 0.004232 | 4.232 |  |
| PISO 2              | SYT66-EW Max                    | Y | 0.006768 | 6.768 |  |
| PISO 2              | SYT66-NS Max                    | Y | 0.006173 | 6.173 |  |
| PISO 2              | SYT70-EW Max                    | Y | 0.004898 | 4.898 |  |
| PISO 2              | SYT70-NS Max                    | Y | 0.006166 | 6.166 |  |
| PISO 2              | SYT74-EW Max                    | Y | 0.005189 | 5.189 |  |
| PISO 2              | SYT74-NS Max                    | Y | 0.004779 | 4.779 |  |
| PISO 2              | SYT07-EW Max                    | Y | 0.005578 | 5.578 |  |
| PISO 2              | SYT07-NS Max                    | Y | 0.003578 | 3.578 |  |
| PISO 1              | SYT66-EW Max                    | Y | 0.003711 | 3.711 |  |
| PISO 1              | SYT66-NS Max                    | Y | 0.003385 | 3.385 |  |
| PISO 1              | SYT70-EW Max                    | Y | 0.002665 | 2.665 |  |
| PISO 1              | SYT70-NS Max                    | Y | 0.003077 | 3.077 |  |
| PISO 1              | SYT74-EW Max                    | Y | 0.002866 | 2.866 |  |
| PISO 1              | SYT74-NS Max                    | Y | 0.002464 | 2.464 |  |
| PISO 1              | SYT07-EW Max                    | Y | 0.003073 | 3.073 |  |
| PISO 1              | SYT07-NS Max                    | Y | 0.001988 | 1.988 |  |

| TABLE: Story Drifts |                         |           |       |            |  |
|---------------------|-------------------------|-----------|-------|------------|--|
| Story               | Load Case/Combo         | Direction | Drift | Drift<br>‰ |  |
|                     | DERIVA MAX Y (‰) 9.6750 |           |       | 9.67500    |  |

## b. DESPLAZAMIENTO MÁXIMO CON LAS SEÑALES USADAS

• EN LA DIRECCIÓN X

| TABLE: Story Max/Avg Displacements |                 |           |          |
|------------------------------------|-----------------|-----------|----------|
| Story                              | Load Case/Combo | Direction | Maximum  |
| Story                              | Luau Case/Combo | Direction | mm       |
| TECHO                              | SXT66-EW Max    | Х         | 175.8056 |
| PISO 11                            | SXT66-EW Max    | Х         | 167.1805 |
| PISO 10                            | SXT66-EW Max    | Х         | 163.3806 |
| PISO 9                             | SXT66-EW Max    | Х         | 152.9755 |
| PISO 8                             | SXT66-EW Max    | Х         | 140.3865 |
| PISO 7                             | SXT66-EW Max    | Х         | 125.6498 |
| PISO 6                             | SXT66-EW Max    | Х         | 108.9274 |
| PISO 5                             | SXT66-EW Max    | Х         | 91.1304  |
| PISO 4                             | SXT66-EW Max    | Х         | 72.0692  |
| PISO 3                             | SXT66-EW Max    | Х         | 51.5266  |
| PISO 2                             | SXT66-EW Max    | Х         | 30.9149  |
| PISO 1                             | SXT66-EW Max    | Х         | 12.4042  |
| TECHO                              | SXT66-NS Max    | Х         | 176.4464 |
| PISO 11                            | SXT66-NS Max    | Х         | 168.0638 |
| PISO 10                            | SXT66-NS Max    | Х         | 169.247  |
| PISO 9                             | SXT66-NS Max    | Х         | 158.4864 |
| PISO 8                             | SXT66-NS Max    | Х         | 146.4897 |
| PISO 7                             | SXT66-NS Max    | Х         | 131.6982 |
| PISO 6                             | SXT66-NS Max    | Х         | 114.104  |
| PISO 5                             | SXT66-NS Max    | Х         | 94.2057  |
| PISO 4                             | SXT66-NS Max    | Х         | 72.7627  |

| TABLE: Story Max/Avg Displacements |                 |           |          |
|------------------------------------|-----------------|-----------|----------|
| Story                              | Load Case/Combo | Direction | Maximum  |
| Clory                              |                 | Direction | mm       |
| PISO 3                             | SXT66-NS Max    | Х         | 50.7586  |
| PISO 2                             | SXT66-NS Max    | Х         | 30.3787  |
| PISO 1                             | SXT66-NS Max    | Х         | 12.6275  |
| TECHO                              | SXT70-EW Max    | Х         | 169.0723 |
| PISO 11                            | SXT70-EW Max    | Х         | 161.0203 |
| PISO 10                            | SXT70-EW Max    | Х         | 173.1297 |
| PISO 9                             | SXT70-EW Max    | Х         | 161.0853 |
| PISO 8                             | SXT70-EW Max    | Х         | 147.1711 |
| PISO 7                             | SXT70-EW Max    | Х         | 130.9262 |
| PISO 6                             | SXT70-EW Max    | Х         | 112.4918 |
| PISO 5                             | SXT70-EW Max    | Х         | 92.3174  |
| PISO 4                             | SXT70-EW Max    | Х         | 71.0828  |
| PISO 3                             | SXT70-EW Max    | Х         | 49.7171  |
| PISO 2                             | SXT70-EW Max    | Х         | 29.4571  |
| PISO 1                             | SXT70-EW Max    | Х         | 12.0298  |
| TECHO                              | SXT70-NS Max    | Х         | 168.0363 |
| PISO 11                            | SXT70-NS Max    | Х         | 158.6648 |
| PISO 10                            | SXT70-NS Max    | Х         | 194.693  |
| PISO 9                             | SXT70-NS Max    | Х         | 180.2852 |
| PISO 8                             | SXT70-NS Max    | Х         | 163.0739 |
| PISO 7                             | SXT70-NS Max    | Х         | 143.186  |
| PISO 6                             | SXT70-NS Max    | Х         | 121.1208 |
| PISO 5                             | SXT70-NS Max    | Х         | 98.1533  |
| PISO 4                             | SXT70-NS Max    | Х         | 74.9012  |
| PISO 3                             | SXT70-NS Max    | Х         | 51.9346  |
| PISO 2                             | SXT70-NS Max    | Х         | 30.7483  |
| PISO 1                             | SXT70-NS Max    | Х         | 12.6761  |
| TECHO                              | SXT74-EW Max    | Х         | 178.2745 |
| PISO 11                            | SXT74-EW Max    | Х         | 169.7608 |

| TABLE: Story Max/Avg Displacements |                 |           |          |
|------------------------------------|-----------------|-----------|----------|
| Story                              | Load Case/Combo | Direction | Maximum  |
| otory                              |                 | Direction | mm       |
| PISO 10                            | SXT74-EW Max    | Х         | 174.6908 |
| PISO 9                             | SXT74-EW Max    | Х         | 162.0583 |
| PISO 8                             | SXT74-EW Max    | Х         | 147.7546 |
| PISO 7                             | SXT74-EW Max    | Х         | 131.3755 |
| PISO 6                             | SXT74-EW Max    | Х         | 113.0063 |
| PISO 5                             | SXT74-EW Max    | Х         | 92.9598  |
| PISO 4                             | SXT74-EW Max    | Х         | 71.7779  |
| PISO 3                             | SXT74-EW Max    | Х         | 50.3155  |
| PISO 2                             | SXT74-EW Max    | Х         | 29.8537  |
| PISO 1                             | SXT74-EW Max    | Х         | 12.2091  |
| TECHO                              | SXT74-NS Max    | Х         | 167.56   |
| PISO 11                            | SXT74-NS Max    | Х         | 159.3048 |
| PISO 10                            | SXT74-NS Max    | Х         | 184.1646 |
| PISO 9                             | SXT74-NS Max    | Х         | 171.3998 |
| PISO 8                             | SXT74-NS Max    | Х         | 156.1982 |
| PISO 7                             | SXT74-NS Max    | Х         | 138.4813 |
| PISO 6                             | SXT74-NS Max    | Х         | 118.4684 |
| PISO 5                             | SXT74-NS Max    | Х         | 96.7086  |
| PISO 4                             | SXT74-NS Max    | Х         | 74.0142  |
| PISO 3                             | SXT74-NS Max    | Х         | 51.4422  |
| PISO 2                             | SXT74-NS Max    | Х         | 30.3017  |
| PISO 1                             | SXT74-NS Max    | Х         | 12.3333  |
| TECHO                              | SXT07-EW Max    | Х         | 179.0932 |
| PISO 11                            | SXT07-EW Max    | Х         | 170.2117 |
| PISO 10                            | SXT07-EW Max    | Х         | 192.6742 |
| PISO 9                             | SXT07-EW Max    | Х         | 179.4202 |
| PISO 8                             | SXT07-EW Max    | Х         | 163.8924 |
| PISO 7                             | SXT07-EW Max    | Х         | 146.3009 |
| PISO 6                             | SXT07-EW Max    | Х         | 126.3061 |

| TABLE: Story Max/Avg Displacements |                  |           |           |
|------------------------------------|------------------|-----------|-----------|
| Story                              | Load Case/Combo  | Direction | Maximum   |
| Otory                              |                  | Direction | mm        |
| PISO 5                             | SXT07-EW Max     | Х         | 104.2494  |
| PISO 4                             | SXT07-EW Max     | Х         | 80.9461   |
| PISO 3                             | SXT07-EW Max     | Х         | 57.0771   |
| PISO 2                             | SXT07-EW Max     | Х         | 34.0566   |
| PISO 1                             | SXT07-EW Max     | Х         | 14.0007   |
| TECHO                              | SXT07-NE Max     | Х         | 154.8655  |
| PISO 11                            | SXT07-NE Max     | Х         | 147.5411  |
| PISO 10                            | SXT07-NE Max     | Х         | 160.6614  |
| PISO 9                             | SXT07-NE Max     | Х         | 149.0455  |
| PISO 8                             | SXT07-NE Max     | Х         | 135.2815  |
| PISO 7                             | SXT07-NE Max     | Х         | 119.3629  |
| PISO 6                             | SXT07-NE Max     | Х         | 101.5583  |
| PISO 5                             | SXT07-NE Max     | Х         | 82.4212   |
| PISO 4                             | SXT07-NE Max     | Х         | 62.6911   |
| PISO 3                             | SXT07-NE Max     | Х         | 43.9193   |
| PISO 2                             | SXT07-NE Max     | Х         | 26.2842   |
| PISO 1                             | SXT07-NE Max     | Х         | 10.8575   |
| L                                  | Desplazamiento M | AX X (mm) | 194.69300 |

## • EN LA DIRECCIÓN Y

| TABLE: Story Max/Avg Displacements |                 |           |               |  |
|------------------------------------|-----------------|-----------|---------------|--|
| Story                              | Load Case/Combo | Direction | Maximum<br>mm |  |
| TECHO                              | SYT66-EW Max    | Y         | 188.7192      |  |
| PISO 11                            | SYT66-EW Max    | Y         | 185.1213      |  |
| PISO 10                            | SYT66-EW Max    | Y         | 189.2725      |  |
| PISO 9                             | SYT66-EW Max    | Y         | 178.3166      |  |
| PISO 8                             | SYT66-EW Max    | Y         | 164.5235      |  |

| TABLE: Story Max/Avg Displacements |                 |           |          |
|------------------------------------|-----------------|-----------|----------|
| Story                              | Load Case/Combo | Direction | Maximum  |
| Clory                              |                 | Direction | mm       |
| PISO 7                             | SYT66-EW Max    | Y         | 147.7412 |
| PISO 6                             | SYT66-EW Max    | Y         | 127.6342 |
| PISO 5                             | SYT66-EW Max    | Y         | 104.5888 |
| PISO 4                             | SYT66-EW Max    | Y         | 79.5378  |
| PISO 3                             | SYT66-EW Max    | Y         | 54.0697  |
| PISO 2                             | SYT66-EW Max    | Y         | 30.9309  |
| PISO 1                             | SYT66-EW Max    | Y         | 12.6175  |
| TECHO                              | SYT66-NS Max    | Y         | 206.6953 |
| PISO 11                            | SYT66-NS Max    | Y         | 202.2918 |
| PISO 10                            | SYT66-NS Max    | Y         | 199.4476 |
| PISO 9                             | SYT66-NS Max    | Y         | 185.3317 |
| PISO 8                             | SYT66-NS Max    | Y         | 167.6133 |
| PISO 7                             | SYT66-NS Max    | Y         | 146.6094 |
| PISO 6                             | SYT66-NS Max    | Y         | 123.0049 |
| PISO 5                             | SYT66-NS Max    | Y         | 97.7551  |
| PISO 4                             | SYT66-NS Max    | Y         | 72.095   |
| PISO 3                             | SYT66-NS Max    | Y         | 49.3233  |
| PISO 2                             | SYT66-NS Max    | Y         | 28.7921  |
| PISO 1                             | SYT66-NS Max    | Y         | 11.5086  |
| TECHO                              | SYT70-EW Max    | Y         | 165.4128 |
| PISO 11                            | SYT70-EW Max    | Y         | 162.0047 |
| PISO 10                            | SYT70-EW Max    | Y         | 161.375  |
| PISO 9                             | SYT70-EW Max    | Y         | 150.0336 |
| PISO 8                             | SYT70-EW Max    | Y         | 135.7054 |
| PISO 7                             | SYT70-EW Max    | Y         | 118.6178 |
| PISO 6                             | SYT70-EW Max    | Y         | 99.3556  |
| PISO 5                             | SYT70-EW Max    | Y         | 78.7785  |
| PISO 4                             | SYT70-EW Max    | Y         | 57.9666  |
| PISO 3                             | SYT70-EW Max    | Y         | 39.1101  |

| TABLE: Story Max/Avg Displacements |                 |           |          |
|------------------------------------|-----------------|-----------|----------|
| Story                              | Load Case/Combo | Direction | Maximum  |
| Clory                              |                 | Direction | mm       |
| PISO 2                             | SYT70-EW Max    | Y         | 22.7748  |
| PISO 1                             | SYT70-EW Max    | Y         | 9.0613   |
| TECHO                              | SYT70-NS Max    | Y         | 215.4303 |
| PISO 11                            | SYT70-NS Max    | Y         | 210.407  |
| PISO 10                            | SYT70-NS Max    | Y         | 207.13   |
| PISO 9                             | SYT70-NS Max    | Y         | 191.0398 |
| PISO 8                             | SYT70-NS Max    | Y         | 171.3583 |
| PISO 7                             | SYT70-NS Max    | Y         | 148.3911 |
| PISO 6                             | SYT70-NS Max    | Y         | 124.5373 |
| PISO 5                             | SYT70-NS Max    | Y         | 99.5082  |
| PISO 4                             | SYT70-NS Max    | Y         | 74.2843  |
| PISO 3                             | SYT70-NS Max    | Y         | 49.5693  |
| PISO 2                             | SYT70-NS Max    | Y         | 27.3842  |
| PISO 1                             | SYT70-NS Max    | Y         | 10.4622  |
| TECHO                              | SYT74-EW Max    | Y         | 168.6733 |
| PISO 11                            | SYT74-EW Max    | Y         | 164.789  |
| PISO 10                            | SYT74-EW Max    | Y         | 159.5992 |
| PISO 9                             | SYT74-EW Max    | Y         | 148.4411 |
| PISO 8                             | SYT74-EW Max    | Y         | 134.3927 |
| PISO 7                             | SYT74-EW Max    | Y         | 117.6569 |
| PISO 6                             | SYT74-EW Max    | Y         | 98.7545  |
| PISO 5                             | SYT74-EW Max    | Y         | 78.4622  |
| PISO 4                             | SYT74-EW Max    | Y         | 59.6961  |
| PISO 3                             | SYT74-EW Max    | Y         | 41.4453  |
| PISO 2                             | SYT74-EW Max    | Y         | 24.2733  |
| PISO 1                             | SYT74-EW Max    | Y         | 9.7447   |
| TECHO                              | SYT74-NS Max    | Y         | 158.8586 |
| PISO 11                            | SYT74-NS Max    | Y         | 155.4079 |
| PISO 10                            | SYT74-NS Max    | Y         | 154.6406 |

| TABLE: Story Max/Avg Displacements |                 |           |          |
|------------------------------------|-----------------|-----------|----------|
| Story                              | Load Case/Combo | Direction | Maximum  |
| Otory                              |                 | Direction | mm       |
| PISO 9                             | SYT74-NS Max    | Y         | 143.238  |
| PISO 8                             | SYT74-NS Max    | Y         | 128.9528 |
| PISO 7                             | SYT74-NS Max    | Y         | 112.1038 |
| PISO 6                             | SYT74-NS Max    | Y         | 94.1403  |
| PISO 5                             | SYT74-NS Max    | Y         | 75.789   |
| PISO 4                             | SYT74-NS Max    | Y         | 56.9226  |
| PISO 3                             | SYT74-NS Max    | Y         | 38.3099  |
| PISO 2                             | SYT74-NS Max    | Y         | 21.3772  |
| PISO 1                             | SYT74-NS Max    | Y         | 8.3771   |
| TECHO                              | SYT07-EW Max    | Y         | 186.3794 |
| PISO 11                            | SYT07-EW Max    | Y         | 182.6897 |
| PISO 10                            | SYT07-EW Max    | Y         | 182.0145 |
| PISO 9                             | SYT07-EW Max    | Y         | 169.749  |
| PISO 8                             | SYT07-EW Max    | Y         | 154.2437 |
| PISO 7                             | SYT07-EW Max    | Y         | 135.6319 |
| PISO 6                             | SYT07-EW Max    | Y         | 114.4036 |
| PISO 5                             | SYT07-EW Max    | Y         | 91.364   |
| PISO 4                             | SYT07-EW Max    | Y         | 67.6591  |
| PISO 3                             | SYT07-EW Max    | Y         | 44.7757  |
| PISO 2                             | SYT07-EW Max    | Y         | 26.0675  |
| PISO 1                             | SYT07-EW Max    | Y         | 10.4485  |
| TECHO                              | SYT07-NS Max    | Y         | 106.9012 |
| PISO 11                            | SYT07-NS Max    | Y         | 104.5281 |
| PISO 10                            | SYT07-NS Max    | Y         | 104.2055 |
| PISO 9                             | SYT07-NS Max    | Y         | 96.2557  |
| PISO 8                             | SYT07-NS Max    | Y         | 86.2969  |
| PISO 7                             | SYT07-NS Max    | Y         | 76.1281  |
| PISO 6                             | SYT07-NS Max    | Y         | 65.1618  |
| PISO 5                             | SYT07-NS Max    | Y         | 53.5129  |

| TABLE: Story Max/Avg Displacements |                  |           |                      |  |
|------------------------------------|------------------|-----------|----------------------|--|
| Story                              | Load Case/Combo  | Direction | <b>Maximum</b><br>mm |  |
| PISO 4                             | SYT07-NS Max     | Y         | 41.0783              |  |
| PISO 3                             | SYT07-NS Max     | Y         | 28.5466              |  |
| PISO 2                             | SYT07-NS Max     | Y         | 16.7475              |  |
| PISO 1                             | SYT07-NS Max     | Y         | 6.7591               |  |
|                                    | Desplazamiento M | AX Y (mm) | 215.43030            |  |

#### 2. RESPUESTA DEL EDIFICIO CON AMORTIGUADORES (LINEAL)

- a. DERIVAS
  - Deriva máxima x del análisis tiempo historia en dirección x

| TABLE: Story Drifts |                 |             |          |            |
|---------------------|-----------------|-------------|----------|------------|
| Story               | Load Case/Combo | Direction   | Drift    | Drift<br>‰ |
| TECHO               | SXT66-EW Max    | Diaph D12 X | 0.002337 | 2.337      |
| TECHO               | SXT66-NS Max    | Diaph D12 X | 0.001675 | 1.675      |
| TECHO               | SXT70-EW Max    | Diaph D12 X | 0.001283 | 1.283      |
| TECHO               | SXT70-NS Max    | Diaph D12 X | 0.001509 | 1.509      |
| TECHO               | SXT74-EW Max    | Diaph D12 X | 0.001911 | 1.911      |
| TECHO               | SXT74-NS Max    | Diaph D12 X | 0.001603 | 1.603      |
| TECHO               | SXT07-EW Max    | Diaph D12 X | 0.001775 | 1.775      |
| TECHO               | SXT07-NE Max    | Diaph D12 X | 0.001396 | 1.396      |
| PISO 11             | SXT66-EW Max    | Diaph D11 X | 0.002369 | 2.369      |
| PISO 11             | SXT66-NS Max    | Diaph D11 X | 0.0017   | 1.7        |
| PISO 11             | SXT70-EW Max    | Diaph D11 X | 0.001302 | 1.302      |
| PISO 11             | SXT70-NS Max    | Diaph D11 X | 0.001532 | 1.532      |
| PISO 11             | SXT74-EW Max    | Diaph D11 X | 0.001935 | 1.935      |
| PISO 11             | SXT74-NS Max    | Diaph D11 X | 0.001625 | 1.625      |
| PISO 11             | SXT07-EW Max    | Diaph D11 X | 0.001798 | 1.798      |
| PISO 11             | SXT07-NE Max    | Diaph D11 X | 0.001414 | 1.414      |

| TABLE: Story Drifts |                 |             |          |            |
|---------------------|-----------------|-------------|----------|------------|
| Story               | Load Case/Combo | Direction   | Drift    | Drift<br>‰ |
| PISO 10             | SXT66-EW Max    | Diaph D10 X | 0.002559 | 2.559      |
| PISO 10             | SXT66-NS Max    | Diaph D10 X | 0.001854 | 1.854      |
| PISO 10             | SXT70-EW Max    | Diaph D10 X | 0.001415 | 1.415      |
| PISO 10             | SXT70-NS Max    | Diaph D10 X | 0.001685 | 1.685      |
| PISO 10             | SXT74-EW Max    | Diaph D10 X | 0.002082 | 2.082      |
| PISO 10             | SXT74-NS Max    | Diaph D10 X | 0.001756 | 1.756      |
| PISO 10             | SXT07-EW Max    | Diaph D10 X | 0.001926 | 1.926      |
| PISO 10             | SXT07-NE Max    | Diaph D10 X | 0.001519 | 1.519      |
| PISO 9              | SXT66-EW Max    | Diaph D9 X  | 0.003001 | 3.001      |
| PISO 9              | SXT66-NS Max    | Diaph D9 X  | 0.002185 | 2.185      |
| PISO 9              | SXT70-EW Max    | Diaph D9 X  | 0.001666 | 1.666      |
| PISO 9              | SXT70-NS Max    | Diaph D9 X  | 0.001989 | 1.989      |
| PISO 9              | SXT74-EW Max    | Diaph D9 X  | 0.002439 | 2.439      |
| PISO 9              | SXT74-NS Max    | Diaph D9 X  | 0.002064 | 2.064      |
| PISO 9              | SXT07-EW Max    | Diaph D9 X  | 0.002255 | 2.255      |
| PISO 9              | SXT07-NE Max    | Diaph D9 X  | 0.001781 | 1.781      |
| PISO 8              | SXT66-EW Max    | Diaph D8 X  | 0.003443 | 3.443      |
| PISO 8              | SXT66-NS Max    | Diaph D8 X  | 0.002517 | 2.517      |
| PISO 8              | SXT70-EW Max    | Diaph D8 X  | 0.001928 | 1.928      |
| PISO 8              | SXT70-NS Max    | Diaph D8 X  | 0.00229  | 2.29       |
| PISO 8              | SXT74-EW Max    | Diaph D8 X  | 0.002777 | 2.777      |
| PISO 8              | SXT74-NS Max    | Diaph D8 X  | 0.002377 | 2.377      |
| PISO 8              | SXT07-EW Max    | Diaph D8 X  | 0.002584 | 2.584      |
| PISO 8              | SXT07-NE Max    | Diaph D8 X  | 0.002038 | 2.038      |
| PISO 7              | SXT66-EW Max    | Diaph D7 X  | 0.003836 | 3.836      |
| PISO 7              | SXT66-NS Max    | Diaph D7 X  | 0.002813 | 2.813      |
| PISO 7              | SXT70-EW Max    | Diaph D7 X  | 0.002179 | 2.179      |
| PISO 7              | SXT70-NS Max    | Diaph D7 X  | 0.002552 | 2.552      |
| PISO 7              | SXT74-EW Max    | Diaph D7 X  | 0.003053 | 3.053      |

| TABLE: Story Drifts |                 |            |          |            |
|---------------------|-----------------|------------|----------|------------|
| Story               | Load Case/Combo | Direction  | Drift    | Drift<br>‰ |
| PISO 7              | SXT74-NS Max    | Diaph D7 X | 0.002659 | 2.659      |
| PISO 7              | SXT07-EW Max    | Diaph D7 X | 0.002875 | 2.875      |
| PISO 7              | SXT07-NE Max    | Diaph D7 X | 0.002261 | 2.261      |
| PISO 6              | SXT66-EW Max    | Diaph D6 X | 0.004112 | 4.112      |
| PISO 6              | SXT66-NS Max    | Diaph D6 X | 0.003029 | 3.029      |
| PISO 6              | SXT70-EW Max    | Diaph D6 X | 0.002381 | 2.381      |
| PISO 6              | SXT70-NS Max    | Diaph D6 X | 0.002744 | 2.744      |
| PISO 6              | SXT74-EW Max    | Diaph D6 X | 0.003243 | 3.243      |
| PISO 6              | SXT74-NS Max    | Diaph D6 X | 0.00288  | 2.88       |
| PISO 6              | SXT07-EW Max    | Diaph D6 X | 0.003081 | 3.081      |
| PISO 6              | SXT07-NE Max    | Diaph D6 X | 0.002446 | 2.446      |
| PISO 5              | SXT66-EW Max    | Diaph D5 X | 0.004224 | 4.224      |
| PISO 5              | SXT66-NS Max    | Diaph D5 X | 0.003129 | 3.129      |
| PISO 5              | SXT70-EW Max    | Diaph D5 X | 0.002504 | 2.504      |
| PISO 5              | SXT70-NS Max    | Diaph D5 X | 0.002835 | 2.835      |
| PISO 5              | SXT74-EW Max    | Diaph D5 X | 0.003292 | 3.292      |
| PISO 5              | SXT74-NS Max    | Diaph D5 X | 0.002996 | 2.996      |
| PISO 5              | SXT07-EW Max    | Diaph D5 X | 0.003172 | 3.172      |
| PISO 5              | SXT07-NE Max    | Diaph D5 X | 0.002575 | 2.575      |
| PISO 4              | SXT66-EW Max    | Diaph D4 X | 0.004129 | 4.129      |
| PISO 4              | SXT66-NS Max    | Diaph D4 X | 0.003084 | 3.084      |
| PISO 4              | SXT70-EW Max    | Diaph D4 X | 0.002515 | 2.515      |
| PISO 4              | SXT70-NS Max    | Diaph D4 X | 0.002789 | 2.789      |
| PISO 4              | SXT74-EW Max    | Diaph D4 X | 0.00317  | 3.17       |
| PISO 4              | SXT74-NS Max    | Diaph D4 X | 0.002969 | 2.969      |
| PISO 4              | SXT07-EW Max    | Diaph D4 X | 0.003111 | 3.111      |
| PISO 4              | SXT07-NE Max    | Diaph D4 X | 0.002614 | 2.614      |
| PISO 3              | SXT66-EW Max    | Diaph D3 X | 0.003788 | 3.788      |
| PISO 3              | SXT66-NS Max    | Diaph D3 X | 0.002861 | 2.861      |

|        | TABLE: Story Drifts |            |          |            |  |
|--------|---------------------|------------|----------|------------|--|
| Story  | Load Case/Combo     | Direction  | Drift    | Drift<br>‰ |  |
| PISO 3 | SXT70-EW Max        | Diaph D3 X | 0.002376 | 2.376      |  |
| PISO 3 | SXT70-NS Max        | Diaph D3 X | 0.002578 | 2.578      |  |
| PISO 3 | SXT74-EW Max        | Diaph D3 X | 0.002903 | 2.903      |  |
| PISO 3 | SXT74-NS Max        | Diaph D3 X | 0.002762 | 2.762      |  |
| PISO 3 | SXT07-EW Max        | Diaph D3 X | 0.002864 | 2.864      |  |
| PISO 3 | SXT07-NE Max        | Diaph D3 X | 0.002506 | 2.506      |  |
| PISO 2 | SXT66-EW Max        | Diaph D2 X | 0.003145 | 3.145      |  |
| PISO 2 | SXT66-NS Max        | Diaph D2 X | 0.002399 | 2.399      |  |
| PISO 2 | SXT70-EW Max        | Diaph D2 X | 0.002037 | 2.037      |  |
| PISO 2 | SXT70-NS Max        | Diaph D2 X | 0.002159 | 2.159      |  |
| PISO 2 | SXT74-EW Max        | Diaph D2 X | 0.002493 | 2.493      |  |
| PISO 2 | SXT74-NS Max        | Diaph D2 X | 0.002317 | 2.317      |  |
| PISO 2 | SXT07-EW Max        | Diaph D2 X | 0.002384 | 2.384      |  |
| PISO 2 | SXT07-NE Max        | Diaph D2 X | 0.002186 | 2.186      |  |
| PISO 1 | SXT66-EW Max        | Diaph D1 X | 0.001724 | 1.724      |  |
| PISO 1 | SXT66-NS Max        | Diaph D1 X | 0.001328 | 1.328      |  |
| PISO 1 | SXT70-EW Max        | Diaph D1 X | 0.001155 | 1.155      |  |
| PISO 1 | SXT70-NS Max        | Diaph D1 X | 0.001199 | 1.199      |  |
| PISO 1 | SXT74-EW Max        | Diaph D1 X | 0.001415 | 1.415      |  |
| PISO 1 | SXT74-NS Max        | Diaph D1 X | 0.001291 | 1.291      |  |
| PISO 1 | SXT07-EW Max        | Diaph D1 X | 0.001305 | 1.305      |  |
| PISO 1 | SXT07-NE Max        | Diaph D1 X | 0.001252 | 1.252      |  |
|        |                     | DERIVA M   | AX X (‰) | 4.22400    |  |

#### • Deriva máxima y

|         | TABLE: Story Drifts |             |          |            |  |
|---------|---------------------|-------------|----------|------------|--|
| Story   | Load Case/Combo     | Direction   | Drift    | Drift<br>‰ |  |
| TECHO   | SYT66-EW Max        | Diaph D12 Y | 0.001095 | 1.095      |  |
| TECHO   | SYT66-NS Max        | Diaph D12 Y | 0.000782 | 0.782      |  |
| TECHO   | SYT70-EW Max        | Diaph D12 Y | 0.000694 | 0.694      |  |
| TECHO   | SYT70-NS Max        | Diaph D12 Y | 0.000715 | 0.715      |  |
| TECHO   | SYT74-EW Max        | Diaph D12 Y | 0.000832 | 0.832      |  |
| TECHO   | SYT74-NS Max        | Diaph D12 Y | 0.000757 | 0.757      |  |
| TECHO   | SYT07-EW Max        | Diaph D12 Y | 0.000853 | 0.853      |  |
| TECHO   | SYT07-NS Max        | Diaph D12 Y | 0.000796 | 0.796      |  |
| PISO 11 | SYT66-EW Max        | Diaph D11 Y | 0.001786 | 1.786      |  |
| PISO 11 | SYT66-NS Max        | Diaph D11 Y | 0.001279 | 1.279      |  |
| PISO 11 | SYT70-EW Max        | Diaph D11 Y | 0.001138 | 1.138      |  |
| PISO 11 | SYT70-NS Max        | Diaph D11 Y | 0.001167 | 1.167      |  |
| PISO 11 | SYT74-EW Max        | Diaph D11 Y | 0.001354 | 1.354      |  |
| PISO 11 | SYT74-NS Max        | Diaph D11 Y | 0.001236 | 1.236      |  |
| PISO 11 | SYT07-EW Max        | Diaph D11 Y | 0.00139  | 1.39       |  |
| PISO 11 | SYT07-NS Max        | Diaph D11 Y | 0.001306 | 1.306      |  |
| PISO 10 | SYT66-EW Max        | Diaph D10 Y | 0.002528 | 2.528      |  |
| PISO 10 | SYT66-NS Max        | Diaph D10 Y | 0.00182  | 1.82       |  |
| PISO 10 | SYT70-EW Max        | Diaph D10 Y | 0.001625 | 1.625      |  |
| PISO 10 | SYT70-NS Max        | Diaph D10 Y | 0.001659 | 1.659      |  |
| PISO 10 | SYT74-EW Max        | Diaph D10 Y | 0.001932 | 1.932      |  |
| PISO 10 | SYT74-NS Max        | Diaph D10 Y | 0.001753 | 1.753      |  |
| PISO 10 | SYT07-EW Max        | Diaph D10 Y | 0.001966 | 1.966      |  |
| PISO 10 | SYT07-NS Max        | Diaph D10 Y | 0.001862 | 1.862      |  |
| PISO 9  | SYT66-EW Max        | Diaph D9 Y  | 0.003174 | 3.174      |  |
| PISO 9  | SYT66-NS Max        | Diaph D9 Y  | 0.002294 | 2.294      |  |
| PISO 9  | SYT70-EW Max        | Diaph D9 Y  | 0.002047 | 2.047      |  |

| TABLE: Story Drifts |                 |            |          |            |
|---------------------|-----------------|------------|----------|------------|
| Story               | Load Case/Combo | Direction  | Drift    | Drift<br>‰ |
| PISO 9              | SYT70-NS Max    | Diaph D9 Y | 0.002084 | 2.084      |
| PISO 9              | SYT74-EW Max    | Diaph D9 Y | 0.002433 | 2.433      |
| PISO 9              | SYT74-NS Max    | Diaph D9 Y | 0.002202 | 2.202      |
| PISO 9              | SYT07-EW Max    | Diaph D9 Y | 0.00247  | 2.47       |
| PISO 9              | SYT07-NS Max    | Diaph D9 Y | 0.002352 | 2.352      |
| PISO 8              | SYT66-EW Max    | Diaph D8 Y | 0.003752 | 3.752      |
| PISO 8              | SYT66-NS Max    | Diaph D8 Y | 0.002735 | 2.735      |
| PISO 8              | SYT70-EW Max    | Diaph D8 Y | 0.002437 | 2.437      |
| PISO 8              | SYT70-NS Max    | Diaph D8 Y | 0.002467 | 2.467      |
| PISO 8              | SYT74-EW Max    | Diaph D8 Y | 0.002894 | 2.894      |
| PISO 8              | SYT74-NS Max    | Diaph D8 Y | 0.002609 | 2.609      |
| PISO 8              | SYT07-EW Max    | Diaph D8 Y | 0.002925 | 2.925      |
| PISO 8              | SYT07-NS Max    | Diaph D8 Y | 0.002822 | 2.822      |
| PISO 7              | SYT66-EW Max    | Diaph D7 Y | 0.004185 | 4.185      |
| PISO 7              | SYT66-NS Max    | Diaph D7 Y | 0.003082 | 3.082      |
| PISO 7              | SYT70-EW Max    | Diaph D7 Y | 0.002747 | 2.747      |
| PISO 7              | SYT70-NS Max    | Diaph D7 Y | 0.002765 | 2.765      |
| PISO 7              | SYT74-EW Max    | Diaph D7 Y | 0.003255 | 3.255      |
| PISO 7              | SYT74-NS Max    | Diaph D7 Y | 0.002917 | 2.917      |
| PISO 7              | SYT07-EW Max    | Diaph D7 Y | 0.003272 | 3.272      |
| PISO 7              | SYT07-NS Max    | Diaph D7 Y | 0.003222 | 3.222      |
| PISO 6              | SYT66-EW Max    | Diaph D6 Y | 0.004421 | 4.421      |
| PISO 6              | SYT66-NS Max    | Diaph D6 Y | 0.003293 | 3.293      |
| PISO 6              | SYT70-EW Max    | Diaph D6 Y | 0.002941 | 2.941      |
| PISO 6              | SYT70-NS Max    | Diaph D6 Y | 0.002941 | 2.941      |
| PISO 6              | SYT74-EW Max    | Diaph D6 Y | 0.003473 | 3.473      |
| PISO 6              | SYT74-NS Max    | Diaph D6 Y | 0.003091 | 3.091      |
| PISO 6              | SYT07-EW Max    | Diaph D6 Y | 0.003467 | 3.467      |
| PISO 6              | SYT07-NS Max    | Diaph D6 Y | 0.003505 | 3.505      |

| TABLE: Story Drifts |                 |            |          |            |
|---------------------|-----------------|------------|----------|------------|
| Story               | Load Case/Combo | Direction  | Drift    | Drift<br>‰ |
| PISO 5              | SYT66-EW Max    | Diaph D5 Y | 0.004419 | 4.419      |
| PISO 5              | SYT66-NS Max    | Diaph D5 Y | 0.003324 | 3.324      |
| PISO 5              | SYT70-EW Max    | Diaph D5 Y | 0.002983 | 2.983      |
| PISO 5              | SYT70-NS Max    | Diaph D5 Y | 0.002974 | 2.974      |
| PISO 5              | SYT74-EW Max    | Diaph D5 Y | 0.003508 | 3.508      |
| PISO 5              | SYT74-NS Max    | Diaph D5 Y | 0.003095 | 3.095      |
| PISO 5              | SYT07-EW Max    | Diaph D5 Y | 0.003478 | 3.478      |
| PISO 5              | SYT07-NS Max    | Diaph D5 Y | 0.003622 | 3.622      |
| PISO 4              | SYT66-EW Max    | Diaph D4 Y | 0.004171 | 4.171      |
| PISO 4              | SYT66-NS Max    | Diaph D4 Y | 0.003142 | 3.142      |
| PISO 4              | SYT70-EW Max    | Diaph D4 Y | 0.002844 | 2.844      |
| PISO 4              | SYT70-NS Max    | Diaph D4 Y | 0.002856 | 2.856      |
| PISO 4              | SYT74-EW Max    | Diaph D4 Y | 0.003321 | 3.321      |
| PISO 4              | SYT74-NS Max    | Diaph D4 Y | 0.0029   | 2.9        |
| PISO 4              | SYT07-EW Max    | Diaph D4 Y | 0.003283 | 3.283      |
| PISO 4              | SYT07-NS Max    | Diaph D4 Y | 0.003524 | 3.524      |
| PISO 3              | SYT66-EW Max    | Diaph D3 Y | 0.003713 | 3.713      |
| PISO 3              | SYT66-NS Max    | Diaph D3 Y | 0.002734 | 2.734      |
| PISO 3              | SYT70-EW Max    | Diaph D3 Y | 0.002491 | 2.491      |
| PISO 3              | SYT70-NS Max    | Diaph D3 Y | 0.002518 | 2.518      |
| PISO 3              | SYT74-EW Max    | Diaph D3 Y | 0.002893 | 2.893      |
| PISO 3              | SYT74-NS Max    | Diaph D3 Y | 0.002491 | 2.491      |
| PISO 3              | SYT07-EW Max    | Diaph D3 Y | 0.002943 | 2.943      |
| PISO 3              | SYT07-NS Max    | Diaph D3 Y | 0.003151 | 3.151      |
| PISO 2              | SYT66-EW Max    | Diaph D2 Y | 0.002893 | 2.893      |
| PISO 2              | SYT66-NS Max    | Diaph D2 Y | 0.002194 | 2.194      |
| PISO 2              | SYT70-EW Max    | Diaph D2 Y | 0.001932 | 1.932      |
| PISO 2              | SYT70-NS Max    | Diaph D2 Y | 0.002122 | 2.122      |
| PISO 2              | SYT74-EW Max    | Diaph D2 Y | 0.00226  | 2.26       |

| TABLE: Story Drifts |                 |            |          |            |
|---------------------|-----------------|------------|----------|------------|
| Story               | Load Case/Combo | Direction  | Drift    | Drift<br>‰ |
| PISO 2              | SYT74-NS Max    | Diaph D2 Y | 0.002039 | 2.039      |
| PISO 2              | SYT07-EW Max    | Diaph D2 Y | 0.002403 | 2.403      |
| PISO 2              | SYT07-NS Max    | Diaph D2 Y | 0.002567 | 2.567      |
| PISO 1              | SYT66-EW Max    | Diaph D1 Y | 0.001621 | 1.621      |
| PISO 1              | SYT66-NS Max    | Diaph D1 Y | 0.001212 | 1.212      |
| PISO 1              | SYT70-EW Max    | Diaph D1 Y | 0.001067 | 1.067      |
| PISO 1              | SYT70-NS Max    | Diaph D1 Y | 0.001194 | 1.194      |
| PISO 1              | SYT74-EW Max    | Diaph D1 Y | 0.001241 | 1.241      |
| PISO 1              | SYT74-NS Max    | Diaph D1 Y | 0.00111  | 1.11       |
| PISO 1              | SYT07-EW Max    | Diaph D1 Y | 0.001376 | 1.376      |
| PISO 1              | SYT07-NS Max    | Diaph D1 Y | 0.001471 | 1.471      |
|                     | ·               | DERIVA M   | AX Y (‰) | 4.42100    |

- b. DESPLAZAMIENTO MÁXIMO CON LAS SEÑALES USADAS
  - EN LA DIRECCIÓN X

| TABLE: Story Max/Avg Displacements |                       |   |         |  |
|------------------------------------|-----------------------|---|---------|--|
| Story                              | Story Load Case/Combo |   | Maximum |  |
| -                                  |                       |   | mm      |  |
| TECHO                              | SXT66-EW Max          | Х | 95.3551 |  |
| PISO 11                            | SXT66-EW Max          | Х | 90.7078 |  |
| PISO 10                            | SXT66-EW Max          | Х | 96.009  |  |
| PISO 9                             | SXT66-EW Max          | Х | 88.8671 |  |
| PISO 8                             | SXT66-EW Max          | Х | 80.4752 |  |
| PISO 7                             | SXT66-EW Max          | Х | 70.8349 |  |
| PISO 6                             | SXT66-EW Max          | Х | 60.0949 |  |
| PISO 5                             | SXT66-EW Max          | Х | 48.5804 |  |
| PISO 4                             | SXT66-EW Max          | Х | 36.7546 |  |
| PISO 3                             | SXT66-EW Max          | Х | 25.2344 |  |

| TABLE: Story Max/Avg Displacements |                 |           |         |  |
|------------------------------------|-----------------|-----------|---------|--|
| Story                              | Load Case/Combo | Direction | Maximum |  |
| otory                              |                 | Direction | mm      |  |
| PISO 2                             | SXT66-EW Max    | Х         | 14.6691 |  |
| PISO 1                             | SXT66-EW Max    | Х         | 5.863   |  |
| TECHO                              | SXT66-NS Max    | Х         | 68.8953 |  |
| PISO 11                            | SXT66-NS Max    | Х         | 65.545  |  |
| PISO 10                            | SXT66-NS Max    | Х         | 71.3491 |  |
| PISO 9                             | SXT66-NS Max    | Х         | 66.1573 |  |
| PISO 8                             | SXT66-NS Max    | Х         | 60.0399 |  |
| PISO 7                             | SXT66-NS Max    | Х         | 52.9919 |  |
| PISO 6                             | SXT66-NS Max    | Х         | 45.1148 |  |
| PISO 5                             | SXT66-NS Max    | Х         | 36.6338 |  |
| PISO 4                             | SXT66-NS Max    | Х         | 27.8723 |  |
| PISO 3                             | SXT66-NS Max    | Х         | 19.2361 |  |
| PISO 2                             | SXT66-NS Max    | Х         | 11.2247 |  |
| PISO 1                             | SXT66-NS Max    | Х         | 4.5152  |  |
| TECHO                              | SXT70-EW Max    | Х         | 55.2285 |  |
| PISO 11                            | SXT70-EW Max    | Х         | 52.6626 |  |
| PISO 10                            | SXT70-EW Max    | Х         | 57.0566 |  |
| PISO 9                             | SXT70-EW Max    | Х         | 53.1211 |  |
| PISO 8                             | SXT70-EW Max    | Х         | 48.4772 |  |
| PISO 7                             | SXT70-EW Max    | Х         | 43.0853 |  |
| PISO 6                             | SXT70-EW Max    | Х         | 36.9844 |  |
| PISO 5                             | SXT70-EW Max    | Х         | 30.3166 |  |
| PISO 4                             | SXT70-EW Max    | Х         | 23.3054 |  |
| PISO 3                             | SXT70-EW Max    | Х         | 16.2645 |  |
| PISO 2                             | SXT70-EW Max    | Х         | 9.6293  |  |
| PISO 1                             | SXT70-EW Max    | Х         | 3.9265  |  |
| TECHO                              | SXT70-NS Max    | Х         | 61.3044 |  |
| PISO 11                            | SXT70-NS Max    | Х         | 58.3468 |  |
| PISO 10                            | SXT70-NS Max    | Х         | 64.3139 |  |

| TABLE: Story Max/Avg Displacements |                 |           |         |  |
|------------------------------------|-----------------|-----------|---------|--|
| Story                              | Load Case/Combo | Direction | Maximum |  |
| Otory                              |                 | Direction | mm      |  |
| PISO 9                             | SXT70-NS Max    | Х         | 59.6721 |  |
| PISO 8                             | SXT70-NS Max    | Х         | 54.1804 |  |
| PISO 7                             | SXT70-NS Max    | Х         | 47.8267 |  |
| PISO 6                             | SXT70-NS Max    | Х         | 40.7025 |  |
| PISO 5                             | SXT70-NS Max    | Х         | 33.018  |  |
| PISO 4                             | SXT70-NS Max    | Х         | 25.0787 |  |
| PISO 3                             | SXT70-NS Max    | Х         | 17.2972 |  |
| PISO 2                             | SXT70-NS Max    | Х         | 10.121  |  |
| PISO 1                             | SXT70-NS Max    | Х         | 4.077   |  |
| TECHO                              | SXT74-EW Max    | Х         | 75.2778 |  |
| PISO 11                            | SXT74-EW Max    | Х         | 71.522  |  |
| PISO 10                            | SXT74-EW Max    | Х         | 74.4909 |  |
| PISO 9                             | SXT74-EW Max    | Х         | 68.7541 |  |
| PISO 8                             | SXT74-EW Max    | Х         | 62.022  |  |
| PISO 7                             | SXT74-EW Max    | Х         | 54.317  |  |
| PISO 6                             | SXT74-EW Max    | Х         | 45.7818 |  |
| PISO 5                             | SXT74-EW Max    | Х         | 36.9829 |  |
| PISO 4                             | SXT74-EW Max    | Х         | 28.4444 |  |
| PISO 3                             | SXT74-EW Max    | Х         | 19.8993 |  |
| PISO 2                             | SXT74-EW Max    | Х         | 11.7921 |  |
| PISO 1                             | SXT74-EW Max    | Х         | 4.8106  |  |
| TECHO                              | SXT74-NS Max    | Х         | 66.9047 |  |
| PISO 11                            | SXT74-NS Max    | Х         | 63.7348 |  |
| PISO 10                            | SXT74-NS Max    | Х         | 67.995  |  |
| PISO 9                             | SXT74-NS Max    | Х         | 63.1216 |  |
| PISO 8                             | SXT74-NS Max    | Х         | 57.3862 |  |
| PISO 7                             | SXT74-NS Max    | Х         | 50.7631 |  |
| PISO 6                             | SXT74-NS Max    | Х         | 43.3224 |  |
| PISO 5                             | SXT74-NS Max    | Х         | 35.258  |  |

| TA      | TABLE: Story Max/Avg Displacements |           |         |  |  |
|---------|------------------------------------|-----------|---------|--|--|
| Story   | Load Case/Combo                    | Direction | Maximum |  |  |
| Story   |                                    | Direction | mm      |  |  |
| PISO 4  | SXT74-NS Max                       | Х         | 26.8704 |  |  |
| PISO 3  | SXT74-NS Max                       | Х         | 18.5581 |  |  |
| PISO 2  | SXT74-NS Max                       | Х         | 10.8754 |  |  |
| PISO 1  | SXT74-NS Max                       | Х         | 4.3879  |  |  |
| TECHO   | SXT07-EW Max                       | Х         | 73.0891 |  |  |
| PISO 11 | SXT07-EW Max                       | Х         | 69.5382 |  |  |
| PISO 10 | SXT07-EW Max                       | Х         | 72.1009 |  |  |
| PISO 9  | SXT07-EW Max                       | Х         | 66.7514 |  |  |
| PISO 8  | SXT07-EW Max                       | Х         | 60.4836 |  |  |
| PISO 7  | SXT07-EW Max                       | Х         | 53.2911 |  |  |
| PISO 6  | SXT07-EW Max                       | Х         | 45.2704 |  |  |
| PISO 5  | SXT07-EW Max                       | Х         | 36.6509 |  |  |
| PISO 4  | SXT07-EW Max                       | Х         | 27.8088 |  |  |
| PISO 3  | SXT07-EW Max                       | Х         | 19.1279 |  |  |
| PISO 2  | SXT07-EW Max                       | Х         | 11.1075 |  |  |
| PISO 1  | SXT07-EW Max                       | Х         | 4.4364  |  |  |
| TECHO   | SXT07-NE Max                       | Х         | 59.5867 |  |  |
| PISO 11 | SXT07-NE Max                       | Х         | 56.9029 |  |  |
| PISO 10 | SXT07-NE Max                       | Х         | 59.3281 |  |  |
| PISO 9  | SXT07-NE Max                       | Х         | 55.2287 |  |  |
| PISO 8  | SXT07-NE Max                       | Х         | 50.4322 |  |  |
| PISO 7  | SXT07-NE Max                       | Х         | 44.9132 |  |  |
| PISO 6  | SXT07-NE Max                       | Х         | 38.7119 |  |  |
| PISO 5  | SXT07-NE Max                       | Х         | 31.9153 |  |  |
| PISO 4  | SXT07-NE Max                       | Х         | 24.7132 |  |  |
| PISO 3  | SXT07-NE Max                       | Х         | 17.3952 |  |  |
| PISO 2  | SXT07-NE Max                       | Х         | 10.3781 |  |  |
| PISO 1  | SXT07-NE Max                       | Х         | 4.2568  |  |  |
| L       |                                    | 1         |         |  |  |

| TABLE: Story Max/Avg Displacements |                           |           |          |
|------------------------------------|---------------------------|-----------|----------|
| Story                              | Load Case/Combo           | Direction | Maximum  |
|                                    |                           |           | mm       |
|                                    | Desplazamiento MAX X (mm) |           | 96.00900 |

## • EN LA DIRECCIÓN Y

| TABLE: Story Max/Avg Displacements |                 |           |          |
|------------------------------------|-----------------|-----------|----------|
| Story                              | Load Case/Combo | Direction | Maximum  |
| Otory                              |                 | Direction | mm       |
| TECHO                              | SYT66-EW Max    | Y         | 100.1913 |
| PISO 11                            | SYT66-EW Max    | Y         | 98.001   |
| PISO 10                            | SYT66-EW Max    | Y         | 96.3818  |
| PISO 9                             | SYT66-EW Max    | Y         | 89.3684  |
| PISO 8                             | SYT66-EW Max    | Y         | 80.5568  |
| PISO 7                             | SYT66-EW Max    | Y         | 70.2294  |
| PISO 6                             | SYT66-EW Max    | Y         | 58.8774  |
| PISO 5                             | SYT66-EW Max    | Y         | 47.0523  |
| PISO 4                             | SYT66-EW Max    | Y         | 34.9551  |
| PISO 3                             | SYT66-EW Max    | Y         | 23.2779  |
| PISO 2                             | SYT66-EW Max    | Y         | 13.5641  |
| PISO 1                             | SYT66-EW Max    | Y         | 5.5113   |
| TECHO                              | SYT66-NS Max    | Y         | 73.8601  |
| PISO 11                            | SYT66-NS Max    | Y         | 72.2968  |
| PISO 10                            | SYT66-NS Max    | Y         | 71.48    |
| PISO 9                             | SYT66-NS Max    | Y         | 66.3846  |
| PISO 8                             | SYT66-NS Max    | Y         | 59.9603  |
| PISO 7                             | SYT66-NS Max    | Y         | 52.3037  |
| PISO 6                             | SYT66-NS Max    | Y         | 43.7216  |
| PISO 5                             | SYT66-NS Max    | Y         | 34.6265  |
| PISO 4                             | SYT66-NS Max    | Y         | 25.3814  |
| PISO 3                             | SYT66-NS Max    | Y         | 17.4702  |

| TABLE: Story Max/Avg Displacements |                                 |           |         |
|------------------------------------|---------------------------------|-----------|---------|
| Story                              | Story Load Case/Combo Direction |           | Maximum |
| otory                              |                                 | Direction | mm      |
| PISO 2                             | SYT66-NS Max                    | Y         | 10.263  |
| PISO 1                             | SYT66-NS Max                    | Y         | 4.1209  |
| TECHO                              | SYT70-EW Max                    | Y         | 66.5085 |
| PISO 11                            | SYT70-EW Max                    | Y         | 65.1197 |
| PISO 10                            | SYT70-EW Max                    | Y         | 64.6704 |
| PISO 9                             | SYT70-EW Max                    | Y         | 60.1193 |
| PISO 8                             | SYT70-EW Max                    | Y         | 54.3864 |
| PISO 7                             | SYT70-EW Max                    | Y         | 47.5617 |
| PISO 6                             | SYT70-EW Max                    | Y         | 39.8702 |
| PISO 5                             | SYT70-EW Max                    | Y         | 31.6368 |
| PISO 4                             | SYT70-EW Max                    | Y         | 23.2832 |
| PISO 3                             | SYT70-EW Max                    | Y         | 15.4274 |
| PISO 2                             | SYT70-EW Max                    | Y         | 9.0387  |
| PISO 1                             | SYT70-EW Max                    | Y         | 3.628   |
| TECHO                              | SYT70-NS Max                    | Y         | 67.0291 |
| PISO 11                            | SYT70-NS Max                    | Y         | 65.6548 |
| PISO 10                            | SYT70-NS Max                    | Y         | 64.5737 |
| PISO 9                             | SYT70-NS Max                    | Y         | 59.9447 |
| PISO 8                             | SYT70-NS Max                    | Y         | 54.3379 |
| PISO 7                             | SYT70-NS Max                    | Y         | 47.6474 |
| PISO 6                             | SYT70-NS Max                    | Y         | 40.0728 |
| PISO 5                             | SYT70-NS Max                    | Y         | 31.9193 |
| PISO 4                             | SYT70-NS Max                    | Y         | 24.1388 |
| PISO 3                             | SYT70-NS Max                    | Y         | 16.9053 |
| PISO 2                             | SYT70-NS Max                    | Y         | 10.0002 |
| PISO 1                             | SYT70-NS Max                    | Y         | 4.0612  |
| TECHO                              | SYT74-EW Max                    | Y         | 78.0169 |
| PISO 11                            | SYT74-EW Max                    | Y         | 76.3633 |
| PISO 10                            | SYT74-EW Max                    | Y         | 75.7967 |

| TABLE: Story Max/Avg Displacements |                                 |           |         |  |
|------------------------------------|---------------------------------|-----------|---------|--|
| Story                              | Story Load Case/Combo Direction |           | Maximum |  |
| Otory                              |                                 | Direction | mm      |  |
| PISO 9                             | SYT74-EW Max                    | Y         | 70.3872 |  |
| PISO 8                             | SYT74-EW Max                    | Y         | 63.5748 |  |
| PISO 7                             | SYT74-EW Max                    | Y         | 55.4728 |  |
| PISO 6                             | SYT74-EW Max                    | Y         | 46.3978 |  |
| PISO 5                             | SYT74-EW Max                    | Y         | 36.7379 |  |
| PISO 4                             | SYT74-EW Max                    | Y         | 26.9539 |  |
| PISO 3                             | SYT74-EW Max                    | Y         | 18.0456 |  |
| PISO 2                             | SYT74-EW Max                    | Y         | 10.5486 |  |
| PISO 1                             | SYT74-EW Max                    | Y         | 4.2209  |  |
| TECHO                              | SYT74-NS Max                    | Y         | 69.5753 |  |
| PISO 11                            | SYT74-NS Max                    | Y         | 68.0606 |  |
| PISO 10                            | SYT74-NS Max                    | Y         | 66.9176 |  |
| PISO 9                             | SYT74-NS Max                    | Y         | 62.0098 |  |
| PISO 8                             | SYT74-NS Max                    | Y         | 55.8438 |  |
| PISO 7                             | SYT74-NS Max                    | Y         | 48.5397 |  |
| PISO 6                             | SYT74-NS Max                    | Y         | 40.3721 |  |
| PISO 5                             | SYT74-NS Max                    | Y         | 31.7281 |  |
| PISO 4                             | SYT74-NS Max                    | Y         | 23.5803 |  |
| PISO 3                             | SYT74-NS Max                    | Y         | 16.2962 |  |
| PISO 2                             | SYT74-NS Max                    | Y         | 9.4832  |  |
| PISO 1                             | SYT74-NS Max                    | Y         | 3.775   |  |
| TECHO                              | SYT07-EW Max                    | Y         | 79.1499 |  |
| PISO 11                            | SYT07-EW Max                    | Y         | 77.4445 |  |
| PISO 10                            | SYT07-EW Max                    | Y         | 75.7245 |  |
| PISO 9                             | SYT07-EW Max                    | Y         | 70.2385 |  |
| PISO 8                             | SYT07-EW Max                    | Y         | 63.3468 |  |
| PISO 7                             | SYT07-EW Max                    | Y         | 55.2284 |  |
| PISO 6                             | SYT07-EW Max                    | Y         | 46.3863 |  |
| PISO 5                             | SYT07-EW Max                    | Y         | 37.1632 |  |

| TABLE: Story Max/Avg Displacements |                  |           |           |
|------------------------------------|------------------|-----------|-----------|
| Story                              | Load Case/Combo  | Direction | Maximum   |
| Otory                              |                  | Direction | mm        |
| PISO 4                             | SYT07-EW Max     | Y         | 27.7389   |
| PISO 3                             | SYT07-EW Max     | Y         | 19.1348   |
| PISO 2                             | SYT07-EW Max     | Y         | 11.4057   |
| PISO 1                             | SYT07-EW Max     | Y         | 4.677     |
| TECHO                              | SYT07-NS Max     | Y         | 80.5515   |
| PISO 11                            | SYT07-NS Max     | Y         | 78.9593   |
| PISO 10                            | SYT07-NS Max     | Y         | 78.2485   |
| PISO 9                             | SYT07-NS Max     | Y         | 73.0349   |
| PISO 8                             | SYT07-NS Max     | Y         | 66.45     |
| PISO 7                             | SYT07-NS Max     | Y         | 58.5507   |
| PISO 6                             | SYT07-NS Max     | Y         | 49.5349   |
| PISO 5                             | SYT07-NS Max     | Y         | 39.734    |
| PISO 4                             | SYT07-NS Max     | Y         | 29.6261   |
| PISO 3                             | SYT07-NS Max     | Y         | 20.4009   |
| PISO 2                             | SYT07-NS Max     | Y         | 12.189    |
| PISO 1                             | SYT07-NS Max     | Y         | 5         |
|                                    | Desplazamiento M | AX Y (mm) | 100.19130 |

#### 3. RESPUESTA DEL EDIFICIO CON AMORTIGUADORES (NO LINEAL)

- a. DERIVAS
  - Deriva máxima x del análisis tiempo historia en dirección x

| TABLE: Diaphragm Max/Avg Drifts |                 |      |           |            |
|---------------------------------|-----------------|------|-----------|------------|
| Story                           | Load Case/Combo | ltem | Max Drift | Drift<br>‰ |
| TECHO                           | SXT66-EW Max    | Х    | 0.003281  | 3.281      |
| TECHO                           | SXT66-NS Max    | Х    | 0.002598  | 2.598      |
| TECHO                           | SXT70-EW Max    | Х    | 0.002009  | 2.009      |
| TECHO                           | SXT70-NS Max    | Х    | 0.002245  | 2.245      |
| TABLE: Diaphragm Max/Avg Drifts |                 |      |           |       |
|---------------------------------|-----------------|------|-----------|-------|
| Story                           | Load Case/Combo | Item | Max Drift | Drift |
| -                               |                 |      |           | ‰     |
| TECHO                           | SXT74-EW Max    | Х    | 0.002793  | 2.793 |
| TECHO                           | SXT74-NS Max    | Х    | 0.002318  | 2.318 |
| TECHO                           | SXT07-EW Max    | Х    | 0.002631  | 2.631 |
| TECHO                           | SXT07-NE Max    | Х    | 0.002149  | 2.149 |
| PISO 11                         | SXT66-EW Max    | Х    | 0.003301  | 3.301 |
| PISO 11                         | SXT66-NS Max    | Х    | 0.002617  | 2.617 |
| PISO 11                         | SXT70-EW Max    | Х    | 0.002021  | 2.021 |
| PISO 11                         | SXT70-NS Max    | Х    | 0.002262  | 2.262 |
| PISO 11                         | SXT74-EW Max    | Х    | 0.002808  | 2.808 |
| PISO 11                         | SXT74-NS Max    | Х    | 0.002335  | 2.335 |
| PISO 11                         | SXT07-EW Max    | Х    | 0.002648  | 2.648 |
| PISO 11                         | SXT07-NE Max    | Х    | 0.002163  | 2.163 |
| PISO 10                         | SXT66-EW Max    | Х    | 0.003283  | 3.283 |
| PISO 10                         | SXT66-NS Max    | Х    | 0.002626  | 2.626 |
| PISO 10                         | SXT70-EW Max    | Х    | 0.001997  | 1.997 |
| PISO 10                         | SXT70-NS Max    | Х    | 0.002284  | 2.284 |
| PISO 10                         | SXT74-EW Max    | Х    | 0.002769  | 2.769 |
| PISO 10                         | SXT74-NS Max    | Х    | 0.002342  | 2.342 |
| PISO 10                         | SXT07-EW Max    | Х    | 0.002634  | 2.634 |
| PISO 10                         | SXT07-NE Max    | Х    | 0.002157  | 2.157 |
| PISO 9                          | SXT66-EW Max    | Х    | 0.003807  | 3.807 |
| PISO 9                          | SXT66-NS Max    | Х    | 0.003066  | 3.066 |
| PISO 9                          | SXT70-EW Max    | Х    | 0.002328  | 2.328 |
| PISO 9                          | SXT70-NS Max    | Х    | 0.002657  | 2.657 |
| PISO 9                          | SXT74-EW Max    | Х    | 0.0032    | 3.2   |
| PISO 9                          | SXT74-NS Max    | Х    | 0.002735  | 2.735 |
| PISO 9                          | SXT07-EW Max    | Х    | 0.003071  | 3.071 |
| PISO 9                          | SXT07-NE Max    | Х    | 0.002507  | 2.507 |
| PISO 8                          | SXT66-EW Max    | Х    | 0.004395  | 4.395 |

| TABLE: Diaphragm Max/Avg Drifts |                 |      |           |       |
|---------------------------------|-----------------|------|-----------|-------|
| Story                           | Load Case/Combo | ltem | Max Drift | Drift |
| · · · · · <b>,</b>              |                 |      |           | ‰     |
| PISO 8                          | SXT66-NS Max    | Х    | 0.003573  | 3.573 |
| PISO 8                          | SXT70-EW Max    | Х    | 0.002703  | 2.703 |
| PISO 8                          | SXT70-NS Max    | Х    | 0.003078  | 3.078 |
| PISO 8                          | SXT74-EW Max    | Х    | 0.003685  | 3.685 |
| PISO 8                          | SXT74-NS Max    | Х    | 0.003193  | 3.193 |
| PISO 8                          | SXT07-EW Max    | Х    | 0.003577  | 3.577 |
| PISO 8                          | SXT07-NE Max    | Х    | 0.002917  | 2.917 |
| PISO 7                          | SXT66-EW Max    | Х    | 0.004912  | 4.912 |
| PISO 7                          | SXT66-NS Max    | Х    | 0.004038  | 4.038 |
| PISO 7                          | SXT70-EW Max    | Х    | 0.003032  | 3.032 |
| PISO 7                          | SXT70-NS Max    | Х    | 0.003457  | 3.457 |
| PISO 7                          | SXT74-EW Max    | Х    | 0.004112  | 4.112 |
| PISO 7                          | SXT74-NS Max    | Х    | 0.003608  | 3.608 |
| PISO 7                          | SXT07-EW Max    | Х    | 0.004042  | 4.042 |
| PISO 7                          | SXT07-NE Max    | Х    | 0.003307  | 3.307 |
| PISO 6                          | SXT66-EW Max    | Х    | 0.005296  | 5.296 |
| PISO 6                          | SXT66-NS Max    | Х    | 0.004397  | 4.397 |
| PISO 6                          | SXT70-EW Max    | Х    | 0.003297  | 3.297 |
| PISO 6                          | SXT70-NS Max    | Х    | 0.003753  | 3.753 |
| PISO 6                          | SXT74-EW Max    | Х    | 0.004421  | 4.421 |
| PISO 6                          | SXT74-NS Max    | Х    | 0.003924  | 3.924 |
| PISO 6                          | SXT07-EW Max    | Х    | 0.004405  | 4.405 |
| PISO 6                          | SXT07-NE Max    | Х    | 0.003637  | 3.637 |
| PISO 5                          | SXT66-EW Max    | Х    | 0.005479  | 5.479 |
| PISO 5                          | SXT66-NS Max    | Х    | 0.004595  | 4.595 |
| PISO 5                          | SXT70-EW Max    | Х    | 0.003438  | 3.438 |
| PISO 5                          | SXT70-NS Max    | Х    | 0.003902  | 3.902 |
| PISO 5                          | SXT74-EW Max    | Х    | 0.004555  | 4.555 |
| PISO 5                          | SXT74-NS Max    | Х    | 0.00409   | 4.09  |

| TABLE: Diaphragm Max/Avg Drifts |                 |      |           |       |
|---------------------------------|-----------------|------|-----------|-------|
| Story                           | Load Case/Combo | Item | Max Drift | Drift |
| -                               |                 |      |           | ‰     |
| PISO 5                          | SXT07-EW Max    | Х    | 0.004601  | 4.601 |
| PISO 5                          | SXT07-NE Max    | Х    | 0.003854  | 3.854 |
| PISO 4                          | SXT66-EW Max    | Х    | 0.005392  | 5.392 |
| PISO 4                          | SXT66-NS Max    | Х    | 0.00456   | 4.56  |
| PISO 4                          | SXT70-EW Max    | Х    | 0.003393  | 3.393 |
| PISO 4                          | SXT70-NS Max    | Х    | 0.003843  | 3.843 |
| PISO 4                          | SXT74-EW Max    | Х    | 0.004449  | 4.449 |
| PISO 4                          | SXT74-NS Max    | Х    | 0.004043  | 4.043 |
| PISO 4                          | SXT07-EW Max    | Х    | 0.004561  | 4.561 |
| PISO 4                          | SXT07-NE Max    | Х    | 0.00388   | 3.88  |
| PISO 3                          | SXT66-EW Max    | Х    | 0.004992  | 4.992 |
| PISO 3                          | SXT66-NS Max    | Х    | 0.004234  | 4.234 |
| PISO 3                          | SXT70-EW Max    | Х    | 0.003133  | 3.133 |
| PISO 3                          | SXT70-NS Max    | Х    | 0.003536  | 3.536 |
| PISO 3                          | SXT74-EW Max    | Х    | 0.004229  | 4.229 |
| PISO 3                          | SXT74-NS Max    | Х    | 0.003745  | 3.745 |
| PISO 3                          | SXT07-EW Max    | Х    | 0.004227  | 4.227 |
| PISO 3                          | SXT07-NE Max    | Х    | 0.003652  | 3.652 |
| PISO 2                          | SXT66-EW Max    | Х    | 0.004263  | 4.263 |
| PISO 2                          | SXT66-NS Max    | Х    | 0.003522  | 3.522 |
| PISO 2                          | SXT70-EW Max    | Х    | 0.002648  | 2.648 |
| PISO 2                          | SXT70-NS Max    | Х    | 0.002932  | 2.932 |
| PISO 2                          | SXT74-EW Max    | Х    | 0.00358   | 3.58  |
| PISO 2                          | SXT74-NS Max    | Х    | 0.003259  | 3.259 |
| PISO 2                          | SXT07-EW Max    | Х    | 0.00362   | 3.62  |
| PISO 2                          | SXT07-NE Max    | Х    | 0.003234  | 3.234 |
| PISO 1                          | SXT66-EW Max    | Х    | 0.002269  | 2.269 |
| PISO 1                          | SXT66-NS Max    | Х    | 0.001871  | 1.871 |
| PISO 1                          | SXT70-EW Max    | Х    | 0.001437  | 1.437 |

| TABLE: Diaphragm Max/Avg Drifts |                 |       |             |            |
|---------------------------------|-----------------|-------|-------------|------------|
| Story                           | Load Case/Combo | Item  | Max Drift   | Drift<br>‰ |
| PISO 1                          | SXT70-NS Max    | Х     | 0.001563    | 1.563      |
| PISO 1                          | SXT74-EW Max    | Х     | 0.001873    | 1.873      |
| PISO 1                          | SXT74-NS Max    | Х     | 0.001765    | 1.765      |
| PISO 1                          | SXT07-EW Max    | Х     | 0.001937    | 1.937      |
| PISO 1                          | SXT07-NE Max    | Х     | 0.001808    | 1.808      |
|                                 |                 | DERIV | A MAX X (‰) | 5.47900    |

• Deriva máxima y

| TABLE: Diaphragm Max/Avg Drifts |                 |      |           |            |
|---------------------------------|-----------------|------|-----------|------------|
| Story                           | Load Case/Combo | ltem | Max Drift | Drift<br>‰ |
| TECHO                           | SYT66-EW Max    | Y    | 0.001316  | 1.316      |
| TECHO                           | SYT66-NS Max    | Y    | 0.000897  | 0.897      |
| TECHO                           | SYT70-EW Max    | Y    | 0.000799  | 0.799      |
| TECHO                           | SYT70-NS Max    | Y    | 0.000805  | 0.805      |
| TECHO                           | SYT74-EW Max    | Y    | 0.000989  | 0.989      |
| TECHO                           | SYT74-NS Max    | Y    | 0.00092   | 0.92       |
| TECHO                           | SYT07-EW Max    | Y    | 0.000928  | 0.928      |
| TECHO                           | SYT07-NS Max    | Y    | 0.000799  | 0.799      |
| PISO 11                         | SYT66-EW Max    | Y    | 0.002191  | 2.191      |
| PISO 11                         | SYT66-NS Max    | Y    | 0.00152   | 1.52       |
| PISO 11                         | SYT70-EW Max    | Y    | 0.001354  | 1.354      |
| PISO 11                         | SYT70-NS Max    | Y    | 0.001361  | 1.361      |
| PISO 11                         | SYT74-EW Max    | Y    | 0.001672  | 1.672      |
| PISO 11                         | SYT74-NS Max    | Y    | 0.001543  | 1.543      |
| PISO 11                         | SYT07-EW Max    | Y    | 0.001555  | 1.555      |
| PISO 11                         | SYT07-NS Max    | Y    | 0.00135   | 1.35       |
| PISO 10                         | SYT66-EW Max    | Y    | 0.003292  | 3.292      |

| TABLE: Diaphragm Max/Avg Drifts |                 |      |           |       |
|---------------------------------|-----------------|------|-----------|-------|
| Story                           | Load Case/Combo | Item | Max Drift | Drift |
|                                 |                 |      |           | ‰     |
| PISO 10                         | SYT66-NS Max    | Y    | 0.00235   | 2.35  |
| PISO 10                         | SYT70-EW Max    | Y    | 0.002085  | 2.085 |
| PISO 10                         | SYT70-NS Max    | Y    | 0.002092  | 2.092 |
| PISO 10                         | SYT74-EW Max    | Y    | 0.002572  | 2.572 |
| PISO 10                         | SYT74-NS Max    | Y    | 0.002353  | 2.353 |
| PISO 10                         | SYT07-EW Max    | Y    | 0.002367  | 2.367 |
| PISO 10                         | SYT07-NS Max    | Y    | 0.002051  | 2.051 |
| PISO 9                          | SYT66-EW Max    | Y    | 0.004207  | 4.207 |
| PISO 9                          | SYT66-NS Max    | Y    | 0.003033  | 3.033 |
| PISO 9                          | SYT70-EW Max    | Y    | 0.002683  | 2.683 |
| PISO 9                          | SYT70-NS Max    | Y    | 0.002689  | 2.689 |
| PISO 9                          | SYT74-EW Max    | Y    | 0.003292  | 3.292 |
| PISO 9                          | SYT74-NS Max    | Y    | 0.003011  | 3.011 |
| PISO 9                          | SYT07-EW Max    | Y    | 0.003041  | 3.041 |
| PISO 9                          | SYT07-NS Max    | Y    | 0.002613  | 2.613 |
| PISO 8                          | SYT66-EW Max    | Y    | 0.005122  | 5.122 |
| PISO 8                          | SYT66-NS Max    | Y    | 0.003744  | 3.744 |
| PISO 8                          | SYT70-EW Max    | Y    | 0.003308  | 3.308 |
| PISO 8                          | SYT70-NS Max    | Y    | 0.003311  | 3.311 |
| PISO 8                          | SYT74-EW Max    | Y    | 0.004022  | 4.022 |
| PISO 8                          | SYT74-NS Max    | Y    | 0.003669  | 3.669 |
| PISO 8                          | SYT07-EW Max    | Y    | 0.003732  | 3.732 |
| PISO 8                          | SYT07-NS Max    | Y    | 0.003189  | 3.189 |
| PISO 7                          | SYT66-EW Max    | Y    | 0.005854  | 5.854 |
| PISO 7                          | SYT66-NS Max    | Y    | 0.004345  | 4.345 |
| PISO 7                          | SYT70-EW Max    | Y    | 0.00384   | 3.84  |
| PISO 7                          | SYT70-NS Max    | Y    | 0.003828  | 3.828 |
| PISO 7                          | SYT74-EW Max    | Y    | 0.004651  | 4.651 |
| PISO 7                          | SYT74-NS Max    | Y    | 0.004208  | 4.208 |

| TABLE: Diaphragm Max/Avg Drifts |                 |      |           |       |
|---------------------------------|-----------------|------|-----------|-------|
| Story                           | Load Case/Combo | ltem | Max Drift | Drift |
|                                 |                 |      |           | ‰     |
| PISO 7                          | SYT07-EW Max    | Y    | 0.004309  | 4.309 |
| PISO 7                          | SYT07-NS Max    | Y    | 0.003699  | 3.699 |
| PISO 6                          | SYT66-EW Max    | Y    | 0.006311  | 6.311 |
| PISO 6                          | SYT66-NS Max    | Y    | 0.004762  | 4.762 |
| PISO 6                          | SYT70-EW Max    | Y    | 0.004209  | 4.209 |
| PISO 6                          | SYT70-NS Max    | Y    | 0.004171  | 4.171 |
| PISO 6                          | SYT74-EW Max    | Y    | 0.005094  | 5.094 |
| PISO 6                          | SYT74-NS Max    | Y    | 0.004568  | 4.568 |
| PISO 6                          | SYT07-EW Max    | Y    | 0.004699  | 4.699 |
| PISO 6                          | SYT07-NS Max    | Y    | 0.004113  | 4.113 |
| PISO 5                          | SYT66-EW Max    | Y    | 0.006449  | 6.449 |
| PISO 5                          | SYT66-NS Max    | Y    | 0.004947  | 4.947 |
| PISO 5                          | SYT70-EW Max    | Y    | 0.004378  | 4.378 |
| PISO 5                          | SYT70-NS Max    | Y    | 0.004308  | 4.308 |
| PISO 5                          | SYT74-EW Max    | Y    | 0.005278  | 5.278 |
| PISO 5                          | SYT74-NS Max    | Y    | 0.004702  | 4.702 |
| PISO 5                          | SYT07-EW Max    | Y    | 0.00487   | 4.87  |
| PISO 5                          | SYT07-NS Max    | Y    | 0.004374  | 4.374 |
| PISO 4                          | SYT66-EW Max    | Y    | 0.006192  | 6.192 |
| PISO 4                          | SYT66-NS Max    | Y    | 0.00483   | 4.83  |
| PISO 4                          | SYT70-EW Max    | Y    | 0.004289  | 4.289 |
| PISO 4                          | SYT70-NS Max    | Y    | 0.004186  | 4.186 |
| PISO 4                          | SYT74-EW Max    | Y    | 0.005116  | 5.116 |
| PISO 4                          | SYT74-NS Max    | Y    | 0.004539  | 4.539 |
| PISO 4                          | SYT07-EW Max    | Y    | 0.004755  | 4.755 |
| PISO 4                          | SYT07-NS Max    | Y    | 0.004373  | 4.373 |
| PISO 3                          | SYT66-EW Max    | Y    | 0.005476  | 5.476 |
| PISO 3                          | SYT66-NS Max    | Y    | 0.004351  | 4.351 |
| PISO 3                          | SYT70-EW Max    | Y    | 0.003866  | 3.866 |

| TABLE: Diaphragm Max/Avg Drifts |                 |        |             |            |
|---------------------------------|-----------------|--------|-------------|------------|
| Story                           | Load Case/Combo | ltem   | Max Drift   | Drift<br>‰ |
| PISO 3                          | SYT70-NS Max    | Y      | 0.003751    | 3.751      |
| PISO 3                          | SYT74-EW Max    | Y      | 0.004559    | 4.559      |
| PISO 3                          | SYT74-NS Max    | Y      | 0.00405     | 4.05       |
| PISO 3                          | SYT07-EW Max    | Y      | 0.004313    | 4.313      |
| PISO 3                          | SYT07-NS Max    | Y      | 0.004029    | 4.029      |
| PISO 2                          | SYT66-EW Max    | Y      | 0.004321    | 4.321      |
| PISO 2                          | SYT66-NS Max    | Y      | 0.003453    | 3.453      |
| PISO 2                          | SYT70-EW Max    | Y      | 0.003064    | 3.064      |
| PISO 2                          | SYT70-NS Max    | Y      | 0.002967    | 2.967      |
| PISO 2                          | SYT74-EW Max    | Y      | 0.003572    | 3.572      |
| PISO 2                          | SYT74-NS Max    | Y      | 0.003192    | 3.192      |
| PISO 2                          | SYT07-EW Max    | Y      | 0.003488    | 3.488      |
| PISO 2                          | SYT07-NS Max    | Y      | 0.003269    | 3.269      |
| PISO 1                          | SYT66-EW Max    | Y      | 0.002216    | 2.216      |
| PISO 1                          | SYT66-NS Max    | Y      | 0.001731    | 1.731      |
| PISO 1                          | SYT70-EW Max    | Y      | 0.001548    | 1.548      |
| PISO 1                          | SYT70-NS Max    | Y      | 0.001495    | 1.495      |
| PISO 1                          | SYT74-EW Max    | Y      | 0.001774    | 1.774      |
| PISO 1                          | SYT74-NS Max    | Y      | 0.001583    | 1.583      |
| PISO 1                          | SYT07-EW Max    | Y      | 0.001801    | 1.801      |
| PISO 1                          | SYT07-NS Max    | Y      | 0.001682    | 1.682      |
|                                 |                 | DERIVA | A MAX Y (‰) | 6.44900    |

# b. DESPLAZAMIENTO MÁXIMO CON LAS SEÑALES USADAS

• EN LA DIRECCIÓN X

| TABLE: Story Max/Avg Displacements |                 |           |               |  |
|------------------------------------|-----------------|-----------|---------------|--|
| Story                              | Load Case/Combo | Direction | Maximum<br>mm |  |
| TECHO                              | SXT66-EW Max    | Х         | 136.072       |  |
| PISO 11                            | SXT66-EW Max    | Х         | 129.522       |  |
| PISO 10                            | SXT66-EW Max    | Х         | 123.556       |  |
| PISO 9                             | SXT66-EW Max    | Х         | 114.389       |  |
| PISO 8                             | SXT66-EW Max    | Х         | 103.748       |  |
| PISO 7                             | SXT66-EW Max    | Х         | 91.461        |  |
| PISO 6                             | SXT66-EW Max    | Х         | 77.94         |  |
| PISO 5                             | SXT66-EW Max    | Х         | 63.38         |  |
| PISO 4                             | SXT66-EW Max    | Х         | 48.148        |  |
| PISO 3                             | SXT66-EW Max    | Х         | 33.492        |  |
| PISO 2                             | SXT66-EW Max    | Х         | 19.645        |  |
| PISO 1                             | SXT66-EW Max    | Х         | 7.723         |  |
| TECHO                              | SXT66-NS Max    | Х         | 111.593       |  |
| PISO 11                            | SXT66-NS Max    | Х         | 106.41        |  |
| PISO 10                            | SXT66-NS Max    | Х         | 103.122       |  |
| PISO 9                             | SXT66-NS Max    | Х         | 95.786        |  |
| PISO 8                             | SXT66-NS Max    | Х         | 87.222        |  |
| PISO 7                             | SXT66-NS Max    | Х         | 77.238        |  |
| PISO 6                             | SXT66-NS Max    | Х         | 65.953        |  |
| PISO 5                             | SXT66-NS Max    | Х         | 53.66         |  |
| PISO 4                             | SXT66-NS Max    | Х         | 40.812        |  |
| PISO 3                             | SXT66-NS Max    | Х         | 28.059        |  |
| PISO 2                             | SXT66-NS Max    | Х         | 16.214        |  |
| PISO 1                             | SXT66-NS Max    | Х         | 6.359         |  |
| TECHO                              | SXT70-EW Max    | Х         | 84.121        |  |
| PISO 11                            | SXT70-EW Max    | Х         | 80.151        |  |

| TABLE: Story Max/Avg Displacements |                 |           |         |  |
|------------------------------------|-----------------|-----------|---------|--|
| Story                              | Load Case/Combo | Direction | Maximum |  |
| Otory                              |                 | Direction | mm      |  |
| PISO 10                            | SXT70-EW Max    | Х         | 76.959  |  |
| PISO 9                             | SXT70-EW Max    | Х         | 71.473  |  |
| PISO 8                             | SXT70-EW Max    | Х         | 65.057  |  |
| PISO 7                             | SXT70-EW Max    | Х         | 57.549  |  |
| PISO 6                             | SXT70-EW Max    | Х         | 49.052  |  |
| PISO 5                             | SXT70-EW Max    | Х         | 39.79   |  |
| PISO 4                             | SXT70-EW Max    | Х         | 30.344  |  |
| PISO 3                             | SXT70-EW Max    | Х         | 21.06   |  |
| PISO 2                             | SXT70-EW Max    | Х         | 12.308  |  |
| PISO 1                             | SXT70-EW Max    | Х         | 4.888   |  |
| TECHO                              | SXT70-NS Max    | Х         | 94.207  |  |
| PISO 11                            | SXT70-NS Max    | Х         | 89.78   |  |
| PISO 10                            | SXT70-NS Max    | Х         | 87.077  |  |
| PISO 9                             | SXT70-NS Max    | Х         | 80.803  |  |
| PISO 8                             | SXT70-NS Max    | Х         | 73.474  |  |
| PISO 7                             | SXT70-NS Max    | Х         | 64.921  |  |
| PISO 6                             | SXT70-NS Max    | Х         | 55.268  |  |
| PISO 5                             | SXT70-NS Max    | Х         | 44.788  |  |
| PISO 4                             | SXT70-NS Max    | Х         | 33.972  |  |
| PISO 3                             | SXT70-NS Max    | Х         | 23.343  |  |
| PISO 2                             | SXT70-NS Max    | Х         | 13.468  |  |
| PISO 1                             | SXT70-NS Max    | Х         | 5.324   |  |
| TECHO                              | SXT74-EW Max    | Х         | 114.403 |  |
| PISO 11                            | SXT74-EW Max    | Х         | 108.828 |  |
| PISO 10                            | SXT74-EW Max    | Х         | 102.739 |  |
| PISO 9                             | SXT74-EW Max    | Х         | 95.024  |  |
| PISO 8                             | SXT74-EW Max    | Х         | 86.075  |  |
| PISO 7                             | SXT74-EW Max    | Х         | 75.748  |  |
| PISO 6                             | SXT74-EW Max    | Х         | 64.442  |  |

| TABLE: Story Max/Avg Displacements |                 |           |         |  |
|------------------------------------|-----------------|-----------|---------|--|
| Story                              | Load Case/Combo | Direction | Maximum |  |
| otory                              |                 | Diroction | mm      |  |
| PISO 5                             | SXT74-EW Max    | Х         | 52.959  |  |
| PISO 4                             | SXT74-EW Max    | Х         | 40.666  |  |
| PISO 3                             | SXT74-EW Max    | Х         | 28.211  |  |
| PISO 2                             | SXT74-EW Max    | Х         | 16.369  |  |
| PISO 1                             | SXT74-EW Max    | Х         | 6.398   |  |
| TECHO                              | SXT74-NS Max    | Х         | 98.868  |  |
| PISO 11                            | SXT74-NS Max    | Х         | 94.243  |  |
| PISO 10                            | SXT74-NS Max    | Х         | 91.461  |  |
| PISO 9                             | SXT74-NS Max    | Х         | 84.919  |  |
| PISO 8                             | SXT74-NS Max    | Х         | 77.279  |  |
| PISO 7                             | SXT74-NS Max    | Х         | 68.359  |  |
| PISO 6                             | SXT74-NS Max    | Х         | 58.278  |  |
| PISO 5                             | SXT74-NS Max    | Х         | 47.314  |  |
| PISO 4                             | SXT74-NS Max    | Х         | 36.275  |  |
| PISO 3                             | SXT74-NS Max    | Х         | 25.519  |  |
| PISO 2                             | SXT74-NS Max    | Х         | 15.128  |  |
| PISO 1                             | SXT74-NS Max    | Х         | 6.011   |  |
| TECHO                              | SXT07-EW Max    | Х         | 112.962 |  |
| PISO 11                            | SXT07-EW Max    | Х         | 107.702 |  |
| PISO 10                            | SXT07-EW Max    | Х         | 103.178 |  |
| PISO 9                             | SXT07-EW Max    | Х         | 95.864  |  |
| PISO 8                             | SXT07-EW Max    | Х         | 87.323  |  |
| PISO 7                             | SXT07-EW Max    | Х         | 77.351  |  |
| PISO 6                             | SXT07-EW Max    | Х         | 66.061  |  |
| PISO 5                             | SXT07-EW Max    | Х         | 53.739  |  |
| PISO 4                             | SXT07-EW Max    | Х         | 40.845  |  |
| PISO 3                             | SXT07-EW Max    | Х         | 28.47   |  |
| PISO 2                             | SXT07-EW Max    | Х         | 16.73   |  |
| PISO 1                             | SXT07-EW Max    | Х         | 6.604   |  |

| TABLE: Story Max/Avg Displacements |                   |           |               |
|------------------------------------|-------------------|-----------|---------------|
| Story                              | Load Case/Combo   | Direction | Maximum<br>mm |
| TECHO                              | SXT07-NE Max      | Х         | 94.004        |
| PISO 11                            | SXT07-NE Max      | Х         | 89.71         |
| PISO 10                            | SXT07-NE Max      | Х         | 86.208        |
| PISO 9                             | SXT07-NE Max      | Х         | 80.363        |
| PISO 8                             | SXT07-NE Max      | Х         | 73.508        |
| PISO 7                             | SXT07-NE Max      | Х         | 65.562        |
| PISO 6                             | SXT07-NE Max      | Х         | 56.428        |
| PISO 5                             | SXT07-NE Max      | Х         | 46.286        |
| PISO 4                             | SXT07-NE Max      | Х         | 35.485        |
| PISO 3                             | SXT07-NE Max      | Х         | 25.17         |
| PISO 2                             | SXT07-NE Max      | Х         | 15.117        |
| PISO 1                             | SXT07-NE Max      | Х         | 6.131         |
| L                                  | Desplazamiento M/ | AX X (mm) | 136.07200     |

# • EN LA DIRECCIÓN Y

| TABLE: Story Max/Avg Displacements |                 |           |         |
|------------------------------------|-----------------|-----------|---------|
| Story                              | Load Case/Combo | Direction | Maximum |
| Otory                              |                 | Direction | mm      |
| TECHO                              | SYT66-EW Max    | Y         | 134.409 |
| PISO 11                            | SYT66-EW Max    | Y         | 131.777 |
| PISO 10                            | SYT66-EW Max    | Y         | 138.805 |
| PISO 9                             | SYT66-EW Max    | Y         | 129.586 |
| PISO 8                             | SYT66-EW Max    | Y         | 117.919 |
| PISO 7                             | SYT66-EW Max    | Y         | 103.703 |
| PISO 6                             | SYT66-EW Max    | Y         | 87.411  |
| PISO 5                             | SYT66-EW Max    | Y         | 69.793  |
| PISO 4                             | SYT66-EW Max    | Y         | 51.742  |
| PISO 3                             | SYT66-EW Max    | Y         | 34.628  |

| TABLE: Story Max/Avg Displacements |                 |           |         |
|------------------------------------|-----------------|-----------|---------|
| Story                              | Load Case/Combo | Direction | Maximum |
| Otory                              |                 | Direction | mm      |
| PISO 2                             | SYT66-EW Max    | Y         | 19.634  |
| PISO 1                             | SYT66-EW Max    | Y         | 7.536   |
| TECHO                              | SYT66-NS Max    | Y         | 98.469  |
| PISO 11                            | SYT66-NS Max    | Y         | 96.707  |
| PISO 10                            | SYT66-NS Max    | Y         | 105.628 |
| PISO 9                             | SYT66-NS Max    | Y         | 99.049  |
| PISO 8                             | SYT66-NS Max    | Y         | 90.731  |
| PISO 7                             | SYT66-NS Max    | Y         | 80.406  |
| PISO 6                             | SYT66-NS Max    | Y         | 68.356  |
| PISO 5                             | SYT66-NS Max    | Y         | 55.093  |
| PISO 4                             | SYT66-NS Max    | Y         | 41.261  |
| PISO 3                             | SYT66-NS Max    | Y         | 27.738  |
| PISO 2                             | SYT66-NS Max    | Y         | 15.556  |
| PISO 1                             | SYT66-NS Max    | Y         | 5.886   |
| TECHO                              | SYT70-EW Max    | Y         | 88.656  |
| PISO 11                            | SYT70-EW Max    | Y         | 87.067  |
| PISO 10                            | SYT70-EW Max    | Y         | 93.679  |
| PISO 9                             | SYT70-EW Max    | Y         | 87.879  |
| PISO 8                             | SYT70-EW Max    | Y         | 80.429  |
| PISO 7                             | SYT70-EW Max    | Y         | 71.247  |
| PISO 6                             | SYT70-EW Max    | Y         | 60.577  |
| PISO 5                             | SYT70-EW Max    | Y         | 48.845  |
| PISO 4                             | SYT70-EW Max    | Y         | 36.586  |
| PISO 3                             | SYT70-EW Max    | Y         | 24.576  |
| PISO 2                             | SYT70-EW Max    | Y         | 13.843  |
| PISO 1                             | SYT70-EW Max    | Y         | 5.263   |
| TECHO                              | SYT70-NS Max    | Y         | 87.05   |
| PISO 11                            | SYT70-NS Max    | Y         | 85.439  |
| PISO 10                            | SYT70-NS Max    | Y         | 92.232  |

| TABLE: Story Max/Avg Displacements |                 |           |         |
|------------------------------------|-----------------|-----------|---------|
| Story                              | Load Case/Combo | Direction | Maximum |
| Otory                              |                 | Direction | mm      |
| PISO 9                             | SYT70-NS Max    | Y         | 86.376  |
| PISO 8                             | SYT70-NS Max    | Y         | 78.964  |
| PISO 7                             | SYT70-NS Max    | Y         | 69.826  |
| PISO 6                             | SYT70-NS Max    | Y         | 59.219  |
| PISO 5                             | SYT70-NS Max    | Y         | 47.608  |
| PISO 4                             | SYT70-NS Max    | Y         | 35.559  |
| PISO 3                             | SYT70-NS Max    | Y         | 23.839  |
| PISO 2                             | SYT70-NS Max    | Y         | 13.391  |
| PISO 1                             | SYT70-NS Max    | Y         | 5.082   |
| TECHO                              | SYT74-EW Max    | Y         | 105.992 |
| PISO 11                            | SYT74-EW Max    | Y         | 104.067 |
| PISO 10                            | SYT74-EW Max    | Y         | 112.437 |
| PISO 9                             | SYT74-EW Max    | Y         | 105.41  |
| PISO 8                             | SYT74-EW Max    | Y         | 96.346  |
| PISO 7                             | SYT74-EW Max    | Y         | 85.143  |
| PISO 6                             | SYT74-EW Max    | Y         | 72.122  |
| PISO 5                             | SYT74-EW Max    | Y         | 57.859  |
| PISO 4                             | SYT74-EW Max    | Y         | 43.08   |
| PISO 3                             | SYT74-EW Max    | Y         | 28.754  |
| PISO 2                             | SYT74-EW Max    | Y         | 15.988  |
| PISO 1                             | SYT74-EW Max    | Y         | 6.033   |
| TECHO                              | SYT74-NS Max    | Y         | 95.972  |
| PISO 11                            | SYT74-NS Max    | Y         | 94.148  |
| PISO 10                            | SYT74-NS Max    | Y         | 100.996 |
| PISO 9                             | SYT74-NS Max    | Y         | 94.499  |
| PISO 8                             | SYT74-NS Max    | Y         | 86.156  |
| PISO 7                             | SYT74-NS Max    | Y         | 75.921  |
| PISO 6                             | SYT74-NS Max    | Y         | 64.139  |
| PISO 5                             | SYT74-NS Max    | Y         | 51.35   |

| TABLE: Story Max/Avg Displacements |                 |           |         |
|------------------------------------|-----------------|-----------|---------|
| Story                              | Load Case/Combo | Direction | Maximum |
| Otory                              |                 | Direction | mm      |
| PISO 4                             | SYT74-NS Max    | Y         | 38.317  |
| PISO 3                             | SYT74-NS Max    | Y         | 25.657  |
| PISO 2                             | SYT74-NS Max    | Y         | 14.318  |
| PISO 1                             | SYT74-NS Max    | Y         | 5.381   |
| TECHO                              | SYT07-EW Max    | Y         | 99.601  |
| PISO 11                            | SYT07-EW Max    | Y         | 97.745  |
| PISO 10                            | SYT07-EW Max    | Y         | 105.28  |
| PISO 9                             | SYT07-EW Max    | Y         | 98.66   |
| PISO 8                             | SYT07-EW Max    | Y         | 90.16   |
| PISO 7                             | SYT07-EW Max    | Y         | 79.743  |
| PISO 6                             | SYT07-EW Max    | Y         | 67.721  |
| PISO 5                             | SYT07-EW Max    | Y         | 54.685  |
| PISO 4                             | SYT07-EW Max    | Y         | 41.181  |
| PISO 3                             | SYT07-EW Max    | Y         | 27.94   |
| PISO 2                             | SYT07-EW Max    | Y         | 15.889  |
| PISO 1                             | SYT07-EW Max    | Y         | 6.123   |
| TECHO                              | SYT07-NS Max    | Y         | 88.425  |
| PISO 11                            | SYT07-NS Max    | Y         | 86.894  |
| PISO 10                            | SYT07-NS Max    | Y         | 92.868  |
| PISO 9                             | SYT07-NS Max    | Y         | 87.493  |
| PISO 8                             | SYT07-NS Max    | Y         | 80.638  |
| PISO 7                             | SYT07-NS Max    | Y         | 72.053  |
| PISO 6                             | SYT07-NS Max    | Y         | 61.904  |
| PISO 5                             | SYT07-NS Max    | Y         | 50.521  |
| PISO 4                             | SYT07-NS Max    | Y         | 38.325  |
| PISO 3                             | SYT07-NS Max    | Y         | 26.122  |
| PISO 2                             | SYT07-NS Max    | Y         | 14.864  |
| PISO 1                             | SYT07-NS Max    | Y         | 5.719   |
|                                    |                 |           |         |

| TABLE: Story Max/Avg Displacements |                                |           |           |
|------------------------------------|--------------------------------|-----------|-----------|
| Story                              | Story Load Case/Combo Directio | Direction | Maximum   |
| otory                              |                                | Direction | mm        |
|                                    | Desplazamiento MAX Y (mm)      |           | 138.80500 |

#### ANEXO 5: IMAGENES DE LAS CORTANTES AL INCLUIR DISIPADORES. a. CORTANTES MAXIMAS



• EN DIRECCION X.



20.16. Ton



Imagen 104.Cortante máxima en la base con la señal SXT66-NS= 19.68.



Imagen 105. Cortante máxima en la base con la señal SXT70-EW =



Imagen 106. Cortante máxima en la base con la señal SXT70-NS = 4.58.

Ton



Imagen 107. Cortante máxima en la base con la señal SXT74-EW = 12.58. Ton



Imagen 108. Cortante máxima en la base con la señal SXT74-NS = 45.80. Ton



Imagen 109. Cortante máxima en la base con la señal SXT07-EW = 18.43. Ton



Imagen 110. Cortante máxima en la base con la señal SXT07-NS = 19.09. Ton

#### • EN DIRECCION Y.



Imagen 111. Cortante máxima en la base con la señal SYT66-EW=

20.14. Ton





### 19.70. Ton



Imagen 113. Cortante máxima en la base con la señal SYT70-EW =



Imagen 114. Cortante máxima en la base con la señal SYT70-NS = 4.64.

Ton



Imagen 115. Cortante máxima en la base con la señal SYT74-EW = 12.6. Ton



Imagen 116. Cortante máxima en la base con la señal SYT74-NS= 45.82. Ton



Imagen 117. Cortante máxima en la base con la señal SYT07-EW=



Imagen 118. Cortante máxima en la base con la señal SYT07-NS= 21.44. Ton

#### **ANEXO 6:** PLANOS DE LA EDIFICACIÓN 1. 1. PLANO DE UBICACIÓN



#### 2. PLANO DE LOCALIZACIÓN



3. VISTA EN ELEVACIÓN RONTAL



## 4. PLANO DE LA PLANTA TÍPICA



### 5. PLANO EN PLANTA DE LA AZOTEA



## **ANEXO 7:** PLANOS DE LA EDIFICACIÓN 2.

1. PLANO DE UBICACIÓN



2. PLANO EN PLANTA DEL PISO TIPICO.



- . --Ψ. A AZOTEA **B** AZOTEA Nº DEFARITABILITOS: 00 A-08 -----υ'n
- 3. PLANO EN PLANTA DE LA AZOTEA.

4. PLANO EN CORTE 1-1 DEL EDIFICIO.



5. PLANO EN CORTE 2-2 DEL EDIFICIO.



6. PLANO EN CORTE 3-3 DEL EDIFICIO.





7. PLANO EN ELEVACION DEL EDIFICIO.



8. PLANO EN ELEVACION FRONTIS PRINCIPAL DEL EDIFICIO.