UNIVERSIDAD PERUANA LOS ANDES FACULTAD DE INGENIERÍA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

IMPLEMENTACIÓN DE LA METODOLOGÍA MINI COMPACTACIÓN TROPICAL PARA USOS VIALES EN SUELOS TROPICALES

Línea de investigación: Transportes y Urbanismo

PRESENTADO POR: Bach. ROBERTO JULIO DE LA CRUZ MEDINA

PARA OPTAR EL TITULO PROFESIONAL DE: INGENIERO CIVIL

HUANCAYO – PERÚ 2018

ASESOR:

PH. D. MOHAMED MEHDI HADI MOHAMED

DEDICATORIA:

El proyecto de investigación está dedicado.

A mis padres y hermanos.

A mis maestros que me guiaron.

HOJA DE CONFORMIDAD DE JURADOS

Dr. CASIO AURELIO TORRES LOPEZ
PRESIDENTE

ING. JAVIER AMADOR NAVARRO VELIZ

ING. CARLOS GERARDO FLORES ESPINOZA

ING. NATALY LUCIA CORDOVA ZORRILLA

Mg. MIGUEL ANGEL CARLOS CANALES
SECRETARIO DOCENTE

ÍNDICE

DEDICATOR	RIA	
	TABLA	
	FIGURAS	
	CION	
	JRAS Y CRONIMOS	
1. CAPÍT	ULO I : PLANTAMIENTO DEL ESTUDIO	17
1.1. Pla	anteamiento del Problema	17
1.2. Fo	rmulación y Sistematización Del Problema	17
1.2.1.	Problema General	17
1.2.2.	Problemas Específicos.	17
1.3. Jus	stificación	18
1.3.1.	Justificación Metodológica	18
1.3.2.	Justificación Práctica o Social	19
1.4. De	elimitación de la Investigación	19
1.4.1.	Delimitación Temporal	19
1.4.2.	Delimitación Espacial	19
1.4.3.	Delimitación Económica	19
1.5. Lin	nitaciones	20
1.6. Ob	ejetivos de la Investigación	20
1.6.1.	Objetivo General	20
1.6.2.	Objetivos Específicos:	20
2. CAPÍT	ULO II : MARCO TEÓRICO	22
2.1. An	tecedentes De la Investigación	22
2.1.1.	Antecedentes Nacionales.	22
2.1.2.	Antecedentes Internacionales	22
	2.2. Marco Conceptual.31	

2.2.1.		 Comportamiento de los Suelos, Laterítico (L) y no Laterítico 31 	(N).
	2.3.	Definición de Términos.	33
	2.4.	Hipótesis	34
	2.4.1	. Hipótesis General	34
	2.4.2	. Hipótesis Especificas	34
	2.5.	Variables.	35
	2.5.1	. Definición Conceptual de Variables	35
	2.5.2	. Definición Operacional de la Variable	36
	2.5.3	. Operacionalización de la Variable	36
3.	CAI	PÍTULO III: METODOLOGÍA	37
	3.1.	Método de la Investigación	37
	3.2.	Tipo de Investigación	
	3.3.	Nivel de Investigación	37
	3.4.	Diseño de Investigación.	38
	3.5.	Población y Muestra	38
	3.5.1	. Población	38
	3.5.2	. Muestra	38
	3.6.	Técnicas e Instrumentos de Recolección de Datos	38
	3.7.	Procesamiento de la Información.	39
	3.8.	Técnicas de Análisis de Datos	39
4.	CAI	PÍTULO IV : RESULTADOS	40
	4.1.	Ubicación y Localización de la Zona de Estudio	40
	4.1.1	. Ubicación Política:	40
	4.1.2	. Ubicación Geográfica	41
	4.1.3	. Condiciones Climáticas	42
	4.1.4	. Vías de Acceso	42
	4.1.5	. Distancias de Lima a Puerto Maldonado	43
	4.1.6	. Ubicación Geográfica e Identificación de Canteras	46
	4.1.7	. Imágenes de la Extracción de la Cantera Infierno	47
	4.1.8	. Imágenes de la Extracción de la Cantera Tropezón	50
	4.1.9	. Imágenes de la Extracción de la Muestra Noaya	53

4.2. Ejecución de la Metodología mini Compactación tropical (MCT) Para Fines Geotécnicos			
4.2.1.	Ensayo de Compactación Mini-Proctor (p-1)	59	
4.2.2.	Ensayos de Mini – CBR y Expansión (P-2)	98	
4.2.3.	Ensayo de Contracción (P-3)	134	
4.2.4.	Ensayo de Infiltrabilidad y de Permeabilidad (P-4)	144	
4.2.5.	Ensayo de Compactación Mini-MCV (P-5)	170	
4.2.6.	Ensayo de Penetración de La Imprimación (P-6)	184	
4.2.7. (Aplicación	Ensayo Mini-CBR de Campo Procedimiento de Golpes de Martillo) (P-7).		
4.2.8.	Ensayo de Pérdida de Masa por Inmersión (P-8)	201	
4.2.9.	Clasificación Geotécnica (P-9)	219	
4.2.10.	Resultados Alternativos del Laboratorio	225	
4.3. Aná	álisis Estadístico	239	
4.3.1.	Características de Ensayos: Area de Compactación y	CBR.239	
4.3.2.	Conclusiones.	240	
4.3.3.	Resultados Estadísticos.	240	
5. CAPÍTU	JLO V : DISCUSION DE LOS RESULTADOS	244	
5.1. CO	NCLUSIONES	245	
5.2. RE	COMENDACIONES	247	
5.3. RE	FERENCIAS BILIOGRAFICAS	248	
5.4. AN	EXOS	249	

INDICE DE TABLAS

Contenido	Pág.
Tabla 1:Cuadro de variables	36
Tabla 2:Características de las vías Infierno y Tropezón	44
Tabla 3:De medidas de cada cilindro existente	64
Tabla 4:De medidas de cada cilindro existente	65
Tabla 5:Valores para la cantidad de agua inicial	79
Tabla 6:Formato de ensayos de laboratorio para Mini-Proctor	92
Tabla 7:Datos y diferencias de CBR y Mini-CBR	99
Tabla 8:Para el cálculo de Mini-CBR.	120
Tabla 9:Formato para laboratorio del ensayo de Mini-CBR y expansion	ón 121
Tabla 10:Para el ensayo de contracción	140
Tabla 11:Formato de ensayo para infiltrabilidad y permeabilidad	154
Tabla 12:Formato para laboratorio en ensayo mini-mcv	177
Tabla 13:Viscosidad y temperatura de aplicación	185
Tabla 14:Cantidades de materiales usados en el ensayo	188
Tabla 15:Características del MC-30	189
Tabla 16:Formato de laboratorio de penetración de bituminosas	195
Tabla 17:Suelos lateríticos	221
Tabla 18:Suelos saprolítico	222

INDICE DE FIGURAS

	Contenido	Pág.
	Figura 1:Diagrama de determinación del índice MCV 23	
	Figura 2:Esquema e imagen del MCA (Moisture Condition Apparatus)	24
	Figura 3:Procedimiento para determinar la densidad	25
	Figura 4:Aparato para la prueba de Soporte en miniatura.	26
	Figura 5:Esquema de equipos de Densidad y prueba de Soporte de Miniatura	26
	Figura 6:Distribución de suelos lateríticos alrededor del mundo	
	Figura 7:Esquema del origen geológico de los suelos tropicales	30
	Figura 8:Perfil de un corte de carreteras - parte superior suelo laterítico - parte inferi	or suelos
sa	aproliticos.	31
	Figura 9:Designación genética general de las capas de suelos, en las regiones tropi	icales 32
	Figura 10:Plano de ubicación del departamento Madre de Dios	40
	Figura 11:División política de Madre de Dios.	41
	Figura 12:Ubicación de Tropezón e Infierno departamento Madre de Dios	41
	Figura 13:Corredor vial interoceánica sur Perú-Brasil	43
	Figura 14:Carretera Lima – Puerto Maldonado	43
	Figura 15:Imagen Satelital de la localización de la cantera	45
	Figura 16:Imagen Satelital de la localización de la cantera	45
	Figura 17:Localización de puntos de colección de muestras de suelo	46
	Figura 18:Carretera a la comunidad nativa Infierno km 15+800.	47
	Figura 19:Condición Actual de la cantera la Joya – Infierno Km 15+800	47
	Figura 20:Extracción del material de la cantera de la carretera vecinal la Joya -	- Infierno
Ki	lómetro 15+800	48
	Figura 21:Identificación de la cantera la Joya -Infierno Km 15+800	48
	Figura 22:El rápido crecimiento de la vegetación en la zona de cantera	49
	Figura 23:Vista panorámica de la cantera Infierno km 15+800	
	Figura 24:Cantera de Tropezón.	50
	Figura 25:Cantera de Tropezón.	50
	Figura 26:Erosión de la subrasante por escorrentía	
	Figura 27:Erosión de la cantera por escorrentía	
	Figura 28: Vista panorámica de la Cantera Tropezón y crecimiento rápido de la veget	ación km
10)+680	
	Figura 29:Estratos de la cantera Tropezón	52
	Figura 30:Extracción y almacenamiento en sacos de 50 kg	
	Figura 31:Puente Noaya ubicado en la carretera inter oceánica límite de Iberia y Iña	-
	Figura 32:Vista desde el puente hacia el rio Noaya	
	Figura 33:Vista desde la cantera, hacia el puente Noaya	
	Figura 34:Extracción de la arena del rio Noaya en sacos de 50 kg	
	Figura 35:Arena del rio Noaya	
	Figura 36:Cada elemento de una carretera está representado a cada ensayo que se	-
	Figura 37:Empujando la muestra con la ayuda del extractor	
	Figura 38:Muestra llevada a uno de los extremos para realizar el ensayo P2 y P4	
	Figura 39:Moldes de Mini-Proctor, Proctor modificado de 4" y 6"	
	Figura 40:Fluiograma de la metodología MCT	61

Figura 42:Medición de los moldes	63
Figura 43: Equipo de MCT "Mini Compactación Tropical"	
rigara ro. Equipo do mo rimini compactación rropicar iniminiminiminiminimi	66
Figura 44:Anillos selladores.	66
Figura 45:Accesorio de acero bipartido.	67
Figura 46:Martillos para compactación de suelos tropicales	67
Figura 47:Dial electrónico, posición para medición de cp mini Proctor	68
Figura 48:Cilindro perforado para uso de calibración y guía de penetración Mini-CBR	68
Figura 49:Cuchara de aluminio capacidad 1kg	
Figura 50:Espátula para acomodar la muestra echada en el molde	
Figura 51:Embudo de plástico.	
Figura 52:Instrumento dental para la extracción del anillo de sellado	
Figura 53: Bandeja de acero inoxidable para el mezclado de muestras y agua	
Figura 54:Repaso de los grumos de suelo por la malla número 10	
Figura 55:Asentador para las muestras de suelo y asentador de los discos de los en	-
bituminosos.	
Figura 56:Discos de polietileno para uso en Mini Proctor y ensayos de mini MCV	
Figura 57:Colocación del sujetador de la barra vertical	
Figura 58:la modificación del soporte del dial	
Figura 59:Diagrama de flujo de la ejecución del ensayo de compactación Mini-Proctor.	
Figura 60:Degradación de los terrones de arcilla.	
Figura 61:Muestra cuarteada y pasada por la malla número 10.	
Figura 62:Disgregado al aire libre de la muestra Tropezón	
Figura 63:Pesado de una porción de 30 Kg en bolsa de polietileno para protegerlo	
humedad.	
Figura 64:Porciones de 15 kg, guardas en bolsas de polietileno.	
Figura 65:Porciones de la muestra Noaya con 2.5 kg cada uno.	
Figura 66:Medición de la cantidad de agua inicial.	
Figura 67:Muestra de 500 gr preparada para el primer punto del ensayo mini Proctor	
Figura 68:Muestra Tropezón lista para el primer punto de mini-Proctor.	
Figura 69:Agua vertida en el primer punto del ensayo de mini-Proctor donde se proc	
mezclar y homogenizar	
Figura 70.Division de la muestra en cinco porciones	
Figura 72:Muestras con diferentes cantidades de humedad de la muestra Tropezón Infierno, para su saturación se recomienda 12 horas con 500 g c/u	-
Figura 73:Muestras con diferentes cantidades de humedad siendo esta muestra arenos	
limo con 500 g c/u	
Figura 74:Pesado de una porción para determinar el contenido de humedad	
Figura 74. Pesado de una porcion para determinar el contenido de numedad	
Figura 76:Posición del dial para empezar el ensayo Mini-Proctor	
Figura 77:Expulsión del cuerpo compactado (CP) con cada porcentaje en forme ascer	
en 5%	
Figura 78:Expulsión del cuerpo prueba (Cp) con la palanca de extracción y retirada del	
y el disco de polietileno.	
Figura 79:Gráfico de la MEAS en función de hc	
Figura 80:Moldes de Mini-CBR y CBR.	
Figura 81:Al no tener anillo dinamométrico se contaba con una celda S con capacid	
rigara ora in tonor anno anamomomomo se contaba con ana ceida o con capacid	
carga de 500kgm	100
carga de 500kgmFigura 82:Pistón de penetración de 50 mm de Ø para CBR normal	

Figura 84:Instalación final del equipo con todos los sensores electrónicos penetración	
CBR de la muestra Tropezón	
Figura 85:Instalación final del equipo con todos los sensores electrónicos penetración	Mini-
CBR de la muestra Infierno	
Figura 86:Recipiente para embebido de las muestras Fuente: Propia	. 103
Figura 87: Armazón para determinar la expansión Conforme a la norma DER o la DNIT	. 103
Figura 88:Sobre carga para el ensayo de expansión con carga	. 104
Figura 89:Sobrecarga perforada patrón de 50 mm de Ø la perforación es de diámetro e	es de
17 mm	. 104
Figura 90:Plano diseño del adaptador del pistón modelo DM-5016	. 106
Figura 91:Instalación del pistón DM 5016	. 107
Figura 92:Certificado de calidad del acero VCL.	. 108
Figura 93:Especificaciones técnicas del acero VCL	. 109
Figura 94:Adquiriendo el acero VCL en la casa BOHLER.	. 110
Figura 95:Acero VCL en la casa del torno.	
Figura 96:Torneado del acero VCL por el operario especialista	. 111
Figura 97:Acabado final del accesorio DM 5016 con tornillos de bronce para el ajuste	. 111
Figura 98:Croquis de expansión para penetración de Mini-CBR.	
Figura 99:Expiación sumergida con carga de 490 gramos para penetración en Mini-CBR	₹.113
Figura 100:Empezando por la izquierda vemos cp con contracción sin carga seguida	
contracción con carga y lo que está sumergido es expansión con carga y expansión si ca	
	_
Figura 101:Desacople del montaje antes de la penetración	
Figura 102:Instalación y habilitación para la penetración del Mini-CBR	
Figura 103:Cp cuerpos de prueba penetrados con el pistón de 16 mm	
Figura 104:Penetración Mini-CBR.	
Figura 105:Cuerpo de prueba ya penetrado por el ensayo Mini-CBR.	
Figura 106:Contracción de la muestra Tropezón sin sobre carga	
Figura 107:Contracción de la muestra tropezón con sobrecarga con una pesa de 420 g.	
Figura 108:Ensayo de contracción en el horno.	
Figura 109:Recipiente base de 50.0 mm de diámetro interior	
Figura 110:Piedra porosa que se coloca entre el recipiente base y el molde con el cp	
Figura 111:Colocación de la regla metálica y de las grapas para asentar los tubos de v	
Figura 112:Soporte de madera que nivela el tubo de vidrio con el cuerpo de prueba	
Figura 113:Equipos y materiales en el orden que se coloca antes del ensayo	
Figura 114:La función del tubo de jebe ayuda a que sea más hermético	
Figura 115:Las lecturas se realizan con el menisco como se muestra en la figura dond	
lecturas serán 88.5 cm y 80 cm.	
Figura 116:Pegado de las bases que son tacos de madera.	
Figura 117:Colocación de los tubos de jebe	
Figura 118:Colocación de las sobre cargas de 490 g encima del Cp	
Figura 119:Ejecución de infiltrabilidad de la muestra Infierno.	
Figura 120:Resultados de un ensayo de determinación de las características de infiltració	
suelos.	
Figura 121:Ejecución del ensayo de Permeabilidad con tubos de 5 mm Ø	
Figura 122:Observación de los meniscos en tubos de 5 mm s	
Figura 123:Preparación de un nuevo equipo de permeabilidad con tubo de 16 mm Ø	
Figura 124:Instalación de la manguera de silicona de 16 mm de Ø interior	
Figura 125:Vista panorámica del equipo de permeabilidad con tubo de 16 mm Ø	
Figura 126: Vista panorámica y la diferencia entre los que equipos de permeabilida	
infiltrahilidad	164

Figura	127:Sellado de la manguera y el tapón de jebe con silicona gris	165
Figura	128:Cálculo del coeficiente angular c' que en el método MCT se le llama granulo	metría.
		173
Figura	129:Cálculo del coeficiente angular d' que es la variación de densidad e	
•	i de la humedad a los 12 golpes	
	130:Calculo del d' con el ramo seco del ensayo de compactación	
•	131:Posición del dial para empezar el ensayo Mini-MCV	
-	· · · · · · · · · · · · · · · · · · ·	
_	132:Equipo de compactación para ensayos de Mini-Proctor y Mini-MCV	
•	133:Posición del dial para la medición de los ensayos de Mini-MCV	
-	134:Colocación del disco espaciador de 35 mm de Ø y 1.5 mm de espesor	
_	135:Disco espaciador, siempre al centro de cp cuero de prueba	
_	136:Compactación del Cp con el martillo intermedio	
Figura	137:Expulsión del disco espaciador.	187
_	138:Parafinado del Cp.	
Figura	139:Humedecimiento de CP	190
Figura	140:Reposo de los cp parafinados.	190
Figura	141:Reposo de los cp parafinados.	191
_	142:Muestra con imprimación bituminosa, mezcla de Tropezón	
•	143:Muestra con imprimación bituminosa, mezcla de Infierno	
•	144:Muestra con imprimación bituminosa a la izquierda Noaya a medio Tropez	
-	a Infierno	-
	145:Preparación para la penetración con cada punto de humedad de la m	
•		
•		
_	146:Penetración de la muestra de Noaya.	
	147: Medición de la penetración de la muestra de Tropezón	
•	148:Penetración de la muestra infierno.	
•	149:Aparato portátil, Mini-CBR de campo	
•	150:Penetrómetro de campo.	
	151:Soporte que mantiene los molde en posición horizontal	
	152:Tanque de inmersión de acero inoxidable	
Figura	153:Recipiente que capta toda la muestra desprendida por inmersión llamado ca	apsula.
		202
Figura	154:Representación gráfica para determinar la Pi con intersección con Mini-M	CV 15.
		204
	155:Procediendo a expulsar el cuerpo de prueba	
_	156:Se expulsa de tal modo de que sobresalga aproximadamente 1 cm	
_	157:Medición del cuerpo parcialmente expulsado con un vernier.	
_	158:Expulsión de la muestra de la cantera Tropezón.	
•	159:Medición con vernier de la muestra Tropezón.	
-	160:Los 5 cuerpos de prueba del ensayo Mini-MCV con expulsión de 1 cm ca	
_	tas humedades.	
_	161:Cuerpos de prueba Infierno listas para sumergir.	
	162:Esquema de funcionamiento de la perdida por inmersión	
_	163:Primer cuerpo sumergido de la muestra Infierno.	
-	164:Colocación de la totalidad de los cuerpos de prueba	
_	165:Erosión artificial después de 10 minutos de estar sumergido	
Figura	166:Muestras extraídas desprendidas después de estar sumergidas 24 horas	210
Figura	167:Una vez extraídas ponerlas en el horno hasta que seque toda el agua	210
Figura	168:Muestras salidas de horno y listas para calcular la Pi	211
Figura	169:Muestras salidas del horno listas para el cálculo Pi	211
_	170:Gráfico de Clasificatorio de suelos tropicales	
_	171:Esquema del sistema de clasificación de MCT	

RESUMEN

La presente investigación debe responder al siguiente problema general: ¿De qué manera se realizaría los ensayos de Mini Compactación Tropical para los estudios geotécnicos de origen tropical?, el objetivo es: Determinar la manera de realizar los ensayos de Mini Compactación Tropical para los estudios geotécnicos de origen tropical, y la hipótesis general que debe verificarse es: "Con la implementación de la metodología Mini Compactación Tropical se optimizará los recursos geológicos de origen tropical, para el uso en vías de transporte en la red vial vecinal Tropezón y red vecinal Infierno departamental de Madre de Dios".

El método general de investigación es el científico y, como método especifico se utilizará el analítico – sintético; el tipo de investigación es aplicada, el nivel de investigación, es descriptivo - explicativo, con un enfoque cuantitativo, el diseño de investigación es experimental, siendo la población conformada por las carreteras en las zonas tropicales de la Región Madre de Dios, y el tipo de muestra es no aleatoria o dirigido, eligiéndose muestras de la zona Tropezón e Infierno.

La conclusión fundamental de este estudio es que: Con la implementación de la metodología Mini Compactación Tropical se optimizará los recursos geológicos de origen tropical, para el uso en vías de transporte en la red vial vecinal Tropezón y red vecinal Infierno departamental de Madre de Dios, sustentado en los siguientes resultados: Con esta metodología que se aplicó a los suelos tropicales obtenidas de las canteras, se identificó como suelos saprolíticos, tanto en la vía tropezón como en la vía Infierno y arena limosa saprolítica las muestras del rio Noaya.

Palabras clave: Metodología Mini Compactación Tropical, recursos geológicos, red vecinal.

ABSTRAC

The present investigation must answer the following general problem: In what way would Tropical Mini Compaction tests be carried out to execute the geotechnical studies?, the objective is: To determine the way to carry out Tropical Mini Compaction tests for geotechnical studies, and The hypothesis that must be verified is: "With the implementation of the Tropical Mini Compaction methodology, geological resources of tropical origin will be optimized, for the use in transport routes in the neighbor road network Tropezón and neighborhood network Infierno departamental de Madre de Dios".

The general method of investigation is the scientific one and, as a specific method, the analytical - synthetic method will be used; the type of research is applied, the research level is descriptive - explanatory, with a quantitative approach, the research design is experimental, the population being made up of the roads in the tropical zones of the Madre de Dios Region, and the type sample is non-random or directed, choosing samples from the Tropezón and Infierno zone.

The fundamental conclusion of this study is that: With the implementation of the Tropical Mini Compaction methodology, geological resources of tropical origin will be optimized, for use on transport routes in the neighborhood road network Tropezón and the neighborhood network Infierno departamental de Madre de Dios, Based on the following results: With this methodology that was applied to tropical soils obtained from quarries, saprolitic soils were identified, both in the stump path and in the Infierno route and Saprolitic silty sand samples from the Noaya river.

Key words: Mini Tropical Compaction Methodology, geological resources, local network.

INTRODUCCIÓN

La presente investigación titulada: "IMPLEMENTACION DE LA METODOLOGIA MINI COMPACTACION TROPICAL PARA USOS VIALES EN SUELOS TROPICALES" se ha desarrollado en los siguientes capítulos:

Capítulo I: Se trata del **Problema de Investigación**, planteamiento del problema, se formula el problema general y problema específicos y se considera la justificación social y metodológica considerando las delimitaciones, así como, espacial, temporal económico y delimitación tanto espacial, temporal y económico; las limitaciones y los objetivos general y especifico.

Capítulo II: El **Marco Teórico**, donde se tiene presente los antecedentes nacionales e internacionales después está el marco conceptual seguido de la definición de términos, luego las hipótesis general y específico, también es importante porque aquí se identifican las variables, la definición conceptual y la definición operacional y operacionalización de las variables.

Capítulo III: **Metodología**, incluye el método de investigación, el tipo, nivel y el diseño, contiene la población y muestra las técnicas e instrumentos de recolección de datos, el procesamiento de la información, técnicas y análisis de datos.

Capítulo IV: **Resultados de la investigación**, donde se desarrolla la metodología Mini Compactación Tropical, los procedimientos y gráficos los formatos de cada ensayo y los resultados del laboratorio.

Capítulo V: Discusión de Resultados,

Finalmente se tiene las conclusiones, recomendaciones, referencias bibliográficas y anexos.

ABREVIATURAS Y ACRONIMOS.

- AASHTO: American Association of State Highway and Transportation Officials.
- ABNT: Asociación Brasileña de Normas Técnicas.
- 3. **ASTM:** American Society for Testing and Material.
- 4. CBR: California Bearing Ratio.
- 5. **DER:** Departamento de Carreteras.
- 6. DNER: Departamento Nacional de Carreteras.
- 7. OCH: Optimo Contenido de Humedad.
- 8. MDS: Máxima Densidad Seca.
- 9. GC: Grado de Compactación.
- 10. IP: índice de Plasticidad.
- 11. L: Suelos de Comportamiento Laterítico, de la Clasificación MCT.
- 12. N: Suelos de comportamiento no laterítico, de la Clasificación MCT.
- 13. LL: Límite de Liquidez.
- 14. LP: Límite de Plasticidad.
- **15. MCT:** Miniatura, Compactado, Tropical.
- 16. MCV: Moisture Condition Value (evaluación de la condición de humedad).
- 17. Mini-MCV: Mini evaluación de la condición de humedad.
- 18. ME: Método de Ensayo.
- 19. NBR: Norma Brasileña Registrada.
- 20. Sb: Sub-miniatura.
- 21. SAFL: Suelo Arenoso Fino Laterítico.
- 22. USCS: Unified Soil Classification System.
- 23. Cp: Cuerpo de prueba.
- 24. SUCS: Sistema Unificado de Clasificación de Suelos

CAPÍTULO I:

PLANTEAMIENTO DEL ESTUDIO

1.1. Planteamiento del Problema.

El problema se ha identificado en la vida útil de las vías de transportes, debido a que la mayor parte de los recursos geológicos es de una formación tropical, por lo que surge la necesidad de aplicar los ensayos MCT "Mini Compactación Tropical" para optimizar los suelos en vías de transportes y hacer la clasificación de forma correcta, debido a que la clasificación convencional deja mucha incertidumbre y vacíos geotécnicos.

1.2. Formulación y Sistematización Del Problema.

1.2.1. Problema General.

¿De qué manera se realizaría los ensayos de Mini Compactación Tropical para los estudios geotécnicos comprendidas, en la red vial departamental y vecinal de Tropezón e Infierno?

1.2.2. Problemas Específicos.

- a) ¿Cómo se implementaría la metodología Mini Compactación Tropical en los suelos tropicales en la red vial de "Tropezón" y la red vecinal de "Infierno"?.
- b) ¿De qué manera se complementaría la identificación geotécnica con la metodología Mini Compactación Tropical para usos viales en suelos tropicales, en la red vecinal "Tropezón" y red vecinal de "Infierno"?.

- c) ¿Cómo ejecutar los ensayos de Mini Compactación Tropical MCT en los suelos tropicales en la red vecinal de "Tropezón" y la red vecinal de "Infierno"?.
- d) ¿Cómo se realizaría los ensayos de Mini-CBR y expansión en los suelos tropicales en la red vecinal de "Tropezón" y la red vecinal de "Infierno"?.
- e) ¿Cómo se demostraría los ensayos de contracción en los suelos tropicales en la red vecinal de "Tropezón" y la red vecinal de "Infierno"?.
- f) ¿Cómo determinar los ensayos de infiltrabilidad y permeabilidad en los suelos tropicales en la red vecinal de "Tropezón" y la red vecinal de "Infierno"?.
- g) ¿Cómo se mostraría los ensayos de compactación Mini-MCV en los suelos tropicales en la red vecinal de "Tropezón" y la red vecinal de "Infierno"?.
- h) ¿Cómo se especificaría los ensayos de penetración de imprimación los suelos tropicales en la red vecinal de "Tropezón" y la red vecinal de "Infierno"?
- i) ¿Cómo se desarrollaría los ensayos de pérdida de masa por inmersión en los suelos tropicales en la red vecinal de "Tropezón" y la red vecinal de "Infierno"?.
- j) ¿Cómo se indicaría la clasificación de suelos en el sistema Mini Compactación Tropical MCT en los suelos tropicales en la red vecinal de "Tropezón" y la red vecinal de "Infierno"?.

1.3. Justificación.

1.3.1. Justificación Metodológica.

Se ha identificado la problemática en las carreteras de suelos tropicales de la selva del Perú y la falta de una clasificación geotécnica y una metodología de ensayo de materiales, según las necesidades a nuestra realidad, sobre dicha problemática se ha formulado las posibles soluciones a través de las hipótesis; luego, se ha establecido los propósitos que persigue el trabajo por intermedio de los objetivos. Todos estos elementos se han formado en base a

las variables e indicadores de la investigación. Todo lo anterior tiene el sustento en una metodología de investigación que identifica el tipo, nivel y diseño de investigación, la población y muestra a aplicar; así como también las técnicas e instrumentos para recopilar, analizar e interpretar la información, los mismos que deben ser utilizados para estudios similares en otros escenarios que presentan situaciones de esta índole.

1.3.2. Justificación Práctica o Social.

La presente investigación permitirá incrementar información sobre el porcentaje de carreteras y caminos vecinales pavimentadas con niveles de servicio aceptables en zonas de suelos tropicales, que brinden seguridad, confort y prolonguen su vida útil, utilizar fuentes de materiales lateríticos de calidad y no alterar el medio ambiente, mejorar la clasificación geotécnica de los suelos en zonas tropicales.

1.4. Delimitación de la Investigación.

1.4.1. Delimitación Temporal.

Esta investigación se ha realizado en el periodo comprendido entre febrero del 2017 hasta junio del 2018, la recopilación de la información en si comprende al pasado, siendo enfocado al futuro, porque en ese periodo se busca utilizar y optimizar suelos de origen tropical.

1.4.2. Delimitación Espacial.

El espacio que ha correspondido al estudio son las carreteras no pavimentadas de la selva del Perú en el departamento de Madre de Dios, en los caminos vecinales Tropezón e Infierno correspondiente al sector transportes.

1.4.3. Delimitación Económica.

Los recursos económicos fueron financiados por el tesista y fueron en dos etapas:

Gastos en recolección de muestras......S/ Gastos de laboratorio y otros......S/ 5192.00 TOTAL: S/ 9512.00

1.5. Limitaciones.

En el desarrollo de la investigación se presentaron las siguientes limitaciones:

- a) La biblioteca de la dirección de laboratorio de la Dirección de Estudios Especiales del Ministerio de Transportes y Comunicaciones tiene escasa información en suelos tropicales, solo se contaba con una traducción del libro de Villibor y Nogamy de 1995, por tanto fue necesario buscar más información actualizada.
- b) El equipo de mini compactación tropical existente que se encuentra instalado en la sala de CBR, fue fabricado de forma artesanal y por manos no calificadas, siendo necesario hacer correcciones y modificaciones, por lo que se requirió de trabajo de metal mecánica de calidad.
- c) En el desarrollo de todos y cada uno de los ensayos no se contaba con la información actualizada para los procedimientos.
- d) En cada uno de los ensayos, fue necesario fabricar accesorios que cumplan estrictamente los requisitos de la norma actualizada, para poder realizar los ensayos.

1.6. Objetivos de la Investigación.

1.6.1. Objetivo General.

Determinar de qué manera se realizaría los ensayos de Mini Compactación Tropical para los estudios geotécnicos comprendidas, en la red vial departamental y vecinal de Tropezón e Infierno.

1.6.2. Objetivos Específicos:

- a) Determinar de qué manera se hace la implementación de la metodología MCT (Mini Compactación Tropical) para usos viales en suelos tropicales, en la red vecinal de "Tropezón" y red vecinal "Infierno".
- b) Designar de qué manera se complementa la identificación geotécnica para la clasificación de suelos tropicales con la metodología MCT (Mini Compactación Tropical) para usos viales en suelos tropicales, en la red vecinal "Tropezón" y red vecinal de "Infierno".
- c) Registrar de qué manera se ejecuta los ensayos de Mini Proctor en los suelos tropicales en la red vecinal de "Tropezón" y la red vecinal de "Infierno"

- d) Establecer de qué manera se ejecuta los ensayos de Mini-CBR y expansión en los suelos tropicales en la red vecinal de "Tropezón" y la red vecinal de "Infierno"
- e) Mostrar de qué manera se ejecuta los ensayos de contracción en los suelos tropicales en la red vecinal de "Tropezón" y la red vecinal de "Infierno"
- f) Operacionalizar de qué manera se ejecuta los ensayos de infiltrabilidad y permeabilidad en los suelos tropicales en la red vecinal de "Tropezón" y la red vecinal de "Infierno".
- g) Especificar de qué manera se ejecuta los ensayos de compactación Mini-MCV en los suelos tropicales en la red vecinal de "Tropezón" y la red vecinal de "Infierno".
- h) Explicar de qué manera se ejecuta los ensayos de penetración de imprimación los suelos tropicales en la red vecinal de "Tropezón" y la red vecinal de "Infierno".
- i) Indicar de qué manera se ejecuta los ensayos de pérdida de masa por inmersión en los suelos tropicales en la red vecinal de "Tropezón" y la red vecinal de "Infierno".
- j) Indicar de qué manera se ejecuta la clasificación de suelos en el sistema Mini Compactación Tropical en los suelos tropicales en la red vecinal de "Tropezón" y la red vecinal de "Infierno".

CAPÍTULO II : MARCO TEÓRICO.

2.1. Antecedentes De la Investigación.

2.1.1. Antecedentes Nacionales.

Según Carrillo G. A. es un reto la aplicación de la tecnología para pavimentos en la selva baja o región Omagua, que está por debajo de los 500 m, ubicado en la gran llanura amazónica y en los suelos tropicales no es posible hacer generalizaciones universales que sean válidas y no existe investigación, en suelos residuales en especial en su comportamiento mecánico, los métodos tradicionales no dan resultados satisfactorios y dificultan todo tipo de construcción, es indispensable investigar para aprovechar los suelos con fines de pavimentación. (Carrillo G., 2017, pág. 7)

El ministerio de Transportes y comunicaciones en el Manual de Carreteras – Sección Suelos Tropicales (No oficial) dice, los estudios de geotecnia para suelos tropicales requieren ajustes y adiciones como la metodología MCT Mini Compactación Tropical, como primera medida la aplicación adecuada de los ensayos de laboratorio, para luego profundizar los estudios de geotecnia, en consecuencia, introducir cambios apropiados harán las consideraciones sobre algunas propuestas para la solución del problema. (Ministerio de Transportes y Comunicaciones - Seccion Suelos Tropicales, 2014)

2.1.2. Antecedentes Internacionales.

Según La Propuesta de A.W. Parsons: Inglaterra, en el Transport and Road Research Laboratory, laboratorio de transporte actualmente laboratorio de Geotecnia, el ensayo M.C.V. (Moisture Condition Value) que es Evaluación de la

condición de humedad, con este ensayo se evalúa el suelo ideal con su respectiva humedad siendo importante para construir carreteras y presas descartando suelos indeseables, determinando el límite superior de la cantidad de humedad máxima hasta que pueda llegar a su máxima viabilidad, el límite superior se halla según las pruebas a los suelos cohesivos y suelos granulares esta práctica tuvo mucho éxito , haciendo una relación entre la densidad aparente y el contenido de humedad, se necesita aproximadamente 2.5 kg de muestra que pase el tamiz ¾, se prepara 1.5 kg y se le hecha en el molde de 10 cm de diámetro y se realiza la compactación con un martillo de 7kg de masa con una caída de 250 mm, golpeando sobre un disco de fibra interpuesto entre la parte superior de la masa y la muestra durante el ensayo se mide el descenso de la muestra en mm y el número de golpes usando series crecientes 1,2,3,4,6,8,12,16,24,32,48,64,96,128,192 y 256 se calcula haciendo una resta entre los golpes 1 y 4, 2 y 8, 3 y 12 ... El grafico se representa entre la deformación en mm versus los golpes calculados. (A.W. Parson, 1992)

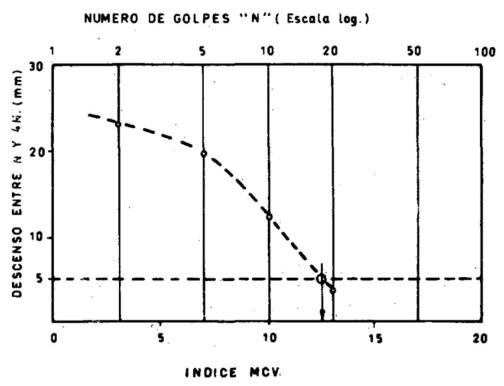


Figura 1:Diagrama de determinación del índice MCV Fuente: Ensayo del MCV Presa Barbate.

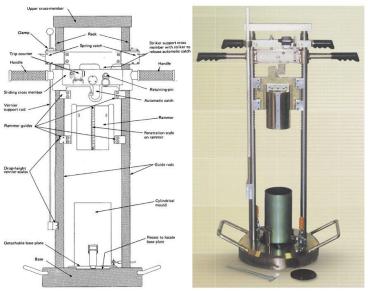


Figura 2:Esquema e imagen del MCA (Moisture Condition Apparatus). Fuente: TRL Report 273.

Según D.T. Davidson (IBV): en el estado de lowa en la Estación Experimental de Ingeniería de Iowa, la primera de su clase en el país (EUA), fue organizada en 1904 con el propósito de proporcionar investigación organizada del carácter necesario para desarrollar las industrias del Estado, como los recursos naturales y resolver los problemas de ingeniería desarrollando ensayos que son para suelos finos como con son los limosos y arcillosos y en la prueba de suelos estabilizados, los cuerpos de prueba que resultan ser muy pequeños ahorran tiempo y la cantidad de muestras y se logran cumplir con los objetivos deseados, al desarrollar los métodos se hicieron en limos y arcillas siendo las pruebas mas resaltantes de la densidad y soporte en miniatura.

La prueba de densidad que se hace con este método es la relación de densidad y humedad, en cuerpos de prueba de 2 pulgadas de diámetro por dos pulgadas de alto y con un martillo de 2.27 Kg y una caída de 30 cm, se prepara la muestra con la humedad deseada, pesar aproximando al volumen que deseamos conseguir y se vierte en el molde, dar 5 golpes con el martillo los otros 5 golpes se darán retirando el molde y volteándolo con la muestra compactada y exponiendo la cara inferior al martillo, terminada la compactación, presionar con el extractor el molde dejando al cuerpo de prueba que sea empujado por el pistón inferior hacia arriba, cortar y enrasar el exceso de muestra para que quede

con 2 pulgas de altura, luego pesar el molde con la muestra y una porción de suelo para calcular la humedad y la densidad seca del espécimen, repetir el procedimiento para cada muestra variando la humedad de hasta 7 variaciones.

La prueba de soporte en miniatura es para evaluar la resistencia de los suelos en especial en suelos finos, que pasen la malla 10 mm, se usara en suelo natural o estabilizado, en espécimen de 2 pulgas de diámetro y 2 pulgas de altura, se prepara usando mismo equipo de densidad, dejando la muestra en el molde en todo el proceso de evaluación, esta metodología denominada IBV (Iowa Bearing Value) tiene relación con el CBR porque se basa en el mismo principio, pero con adaptaciones especiales, la prueba de IBV puede usarse como control en la construcción reduciéndose el tiempo y sea más completo, al ser una muestra más pequeña requiere menos tiempo en ser saturado por lo que solo requiere 24 horas saber la expansión, dejar en reposos por 15 minutos y luego empezar con la prueba de penetración a 0.02, 0.04, 0.06, 0.08, 0.10, 0.12, 0.14, 0.16, 0.18, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, y 0.50 pulgadas de penetración, la curva de penetración será la gráfica entre la carga y la penetración. (D.T.Davidson, 1960)

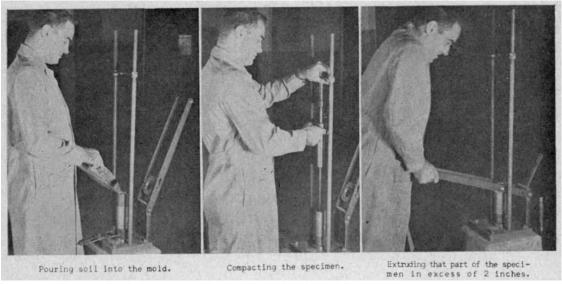


Figura 3:Procedimiento para determinar la densidad.

Fuente: Estación De Experimentos De Ingeniería De IOWA STATE UNIVERSITY.

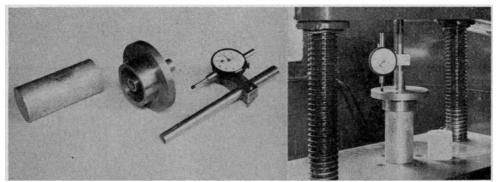


Figura 4:Aparato para la prueba de Soporte en miniatura. Fuente: Estación de Experimentos de Ingeniería de IOWA STATE UNIVERSITY.

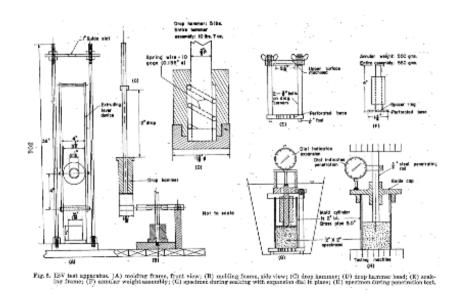


Figura 5:Esquema de equipos de Densidad y prueba de Soporte de Miniatura.

Fuente: Estación de Experimentos de Ingeniería de IOWA STATE UNIVERSITY.

Según Villibor y Nogamy: para un suelo pueda ser considerado como tropical debe haber mucha Iluvia, evaporación intensa y elevadas temperaturas produciendo intemperismo físico en una roca inicial, esto produce fisuras y degradación molecular la aparición de plantas con abundante follaje, con esa incidencia de Iluvias y las raíces de los follajes de los árboles presentan una condición de humus y en contacto con el agua forman aguas acidas formadas en la superficie penetrando ahora por las fisuras provocadas por el intemperismo físico, en simultaneo se produce un intemperismo químico ya sean rocas ígneas, metamórficas e incluso sedimentarias, cualquiera de esos rocas tiene elementos mineralógicos que pueden ser cuarzo, feldespato o mica entra en contacto con el agua acida y cuando en condiciones de roca maciza permite la percolación del

agua acida desmorona o desmenuza esos minerales haciendo que los elementos químicos que los componen y esos elementos químicos se comporten como si fuera una sopa de múltiples sustancias siempre que las sustancias sean los componentes químicos como Si, Al, Fe, Mg, Ca, K, Na estos componentes químicos fijan la masa en el proceso más intenso del intemperismo químico las aguas acidas van lixiviando y lavando los residuos de Mg, Ca, K, Na y dejando los químicos de Si, Fe, Al, a este proceso se le llama laterización, con esto se completa el proceso de intemperismo químico, formando una arcilla mineral neo formado llamado caolinita o arcilla de óxido de ferro aluminio hidratado y esto tenga la capacidad de cementar las capas de caolinita que fueron formados en la parte superior del macizo, esa cimentación produce una característica en la microestructura de ese suelo que es como una palomita de maíz de una serie de placas de caolinita, que cimentados una a la otra forman placas individualizadas como una palomita de maíz, en la parte inferior tenemos un material que no sufrió ese proceso pedológico de laterización este material no es como la caolinita oxi ferro de aluminio como la parte superior, en esta posición en una mineralogía de arcillas minerales generalmente expansivos denominados saprolíticos no son como las formadas en la parte superficial, aquí en la parte inferior, la microestructura de formación individualizada de sus partículas, así podremos tener un suelo laterítico y saprolítico en un mismo perfil de suelo donde los suelos lateríticos tienen un comportamiento excepcional cuando son compactados sus características expansivas bajas y el soprolítico todo lo contrario que presentan diversas características no recomendables para ser usadas en carreteras la gran mayoría de ellas, entonces se tuvo que hallar una tecnología que dentro de los suelos tropicales consiga diferenciar estos tipos de suelos, eso causa la fascinación en el estudio de suelos tropicales mostrando la tecnología de estudios de suelos lateríticos y saprolíticos y para los lateríticos considerar todo tipo de estudios posibles para el uso de pavimentos, hasta 1975 no existía una tecnología aplicada a suelo tropicales se usaba la tecnología americana para la ejecución la ejecución de bases, para refuerzos de pavimentos y por lo tanto se usaba materiales costosos, todo esto para obedecer las normas americanas, con la tecnología MCT "Mini Compactación Tropical" se vera la amplitud de usar materiales naturales para la pavimentación. (Douglas Fadul Villibor, 2009)

Por qué hacer la Implementación Mini Compactación Tropical

Es muy necesario debatir las normas generales y adaptarlas a cada lugar según la naturaleza del suelo, las condiciones climáticas y las especificaciones de las capas de pavimentos que se adapte al lugar, en 1940 se impulsa la tecnología sobre pavimentos provenientes de los EUA, así como la clasificación de suelos y las especificaciones de las capas de los pavimentos, esto es considerado desde entonces como sistema tradicional teniendo consecuencias positivas y negativas, en cuanto a lo positivo, avance tecnológico para los años de 1940 como la difusión de una mentalidad en todos los estudiantes e ingenieros sobre la construcción de carreteras esto hizo que aparecieran precios para cada actividad y la creación de nuevas empresas de ingeniería todo esto gracias a la democratización de las normas de pavimentación, los aspectos negativos, como la aplicación de los sistemas tradicionales sin adaptaciones siendo las mismas desarrolladas para los EUA e incluso para su clima, siendo inadecuado para zonas tropicales, rechazando y menospreciando los materiales de origen tropical no se preocuparon en verificar los materiales tropicales de alta calidad que pueden servir para pavimentos, evidenciando que esta tecnología no fue desarrollada para clima tropicales fue desarrollado para solucionar problemas de su propio clima y lugar.

En 1970 se empieza la investigación con avances tecnológicos en cooperación de la DER-SP empezando las pruebas en los estudios y la construcción de pavimentos vecinales, impulsados por Nogami y Villibor crean el sistema MCT para estudios de suelos tropicales y clasificación MCT, en 1980 se consolida la metodología MCT y se oficializa como norma en conjunto con las especificaciones para carreteras.

Aspecto Técnico para la Implementación Mini Compactación Tropical

Por sentido común se sabe que cuanto mayor volumen mayor es la representatividad de los ensayos, pero cuando los suelos son finos, esa representatividad es muy semejante si los CP son tan pequeñas como 50 mm de diámetro y de longitud del sistema MCT, que fue desarrollado para climas tropicales, en cuanto a la clasificación tradicional se usa muestras espatuladas

con la espatulado se destruye los enlaces de las microestructuras alterando su composición estructural, en el sistema tradicional con estos valores se asocia el comportamiento de una capa compactada para pavimentos, la granulometría está en función de la compactación aplicando la metodología Mini-MCV y perdida por inmersión PI.

Para el diseño de capas de pavimentos en el sistema tradicional se usan los ensayos de CBR, expansión, granulometría, en cuanto al sistema MCT se usa las propiedades de granulometría en función de c', Mini-CBR, expansión, contracción en CP de dimensión reducida que es un modelo pequeño que esta directamente asociado con el campo, en obra se trabaja con los equipos que sean necesarios para compactar cada tipo de suelo según su origen de clima tropical o zonas frías, en lo tradicional la identificación de los suelos tropicales tiene problemas geotécnicos, los procedimientos utilizados no tienen en cuenta las características de estos suelos tropicales, lo más usado para clasificar es la clasificación SUCS o AASHTO.

Los especialistas en geotecnia que trabajaban con suelos tropicales poco se han interesado en el desarrollo en un procedimiento adecuado, para trabajos con este tipo de suelo evidenciando siempre sus limitaciones, siempre para usos en obras civiles y la necesidad de que se disponga de una clasificación geotécnica adecuada, y otra perspectiva que se presenta como una alternativa es la clasificación MCT pudiéndose usar con fines geotécnicos.

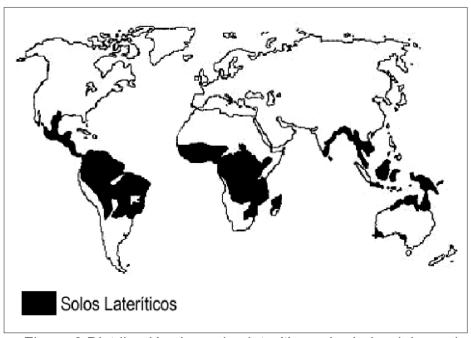


Figura 6:Distribución de suelos lateríticos alrededor del mundo. Fuente: Charman 1988.

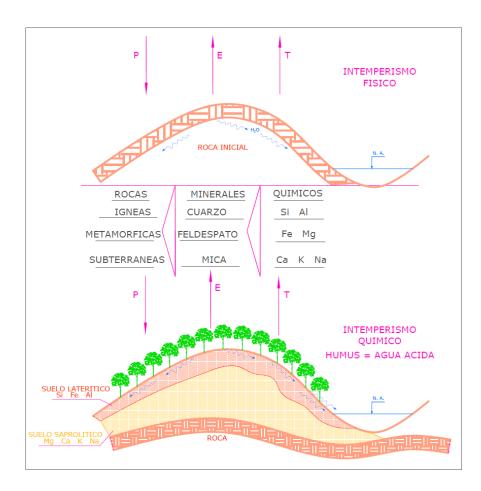


Figura 7:Esquema del origen geológico de los suelos tropicales. Fuente: Propia.

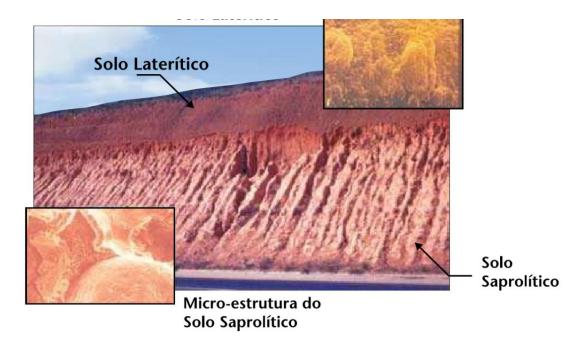


Figura 8:Perfil de un corte de carreteras - parte superior suelo laterítico - parte inferior suelos saproliticos.

Fuente: Nogami y villibor 1985

2.2. Marco Conceptual.

2.2.1. Comportamiento de los Suelos, Laterítico (L) y no Laterítico (N).

El suelo es material natural no afianzado, es decir, constituido de partículas disgregables por tratamiento mecánicos e hidráulicas relativamente suaves, como diseminación en agua con uso de aparato dispersor de laboratorio, puede ser perforado con equipamientos comunes de movimiento de tierras.

En cuanto al suelo tropical es aquel que presenta características y propiedades de comportamiento muy particular con respecto a los suelos no tropicales, como resultado de un proceso geológico y/o pedológicos muy particular donde impera la alta temperatura, abundante evaporización y mucha precipitación propios de las regiones tropicales fijadas. Entre ellos, se destacan dos grandes clases los suelos lateríticos y los suelos saprolíticos.

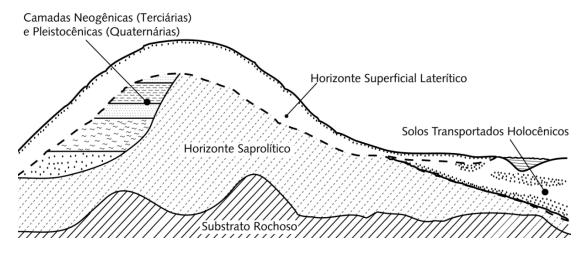


Figura 9:Designación genética general de las capas de suelos, en las regiones tropicales

Fuente: Nogami y Villibor (1995)

Suelo Laterítico:

Se considerará como significando suelo de comportamiento geotécnico laterítico, a no ser que sea, específicamente, observado lo contrario, se caracteriza por poseer una serie de propiedades que conducen a clasificarlo como suelo de comportamiento laterítico, según la Clasificación MCT. Pedógicamente, el suelo laterítico es una variedad de suelo del horizonte superficial laterítico, típico de las partes bien drenadas de las regiones tropicales, tiene una excelente compactibilidad llegando al 100%, fácil acabado de la superficie de la base y bajo desgaste superficial al tráfico, baja contracción al secado, satisfactoria receptividad de la imprimación bituminosa, no se reblandece a la humedad buena resistencia a la erosión hídrica.

Suelo Saprolítico:

Que se deriva de la descomposición y / o desagregación in situ de la roca (considerado material consolidado de la corteza terrestre), manteniendo, aún, de manera nítida, la estructura (o fabrica) de la roca que le dio origen. Y, por lo tanto, un suelo genuinamente residual, por lo que a menudo se denomina residual o, más específicamente, suelo residual joven. Las capas que los suelos saprolíticos constituyen en sus condiciones naturales se designan horizonte saprolítico. Generalmente presenta comportamiento no laterítico. Son susceptibles al

ablandamiento cuando está en contacto con el agua, un elevado grado de erosionabilidad hídrica excesiva contracción al secado.

2.3. Definición de Términos.

- Pavimento: Es la estructura construida sobre la subrasante, para los siguientes fines: a) resistir y distribuir los esfuerzos por los vehículos; b) mejorar las condiciones de comodidad y seguridad para el tránsito. (Reglamento Nacional de Gestión de Infraestructura Vial MTC, febrero 2006).
- 2. Laterítico: Procedente de latín "later" que significa ladrillo duro, es un suelo de origen de clima tropical, de formación geológica de altas temperaturas fuertes lluvia y abundante evaporización, de formación pedológica con contenido de cuarzo, feldespato y mica con contenido de Si, Fe y Al.
- 3. Saprolítico: Procedente de latín "sapro" que significa pobre o roca pobre, es un suelo de origen de clima tropical, de formación geológica de altas temperaturas fuertes lluvia y abundante evaporización de formación pedológica con contenido de cuarzo, feldespato y mica con contenido de Mg, Ca, K y Na.
- 4. Carretera: Camino para el tránsito de vehículos motorizados, de por lo menos dos ejes, con características geométricas definidas de acuerdo a las normas técnicas vigentes en el Ministerio de Transportes y Comunicaciones. (Glosario de términos de uso frecuente en proyectos de infraestructura vial Resolución Ministerial Nº 660-2008-MTC/02)
- Carretera no Pavimentada: Carretera cuya superficie de rodadura está conformada por gravas o afirmado, suelos estabilizados o terreno natural. (Glosario de términos de uso frecuente en proyectos de infraestructura vial Resolución Ministerial Nº 660-2008-MTC/02)
- Geomorfología: Se trata de analizar la corteza de la tierra, incluida en la geología, estudia la forma de la superficie de nuestro planeta parte del origen de la tierra hasta la actualidad.

2.4. Hipótesis.

2.4.1. Hipótesis General.

Con la implementación de la metodología Mini Compactación Tropical se optimizará los recursos geológicos de origen tropical, para el uso en vías de transporte en la red vial vecinal "Tropezón" y red vecinal "Infierno" de la Región Madre de Dios.

2.4.2. Hipótesis Especificas.

- a) La implementación de la metodología Mini Compactación Tropical se determinará con la norma contemporánea y con los instrumentos y accesorios fabricados, para usos viales en suelos tropicales, en la red vial de "Tropezón" y red vecinal "Infierno".
- b) La complementación geotécnica se hará clasificando los suelos tropicales con la metodología Mini Compactación Tropical para usos viales en suelos tropicales, en la red vial "Tropezón" y red vecinal de "Infierno".
- c) Los ensayos de Mini Proctor se registrarán de acuerdo a la norma vigente y mejorando el equipo de mini compactación, para usos viales en suelos tropicales, en la red vial de "Tropezón" y red vecinal "Infierno".
- d) La preparación de Mini-CBR y Expansión se establecerá de acuerdo a la norma actual, diseñando y construyendo el pistón de penetración DM 5016, para usos viales en suelos tropicales, en la red vial de "Tropezón" y red vecinal "Infierno".
- e) La prueba de contracción se demostrará de acuerdo a la norma existente, usando hornos para recrear el clima tropical, para usos viales en suelos tropicales, en la red vial de "Tropezón" y red vecinal "Infierno".

- f) La experimentación de la infiltrabilidad y permeabilidad se operacionalizará de acuerdo a la norma moderna, esbozando y fabricando los instrumentos, para usos viales en suelos tropicales, en la red vial de "Tropezón" y red vecinal "Infierno".
- g) La investigación Mini-MCV se especificará de acuerdo a la norma flagrante, en el equipo de mini compactación mejorado, para usos viales en suelos tropicales, en la red vial de "Tropezón" y red vecinal "Infierno".
- h) El estudio de penetración de imprimación se explicará de acuerdo a la norma reciente, esquematizando y confeccionando el disco espaciador, para usos viales en suelos tropicales, en la red vial de "Tropezón" y red vecinal "Infierno".
- El test de pérdida de masa por inmersión se indicará de acuerdo a la nueva norma, proyectando y colocando nuevos accesorios, para usos viales en suelos tropicales, en la red vial de "Tropezón" y red vecinal "Infierno".
- Los análisis de clasificación en el sistema mini compactación tropical se indicará la clasificación con la norma contemporánea, para usos viales en suelos tropicales, en la red vial de "Tropezón" y red vecinal "Infierno".

2.5. Variables.

2.5.1. Definición Conceptual de Variables.

Variable Independiente (X):

Metodología Mini Compactación Tropical: Creado en Brasil en 1970 por Villibor y Nogami para uso de pavimentos vecinales y para estudios de suelos tropicales y clasificación MCT, fue oficializada en 1980 DER-SP, se ejecutó 8000 kilómetros de vías con muy bajo costo, la designación proviene de las siglas.

- M→ Miniatura- Cuerpos de ensayos de 50 mm de diámetro y altura.
- C→ Compactación Reproduce condiciones de suelos para pavimento.
- T \rightarrow Tropical- Suelos finos de las regiones tropicales pasantes la malla (Ø < 2,0 mm).

Variable Dependiente (Y):

Usos viales en suelos tropicales: Consiste en la aplicación de la tecnología para la construcción de vías en suelos que sean de origen tropical.

2.5.2. Definición Operacional de la Variable.

- (X) = Variable Independiente: Metodología Mini Compactación Tropical.
- (Y) = Variable Dependiente: Usos viales en suelos tropicales.

$$Y \rightarrow f(X)$$

Usos viales en suelos tropicales. \to f (Metodología Mini Compactación Tropical.)

2.5.3. Operacionalización de la Variable.

Tabla 1:Cuadro de variables.

VARIABLES	DENOMINACIÓN	DIMENSIÓN	INDICADORES
			Normas: DER-SP, DER-M
			Equipo de Mini Compactacion
			Moldes de acero inoxidable
		Implementacion	130mm X 50mm
		de la Metodologia	Diales de 0.001 mm precisión
			Pistón de Penetración 16 mm ⊗
			Equipo de Infiltrabilidad
			Equipo de Permeabilidad
			Disco metalico de 1.5mm x 35 mm Ø
			Ensayo de
			Mini-Proctor
			Ensayo de
			Mini-CBR y expansion
			Ensayo de
Variable Independiente (X)	Metodología Mini Compactación Tropical		Contracción
variable independiente (x)		Tipos	Ensayo de
		'	Infiltrabilidad y Permeabilidad
		de Ensayos	Ensayo de
			compactacion Mini-MCV
			Ensayo de Contracción Ensayo de Infiltrabilidad y Permeabilidad Ensayo de compactacion Mini-MCV Ensayo de Penetracion de Imprimante de Bituminoso Ensayo de Perdida de Masa por Inmersión
			Ensayo de
			Perdida de Masa por Inmersión
			Clasificación Geotecnica MCT.
			L = Lateritico
		Clasificacion	N = No lateritico
			A = Arena
		Geotecnica	A' = Arenoso
			G' = Arcilloso
			S' = Limoso
	Usos Viales en Suelos Tropicales		Geomorfología
		Geotecnia	Clima Tropical
Variable dependiente (Y)			Tipo de suelos
and dependence (1)		Suelos tropicales	Suelos Tropicales
			Suelos lateríticos
			Suelos saprolíticos

Fuente: Propia.

CAPÍTULO III : METODOLOGÍA

3.1. Método de la Investigación.

El método general es el científico y como método especifico se utilizará el analítico – sintético dado que se analizarán hechos sobre estructuras viales, para luego generalizar a las aplicaciones en suelos tropicales en distintos escenarios y realidades diferentes.

3.2. Tipo de Investigación.

Según el objetivo que quiere conseguir, el tipo de investigación es aplicada, porque se desea lograr un objetivo en concreto, que es la aplicación e implementación de la metodología MCT "Mini Compactación Tropical" para el estudio de suelos de origen tropical en el Perú, puntualizado en los caminos vecinal Infierno y el camino vecinal Tropezón ubicados en el departamento Madre de Dios, también es un gran aporte para complementar estudios geotécnicos.

Este tipo de investigación permite procesar los datos en base a metodologías existentes para el estudio de suelos tropicales aplicando la metodología MCT y optimizará la toma de decisiones para plantear las alternativas de solución técnico-económicas.

3.3. Nivel de Investigación.

Esta investigación es de nivel descriptivo - explicativo, descriptivo porque se describen los hechos; y explicativo, porque con la implementación de la Metodología Mini Compactación Tropical se explicará el uso en suelos tropicales en rede viales, con un enfoque cuantitativo, porque se harán mediciones de laboratorio y la recolección de datos constará de pruebas objetivas, instrumentos de medición y otras de naturaleza variable.

3.4. Diseño de Investigación.

El diseño es experimental, debido a que la manipulación de las variables en condiciones altamente controlados replicando un fenómeno concreto y observando el grado en que las variables implicadas manipuladas producen un efecto determinado.

Los ensayos que se realizaran son:

- P1 Ensayo de compactación mini Proctor.
- P2- Ensayo de Mini-CBR y expansión.
- P3- Ensayo de contracción.
- P4- Ensayos de infiltrabilidad y permeabilidad.
- P5- Ensayo de compactación Mini-MCV.
- P6- Ensayo de penetración de imprimante bituminoso.
- P7- Ensayo de Mini-CBR de campo Procedimiento Dinámico.
- P8- Ensayo de pérdida de masa por inmersión.
- P9- Clasificación Geotécnica MCT.

3.5. Población y Muestra.

3.5.1. Población.

La población para este estudio está constituida por todas las carreteras en zonas tropicales de la Región Madre de Dios que aproximadamente comprende 30.0 Km

3.5.2. Muestra.

El tipo de muestreo es el no probabilístico o dirigido o intencional, debido a la naturaleza del estudio, y otros factores se eligió a la carretera Vecinal Tropezón y la carretera Vecinal Infierno por las facilidades de acceso que presentan.

3.6. Técnicas e Instrumentos de Recolección de Datos.

Toma de información. - Dos evaluaciones en el mismo lugar en diferentes días.

Planilla de datos: Recopilación de datos de laboratorio de las mediciones que se realizó con la metodología MCT "Mini Compactación Tropical".

Muestreo de materiales: Las muestras se tomaron en las localidades de la vía de Tropezón e Infierno y el puente Noaya Ubicados en la Carretera Interoceánica del departamento Madre de Dios, todos caracterizados por el mismo origen tropical, pero de diferente origen pedológico.

3.7. Procesamiento de la Información.

Proceso computarizado. - Para determinar diversos cálculos matemáticos y estadísticos de utilidad para la investigación.

3.8. Técnicas de Análisis de Datos

Análisis documental. - Esta técnica permitirá conocer, comprender, analizar e interpretar cada una de las normas, revistas, textos, libros, artículos de internet y se recurrió a la observación y también otras fuentes documentales.

CAPÍTULO IV : RESULTADOS

4.1. Ubicación y Localización de la Zona de Estudio

4.1.1. Ubicación Política:

Plano de ubicación del departamento Madre de Dios.

Figura 10:Plano de ubicación del departamento Madre de Dios. Fuente: Mapa vías Madre de Dios, MTC.

Figura 11:División política de Madre de Dios. Fuente: Wikipedia.

Figura 12: Ubicación de Tropezón e Infierno departamento Madre de Dios. Fuente: Google Earth.

4.1.2. Ubicación Geográfica.

Departamento íntegramente selvático; tiene zonas de selva alta y selva baja. Limita al norte con Ucayali y Brasil; al este con Brasil y Bolivia; al oeste con Cusco; al sur con Cusco y Puno. Su capital Puerto Maldonado, está en la confluencia del río Madre de Dios y el río Tambopata. Su geografía es de las más difíciles para la construcción de carreteras, los Andes se precipitan hacia la selva formando abismos.

Creación: 26 de diciembre de 1912.

Superficie: 85.300,54 km².

Latitud sur: 9° 55′ 3".

Longitud oeste: entre meridianos 70° 37" 59" y 77° 22′ 27".

Densidad demográfica: 1,3 habitante/km².

4.1.3. Condiciones Climáticas.

El clima de Madre de Dios es de tipo tropical; cálido, húmedo y con precipitaciones superiores a 1000 mm anuales. La temperatura media anual en Puerto Maldonado, , es de 38 °C. En los meses de agosto y setiembre el clima de Madre de Dios sufre a veces influencias de masas de aire frío que llegan desde el sureste del continente americano ocasionando sensibles bajas de temperatura que hacen bajar el termómetro hasta 8°C, que son conocidos localmente con los nombres de "surazo" o "friaje".

- La Cordillera Oriental-Faja Sub andina el clima es variado como por ejemplo zonas con clima perhúmedo y en otras con clima húmedo, caracterizado por su alta precipitación, que varía entre 3,000 y 6,000 mm anuales.
- La Llanura de Madre de Dios, el clima varía entre húmedo y subhúmedo, con precipitaciones que oscila entre 1,500 y 3,000 mm anuales.

4.1.4. Vías de Acceso.

Puerto Maldonado es accesible desde Lima o desde Cuzco por vía área o carretera, durante la época seca o de lluvia durante todo el año, porque ahora contamos con la Carretera Interoceánica que comprenden los tramos 2, 3 y 4

Figura 13:Corredor vial interoceánica sur Perú-Brasil. Fuente: Ministerio de Transportes y Comunicaciones.

4.1.5. Distancias de Lima a Puerto Maldonado

Lima – Cuzco - Puerto Maldonado consta de 1584 km (27 horas de viaje). Lima – Arequipa – Puerto Maldonado consta de 1829 km (29 horas de viaje).

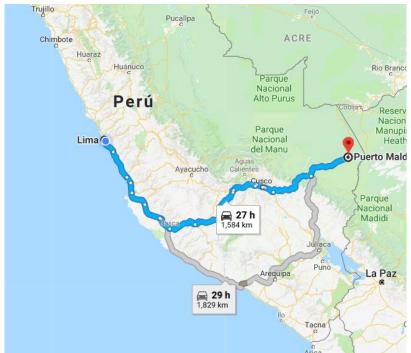


Figura 14:Carretera Lima – Puerto Maldonado. Fuente: Google Maps.

Tabla 2:Características de las vías Infierno y Tropezón.

Descripción	Vía Infierno	Vía Tropezón	
Inicio de tramo	Centro poblado La Joya	Dv. Km 166 Interoceánica	
Final de tramo	Centro Poblado Infierno	Km 10+6800	
Longitud de tramo	18.300 km	10.680 Km	
Altitud Promedio	632 msnm	325 msnm	
Ancho de explanaciones	4.60 m	4.00 m	
Ancho de superficie de rodadura	3.50 m	3.50 m	
Velocidad de directriz Promedio	30 km/h	30 km/h	
Superficie de rodadura	Suelo compactado	Suelo compactado	
Clasificación Jurisdiccional	Camino Vecinal	Camino vecinal	
Clasificación de servicio	Carretera de 3ra clase	Carretera de 3ra clase	
Bermas	No proyectadas	No proyectadas	
Clase de trafico	T2	T2	

Fuente: Dirección General de Caminos y Ferrocarriles MTC.

Carretera Vecinal La Joya - Infierno 15+800 Km, tramo: Km 00+000-Km 18+300

Figura 15:Imagen Satelital de la localización de la cantera. Fuente: Google Earth.

Carretera Vecinal Tropezón 6+900 Km, tramo: Km 00+000-Km 10+680

Figura 16:Imagen Satelital de la localización de la cantera.

Fuente: Google Earth.

4.1.6. Ubicación Geográfica e Identificación de Canteras

En la figura 36 de ubica la región Madre de Dios enumerado cada zona de extracción de muestras siendo las coordenadas UTM en la tabla 8

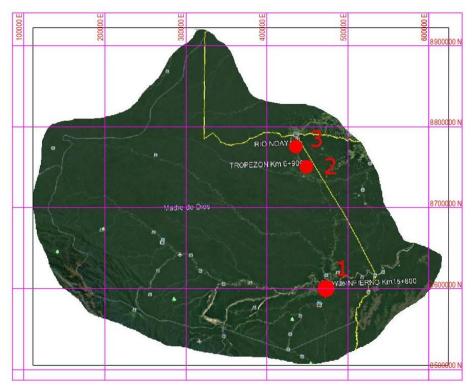


Figura 17:Localización de puntos de colección de muestras de suelo Fuente, Google earth

Ubicación de calicatas.

Puntos de colección de muestras					
Puntos de Colección	Coordenadas				
	Este	Norte			
1	475197.00	8594722.00			
2	454151.00	8743952.00			
3	438339.00	8769984.00			

Fuente: Propio

4.1.7. Imágenes de la Extracción de la Cantera Infierno

Figura 18:Carretera a la comunidad nativa Infierno km 15+800. Fuente: Propia.

Figura 19:Condición Actual de la cantera la Joya – Infierno Km 15+800 Fuente: Propia.

Figura 20:Extracción del material de la cantera de la carretera vecinal la Joya – Infierno Kilómetro 15+800.

Fuente: Propia.

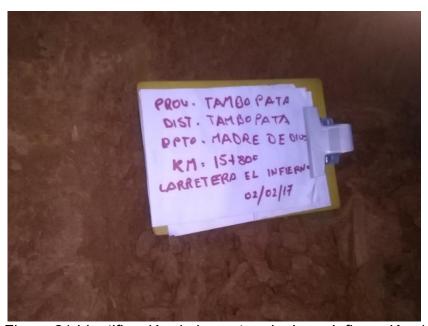


Figura 21:Identificación de la cantera la Joya -Infierno Km 15+800. Fuente: Propia.

Figura 22:El rápido crecimiento de la vegetación en la zona de cantera. Fuente: Propia.

Figura 23:Vista panorámica de la cantera Infierno km 15+800. Fuente: Propia.

4.1.8. Imágenes de la Extracción de la Cantera Tropezón.

Carretera Vecinal El Tropezón DV. Km 166, tramo: Km 00+000-Km 10+680.

Figura 24: Cantera de Tropezón.

Fuente: Propia.

Figura 25:Cantera de Tropezón. Fuente: Propia.

Figura 26:Erosión de la subrasante por escorrentía. Fuente: Propia.

Figura 27:Erosión de la cantera por escorrentía Fuente propia.

Figura 28:Vista panorámica de la Cantera Tropezón y crecimiento rápido de la vegetación km 10+680. Fuente: Propia.

Figura 29:Estratos de la cantera Tropezón Fuente: Propia.

Figura 30:Extracción y almacenamiento en sacos de 50 kg Fuente: Propia.

4.1.9. Imágenes de la Extracción de la Muestra Noaya

Figura 31:Puente Noaya ubicado en la carretera inter oceánica límite de lberia y Iñapari Fuente: Propia.

Figura 32:Vista desde el puente hacia el rio Noaya Fuente: Google Earth.

Figura 33:Vista desde la cantera, hacia el puente Noaya. Fuente: Propia.

Figura 34:Extracción de la arena del rio Noaya en sacos de 50 kg. Fuente Propia.

Figura 35:Arena del rio Noaya Fuente: Propia

4.2. Ejecución de la Metodología mini Compactación tropical (MCT) Para Fines Geotécnicos.

Consideraciones Iniciales:

Detectadas las deficiencias y limitaciones en los ensayos tradicionales, en su tesis de PhD de Villibor 1981 (DER-SP) propone la solución de un nuevo sistema para estudios tecnológicos de los SALF (Suelos Arenosos Lateríticos Finos), este sistema metodológico se enfoca en esclarecer las propiedades de mayor interés para el desempeño de este tipo de suelos como base de pavimentos, en las condiciones climáticas en suelos tropicales. aunque el enfoque principal de la investigación fue el SALF, el desarrollo de la nueva sistemática (MTC) permitió un amplio estudio geotécnico de los suelos finos (100% pasando en los tamices de 2.00 mm), que son de interés para diversas aplicaciones carreteras.

De acuerdo con los procedimientos ahora recomendados y utilizando la terminología vigente, además, se están introduciendo nuevos ensayos, a partir de 1981, se produjeron cambios tanto en la designación de los ensayos como en su forma de ejecución, por eso, se consideró útil presentarlos de acuerdo con los procedimientos, ahora recomendados y utilizando la terminología vigente, sobre todo, la clasificación geotécnica MTC. Se modificó, también, la forma de rehacer para proporcionar una mejor idea de los objetivos de los ensayos, desarrollados de una manera independiente, de acuerdo con lo vigente y enfocándose en la investigación el Ministerio de Transportes y Comunicaciones (MTC), se logró hacer los ensayos con las muestras, que fueron suelos tropicales de las vías de acceso ubicadas en el Departamento Madre de Dios empezando por la carretera vecinal del distrito de Iberia, Provincia de Tahuamanu, y la segunda la carretera a la Comunidad Nativa de Infierno, en la Provincia de Tambopata y muestras de arena fina del rio Noaya, en la presente se desarrollaran los siguientes ensayos que se mencionan a continuación.

- P1- Ensayo de compactación mini Proctor.
- P2- Ensayo de Mini-CBR y expansión.
- P3- Ensayo de contracción.
- P4- Ensayos de infiltrabilidad y permeabilidad.
- P5- Ensayo de compactación Mini-MCV.
- P6- Ensayo de penetración de imprimante bituminoso.
- P7- Ensayo de Mini-CBR de campo Procedimiento Dinámico.
- P8- Ensayo de pérdida de masa por inmersión.
- P9- Clasificación Geotécnica MCT.

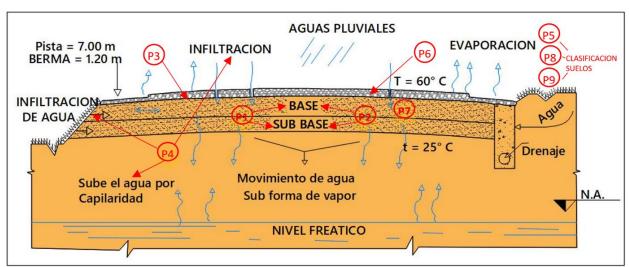


Figura 36:Cada elemento de una carretera está representado a cada ensayo que se requiere

Fuente: Propia.

El clima tropical hace que ocurran una seria de fenómenos, en una carretera pavimentada, y con estos ensayos se pretende representar las condiciones más difíciles que generalmente es común en las zonas de ambiente tropical.

Consideraciones Importantes Antes de Empezar los Ensayos.

Llevar los cuerpos de prueba a un extremo del molde exclusivamente en los ensayos P2 y P4 como se muestra en la figura 38, también se tendrá que considerar la importancia de sobresalir 10 mm al cuerpo de prueba para el ensayo P8.

Figura 37:Empujando la muestra con la ayuda del extractor Fuente: Propia.

Figura 38:Muestra llevada a uno de los extremos para realizar el ensayo P2 y P4 Fuente: Propia.

4.2.1. Ensayo de Compactación Mini-Proctor (p-1).

4.2.1.1. Consideraciones Preliminares.

Se basa en la norma DER-SP M-191/88. Como primer procedimiento se tiene que separar, disgregar los terrones de arcilla que posiblemente se forme por la humedad, y evitar secarlos al aire libre o bajo el sol, usar únicamente los suelos que pasa el tamiz N°10 y/o 2.00 mm, se usarán muestras vírgenes para cada Cp (cuerpo de prueba), la humedad de compactación que se debe preparar para cada punto de compactación, debe ser bien mezclada y homogenizada luego de agregar el agua en cada muestra de suelo, guardar en una bolsa o recipiente hermético y dejar en reposo un tiempo mínimo de 12 horas.

Se cuenta con dos tipos de martillos, un martillo ligero de (2.27 Kg) y el pesado de (4.5 kg.) el ligero para la norma (ASTM-D-698 o AASHTO-99), se darán 6 golpes de cada lado del CP en una sola capa de suelo mientras de igual manera, para una energía de compactación denominada intermedia aplicada en Brasil con la norma (DNER-ME-129-94) "Departamento Nacional de Estradas de Rodagem" Departamento Nacional de Carreteras también se aplican 6 golpes de cada lado en una sola capa de tierra, con un martillo de (4.5kg) el número de golpes a una altura de 30cm y con humedades variables para obtener la curva de compactación, denominado Mini Proctor.

Los CP compactados deberán tener una altura de 50mm ±1.00mm sin ser enrasado. Para poder cumplir con este requisito se tendrá de producir el primer CP que usualmente se desecha, pero antes se tendrá que hacer una medición con un dispositivo (dial), que pueda dar una tolerancia de 1.00 mm. Se usará dos anillos metálicos para cada Cp en el proceso de la compactación, que sirven para sellar.

En la investigación no hay diferencia significativa en cuanto al uso de los anillos ya que la variación en la ausencia de ellos, la densidad es de 0.08 gr/cm3 no afecta en los resultados, si no se usan los anillos si se requiere

obligatoriamente cumplir con los diámetros entre el pistón del pie del martillo y el pistón inferior y el diámetro interior de los moldes utilizados.

El procedimiento Mini-Proctor es diferente al procedimiento conocido universalmente como "Proctor Modificado" o "AASHTO", las **diferencias** son las siguientes:

- a) Se usa solamente lo pasante de la malla o tamiz 2.00 mm y muestras que tienen un porcentaje bajo en la fracción retenida (<10%).
- b) El tipo de martillo es de sección completa, siendo el pie del martillo igual al del molde.
- c) Diámetro interno del molde es de 50.00 mm.
- d) La altura recomendable del molde es de 130 mm.

4.2.1.2. Ventajas del Mini-Proctor.

- a) Se puede medir con exactitud la altura del Cp (cuerpo de prueba), de hasta 0.1 mm de precisión, luego de dar los 12 golpes en ambos lados.
- b) La uniformidad en cada Cp (cuerpo de prueba) será de muy alta calidad.
- c) La muestra usada es muy reducida con respecto al Proctor convencional.

Es posible utilizar cada cuerpo de prueba desechado por no cumplir las tolerancias, para otros ensayos y determinar varias propiedades mecánicas e hídricas, por ejemplo, en la dosificación de aditivos estabilizadores, también se incluye la clasificación de los suelos.

4.2.1.3. Desventajas del Mini-Proctor.

No se puede aplicar a suelos que tienen alto porcentaje retenido en la malla Numero 2.00 mm, sus limitaciones similares al Proctor tradicional en cuanto a las arenas y suelos muy micáceos y similares que se consideran en el Proctor tradicional.

Figura 39:Moldes de Mini-Proctor, Proctor modificado de 4" y 6" Fuente: Propia.

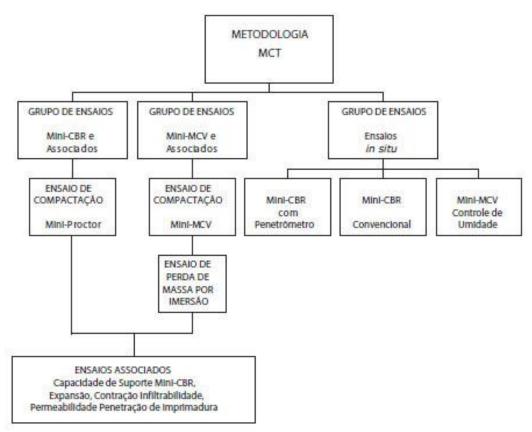


Figura 40:Flujograma de la metodología MCT.

Fuente: Pavimentos de bajo costo para vías urbanas, Douglas Fadul Villibor, Nogami, Cincerre, Miranda Serra y Zuppolini, 2009, pág. 27.

4.2.1.4. Materiales y equipos específicos.

Los materiales y los equipos serán según la norma (DER-SP) y la metodología a usarse según M-191-88.

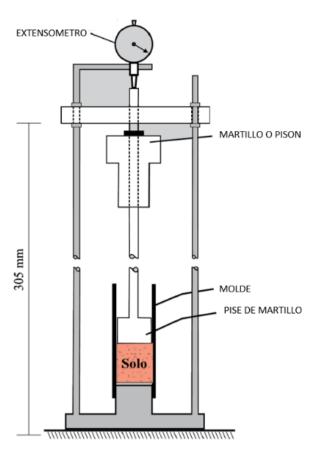


Figura 41:Croquis del ensayo de mini Proctor.

Fuente: libro de "Pavimentos Económicos", de Villibor y

Nogami, 2009, Pág 43

Moldes.

Los moldes tienen 50.00 mm de diámetros interior y una altura de 130.00 mm de preferencia de acero inoxidable, los moldes deben ser inventariados y medidos, si cumplen con las medidas con respecto al diámetro interior, también existen en versiones de material acrílico para observar los cambios en los suelos cuando se realizan los diversos ensayos.

Figura 42:Medición de los moldes. Fuente: Propia.

Tabla 3:De medidas de cada cilindro existente

	Tabla 3:De medidas de cada cilindro existente					
REGISTRO DE MOLDES PARA LA PREPARACION DE CP ALTURA 13.00 cm						
		DIAMETRO Ø			PROMEDIO	
N°	PESO kg	SUPERIOR mm	INFERIOR mm	SUPERIOR mm	INFERIOR mm	
1	897.000	50.130	50.020	50.050	49.960	
		49.970	49.900			
2	894.000	50.000	50.190	50.275	50.195	
		50.550	50.200			
3	897.700	49.950	49.900	50.255	49.965	
		50.560	50.030			
4	896.800	50.040	49.740	49.960	49.385	
		49.880	49.030			
5	896.000	50.410	50.290	50.205	50.210	
		50.000	50.130			
6	894.000	50.020	50.000	50.010	49.985	
		50.000	49.970			
7	892.400	50.100	50.240	50.315	50.365	
		50.530	50.490			
8	894.500	50.060	50.010	50.250	50.270	
		50.440	50.530			
9	895.300	50.020	50.010	50.125	50.070	
	033.000	50.230	50.130	30.123	30.070	
10	894.200	49.910	50.080	50.060	49.975	
	034.200	50.210	49.870	30.000	13.373	
11	887.300	50.550	49.990	50.325	50.330	
11	887.300	50.100	50.670	30.323	30.330	
12	895.500	50.110	50.020	50.165	50.265	
12	893.300	50.220	50.510	30.103	30.203	
13	896.400			50.060	50.010	
15	890.400	50.240	50.040	50.060	30.010	
1.4	000 000	49.880	49.980	40.000	40.000	
14	900.900	50.070	49.860	49.960	49.990	
45	000 000	49.850	50.120	50.050	E0 42E	
15	889.800	49.990	50.290	50.050	50.135	
	222 222	50.110	49.980	F0.055	F0 05=	
16	900.000	50.120	50.130	50.020	50.065	
	007.105	49.920	50.000	50.000	50.000	
17	895.400	50.280	50.260	50.390	50.260	
		50.500	50.260	<u> </u>		
18	895.200	50.450	50.420	50.275	50.145	
		50.100	49.870			
19	901.800	50.160	49.930	50.005	49.940	
		49.850	49.950			
20	899.900	49.950	50.060	50.050	50.010	
		50.150	49.960			
21	887.800	50.010	49.980	49.980	50.005	
		49.950	50.030			
22	897.900	50.030	50.210	49.975	50.100	
		49.920	49.990			
Fuente: Propia						

Fuente: Propia

Tabla 4:De medidas de cada cilindro existente.

REGISTRO DE MOLDES PARA LA PREPARACION DE Cp ALTURA 13.00 cm					
		DIAMETRO Ø		DIAMETRO Ø PROMEDIO	
N°	PESO kg	SUPERIOR mm	INFERIOR mm	SUPERIOR mm	INFERIOR mm
23	901.800	49.910	50.150	49.940	50.025
		49.970	49.900		
24	897.000	50.000	50.150	50.065	50.105
		50.130	50.060		
25	893.800	49.980	49.990	50.090	50.010
		50.200	50.030		
26	873.000	49.860	49.980	49.920	49.965
		49.980	49.950		
27	897.200	49.930	49.920	49.965	49.990
		50.000	50.060		
28	891.300	50.000	50.060	50.080	50.180
		50.160	50.300		
29	902.200	50.030	49.960	50.000	50.060
		49.970	50.160		
30	895.600	50.000	49.930	49.955	49.965
		49.910	50.000		
31	898.500	50.250	50.210	50.095	50.080
		49.940	49.950		

Fuente: Propia.

Compactador.

El tamaño del compactador se indica en la figura 43 y lo conforma lo siguiente.

- a) Dial electrónico u otro dispositivo para medir la altura del Cp (cuerpo de prueba), después de completar los golpes con el martillo. Tomar el dial electrónico o el dispositivo deberá tener un vástago de 2 pulgadas como mínimo y una precisión de 0.01 mm, para poder medir el Cp y debe ser extraíble con un soporte al armazón y no necesariamente soldado al armazón, para evitar los efectos de la violenta vibración que se produce cuando se compacta el CP.
- b) Debe contar con un extractor de palancas, según la figura N° 37.
- c) El pistón inferior debe tener un diámetro de 49.8 mm y una altura de 80.00 mm.
- d) Debe haber una base sólida, de concreto y muy bien nivelado.

Figura 43:Equipo de MCT "Mini Compactación Tropical" Fuente: Propia.

Anillos de sellado.

Deben ser de acero inoxidable, latón o bronce de sección triangular con unos catetos de 2.5 mm y diámetro externo de 49.9m

Figura 44:Anillos selladores.

Fuente: Propia.

Espaciadores.

Con una altura de 70.00 mm y diámetro interno de 50.00 mm debe estar partido a la mitad en forma longitudinal.

Figura 45:Accesorio de acero bipartido. Fuente: Propia.

Martillos.

Podría ser del tipo leve de 2.27 Kg según la norma (ASTM-D-698 o AASHTO-99), o el martillo pesado de 4.50 Kg según la norma de Brasil (DNER-ME-129-94) con una altura de caída de 30.00 cm.

Figura 46:Martillos para compactación de suelos tropicales. Fuente: Propia.

Dispositivo de medida.

Da la altura de los Cp cuerpos de prueba que están dentro del molde, la precisión del dispositivo o el extensómetro será de 0.01 mm de lectura directa y si es extensómetro será con un vástago de 2 pulgadas.

Figura 47:Dial electrónico, posición para medición de cp mini Proctor.

Fuente: Propia.

Cilindro patrón.

a) Cilindro metálico (Patron) que previamente debe ser calibrado con las medidas de 50.00 mm de altura y un diámetro de 49.8.mm.

Figura 48:Cilindro perforado para uso de calibración y guía de penetración Mini-CBR.

Fuente: Propia.

Cuchara o pala.

Debe ser de plástico o acero inoxidable para sacar la muestra prepara del envase hermético y echarlo en el molde.

Figura 49:Cuchara de aluminio capacidad 1kg. Fuente: Propia

Espátula.

De metal o de plástico de 25.00 mm, para sacar los suelos sueltos introducido en el molde, también es para asentar la muestra.

Figura 50:Espátula para acomodar la muestra echada en el molde.

Fuente: Propia

Embudo.

De material de metal o plástico. Con un ángulo de abertura de 30° grados, para introducir las muestras preparadas en el molde de compactación.

Figura 51:Embudo de plástico.

Fuente: Propia

Extractor de anillos

De material de acero inoxidable (Explorador) con un gancho a los extremos, sirve para extraer los anillos que están dentro del molde compactados con el cuerpo de prueba.

Figura 52:Instrumento dental para la extracción del anillo de sellado.

Fuente: Propia

Bandeja para el mezclado de las muestras

De acero inoxidable para preparar las muestras con los distintos contenidos de humedad

Figura 53: Bandeja de acero inoxidable para el mezclado de muestras y agua Fuente: Propia.

Tamices de 2.00 mm o la Número 10.

Tamiz número 10 para pasar la mezcla que se encuentre demasiada húmeda y grumosa toda la muestra que pase la presente malla.

Figura 54:Repaso de los grumos de suelo por la malla número 10. Fuente: Propia

Asentador

Asentador de baquelita con un diámetro inferior de 49.8 mm, sirve para asentar la muestra colocada en el molde de compactación.

Figura 55:Asentador para las muestras de suelo y asentador de los discos de los ensayos bituminosos. Fuente: Propia.

Discos de polietileno.

De material polietileno, con un diámetro de 50 mm y un espesor de 0.15 mm.

Figura 56:Discos de polietileno para uso en Mini Proctor y ensayos de mini MCV.

Fuente: Propia.

4.2.1.5. Mejoramiento del Compactador Mini Compactación Tropical.

El equipo de Mini Compactación Tropical que están en los laboratorios del Ministerio de Transportes y Comunicaciones del departamento de Dirección de Ensayos Especiales no contaba con los requisitos necesarios para producir CP (cuerpos de prueba), que cumplan con la norma DER-SP M-191, requeridos para la ejecución de todos los procedimientos siguientes, la tolerancia de los CP son de 50.00 ± 1.00 mm, requiere que el equipo este en las condiciones de realizar un trabajo de calidad, se pudo observar que los CP, salían fuera de la tolerancia con una pseudo medida que no servían para realizar los ensayos, y se pudo comprobar con un vernier dicho error de los CP que ya se habían expulsados del molde, perjudica la calidad de los ensayos posteriores, para cumplir con los requisitos en los CP, hubo la necesidad de hacer modificaciones, pero antes se hizo una enumeración de cosas que requerían modificaciones los trabajos serian realizadas por una persona calificada para los trabajos de precisión.

- 1- El soporte del dial que se muestra en la figura 51, en la barra horizontal como el soporte perforado cilíndrico tenían un juego de soltura y no estaban fijos, y siempre se movía y estaba flojo y no servía para medir, no había un soporte adecuado para el dial, se fabricó un soporte exclusivo para el funcionamiento del dial, los beneficios fueron de inmediato como la estabilización del dial con una nivelación perfecta.
- 2- El eje de rotación que es el cilindro perforado vertical de color negro, que sostiene una barra horizontal, rota sobre su eje perforado en una barra vertical, este mecanismo simple, pero importante, tenía demasiado desgaste por la fricción directa, la solución fue la construcción de un rodaje hecho a la medida y colocación de grasa pesada, ideal para conservarse en temperaturas de hasta 30 °C, los beneficios inmediatos fueron un giro más suave y con menos desgaste entre metales.
- 3- La barra vertical más larga tiene como función soportar todo el mecanismo que se usa para medir con el dial, su defecto se pudo notar cuando se realizaba los ensayos de Mini-MCV que requiere múltiples golpes de hasta 256, toda la barra se desplazaba hacia abajo porque estaba precariamente sujetada, afectando a las múltiples medidas del dial, la solución fue perforar con un torno y colocar un tornillo que lo sujete a presión tal como se muestra en la figura 57.

Figura 57:Colocación del sujetador de la barra vertical. Fuente: Propia.

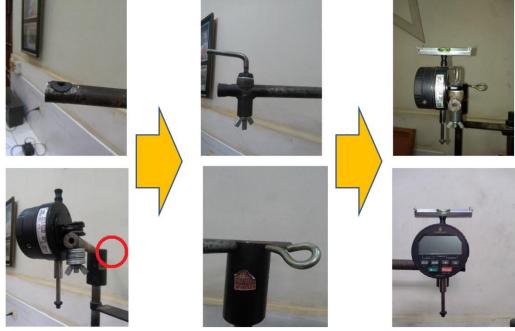


Figura 58:la modificación del soporte del dial. Fuente: Propia.

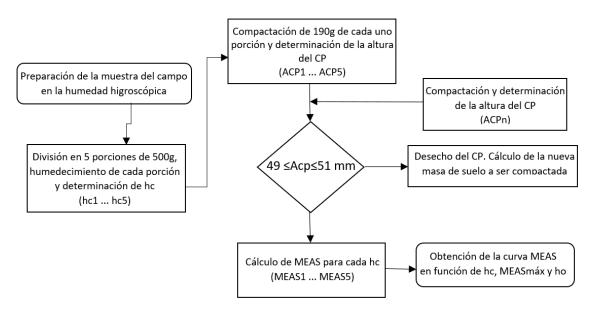


Figura 59:Diagrama de flujo de la ejecución del ensayo de compactación Mini-Proctor.

Fuente: Libro de "Aplicación de practica de Mini Proctor", de Villibor y Nogami, 2014, Pág. 4.

4.2.1.6. Preparación de la Muestra.

Secar la muestra en una estufa a una temperatura máxima de 60° C pasantes de los tamices No 10 o 2.00mm y romper los terrones que pudiera haber. Separar un mínimo de 2500 gramos de porción, uniformizar y luego obtener 5 porciones con una masa de 500g cada una, como se muestra en la figura 72 y 73, según se desarrolle el ensayo se agregará y usará un adicional en caso de ser necesario al preparar los CP.

Figura 60:Degradación de los terrones de arcilla. Fuente: Propia.

Figura 61:Muestra cuarteada y pasada por la malla número 10. Fuente: Propia.

Figura 62:Disgregado al aire libre de la muestra Tropezón. Fuente: Propia.

Figura 63:Pesado de una porción de 30 Kg en bolsa de polietileno para protegerlo de la humedad. Fuente: Propia.

Figura 64:Porciones de 15 kg, guardas en bolsas de polietileno. Fuente: Propia.

Figura 65:Porciones de la muestra Noaya con 2.5 kg cada uno. Fuente: Propia.

Humedecimiento y Curado.

Una vez que se tenga la muestra homogenizada, separarlas en bolsas herméticas para evitar la pérdida o ganancia de humedad, en cada una de las porciones agregar agua a diferentes cantidades, de tal manera que no quede seco el primer punto, homogenizar el agua agregada Vi, más el suelo, pasándolo siempre por el tamiz No 4 o 4.76 mm para minimizar los grumos y para uniformizar el contenido de humedad, luego procedes al guardarlos en una bolsa de plástico bien sellado y hermético para que no se pierda la humedad dosificada, debe saturar la muestra en tiempo mínimo de 8 horas.

Vi +V ml,

Vi +2V ml,

Vi+3V ml.

Vi+4V ml,

De tal manera al menos dos de las humedades estén debajo y las otras dos por encima de Ho.

Se sugiere asumir como humedad inicial, los valores presentados en la siguiente tabla en función del porcentaje pasante el tamiz No 200 o 0.074 mm.

Tabla 5: Valores para la cantidad de agua inicial.

% QUE PASA	VALORES DE CANTIDA	D DE AGUA INICIAL VI	VALORES DE
EL TAMIZ 0.074 mm	ENERGIA NORMAL	ENERGIA INTERMEDIA	AGUA EN cm3
Menos de 40	50	40	7
Entre 40 y 60	60	50	10
Mayor que 60	80	70	13

Figura 66:Medición de la cantidad de agua inicial. Fuente: Propia

Figura 67:Muestra de 500 gr preparada para el primer punto del ensayo mini Proctor.
Fuente: Propia.

Figura 68:Muestra Tropezón lista para el primer punto de mini-Proctor.

Figura 69:Agua vertida en el primer punto del ensayo de mini-Proctor donde se procede a mezclar y homogenizar.

Figura 70:División de la muestra en cinco porciones.
Fuente: Libro de "Aplicación de práctica de Mini Proctor", de Villibor y Nogami, 2014, Pág. 4.

Figura 71:Muestras húmedas que tengan grumos deberán ser repasados en el tamiz.

Figura 72:Muestras con diferentes cantidades de humedad de la muestra Tropezón y de Infierno, para su saturación se recomienda 12 horas con 500 g c/u. Fuente: Propia.

Figura 73:Muestras con diferentes cantidades de humedad siendo esta muestra arenosa con limo con 500 g c/u. Fuente: Propia.

Después de 12 horas como mínimo, tomar cada uno de los bolsos plásticos que contiene las porciones de suelo pre-humedecidas vaciar, con una presión suficiente para que no haya pérdida de suelo y humedad. Sacudir la bolsa de plástico varias a veces, para que el agua, condensada y depositada en las paredes de la bolsa, sea nuevamente incorporada a la porción de suelo. A continuación, determinar el contenido de humedad de cada porción según lo descrito a continuación.

Figura 74:Pesado de una porción para determinar el contenido de humedad.

Fuente: Propia.

Calculo del Contenido de Humedad de Compactación.

Registrar los pesos de 10 taras, limpias y secas (Mt), coger una porción mínima de 20 gramos de la mezcla homogenizada, y vaciar una porción representativa en dos taras, pesarlos inmediatamente para que no pierda humedad o talvez ocurra una evaporación de la humedad, pesar la tara más el suelo húmedo (Mh +Mt), transferir el conjunto a un horno a una temperatura de 110 ± 1 °C Por lo menos 8 horas o hasta constancia de peso. Una vez secado pesar el conjunto de suelo más tara (Ms+ Mt) a partir de estos datos ya se puede calcular el hc de cada porción usando la siguiente expresión.

$$Ma = (Mh + Mt) - (Ms + Mt)$$

$$Ms = (Ms + Mt) - (Mt)$$

$$\mathbf{hc} = \frac{Ma.100}{Ms}$$

Mt : Peso de la tara [g];

Ms: Peso del suelo seco [g];

Ma: Peso del agua [g];

Mh: Peso de suelo húmedo [g];

hc: Humedad de compactación (%).

4.2.1.7. Medición del Cilindro Patrón.

Medimos el cilindro espaciador. Medir el espesor del disco espaciador por varios lugares hasta un máximo de 7 medidas y un mínimo de 4, con un Pie de rey o un vernier, con una precisión de tres milímetros se tomó de referencia la norma NTP 339.034 o ASTM C39.

Figura 75: Medición del cilindro patrón.

$$50.190 + 50.190 + 50.170 + 50.040$$
 $50.040 + 50.070 + 50.040$
 $50.130 + 50.070 + 50.240$
 $50.170 + 50.170 + 50.130$
 $50.140 + 50.140 + 50.125 + 50.125$
 $50.060 + 50.125 + 50.125 + 50.145$
 $50.136 + 50.125 + 50.145$

$$\frac{50.136 + 50.125 + 50.145}{3} = 50.14 \text{ mm} \quad PROMEDIO \text{ (constante de calibracion)}$$

4.2.1.8. Comprobación y Calibración del Dial Electrónico.

Posicionar el soporte espaciador bipartido, (tubo de acero partido) alrededor del pistón inferior del conjunto compactador. Sobre el espaciador, asentar el molde cilíndrico y colocar, dentro de él, el cilíndrico macizo estándar, y los dos discos de polietileno y, por último, el zócalo compactador, atornillando a la Guía del martillo. Posicionar el extensómetro electrónico sobre la parte superior de la guía del martillo del zócalo compactador y realizar la lectura del extensómetro.

Por ser dial electrónico se procede a hacer el tarado en cero una vez colocado sobre la guía del martillo quedando por lo general con una constante 0.000 mm,

Cuando se tiene un dial mecánico se toma la constante inicial Ka junto con el conjunto compactador y el martillo, anotar el valor Ka

Calcular la constante de medición (Ka) del conjunto compactador-zócalo y anotar su valor en la hoja de ensayo. El cálculo de Ka.

$$Ka = Ac \pm Le$$

Ac = Altura del cilindro estándar, con una precisión de 0,01 mm

Le = Lectura del extensómetro para la medición, con una precisión de 0,01 mm

Compactación.

Antes de empezar la compactación el interior del molde debe estar libre de cualquier tipo de suciedad, que pudo quedar de otros ensayos, colocar el molde cilíndrico sobre el soporte espaciador, bipartido y colocar dentro el anillo y el disco de polietileno.

Coger una de las bolsas herméticas mezclar y remover el contenido, y luego pesar 190 g de porción, colocar el embudo sobre el molde, y vaciar la porción de muestra al cilindro, con un asentador, presionar ligeramente y girar el suelo de manera que la muestra superior quede plana, colocar el disco de polietileno y presionar con el asentador, seguidamente colocar el segundo anillo sellador.

Colocar el martillo compactador sobre la muestra y dar el primer golpe. A continuación, retirar el soporte espaciador bipartido y completar los 5 golpes, invertir el molde cilíndrico y aplicar los 6 golpes, en la otra cara del CP.

Posición del dial electrónico para empezar la medición.

Aprovechando las características del dial electrónico, que facilita la medición del cuerpo de prueba se coloca de la siguiente manera.

Figura 76:Posición del dial para empezar el ensayo Mini-Proctor.

Determinación de la Altura de Cp (Cuerpo Prueba).

Para medir la altura del cuerpo prueba (Cp), se termina de dar los 12 golpes, usamos el dial electrónico y registramos (Le) en este caso debe tener una tolerancia de 50.00 ± 1mm de altura, se calcula de la siguiente manera.

Una vez que el dial ha sido tarado, y después de los golpes que se haya dado con el martillo se coloca como se muestra en la figura 76, ahí se podrá tener una lectura donde se vera la variación del CP. Cuando el valor de CP resulte fuera del intervalo aceptable, el CP debe ser descartado. Para la misma porción, proceder a la corrección de la masa de suelo (Mc), pesar y compactar, cuantas veces sea necesario, hasta alcanzar la ACP adecuada. Calcular a Mc por una simple proporción (regla de tres), de acuerdo con la siguiente formula.

$$Mc = \frac{Mi \cdot Ka}{Acp}$$

Mc: Masa de suelo húmedo corregido [gr];

Mi: Masa inicial compactada [gr];

Acp: Altura de Cuerpo de prueba [mm];



Figura 77:Expulsión del cuerpo compactado (CP) con cada porcentaje en forme ascendente en 5%.

Figura 78:Expulsión del cuerpo prueba (Cp) con la palanca de extracción y retirada del anillo y el disco de polietileno. Fuente: Propia.

Concluida la medición de la altura de CP, retirar el martillo compactador, también los discos de polietileno y los anillos de obturación.

Con ayuda de la palanca extractora, acoplada al conjunto del equipo de compactación, desplazar el CP compactado a una de las extremidades del molde, con la cara. Repetir el proceso para las cuatro porciones restantes, con diferentes niveles de humedad.

Calcular la Msc con precisión de 0,01 g / cm³ y la MEAS con precisión de 0,001 g / cm³ para todos los CPs, en las diferentes humedades.

$$Msc = \frac{Mbc}{1 + \frac{hc}{100}}$$

Msc: Masa de suelo seco compactado [gr];

Mhc: Masa del suelo húmedo compactado [gr];

hc: Contenido de humedad de compactación [%];

Con los datos de MEAS y ho, trazar la curva de compactación. Si es necesario complementar la curva en la rama seca o húmeda.

El Ensayo de Compactación Mini-Proctor fue estandarizado por el DER-SP como el método de ensayo DER-SP M-191/88: "Ensayo de compactación en suelos con equipo miniatura".

Cálculo de la energía de compactación.

$E = \frac{\text{N°GOLPES POR CAPA x N° CAPAS xMASA DEL MARTILLOXALT. DE CAIDA}}{\text{VOLUMEN DEL MOLDE}}$

$$E = \frac{12 \times 1 \times (44.123 \times 10)^{-3} \times 0.30}{98 \times 10^{-6}} = 1624 \text{KN-m/m}^3$$

Formato del ensayo y datos de compactación del Mini-Proctor.

		ENSAYO DE COI	MPACTA	CION EN	I EL EQUI	PO DE N	INIATUR	A - MINI	-PROCTC	R		
		CARRETERA: INFIERN LUGAR:	INFIERNO		OPERADO	DR: Julio	MUE	STRA:	88/12 D	ATA:	1 /10 /201	8
ENE	RGI	A: Normal		MOLDES:	Diámetro:	50 mm	A	FECTACIÓ	N: Ka = Ac ±	Le = 50 + 3	8,58 = 68,5	8 mm
		Intermediarios			Sección:19	9,63 cm²		ALTURA	DO CP: AC	P = Ka - Le		
		CP n≗	CI	² 1	С	P2	С	Р3	c	:P4	CP	5
		Cilindro Q€	5	1	3	38	3	9		45	4	7
		Masa del suelo húmedo [g]: Mb	180	,00	208	,00	187,	00	208,	.00	210	0,00
remtativ 35	19	Lectura del extensómetro [mm]: Le	20	,17	17	,23	22	,00	17	7,68	16,	55
as		Altura del CP [mm]: ACP	48	,41	51	,35	46	,58	50),90	52,	03
		Masa del suelo húmedo [g]: Mh2 (o Mc)	185	,91	203	,00	201,	00			202	2,00
сотрастао а	29	Lectura del extensómetro [mm]: Le	18	,75	19	,92	20	,10			18,	03
. co		Altura del CP [mm]: ACP	49	,83	49	,66	48	,48			50,	55
		Masa del suelo húmedo [g]: Mh3 (o Mc)					207,	00				
	39	Lectura del extensómetro [mm]: Le					18	,91				
		Altura del CP [mm]: ACP					49	,67				
		Volumen del CP [cm3]: VCP	97	,79	97	,46	97	,48	99	,89	98,	20
M	asa	suelo compactado + molde [g]: Mbs. + Mtm	1189	9,40	120:	1,70	1203	,30	1196	,60	122	2,70
		Tara del molde [g]: Mtm	100	3,50	999	,40	996,	80	988,	90	102	2,70
+	Ma	asa suelo húmedo compactado [g]: Mbs	185	,90	202	,30	206,	50	207,	70	200	0,00
		Cápsula nº	49	69	22	67	11	105	52	56	25	21
<u></u>	М	Nasa suelo húmedo + Cápsula [g]: Mh + Mt	97,42	89,78	97,88	94,88	85,67	81,83	89,34	92,92	80,82	80,38
Unidades		Masa suelo seco + cápsula [g]: Ms + Mt	90,58	84,36	89,77	86,89	76,98	73,87	79,58	82,7	70,44	69,7
u		Tara de la cápsula [g]: Mt	17,59	25,86	25,9	25,86	25,62	25,94	26,06	25,8	18,25	16,78
		Masa de agua [g]: Ma	6,84	5,42	8,11	7,99	8,69	7,96	9,76	10,22	10,38	10,68
		Masa suelo seco (g): Ms	72,99	58,50	63,87	61,03	51,36	47,93	53,52	52,19	52,19	52,92
		Humedad (%): ከፎ	9,37	9,26	12,70	13,09	16,92	16,61	18,24	19,58	19,89	20,18
		Humedad media (%)։ իշ	9,	31	12	,89	16	,76	18	3,91	20,	04
	М	lasa suelo seco compactado [g]: Msc	170	,07	179	,19	176,	85	174,	67	166	5,62
M	asa	específica apte. La sequía [g /cm³]: MEAS	1,7	739	1,8	B39	1,8	314	1,	749	1,6	97

Fuente: Fuente: del libro de "Aplicación de practica de Mini Proctor", de Villobor y Nogami, 2014, Pág. 25

4.2.1.9. Trazado de la Curva de Compactación.

Con los pares hc y MEAS, obtenidos para cada uno de los CPs ensayados con diferentes humedales, se trazó los puntos en un gráfico cartesiano, y la Y luego se trazó la curva que mejor se ajustaba, como se muestra en la Figura N° 79.

La MEASmáx y el ho se obtienen a través de la intersección De las rectas de las ramas seco y húmedo, proyectándolos En los ejes de las ordenadas y abscisas, Respectivamente, resultando en MEASmáx = 1,900 g / cm³ y ho = 15,0%.

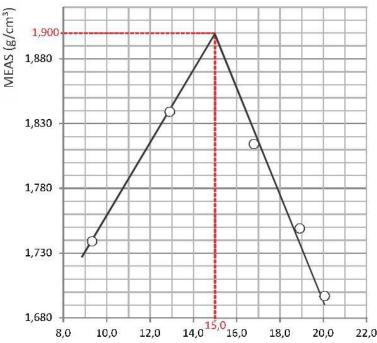
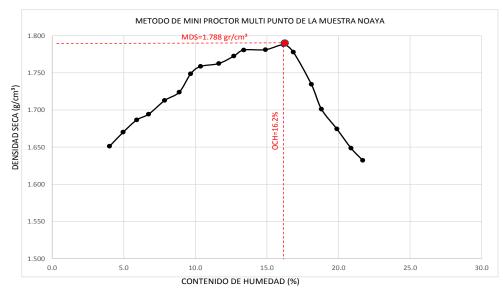


Figura 79:Gráfico de la MEAS en función de hc. Fuente: Libro de "Aplicación de práctica de Mini Proctor".

4.2.1.10. Experimento Mini-Proctor con Multipunto de la Muestra Infierno y Noaya.

Se realizo un experimento donde se consideró una varianza de humedad de 1% tanto en la muestra Noaya como en la muestra infierno, las razones que se tomaron solo estas dos muestras, es debido a que Infierno es muy limoso y Noaya es muy arenoso, donde se pudo comparar en el comportamiento en los ramos secos de la curva de compactación, como se muestra en la pagina 88 y la 89.

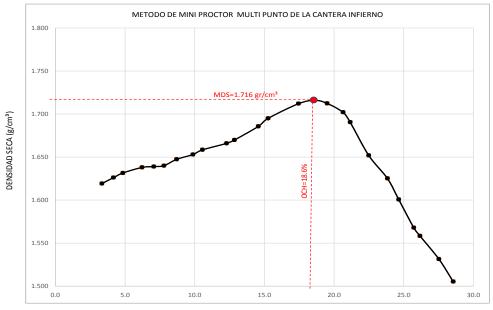
Tabla 6:Formato de ensayos de laboratorio para Mini-Proctor


										Г
ENSAYO DE C	OMPACI ACIO	ENSAYO DE COMPACTACION CON EQUIPO MINIATURA -	IURA - MINIPROCIOR P-1							
FECHA DE INI	.CIO:	FECHA DE INICIO:	FECHA DE TERMINO CALIBRACIONMM		. CALIBRACIONmm	50.14 F	HUMEDAD	HUMEDAD INICIAL, %:		
ANALISA:		ANALISA:	ENERGIA NORMAL 4 o 5 golpes 2.7kg	es 2.7kg	AREA cm2	19.6 F	ESO ADICI	PESO ADICIONAL DEL MOLDE	9.7 gramos	
NOMBRE DE	LA MUESTRA :	NOMBRE DE LA MUESTRA :	ENERGIA INTERMEDIA 6 golpes 4.5kg	es 4.5kg	Vol. ANILLOS cm3	0.491				
CANTIDAD DE AGUA co	E AGUA cc									
PESO DEL MOLDE, g)LDE, g									
NUMERO DEL MOLDE	MOLDE									
		MASA DEL SUELO HUMEDO, g	В							
	1°	LECTURA DEL EXTENSOMETRO, mm	(O, mm							
DAT ?		ALTURA DEL ESPECIMEN, mm	u							
5		MASA DEL SUELO HUMEDO	IMEDO CORREGIDO, 8							
	2°	LECTURA DEL EXTENSOMETRO, mm	(O, mm							
00		ALTURA DEL ESPECIMEN, mm	u							
MASA DEL SU	MASA DEL SUELO HUMEDO + MOLDE) + MOLDE								
TARRO N°										
MASA DEL TARRO, g	IRRO, g									
MASA DEL SU	MASA DEL SUELO HUMEDO + TARRO) + TARRO								
MASA DEL SUELO		SECO + TARRO								
MASA DEL AGUA, g	3UA, g									
MASA DEL SUELO SECO, G	IELO SECO, G									
CONTENIDO	CONTENIDO DE HUMEDAD, %	%′								
CONTENIDO	DE HUMEDAD	CONTENIDO DE HUMEDAD PROMEDIO, %								
ENSAYO DE C	OMPACTACIO	ENSAYO DE COMPACTACION CON EQUIPO MINIATURA - MINIPROCTOR P-1	MINIPROCTOR P-1							
										1

MUESTRA DE ARENA

		LOTINA DE ANENA
NOAYA		1
HUMEDAD %	DENSIDAD g/cm ³	1
4.0	1.651	1
5.0	1.670	1
5.9	1.687	1
6.7	1.694	1
7.9	1.713	1
8.9	1.724	1
9.7	1.748	1
10.4	1.758	1
11.6	1.762	1
12.7	1.772	
13.4	1.781	1
14.9	1.781	1
16.2	1.788	← Maxima Densidad
16.8	1.778	1
18.1	1.734	1
18.8	1.701	1
19.9	1.674	1
20.9	1.649	1
21.7	1.632	1

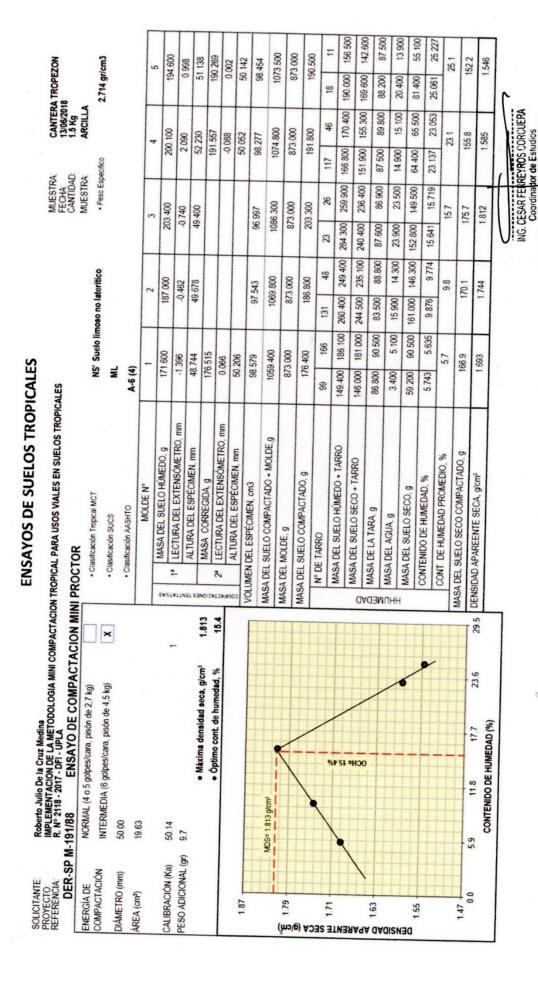
Cuerpos de prueba expulsados con distintas humedades



MUESTRA DE ARCILLA

INFIERNO		
HUMEDAD %	DENSIDAD g/cm ³	
3.3	1.619	
4.2	1.626	
4.8	1.632	
6.2	1.638	
7.1	1.639	
7.8	1.640	
8.7	1.647	
9.9	1.653	
10.5	1.658	
12.3	1.666	
12.8	1.670	
14.6	1.686	
15.3	1.695	
17.4	1.712	
18.6	1.716	← Maxima Densidad seca
19.5	1.712	
20.6	1.702	
21.2	1.690	
22.5	1.652	
23.8	1.625	
24.6	1.601	
25.7	1.568	
26.2	1.558	
27.5	1.532	
28.6	1.505	

Cuerpos de prueba expulsados con distintas humedades



CONTENIDO DE HUMEDAD (%)

ENSAYOS DE SUELOS TROPICALES

Second Contraction Minterest State Minterest S	DER-SP M	R. N° 2118 - 201	IMPLEMENTACION DE LA METODOLOGIA MINI COMPACTACI R. N° 2118 - 2017 - DFI - UPLA	GIA MINI COMPACTACI	ON TROPIC	ION TROPICAL PARA USOS VIALES EN SUELOS TROPICALES	CALES				五	FECHA	18/02/2018	18/02/2018	
MASTER M		1-191/88	ENSAYO DE CO	ACTACION M	NI PROC	TOR					M	STRA	Arena		
MITRIANCIA MITRIANCIA MITRIANCIA MITRIANCIA MITRIANCIA MITRIANCIA MITRIANCIA MITRIANCIA MITRIANCIA MITRIANCIA MITRIAN	NERGÍA DE	NORMAL (4 o 5 g	golpes/cara, pisón de 2,7	(6y,	٠.	Nasificación Tropical MCT		Suelo aren	toso no lat	eritico	ď	so Específico			cm3
1890 1993 1993 1994 1995 1994 1995 1994 1995 1994 1995 1994 1995 1994 1995 1994 1994 1995 1994 1994 1995 1994 1994 1995 1994 1995 1994 1994 1995 1994 1995 1994 1995 1994 1995	こうできることに	INTERMEDIA (6.	golpes/cara, pisón de 4,5		•	lasificación SUCS	SM								
1884 1884	ÁMETRO (mm)	20.00			•	asficación AASHTO	A-2-4 (0)								
1890-CONNEL 97 1892 18	3EA (cm²)	19.63				MOLDE N°	-		2		6		,	-	-
1882 1882					50	MASA DEL SUELO HÍMEDO o	177.4	500	100	00	200,000	-		-	
138	ALIBRACIÓN (Ka)	50.14				-		-	000	3 5	200.400	+	212.100	61	4.400
1890 1890	SO ADICIONAL (gr)	9.7			LINGI	AITIDA DEI ESDÉCIMENT	100	1 5	0.0-	2 3	-2.390	1	3.280	0	060
150 150	9		. Máxima dencidad car			ALTORA DEL ESPECIMEN, MM	497	97	20.0	20	47.750		53.420	50	230
189			Outing definition se		(DIOV.	_					209.843		199.083		
18 ALTIMARIO DEL ESPECIMEN 173			Opumo cont. de num		-						0.110		0.010		
178 MASA DEL SUELO COMPACITADO - MOLUE 9 1763 300 1075 300 1083 500 1087 300	;				noo	ALTURA DEL ESPÉCIMEN, mm					50.250	-	50.150	-	
182 183 193 190					VOLUME	N DEL ESPÉCIMEN, cm3	97.6	37	98.2	73	98.666		98.469	86	626
184 184	N -	DS= 1.852 g/cm³	9		MASA DE	EL SUELO COMPACTADO + MOLDE,g	1060.	300	1075.	300	1093.500		1082.000	101	7.300
175 184 175					MASA DE	IL MOLDE, g	872	006	872	900	872.900		872.900	188	2 900
1.75	And the second second second second	\	_		MASA DE	L SUELO COMPACTADO, g	177.	400	192.4	001	210.600	-	199.100	10	4 400
1.75 MASA DEL SUELO HÚMEDO - TARRO 178 500 173 100 153 800 153 700 155 90 177 400 MASA DEL SUELO SECO - TARRO 178 500 173 100 153 800 155 40 155 90 157 30 157 400 MASA DEL SUELO SECO - TARRO 178 500 153 100 155 90 157 90 157 90 155 90 157 90 15		\	*		2	DE TARRO	23	140	25	152	-	100	-		=
168 MASA DEL SUELO SECO + TARRO 174,500 153,100 156,500 123,900 155,400 145,800 152,100 158,800 152,100 158,800 152,100 158,800 152,100 152,800 152,100 152,800 152,100 152,800		\	(M:		MA	SA DEL SUELO HÚMEDO + TARRO		173.100							1
1.64 MASA DEL ATARA, 9 1.65 MASA DEL ATARA, 9 1.64 MASA DEL ATARA, 9 1.64 MASA DEL ATARA, 9 1.65 MASA DEL ATARA, 9 1.64 MASA DEL ATARA, 9 1.64 MASA DEL ATARA, 9 1.64 MASA DEL ATARA, 9 1.65 MASA DEL ATARA, 9 1.65 MASA DEL ATARA, 9 1.64 MASA DEL ATARA, 9 1.65 M	\		HOO			SA DEL SUELO SECO + TARRO	1	169.200		1		1		1	1
1.61 MASA DEL SUELO SECO, 9 1.64 MASA DEL SUELO SECO, 9 1.65 MASA DEL SU			•			SA DE LA TARA, g	87.600	88.200	86.800	86.500			1	1	
1.61 MASA DEL SUELO SECO, 9 1.61 MASA DEL SUELO SECO, 9 1.62 MASA DEL SUELO SECO, 9 1.63 MASA DEL SUELO SECO, 9 1.64 MASA DEL SUELO SECO, 9 1.65 MASA DEL SUELO SECO COMPACTADO, 9 1.69 1.18 17.7 23.6 29.5 CONTENIDO DE HUMEDAD PROMEDIO, % 1.73 1 1.73 1 1.73 1 1.78 1 1.						SA DEL AGUA, g	4.400	3.900	7.000	6.900					
CONTENIDO DE HUMEDAD PROMEDIO, % 4.9 9.174 9.801 15.147 14.880 19.681 20.294 25.034 MASA DEL SUELO SECO COMPACTADO, 9 17.71 1.731 1.788 1.856 1.55 CONTENIDO DE HUMEDAD (%) CONTENIDO DE HUMEDAD PROMEDIO, % 4.9 9.01 15.147 14.880 19.681 20.294 25.034 MASA DEL SUELO SECO COMPACTADO, 9 169.1 1.788 1.856 1.55 CONTENIDO DE HUMEDAD (%) SOCONTENIDO DE HUMEDAD (%) ING. CESAR FERRE-YROS CORCUERA CONCINCIORA CONTINCIORA Dirección de Estudios						SA DEL SUELO SECO, g	86.900	81.000	76.300	70.400					
CONT. DE HUMEDAD PROMEDIO, % 49 95 150 200 24 MASA DEL SUELO SECO COMPACTADO, 9 169.1 175.7 183.1 165.9 156 CONTENIDO DE HUMEDAD (%) CONTENIDO DE HUMEDAD (%) CONTENIDO DE HUMEDAD (%) ING. CESAR FERRE PROS CORCUERA Coordinado de Estudios Especiales NOGENIERO RESPONSABLE	1,61				8	VTENIDO DE HUMEDAD, %	5.063	4.815	9.174	9.801					
MASA DEL SUELO SECO COMPACTADO, g 169.1 175.7 183.1 165.9 10.0 5.9 11.8 17.7 23.6 29.5 DENSIDAD APAREENTE SECA, g/cm² 1.731 1.731 1.788 1.855 1.885				۰	00	VT. DE HUMEDAD PROMEDIO, %		6.4		9.5	15.0	+	18	1	12
5.9 11.8 17.7 23.6 29.5 DENSIDAD APAREENTE SECA, g/cm² 1.731 1.738 1.856 1.685 (CONTENIDO DE HUMEDAD (%) CONTENIDO DE HUMEDAD (%) ING. CESAR FERREYROS CORCUERA Coordinado de Estudios Especiales ING. CESAR FERREYROS CORCUERA Coordinado de Estudios Especiales INGENIERO RESPONSABLE	1.54				MASA DE	L SUELO SECO COMPACTADO, g	16.	9.1	173	5.7	183.1		165.9		155.6
Office of the second	0.0		.8 17.7 DE HUMEDAD (%)		DENSIDA	D APAREENTE SECA, g/cm²	17	31	1.7	88	1.856	H	1.685	Ш	1.578
				Q.						1	ING. CESAL Coor Dirección INGE	RERREYRO dinado de de Estudio NIERO RES	S CORCUI Estudios S Especial PONSABLE	LE S	

Of the same

Diremogente Kolvelsko Spissalle Lima, 2 de Febrero del 2018

The state of the			ш	NS/	ENSAYOS DE SUELOS TROPICALES	CALES			S						
PROYECTO REFERENCIA	Roberto Julio De la IMPLEMENTACION R Nº 2418 2047	Roberto Julio De la Cruz Medina IMPLEMENTACION DE LA METODOLOGIA MINI COMPACTACI 1999 - 1997 - PEL JURI A	II COMPACTACIC	ON TRO	ON TROPICAL PARA USOS VIALES EN SUELOS TROPICALES	OPICALES)		MUESTRA		CANTERA	CANTERA INFIERNO	
DER-	DER-SP M-191/88 EN	ENSAYO DE COMPACTACION M	TACION MIN	N PR	NI PROCTOR						CANTIDAD		1.5 Kg		
ENERGÍA DE		NORMAL (4 o 5 golpes/cara, pisón de 2,7 kg)			Clasificación MCT	_	NS' Suelo limoso no lateritico	moso no la	eritico		Peso Especifico	coffee		2 7KG aniam3	,
CONTROL ACIO		INTERMEDIA (6 golpes/cara, pisón de 4,5 kg)	×		Clasificación SUCS		ML							er va grich	2
DIAMETRO (mm)					Clasificación AASHTO	A-7-5(21)	21)								
AREA (cm²)	19.63				MOLDE N°		-		2	3		4	The state of the s	4	-
CALIBBACIÓN MA				SYA	_		190,000	30	204.100	202 500	909	203.700	002	195 000	90
DESCI ADICIONIAL (m)	(a) 50.14			TATTA	1º LECTURA DEL EXTENSÓMETRO, mm		-0.190	0	0 292	-0.740	40	0.304	7	0.778	8,
ESC ADICIONA	1.6			A31 23	ALTURA DEL ESPÉCIMEN, mm		49.950	9	50.432	49 400	00	50 444	44	CAC 0A	200
	2	 Maxima densidad seca, g/cm³ 	-	NOID	MASA CORREGIDA, 9		-	-	-	-				10.01	1
	•	Optimo cont. de humedad, %	18.4	ATOAS	2* LECTURA DEL EXTENSÓMETRO, mm		-					-	1	CONTRACTOR	T
;				100	ALTURA DEL ESPÉCIMEN, mm				-			-	T		T
1.87				VOLL	VOLUMEN DEL ESPÉCIMEN, cm3		770.86	66	99.023	766.96	16	99 047	47	96 922	2
				MASA	MASA DEL SUELO COMPACTADO + MOLDE, g	-	006 0601	109	1096 100	1107 500	500	1107 900	000	0000	9
1.80				MASA	MASA DEL MOLDE, g	-	891.200	88	882 400	895	895 400	904 500	80	006 300	3
	MDS= 1,771 g/cm ³			MASA	MASA DEL SUELO COMPACTADO, g		189 700	20	203 700	2002	202 100	200 200	200	060	8
43:		<u></u>			Nº DE TABBO	-				202	301	503	200	ST. 128	3
173		•			N DE LANKO	163	166	38	128	144	144	165	25	23	=
					MASA DEL SUELO HUMEDO + TARRO	138.700	00 197,600	116.900	116.900	126.100	126.100	133,200	118.500	143.300	143.300
мач	\	*	Specification from the second		MASA DEL SUELO SECO + TARRO	131.600	00 185.200	112.000	112.000	119.900	119.900	123.900	113.300	132 500	132 500
1.66	\	Þ 8L			MASA DE LA TARA, g	81.300	00 84 900	83.600	83.600	87.700	87.700	81 300	006 88	87 600	87 600
AGIS		-H200	Period from Period Services	NUH	MASA DEL AGUA, g	7.100	12 400	4.900	4.900	6.200	6.200	9 300	5 200	10.800	10 800
					MASA DEL SUELO SECO, g	50.300	100.300	28 400	28.400	32 200	32 200	42 600	24 400	44 900	44 900
66.1					CONTENIDO DE HUMEDAD, %	14.115	5 12.363	17 254	17.254	19.255	19.255	21 831	21311	24 053	24 053
					CONT. DE HUMEDAD PROMEDIO, %		13.2		17.3	_	19.3		216		24.1
1.52				MASA	MASA DEL SUELO SECO COMPACTADO, g		167.5		173.7	16	169.5	16	167.2	150	156.9
0.0	5.9 11.8	17.7 23.6	29.5	DENSI	DENSIDAD APAREENTE SECA, g/cm²		1.708		1.754	1	1.747	9.1	1.688	1,619	19
	CONTENIDO DE HUMEDAD (%)	HUMEDAD (%)												1	1
										MG. CES	WG. CESAR FERREY Coordinador o	ESAR FERREYROS CORCUERA Coordinador de Estudios	CUERA		
										: Mrecci	on de Estu	inrección de Estudios Especiales	ciales		

INGENIERO RESPONSABLE Lima, 2 de Febrero del 2018

4.2.2. Ensayos de Mini - CBR y Expansión (P-2)

4.2.2.1. Consideraciones Preliminares.

El ensayo de Mini-CBR proporciona la capacidad de soporte que se usa en el tamaño de pavimentos y en la elección de suelos de base, refuerzo y sub-base y también, para caracterizar los suelos.

El procedimiento de ensayo es, en líneas generales, el mismo adoptado para el CBR tradicionales, sin embargo, se requieren más cuidado, razón por la cual serán presentados los detalles que an deben ser considerados.

Inicialmente fue propuesto por Nogami para energía Normal y por Villibor (1981) para energía intermedia, fue implantado en el DER-SP, con las mismas directrices, en el método DER M-192/88

4.2.2.2. Equipos y Material Específicos.

- a) Prensa hidráulica, capaz de aplicar carga de hasta 1000 kgf (9.8Kn), con una velocidad constante de 1,25 vueltas / min.
- b) Anillo dinamométrico provisto de extensómetro que mida la carga aplicada en función de las lecturas en 0,01 mm, con capacidad de cerca de 500Kgf (4.9Kn); es deseable que se disponga también de anillos para cargas mayores y menores, todas aplicadas por medio de uno de pistón con 16,0 mm de diámetro.
- c] Dispositivo que indica el valor de la penetración del pistón, generalmente constituido por un dial con graduación de 0,01 mm y un soporte, solidario al pistón al que se refiere el subíndice anterior, que permita controlar la velocidad de penetración del pistón.

d) Armar con rigidez y alineación adecuadas.

Generalmente los aparatos, fabricados para ejecutar adecuadamente el CBR tradicionales, pueden adaptarse fácilmente; en este caso, los cambios mayores se refieren al anillo dinamométrico (de menor capacidad) y al pistón, también de diámetro mucho menor 16 mm s.

Tabla 7:Datos y diferencias de CBR y Mini-CBR.

Datos de los e	ensayos		CBR	Mini-CBR
Moldes		Diámetro	152 mm	50 mm
ivioldes	Volumen	de cuerpo de prueba	2116 ml	100 ml
Las	Massa ap	roximada para 1 cp.	5000 g	250 g
muestras	Diámetro r	máximo de los granos	19 mm	2 mm
		Masa del martillo	2.5 kg	2.27 Kg
	Normal:	Altura de caída	348 mm	305 mm
		Golpes (total)	168	10
compactación		Masa del martillo	4.5 Kg	4.5 Kg
Compactación	Intermedia:	Altura de caída	457 mm	305 mm
		Golpes (total)	130	12
	Sobre carga e	stándar	4540 g	490 g
	Pistón de pene diámetro	etración	49.5 mm	16.0 mm
	Prensa para per capacidad		44.5 Kn	4.9 Kn
Tie	mpo de inmersi	ón estándar	96 h	24 h

Fuente: Fuente: Pavimentos Económicos, Villibor y Nogami, Pág. 45.

Figura 80:Moldes de Mini-CBR y CBR. Fuente: Propia.

Figura 81:Al no tener anillo dinamométrico se contaba con una celda S con capacidad de carga de 500kgm. Fuente: Propia.

Figura 82:Pistón de penetración de 50 mm de Ø para CBR normal.

Figura 83:Colocación del accesorio DM 5016. Fuente: Propia.

Figura 84:Instalación final del equipo con todos los sensores electrónicos penetración Mini-CBR de la muestra Tropezón.

Figura 85:Instalación final del equipo con todos los sensores electrónicos penetración Mini-CBR de la muestra Infierno.

Figura 86:Recipiente para embebido de las muestras Fuente: Propia.

Figura 87:Armazón para determinar la expansión Conforme a la norma DER o la DNIT.

Figura 88:Sobre carga para el ensayo de expansión con carga Fuente: Propia

Figura 89:Sobrecarga perforada patrón de 50 mm de \emptyset la perforación es de diámetro es de 17 mm. Fuente: Propia.

4.2.2.3. Diseño del Pistón de Penetración DM5016 para Mini-CBR.

En el laboratorio de la Dirección de Ensayos Especiales, del ministerio de transportes y comunicaciones, cuenta con un equipo de CBR marca ELE con un pistón de penetración de 49.6 mm de Ø y con una celda S de 5 KN, para aplicar los ensayos MCT "Mini Compactación Tropical" hubo la necesidad de diseñar un pistón de 16 mm en el programa AutoCAD según la figura 98, los requerimientos de la norma de MCT, ver tabla número 7, como alternativa para proseguir con las investigaciones se diseña un adaptador de pistón denominado con el nombre técnico de DM 5016, después de varios prototipos e intentos se definió uno muy adecuado para no alterar el funcionamiento del equipo CBR, fue necesario definir un buen acero, que supere la dureza de los pistones ya existentes de 49.6 mm, para cumplir estas expectativas se usó el acero VCL, acero especial de bonificación con aleación de cromo y molibdeno, ideal para maquinarias de alto rendimiento, resistencia ver página 104, el acero VCL se adquirió en la Casa BOHLER con amplia experiencia en la diversificación de aceros de toda calidad, esta casa brindo la certificación de calidad ver la figura 100 se usó una barra de 70 mm de Ø y de largo 250 mm, como se puede ver en la página 103 el pistón con las dimensiones fue construido por profesionales y técnicos calificados para cumplir con el objetivo.

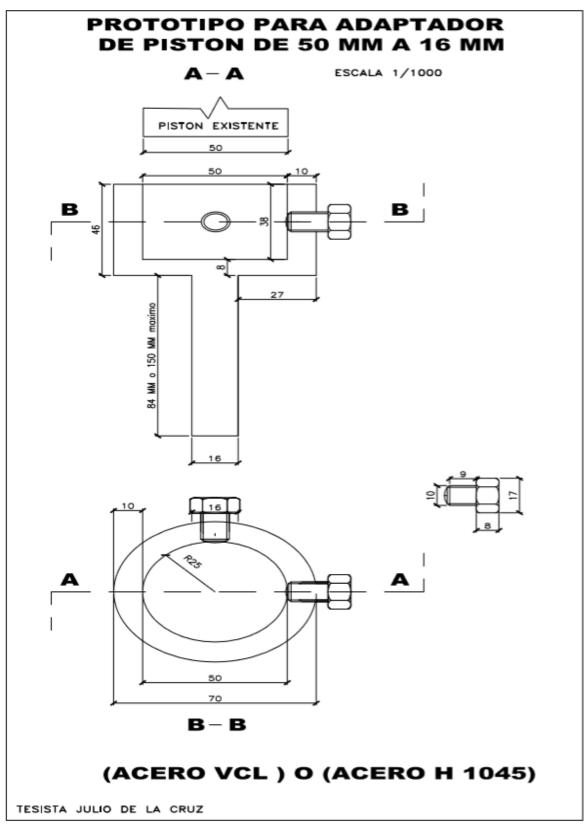


Figura 90:Plano diseño del adaptador del pistón modelo DM-5016. Fuente: Propia

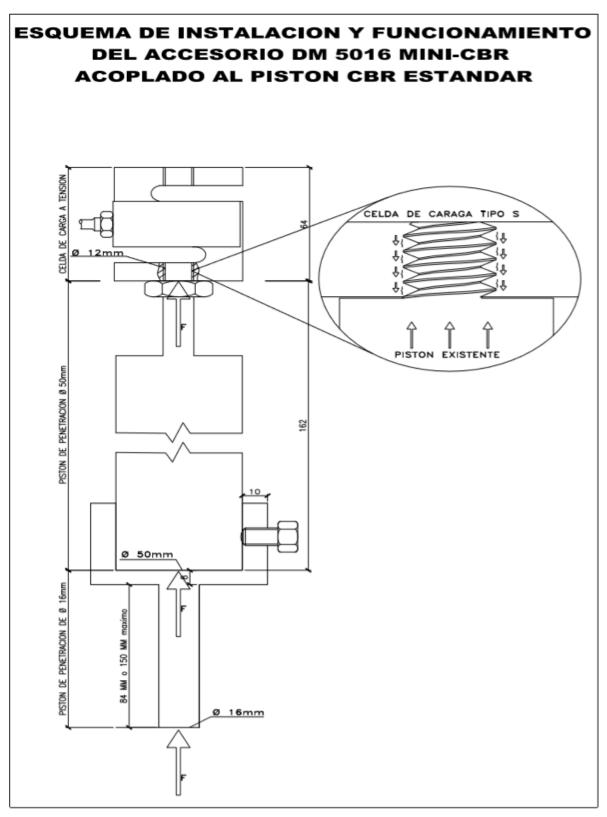


Figura 91:Instalación del pistón DM 5016.

172/2016 172/20] grade 42C/Mod hot rolled quenched & tempered - iaminado en caliente, bonificado 17/20/20] grade 42C/Mod hot rolled quenched & tempered - iaminado en caliente, bonificado 17/20/20		A BÖHLER			O	ertificad	Certificado de Calidad / Quality Certificate	dad / Que	ality Certi	ificate			Código: CM-F-20 Rev.: 03 Fecha: 08/08/201	Código: CM-F-20 Rev.: 03 Fecha: 08/08/2012
orresponden a los certificados de ensayo de infinit Test Certificate(s) as per EN 10204.204.204.204.204.204.204.204.204.204	Fecha / Date:		21/90	9/2016		г						4	3967	
tion (%) Colors Longitud Mg. Length Length Longitud Mg. Length Length Length Longitud Mg. Length Meight	Calidad / Quali		Steel Bar (W	.Nr. 1.7225) gr.	ade 42CrMo4	I hot rolled qu	Jenched & tem	pered - lamina	do en callente	, bonificado.		N° Fact.	0002794E16	9
Longitud Rg. Colada N° Kg. Length Weight Heat N° 9699 12074423 11316 12074423 11316 12074423 12074325 6906 12074327 6900 0.016 0.022 0.99 0.014 0.026 0.97 0.013 0.023 0.94 0.013 0.023 0.94	ertificamos qu Ve hereby certif	ue los resultados present y that for above mentioned	tados correi 1 materiai Mi	sponden a lo	s certificad ate(s) as per	os de ensayo	o de la fábrica 004 with follow	de acuerdo	a la norma El	N 10204:2004		Nota de Ingreso	32915	
tion (%) 11316 12074423 11316 12074326 12074326 12074326 12074327 120744237 12074327 1207437 1207437 1207437 1207437 1207437 1207437 120747 1	Ensayo N°	Pieza ensayada mm	Low	gitud	Peso Kg.	Colada N°	Ensayos Mec	ánicos / Mech	anical Propert	lies				
tion (%) tion (F	32.0	5	- B	6696	12074423	Límite de Flu	encia, 957 N/n	mm2; Resister	noia a la Tracc	ión: 1861 N/m	m2. Elongación	n: 16%: Dureza:	340 HB
tion (%) S	2	35.0	3		11316	12074073	Limite de Flu	encia: 917 N/n	nm2, Resister	ncia a la Tracc	ión: 1054 N/m	m2; Elongación	n. 17%: Dureza	330 HB
tion (%) tion (8	45.0	(2)		8825	12074326		encia: 899 N/n	nm2; Resister	ncia a la Tracc	ión: 1019 N/m	m2, Elongación	n. 18%; Dureza	327 HB
tion (%) to 0,016 0,017 0,017 0,013 0,023 0,97 0,017 0,023 0,94 0,017 0,023 0,94	4	52.0			9069	12074327	Limite de Flu	encia: 746 N/n	nm2; Resister	ncia a la Tracc	ión: 927 N/mm	12; Elongación.	. 18%; Dureza: 2	285 HB
tion (%) P S Cr Ni Mo Al Sn Cu 0.016 0.022 0.99 0,10 0,19 0,013 0,012 0,017 0,023 0,97 0,10 0,19 0,019 0,017 0,023 0,94 0,08 0,18 0,013 0,012 0,017 0,017 0,017 0,018 0,014 0,017 0,017 0,018 0,013 0,023 0,94 0,08 0,18 0,013 0,012 0,17 0,17 0,18 0,014 0,017 0,17 0,18 0,014 0,017 0,17 0,18 0,014 0,015 0,18 0,015 0,01	2	70.0	3		5552	12074564	Limite de Flux	encia: 854 N/n	nm2; Resister	ncia a la Tracc	ión: 1023 N/m	m2, Elongación	n: 17%; Dureza:	334 HB
0,016 0,022 0,99 0,10 0,18 0,013 0,019 0,19 0,014 0,026 0,97 0,10 0,19 0,012 0,017 0,23 0,013 0,023 1,00 0,09 0,16 0,013 0,011 0,18 0,017 0,013 0,017 0,18 0,017 0,018 0,013 0,013 0,017 0,17 0,013 0,013 0,017 0,17 0,18 0,013 0,014 0,17 0,18 0,014 0,17 0,18 0,014 0,17 0,18 0,014 0,014 0,18 0,014 0,014 0,18 0,014 0,014 0,18 0,014 0,014 0,18 0,014 0,014 0,014 0,18 0,014	100		amposition		s	ŏ	2	ž		5	ě	1		1
0.014 0.026 0.97 0.10 0.19 0.012 0.017 0.23 0.013 0.023 1.00 0.09 0.16 0.013 0.011 0.18 0.017 0.023 0.94 0.12 0.17 0.014 0.011 0.17 0.013 0.023 0.94 0.08 0.18 0.013 0.012 0.15	12074423		0,85	0,016	0,022	0,99	0,10	0,18	0,013	0,012	61,0	0,003	0,0081	0,0010
0,013 0,023 1,00 0,09 0,16 0,013 0,011 0,18 0,013 0,011 0,18 0,013 0,013 0,014 0,17 0,17 0,014 0,017 0,17 0,013 0,013 0,015 0,15 0,013 0,013 0,015 0,15 0,01	12074073		62'0	0,014	0.026	26'0	0,10	0,19	0,012	0,017	0,23	0,003	0,0094	0,0010
0,017 0,023 0,94 0,12 0,17 0,014 0,017 0,17 0,017 0,17 0,017 0,015 0,15 0,015	12074326		0,88	0,013	0,023	1,00	60'0	91,0	0,013	0,011	81,0	0,004	0,0100	0,0010
0,013 0,023 0,94 0,08 0,18 0,013 0,012 0,15 0,15 Petu.	12074327		0,81	710,0	0,023	0,94	0,12	71,0	0,014	0,011	21'0	0,004	0,0060	0,0010
erú.	12074564		0,81	0,013	0,023	0,94	90'0	0,18	0,013	0,012	6,15	0,004	0,0058	0.0010
eru.		iservaciones/ Observations												
	EROS BOE	HLER DEL PERÚ S.A	A. Lima Peru.								f			
E-mail: control. mai@botherperu.com / ventas@botherperu.com NGENIERO METALURGICO Firmal Signalute Carlot Metal. http://www.botherperu.com Firmal Signalute Carlot Metal. Carlo	619-3232 /Fax.	619-3230 sohlerperu.com / ventas@bohlerp I <u>Peru.com</u>	moo:mage		Z	RENZU HERRER (GENIERO) Reg. CIP	ADULFO A PORRAS METALURGI N* 185856	0		rma / Signature	A	ACEROS &	PERUSA 2 a.	

Figura 92:Certificado de calidad del acero VCL. Fuente: Casa BOHLER.

VCL /

AISI : 4140 DIN : 42 Cr Mo 4 W N° : 1.7223/25

Tipo de aleación promedio: C 0,41 Cr 1,1 Mo 0,2 Si 0,2 Mn 0,7 %

Color de identificación : Verde - Blanco

Estado de suministro : Bonificado, 250-310 HB Típico. Vertabla inf.

Largo Standard : 3,5 - 5 metros

Acero especial de bonificación con aleación de cromo molibdeno.

Muy resistente a la tracción y a la torsión, como también a cambios de flexión. Se suministra en estado bonificado, lo que permite, en la mayoría de los casos, su aplicación sin necesidad de tratamiento térmico adicional.

APLICACIONES: Partes de maquinaría y repuestos de dimensiones medianas, con grandes exigencias en las propiedades arriba mencionadas y también ciertos elementos para la construcción de motores, engranajes, pernos, tuercas, pines, émbolos, árboles de transmisión, ejes de bombas, cañones de armas para la cacería.

INDICACIONES PARA EL TRATAMIENTO TÉRMICO

N/mm² DIAGRAMA DE BONIFICACIÓN 1050 - 850 °C Forjado: 1800 840 - 880 °C 1600 Normalizado: 1400 690 - 720 °C Recocido: 1200 Enfriamiento lento en el horno 1000 800 Temple: al aceite 830 - 860 °C 600 820 - 850 °C al agua 400 1.- Resistencia a la tracción 200 Dureza Obtenible: 52 - 56 HRC 2.- Límite de Fluencia Revenido: 540 - 680 °C 500 550 Temperatura de revenido en °C 580 °C Nitrurar:

Resister estado R			CA	RACTERÍST	ICAS MECÁNIC	AS EN ESTAD	O BONIFICA	/DO
máx. N/mm²	Dureza Brinell		netro m.	Límite de fluencia	Resistencia a la tracción	Elongación (Lo = 5d)	Estricción % mín.	Resilencia según
IN/IIIIIII	máx.	desde	hasta	N/mm ²	N/mm ²	% min.	70 HHI.	DVM Joule
			16	835	1030 - 1250	10	40	34
(287.06	5.0000000	16	40	715	930 - 1130	11	45	41
770	241	40	100	595	830 - 1030	12	50	41
		100	160	530	730 - 900	13	55	41
		160	250	490	690 - 840	14	55	41

Figura 93:Especificaciones técnicas del acero VCL.

Fuente: Casa BOHLER.

Figura 94:Adquiriendo el acero VCL en la casa BOHLER. Fuente: Propia.

Figura 95:Acero VCL en la casa del torno. Fuente: Propia.

Figura 96:Torneado del acero VCL por el operario especialista.
Fuente: Propia.

Figura 97:Acabado final del accesorio DM 5016 con tornillos de bronce para el ajuste Fuente: Propia.

4.2.2.4. Procedimiento de Ensayo Mini-CBR.

4.2.2.4.1. Preparación de Cuerpos de Prueba.

Los cuerpos de prueba se obtendrán según los métodos P1 o P4 y según la figura 38. Cuando se requieren resultados más precisos, se recomienda preparar los cuerpos de prueba para obtener una curva de variación del Mini-CBR. Esto es a menudo cierto para el estudio del aprovechamiento de "Suelos Arenosos Finos Lateríticos" en pavimentación.

4.2.2.4.2. Expansión.

Según el método MCT Mini Compactación Tropical en la rutina se efectúa los ensayos de penetración tanto en cuerpos de prueba embebidos como no embebidos, llevados previamente a un extremo del molde, todos ellos en la humedad de compactación determinada, en los cuerpos de prueba no embebidos determinar la penetración después de 1 hora, en los moldes que contienen el Cp y que tienen que ser embebidos poner papel filtro en la parte superior e inferior, introducir el soporte de la sobrecarga y la sobrecarga de 340 g, montar el conjunto de fijación del molde y del extensómetro, para medida de la Expansión.

Transferir el conjunto al tanque de inmersión y efectuar la lectura inicial del extensómetro, (Li). Llenar de agua del recipiente hasta que la altura quede algunos mm por encima del plano superior del fijador superior perforado, del molde. Anotar el horario de inicio de la embebida. Realizar lectura después de 12 horas, en el mínimo, y mayor tiempo hasta que la lectura del extensómetro se estabilice. Obtener la lectura (Lf), en mm, con precisión de 0,01 mm. Retirar el conjunto del baño de agua y dejarlo en reposo aproximadamente una hora, para proseguir la determinación de la penetración

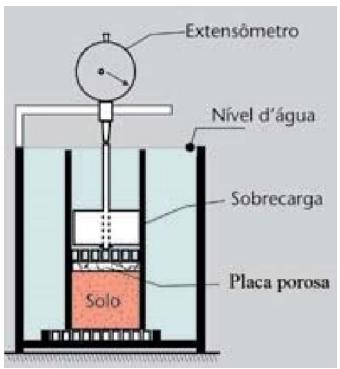


Figura 98:Croquis de expansión para penetración de Mini-CBR. Fuente: Pavimentos Económicos, Villibor y Nogami Pág. 47.

Figura 99:Expiación sumergida con carga de 490 gramos para penetración en Mini-CBR.

Fuente: Propia

4.2.2.4.3. Ejecución de la Penetración.

Transferir el conjunto, molde con cuerpo de prueba, sometido o no a la embebida, para el plato de la prensa; retirar, en su caso, el papel de cierre u otro disco presente en la parte superior del cuerpo de prueba. Introducir, de conformidad en el caso, la sobrecarga anular patrón. Encaje la punta del pistón de 16 mm en la parte superior del cuerpo de prueba, lo que puede ser verificado por el movimiento de la variación de carga del dinamómetro.

Ajustar el extensómetro para que el cursor marque cero de desplazamiento, regulando de manera apropiada el dispositivo de fijación del extensómetro a la pista de penetración. Accionar el reloj, debidamente calibrado para dar 1,25 vueltas / min, y mantener el extensómetro del medidor de la penetrándose coincidente con el puntero del reloj calibrado; hacer las lecturas en el dinamómetro, correspondientes a las siguientes penetraciones: 0,5; 1,0; 1,5; 2,0; 2,5; (...), o antes, de exceder la capacidad del dinamómetro o la celda S. En los suelos de soporte elevado, efectuar lecturas a 0,25; 0,50; 0,75; 1,00; 1.25, ... 3,0, o antes, a fin de no exceder la capacidad del dinamómetro. Repetir la penetración hacia los demás cuerpos de prueba.

Figura 100:Empezando por la izquierda vemos cp con contracción sin carga seguida por contracción con carga y lo que está sumergido es expansión con carga y expansión si carga.

Fuente: Propia.

Figura 101:Desacople del montaje antes de la penetración. Fuente: Propia.

Figura 102:Instalación y habilitación para la penetración del Mini-CBR. Fuente: Propia.

Figura 103:Cp cuerpos de prueba penetrados con el pistón de 16 mm. Fuente: Propia.

Figura 104:Penetración Mini-CBR. Fuente: Propia.

Figura 105:Cuerpo de prueba ya penetrado por el ensayo Mini-CBR. Fuente: Propia.

Observaciones.

Conviene anotar el aspecto de la parte superior del cuerpo de prueba, sobre todo la ocurrencia de grietas radiales, hinchazones o aún una depresión mucho menor, lo que, si se constata, es indicar que el material es muy resistente.

4.2.2.4.4. Calculo de Mini-CBR.

Trazado de las curvas CARGA – PENETRACION

Graficar las curvas Carga-Penetración, en tamaño adecuado para la escala, con los datos obtenidos según la velocidad de penetración (1.25 vueltas/minuto) y la penetración 0,5; 1,0; 1,5; 2,0; 2,5; (...), o a 0,25; 0,50; 0,75; 1,00; 1.25, ... 3,0, si es muy elevado el soporte; realizar correcciones en los siguientes casos:

- a) Eliminación de curvas, tanto cóncavos como convexos, en relación la tendencia general.
- b) Cambio de origen, para la intersección de la tangente del punto de inflexión con el eje horizontal (o las penetraciones).

c] Prolongar la curva cuando se produzca una disminución de la carga, antes de la penetración alcanza el valor de 2mm.

4.2.2.4.5. Método para la Determinación de Mini-CBR.

Método de correlaciones utilizando las siguientes expresiones.

$$Log(Mini - CBR) = 0.896 \times LogC_1 - 0.254$$

 $Log(Mini - CBR) = 0.937 \times LogC_2 - 0.256$

 C_1 y C_2 = Cargas [Kgf];

Donde C1 y C2 son, respectivamente, las cargas [kgf] correspondientes a las penetraciones 2,00 y 2,50 mm, obtenidas de las curvas corregidas según el subíndice.

Adoptar el mayor de los Mini-CBR obtenidos. La aplicación de estas las fórmulas se facilitan por el uso de tablas apropiadas.

Presentación de los Resultados.

Presentar los valores obtenidos, de las Expansiones y de los Mini-CBR, siempre en función de su curva de Compactación, de manera que se pueda determinar fácilmente la variación del Mini-CBR en las diversas condiciones de compactación. Para ello, los representa en la misma hoja, usando la misma escala horizontal y coincidente, para el contenido de humedad y, de preferencia, el Mini-CBR en la parte superior y la Expansión en la parte más baja.

Como ya se ha señalado, el uso de la escala de los valores de la MEAS proporcional a su inverso presenta la ventaja de rectificar las ramas de la curva de Compactación, siendo también rectilíneas las líneas del mismo grado de saturación de los cuerpos de prueba.

Adoptar, para escala de los Mini-CBR, la escala logarítmica, por cuanto la variación del Mini-CBR a lo largo de la curva de Compactación es, casi siempre, también rectilínea. La curva de variación de la Expansión puede ser trazada en el mismo gráfico del Mini CBR.

Variantes De Ensayo.

Diversas variantes son posibles, de las cuales se destacan:

- 1) Debajo de la lámina de agua: útil en las zonas sujetas a inundaciones.
- 2) Con sobrecarga mayor: para reproducir los efectos de las espesas las capas de sobrecarga.
- 3) Penetración dinámica: para determinaciones expedidas tanto en laboratorio como en el campo (véase la determinación del Mini-CBR en campo).

4.2.2.5. Cálculos de Expansión.

$$Exp = \frac{Lf - Li}{Lo} \times 100 (\%)$$

Lf = Lectura Final [mm];

Li = Lectura Inicial [mm];

Lo = Lectura inicial del cuerpo compactado dentro del molde [mm];

Cuando (Lo) es igual a 50 mm

$$Exp = (Lf - Li) \times 2 (\%)$$

Tabla 8:Para el cálculo de Mini-CBR.

	ĺ	CARGA		- CBR	CARGA Mini - CBR CARGA Mini - CBR CARGA Mini-CBR								-CBR
000					1						1		
1 0,5 0,4 51 18,7 17,4 155 50,8 49,7 560 161 166 62 2 11,0 0,8 52 19,1 17,7 160 52,0 51,2 570 164 168 168 1,5 1,2 53 19,4 18,8 165 53,6 52,7 580 167 171 171 171 171 171 171 171 171 171													
2 1,0 0,8 52 19,1 17,7 160 52,0 51,2 570 164 168 3 1,5 1,2 53 19,4 18,8 165 53,6 52,7 580 167 171 4 1,9 1,6 54 19,8 18,4 170 55,1 54,2 590 169 174 5 2,4 2,0 55 20,1 18,7 175 57,0 55,7 600 172 177 6 2,8 2,3 56 20,5 19,0 180 58,3 57,1 610 174 180 7 3,2 2,7 57 20,8 19,3 185 59,7 58,6 620 177 182 8 3,6 3,1 58 21,2 19,7 190 61,1 60,1 630 180 185 9 4,0 3,4 59 21,5 20,0 195 62,5 61,7 640 182 188 10 4,4 3,8 60 21,8 20,3 200 64,0 63,1 650 185 191 11 4,7 4,1 61 22,1 20,6 205 65,5 64,6 660 187 193 12 5,1 4,5 62 22,4 20,9 210 67,0 66,4 670 190 196 13 5,5 4,8 63 22,7 21,3 215 68,6 67,6 680 192 199 14 5,9 5,2 64 23,1 21,6 220 70,1 69,0 690 195 201 15 6,3 5,5 65 23,4 21,9 225 71,3 70,5 700 197 204 16 6,7 5,9 66 23,7 22,2 230 72,6 71,9 710 200 207 17 7,0 6,2 67 24,0 22,5 235 73,8 73,5 720 202 210 18 7,4 6,6 68 24,4 22,9 240 75,2 74,8 730 205 212 19 7,8 6,9 69 24,7 23,2 245 76,9 76,4 740 207 215 20 8,2 7,3 70 25,1 23,5 250 79 78 78 750 210 18 8,5 7,6 71 25,4 23,8 260 82 81 760 212 22 8,9 8,0 72 25,8 24,1 270 84 83 770 215 223 23 9,2 8,3 73 73 26,0 24,4 280 87 86 780 217 226 24 9,6 8,6 74 26,3 24,7 290 89 89 790 200 22 29 10,4 10,3 89 75 26,6 25,0 300 92 92 800 222 231 20 11,4 10,3 79 27,9 26,2 340 103 104 880 237 247 29 11,4 10,3 79 27,9 26,2 340 103 104 880 237 247 29 11,4 10,3 79 27,9 26,2 340 103 104 880 242 253 39 11,4 10,3 79 27,9 26,2 340 103 104 880 242 253 39 11,4 10,3 84 29,4 28,1 370 111 112 940 257 269 31 12,5 13,5 13,5 12,2 90 31,3 39,0 450 133 135 40 15,1 13,9 100 34,3 33,0 450 135 135 141 41 15,4 14,2 110 37,2 36,1 470 138 141 44 16,4 15,2 120 40,4 39,1 49,0 143 146 45 16,8 15,5 125 41,8 40,6 500 146 149 45 16,8 15,5 125 41,8 40,6 500 146 149 46 17,1 15,8 133 42,9 42,2 510 149 152 147 47 17,4 16,1 135 47,4 46,7 540 156 160 49 18,1 16,7 145 47,4 46,7 540 156 160 40 18,1 17,1 150 49,1 48,2 550 159 163					ı			1					
3 1,5 1,2 53 19,4 18,8 165 53,6 52,7 580 167 171 4 1,9 1,6 54 19,8 18,4 170 55,1 54,2 590 169 174 5 2,4 2,0 55 20,1 18,7 175 57,0 55,7 600 172 177 6 2,8 2,3 56 20,5 19,0 180 58,3 57,1 610 174 180 7 3,2 2,7 57 20,8 19,3 185 59,7 58,6 620 177 182 8 3,6 3,1 58 21,2 19,7 190 61,1 60,1 630 180 185 9 4,0 3,4 59 21,5 20,0 195 62,5 61,7 640 182 181 10 4,4 3,8 60 21,8 20,3 200 64,0 63,1 650 185 191 11 4,7 4,1 61 22,1 20,6 205 65,5 64,6 660 187 190 122 5,1 4,5 62 22,4 20,9 210 67,0 66,4 670 190 196 13 5,5 4,8 63 22,7 21,3 21,5 20,0 19,5 62,5 64,6 660 187 193 14 5,9 5,2 64 23,1 21,6 220 70,1 69,0 690 195 201 15 6,3 5,5 65 23,4 21,9 225 71,3 70,5 700 197 204 16 6,7 5,9 66 23,7 22,2 230 72,6 71,9 710 200 207 17 7,0 6,2 67 24,0 22,5 235 73,8 73,5 720 202 210 18 7,4 6,6 68 24,4 22,9 240 75,2 74,8 730 205 212 20 8,2 7,3 70 25,1 23,5 250 79 78 750 210 218 21 8,5 7,6 71 25,4 23,8 260 82 81 760 212 226 8,9 8,0 72 25,8 24,1 270 84 83 770 215 223 22 8,9 8,0 72 25,8 24,1 270 84 83 770 215 223 23 9,2 8,3 73 26,0 24,4 22,9 8,9 8 9 790 220 220 24 9,6 8,6 74 26,3 24,7 22,8 260 82 81 760 212 220 25 10,0 8,9 75 26,6 25,0 300 92 92 800 222 231 26 10,3 9,3 76 26,9 25,4 310 95 95 820 222 231 27 10,7 9,6 77 27,2 25,7 320 97 98 840 232 242 28 11,0 9,9 78 27,6 25,9 330 100 101 860 237 247 29 11,4 10,3 79 27,9 26,2 340 103 104 880 242 253 30 11,7 10,6 80 28,3 26,0 28,7 30 104 119 121 1000 272 285 31 12,0 10,9 82 28,6 27,4 28,1 370 111 115 960 262 274 34 13,1 11,9 88 30,6 29,2 30,1 14 115 960 262 274 34 11,0 13,8 12,6 99 31,9 30,5 410 122 124 34 11,1 14,8 115 39,0 37,6 480 141 143 34 15,1 14,8 115 39,0 37,6 480 141 143 34 16,1 14,8 115 39,0 37,6 480 141 143 34 16,1 14,8 115 39,0 37,6 480 141 143 34 16,1 14,8 115 39,0 37,6 480 144 143 34 16,1 14,8 115 39,0 37,6 480 144 143 34 16,1 14,8 115 39,0 37,6 480 144 143 34 16,1 14,8 115 39,0 37,6 480 144 143 34 16,1 14,8 115 39,0 37,6 480 144 143 34 16,1 14,8 115 39,0 37,6 480 144 149 34 16,1 14,8 115 39,0 37,6 480 145 147 34 17,7 16,4 140 46,3 45,2 550 159 163													
4 1,9 1,6 5 4 19,8 18,4 170 55,1 54,2 590 169 174 5 2,4 2,0 55 20,1 18,7 175 57,0 500 172 177 6 2,8 2,3 56 20,5 19,0 180 58,3 57,1 610 174 180 7 3,2 2,7 57 20,8 19,3 185 59,7 58,6 620 177 180 9 4,0 3,4 59 21,5 20,0 195 62,5 61,7 640 182 188 10 4,4 3,8 60 21,8 20,3 200 64,0 63,1 650 18,1 180 185 191 11 4,7 4,1 61 62,1 67,0 66,1 670 180 180 182 181 191 182 181 191 182 191 191								1					
5 2,4 2,0 55 20,1 18,7 175 57,0 55,7 600 172 177 6 2,8 2,3 56 20,5 19,0 180 58,3 57,1 610 174 180 7 3,2 2,7 57 20,8 19,3 185 59,7 58,6 620 177 182 8 3,6 3,1 58 21,2 19,7 190 61,1 60,1 630 180 185 9 4,0 3,4 59 21,5 20,0 195 62,5 61,7 640 182 183 10 4,4 3,8 60 21,8 20,3 200 64,0 63,1 650 185 191 11 4,7 4,1 4,5 62 22,4 20,9 210 67,0 66,4 670 190 196 193 191 191 194 194 194					ı								
6 2,8 2,3 566 20,5 19,0 180 58,3 57,1 610 174 180 73 3,2 2,7 57 20,8 19,3 185 59,7 58,6 620 177 182 8 3,6 3,1 58 21,2 19,7 190 61,1 60,1 630 180 185 190 4,0 3,4 59 21,5 20,0 195 62,5 61,7 640 182 188 100 4,4 3,8 60 21,8 20,3 200 64,0 63,1 650 185 191 11 4,7 4,1 61 22,1 20,6 205 65,5 64,6 660 187 193 15 5,5 4,8 63 22,7 21,3 215 68,6 67,6 68,0 187 193 14 5,9 5,2 64 23,1 21,6 220 70,1 69,0 690 192 199 14 5,9 5,2 64 23,1 21,6 220 70,1 69,0 690 195 201 15 6,3 5,5 65 23,4 21,9 225 71,3 70,5 700 197 204 16 6,7 5,9 66 68 68 23,7 22,2 230 72,6 71,9 710 200 207 17 7,0 6,2 66 68 82,4 22,9 240 75,2 74,8 730 205 212 19 7,8 6,9 69 24,7 23,2 245 76,9 76,4 740 207 215 20 8,2 7,3 70 25,1 23,5 250 79 78 750 210 218 8,5 7,6 71 25,4 23,8 260 82 81 760 212 220 8,9 8,0 72 25,8 24,1 270 84 83 770 215 222 24 9,6 8,6 74 26,3 24,7 290 89 89 89 790 220 229 220 224 9,6 8,6 74 26,3 24,7 290 89 89 89 790 220 229 220 221 10,0 8,9 75 26,6 25,0 300 92 92 800 222 231 226 10,3 9,3 76 26,9 25,4 310 95 95 820 228 237 247 11,7 10,6 80 28,3 76 26,2 25,9 30 100 101 860 237 247 247 249 11,4 10,3 79 27,9 26,2 25,7 320 70 11 11 12 940 257 269 21,4 11,5 11,5 81 11,5 11,5 11,5 11,5 13,9 100 34,3 33,0 31,4 410 11,5 14,8 11,5 13,9 94 30,0 14,6 11,5 155 14,8 11,5 13,9 100 34,3 33,0 37,6 26,0 22,1 23,9 30 117 118 19 80 267 28,0 11,1 15,8 11,5 13,9 100 34,3 33,0 34,5 460 136 138 14,5 11,3 39 0 33,7 32,4 400 131 115 960 262 274 28,1 11,1 11,4 11,5 11,5 11,5 11,5 11,5 11													
7 3,2 2,7 57 20,8 19,3 185 59,7 58,6 620 177 182 8 3,6 3,1 58 21,2 19,7 190 61,1 60,1 630 180 185 9 4,0 3,4 59 21,5 20,0 195 62,5 61,7 640 182 188 10 4,4 3,8 60 21,8 20,3 200 64,0 63,1 650 185 191 11 4,7 4,1 61 22,1 20,6 205 65,5 64,6 660 187 193 112 5,1 4,5 62 22,4 20,9 210 67,0 66,4 670 190 196 13 5,5 4,8 63 22,7 21,3 215 68,6 67,6 680 192 199 14 5,9 5,2 64 23,1 21,6 220 70,1 69,0 690 195 201 15 6,3 5,5 65 23,4 21,9 225 71,3 70,5 700 197 204 16 6,7 5,9 66 23,7 22,2 230 72,6 71,9 710 200 207 17 7,0 6,2 67 24,0 22,5 235 73,8 73,5 720 202 210 18 7,4 6,6 68 24,4 22,9 240 75,2 74,8 730 205 212 199 7,8 6,9 69 24,7 23,2 245 76,9 76,4 740 207 215 20 8,2 7,3 70 25,1 23,5 250 79 78 750 210 218 21 8,5 7,6 71 25,4 23,8 260 82 81 760 212 220 22 8,9 8,0 72 25,8 24,1 270 84 83 770 215 223 23 9,2 8,3 73 26,0 24,4 280 87 86 780 217 226 24 9,6 8,6 74 26,3 24,7 290 89 89 790 220 229 25 10,0 8,9 75 26,6 25,0 300 92 92 800 222 231 24 9,6 8,6 74 26,3 24,7 290 89 89 790 220 229 25 10,0 8,9 75 26,6 25,0 300 92 92 800 222 231 24 1,1 1,0 9,9 78 27,6 25,9 330 100 101 860 237 247 28 11,0 9,9 78 27,6 25,9 330 100 101 860 237 247 28 11,0 9,9 78 27,6 25,9 330 100 101 860 237 247 28 11,0 10,9 82 28,6 27,4 360 109 109 920 252 264 31 12,4 11,3 84 29,4 28,1 370 111 112 940 237 269 31 1,4 10,3 79 27,9 26,2 340 103 104 880 242 253 39 14,8 13,6 98 33,7 32,4 440 130 132 44 15,4 14,2 105 36,0 34,5 460 136 138 144 45 16,8 15,5 125 41,8 40,6 500 146 149 46 17,1 15,8 130 42,9 42,2 510 149 152 47 17,4 16,1 135 44,8 43,7 520 151 155 48 17,7 16,4 140 46,3 45,2 550 159 163					ı			1					
8 3,6 3,1 58 21,2 19,7 190 61,1 60,1 630 180 185 9 4,0 3,4 59 21,5 20,0 195 62,5 61,7 640 182 188 10 4,4 3,8 60 21,8 20,3 200 64,0 63,1 650 185 191 11 4,7 4,1 61 22,1 20,6 205 65,5 64,6 660 187 193 12 5,1 4,5 62 22,4 20,9 210 67,0 66,4 670 190 196 13 5,5 4,8 63 22,7 21,3 215 68,6 676 680 192 199 14 5,9 5,2 64 23,1 21,6 220 70,1 69,0 69 195 202 210 15 6,3 5,5 665 23,7													
9					ı			1					
10													
11 4,7 4,1 61 22,1 20,6 205 65,5 64,6 660 187 193 12 5,1 4,5 62 22,4 20,9 210 67,0 66,4 670 190 196 13 5,5 4,8 63 22,7 21,3 215 68,6 67,6 68,0 192 199 14 5,9 5,2 64 23,1 21,6 220 70,1 69,0 690 195 201 15 6,3 5,5 65 23,4 21,9 225 71,3 70,5 700 197 204 16 6,7 5,9 66 83,7 22,2 230 72,6 71,9 710 200 207 17 7,0 6,2 67 24,0 22,5 235 73,8 73,5 720 202 210 18 7,4 6,6 68 24,4 22,9 240 75,2 74,8 730 205 212 220 221 220								1					
12					ı			1					
13 5,5 4,8 63 22,7 21,3 21,5 68,6 67,6 680 192 199 14 5,9 5,2 64 23,1 21,6 220 70,1 69,0 690 195 201 15 6,3 5,5 65 23,4 21,9 225 71,3 70,5 70,0 197 204 16 6,7 5,9 66 23,7 22,2 230 72,6 71,9 710 200 207 17 7,0 6,2 67 24,0 22,5 235 73,8 73,5 720 202 212 18 7,4 6,6 68 24,7 23,2 240 75,2 74,8 730 205 212 20 8,2 7,3 70 25,1 23,5 250 79 78 750 210 218 21 1,35 7,6 71 25,8 24,1													
14 5,9 5,2 64 23,1 21,6 220 70,1 69,0 690 195 201 15 6,3 5,5 65 23,4 21,9 225 71,3 70,5 700 197 204 16 6,7 5,9 66 23,7 22,2 230 72,6 71,9 710 200 207 17 7,0 6,2 67 24,0 22,5 235 73,8 73,5 720 202 210 18 7,4 6,6 68 24,4 22,9 240 75,2 74,8 730 205 212 20 8,2 7,3 70 25,1 23,5 250 79 78 750 210 218 21 8,5 7,6 71 25,4 23,8 260 82 81 760 212 220 22 8,9 8,0 72 25,8 24,1					ı			1					
15 6,3 5,5 65 23,4 21,9 225 71,3 70,5 700 197 204 16 6,7 5,9 66 23,7 22,2 230 72,6 71,9 710 200 207 18 7,4 6,6 68 24,4 22,9 240 75,2 74,8 730 205 212 19 7,8 6,9 69 24,7 23,2 245 76,9 76,4 740 207 215 20 8,2 7,3 70 25,1 23,5 250 79 78 750 210 218 21 8,5 7,6 71 25,4 23,8 260 82 81 760 212 220 22 8,9 8,0 72 25,8 24,1 270 84 83 770 215 223 23 9,2 8,3 73 26,6 25,4 <t< td=""><td></td><td></td><td></td><td></td><td>ı</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>					ı								
16 6,7 5,9 66 23,7 22,2 230 72,6 71,9 710 200 207 17 7,0 6,2 67 24,0 22,5 235 73,8 73,5 720 202 210 18 7,4 6,6 68 24,4 22,9 240 75,2 74,8 730 205 212 19 7,8 6,9 69 24,7 23,2 245 76,9 76,4 740 207 215 20 8,2 7,3 70 25,1 23,8 260 82 81 760 212 220 22 8,9 8,0 72 25,8 24,1 270 84 83 770 215 223 23 9,2 8,3 73 26,0 24,4 280 87 86 780 217 226 24 9,6 8,6 74 26,3 24,7 <t< td=""><td></td><td></td><td></td><td></td><td>ı</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>					ı								
17 7,0 6,2 67 24,0 22,5 235 73,8 73,5 720 202 210 18 7,4 6,6 68 24,4 22,9 240 75,2 74,8 730 205 212 19 7,8 6,9 69 24,7 23,2 245 76,9 76,4 740 207 215 20 8,2 7,3 70 25,1 23,5 250 79 78 750 210 218 21 8,5 7,6 71 25,4 23,8 260 82 81 760 212 220 22 8,9 8,0 72 25,8 24,1 270 84 83 770 215 223 23 9,2 8,3 73 26,6 24,7 290 89 89 790 220 229 25 10,0 8,9 75 26,6 25,0 300 92 92 800 222 2231 266 10,3 9,3 76													
18 7,4 6,6 68 24,4 22,9 240 75,2 74,8 730 205 212 19 7,8 6,9 69 69 24,7 23,2 245 76,9 76,4 740 207 215 20 8,2 7,3 70 25,1 23,5 250 79 78 750 210 218 21 8,5 7,6 71 25,4 23,8 260 82 81 760 212 220 22 8,9 8,0 72 25,8 24,1 270 84 83 770 215 223 23 9,2 8,6 74 26,3 24,7 290 89 89 790 220 229 25 10,0 8,9 75 26,6 25,0 300 92 92 800 222 231 26 10,3 9,3 76 26,9 25,4 310 95 95 820 228 237 27 10,7													
19					ı								
20 8,2 7,3 70 25,1 23,5 250 79 78 750 210 218 21 8,5 7,6 71 25,4 23,8 260 82 81 760 212 220 22 8,9 8,0 72 25,8 24,1 270 84 83 770 215 223 23 9,2 8,3 73 26,0 24,4 280 87 86 780 217 226 24 9,6 8,6 74 26,3 24,7 290 89 89 790 220 229 25 10,0 8,9 75 26,6 25,0 300 92 92 800 222 231 26 10,3 9,3 76 26,9 25,4 310 95 95 820 228 237 27 10,7 9,6 77 27,2 25,9 330													
21 8,5 7,6 71 25,4 23,8 260 82 81 760 212 220 22 8,9 8,0 72 25,8 24,1 270 84 83 770 215 223 23 9,2 8,3 73 26,0 24,4 280 87 86 780 217 226 24 9,6 8,6 74 26,3 24,7 290 89 89 790 220 229 25 10,0 8,9 75 26,6 25,0 300 92 92 800 222 231 26 10,3 9,3 76 26,9 25,4 310 95 95 820 228 237 27 10,7 9,6 77 27,2 25,7 320 97 98 840 232 242 28 11,0 9,9 78 27,6 25,9 330					ı			1					
22 8,9 8,0 72 25,8 24,1 270 84 83 770 215 223 23 9,2 8,3 73 26,0 24,4 280 87 86 780 217 226 24 9,6 8,6 74 26,3 24,7 290 89 89 790 220 229 25 10,0 8,9 75 26,6 25,0 300 92 92 800 222 231 26 10,3 9,3 76 26,9 25,4 310 95 95 820 228 237 27 10,7 9,6 77 27,2 25,7 320 97 98 840 232 242 28 11,0 9,9 78 27,6 25,9 330 100 101 860 237 247 29 11,4 10,3 79 27,9 26,2 340 <td></td>													
23			8,5	7,6		25,4	23,8	260	82			212	220
24 9,6 8,6 74 26,3 24,7 290 89 89 790 220 229 25 10,0 8,9 75 26,6 25,0 300 92 92 800 222 231 26 10,3 9,3 76 26,9 25,4 310 95 95 820 222 231 27 10,7 9,6 77 27,2 25,7 320 97 98 840 232 247 28 11,0 9,9 78 27,6 25,9 330 100 101 860 237 247 29 11,4 10,3 79 27,9 26,2 340 103 104 880 242 253 30 11,7 10,6 80 28,3 26,4 350 106 107 900 247 258 31 12,8 11,3 84 29,4 28,1 <t< td=""><td></td><td></td><td>8,9</td><td>8,0</td><td>72</td><td>25,8</td><td>24,1</td><td>270</td><td>84</td><td>83</td><td></td><td>215</td><td>223</td></t<>			8,9	8,0	72	25,8	24,1	270	84	83		215	223
25	1		9,2	8,3	73	26,0	24,4	280	87	86	780	217	226
26		24	9,6	8,6	74	26,3	24,7	290	89	89	790	220	229
26		25	10,0	8,9	75	26,6	25,0	300	92	92	800	222	231
27		26	10,3		76	26,9	25,4	310	95	95	820	228	237
28		27	10,7		77	27,2	25,7	320	97	98	840	232	242
29		28			78			330	100	101	860	237	247
30		29			79			340	103	104	880	242	253
31 12,0 10,9 82 28,6 27,4 360 109 109 920 252 264 32 12,4 11,3 84 29,4 28,1 370 111 112 940 257 269 33 12,8 11,6 86 30,0 28,7 380 114 115 960 262 274 34 13,1 11,9 88 30,6 29,2 390 117 118 980 267 280 35 13,5 12,2 90 31,3 29,8 400 119 121 1000 272 285 36 13,8 12,6 92 31,9 30,5 410 122 124 37 14,1 12,9 94 32,0 31,1 420 125 127 38 14,5 13,3 96 33,0 31,7 430 127 129 39 14,8 13,6 98 33,7 32,4 440 130 132 4		30	11,7					350	106	107			
32 12,4 11,3 84 29,4 28,1 370 111 112 940 257 269 33 12,8 11,6 86 30,0 28,7 380 114 115 960 262 274 34 13,1 11,9 88 30,6 29,2 390 117 118 980 267 280 35 13,5 12,2 90 31,3 29,8 400 119 121 1000 272 285 36 13,8 12,6 92 31,9 30,5 410 122 124 37 14,1 12,9 94 32,0 31,1 420 125 127 38 14,5 13,3 96 33,0 31,7 430 127 129 39 14,8 13,6 98 33,7 32,4 440 130 132 40 15,1 13,9 100 34,3 33,0 450 133 135 41 15,4 14,5 <td< td=""><td>1</td><td></td><td></td><td></td><td>82</td><td></td><td></td><td>1</td><td>109</td><td>109</td><td>920</td><td></td><td></td></td<>	1				82			1	109	109	920		
33					ı				I .	I			
34													
35					ı			l					
36 13,8 12,6 92 31,9 30,5 410 122 124 37 14,1 12,9 94 32,0 31,1 420 125 127 38 14,5 13,3 96 33,0 31,7 430 127 129 39 14,8 13,6 98 33,7 32,4 440 130 132 40 15,1 13,9 100 34,3 33,0 450 133 135 41 15,4 14,2 105 36,0 34,5 460 136 138 42 15,8 14,5 110 37,2 36,1 470 138 141 43 16,1 14,8 115 39,0 37,6 480 141 143 44 16,4 15,2 120 40,4 39,1 490 143 146 45 16,8 15,5 125 41,8 40,6 500 146 149 46 17,1 15,8 130 42,9 42,2 510 149 152 47 17,4 16,1 135 44,8 43,7 520 151 155 </td <td>4</td> <td></td>	4												
37 14,1 12,9 94 32,0 31,1 420 125 127 38 14,5 13,3 96 33,0 31,7 430 127 129 39 14,8 13,6 98 33,7 32,4 440 130 132 40 15,1 13,9 100 34,3 33,0 450 133 135 41 15,4 14,2 105 36,0 34,5 460 136 138 42 15,8 14,5 110 37,2 36,1 470 138 141 43 16,1 14,8 115 39,0 37,6 480 141 143 44 16,4 15,2 120 40,4 39,1 490 143 146 45 16,8 15,5 125 41,8 40,6 500 146 149 46 17,1 15,8 130 42,9 42,2 510 149 152 47 17,4 16,1 135 44,8 43,7 520 151 155 48 17,7 16,4 140 46,3 45,2 530 154 157 <					ı			1					
38 14,5 13,3 96 33,0 31,7 430 127 129 39 14,8 13,6 98 33,7 32,4 440 130 132 40 15,1 13,9 100 34,3 33,0 450 133 135 41 15,4 14,2 105 36,0 34,5 460 136 138 42 15,8 14,5 110 37,2 36,1 470 138 141 43 16,1 14,8 115 39,0 37,6 480 141 143 44 16,4 15,2 120 40,4 39,1 490 143 146 45 16,8 15,5 125 41,8 40,6 500 146 149 46 17,1 15,8 130 42,9 42,2 510 149 152 47 17,4 16,1 135 44,8 43,7 520 151 155 48 17,7 16,4 140 46,3 45,2 530 154 157 49 18,1 16,7 145 47,4 46,7 540 156 160													
39 14,8 13,6 98 33,7 32,4 440 130 132 40 15,1 13,9 100 34,3 33,0 450 133 135 41 15,4 14,2 105 36,0 34,5 460 136 138 42 15,8 14,5 110 37,2 36,1 470 138 141 43 16,1 14,8 115 39,0 37,6 480 141 143 44 16,4 15,2 120 40,4 39,1 490 143 146 45 16,8 15,5 125 41,8 40,6 500 146 149 46 17,1 15,8 130 42,9 42,2 510 149 152 47 17,4 16,1 135 44,8 43,7 520 151 155 48 17,7 16,4 140 46,3 45,2 530 154 157 49 18,1 16,7 145 47,4 46,7 540 156 160 50 18,4 17,1 150 49,1 48,2 550 159 163					ı								
40 15,1 13,9 100 34,3 33,0 450 133 135 41 15,4 14,2 105 36,0 34,5 460 136 138 42 15,8 14,5 110 37,2 36,1 470 138 141 43 16,1 14,8 115 39,0 37,6 480 141 143 44 16,4 15,2 120 40,4 39,1 490 143 146 45 16,8 15,5 125 41,8 40,6 500 146 149 46 17,1 15,8 130 42,9 42,2 510 149 152 47 17,4 16,1 135 44,8 43,7 520 151 155 48 17,7 16,4 140 46,3 45,2 530 154 157 49 18,1 16,7 145 47,4 46,7 540 156 160 50 18,4 17,1 150 49,1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td>								1					
41 15,4 14,2 105 36,0 34,5 460 136 138 42 15,8 14,5 110 37,2 36,1 470 138 141 43 16,1 14,8 115 39,0 37,6 480 141 143 44 16,4 15,2 120 40,4 39,1 490 143 146 45 16,8 15,5 125 41,8 40,6 500 146 149 46 17,1 15,8 130 42,9 42,2 510 149 152 47 17,4 16,1 135 44,8 43,7 520 151 155 48 17,7 16,4 140 46,3 45,2 530 154 157 49 18,1 16,7 145 47,4 46,7 540 156 160 50 18,4 17,1 150 49,1 48,2 550 159 163								1					
42 15,8 14,5 110 37,2 36,1 470 138 141 43 16,1 14,8 115 39,0 37,6 480 141 143 44 16,4 15,2 120 40,4 39,1 490 143 146 45 16,8 15,5 125 41,8 40,6 500 146 149 46 17,1 15,8 130 42,9 42,2 510 149 152 47 17,4 16,1 135 44,8 43,7 520 151 155 48 17,7 16,4 140 46,3 45,2 530 154 157 49 18,1 16,7 145 47,4 46,7 540 156 160 50 18,4 17,1 150 49,1 48,2 550 159 163					ı			1					
43 16,1 14,8 115 39,0 37,6 480 141 143 44 16,4 15,2 120 40,4 39,1 490 143 146 45 16,8 15,5 125 41,8 40,6 500 146 149 46 17,1 15,8 130 42,9 42,2 510 149 152 47 17,4 16,1 135 44,8 43,7 520 151 155 48 17,7 16,4 140 46,3 45,2 530 154 157 49 18,1 16,7 145 47,4 46,7 540 156 160 50 18,4 17,1 150 49,1 48,2 550 159 163													
44 16,4 15,2 120 40,4 39,1 490 143 146 45 16,8 15,5 125 41,8 40,6 500 146 149 46 17,1 15,8 130 42,9 42,2 510 149 152 47 17,4 16,1 135 44,8 43,7 520 151 155 48 17,7 16,4 140 46,3 45,2 530 154 157 49 18,1 16,7 145 47,4 46,7 540 156 160 50 18,4 17,1 150 49,1 48,2 550 159 163								l		1			
45 16,8 15,5 125 41,8 40,6 500 146 149 46 17,1 15,8 130 42,9 42,2 510 149 152 47 17,4 16,1 135 44,8 43,7 520 151 155 48 17,7 16,4 140 46,3 45,2 530 154 157 49 18,1 16,7 145 47,4 46,7 540 156 160 50 18,4 17,1 150 49,1 48,2 550 159 163													
46 17,1 15,8 130 42,9 42,2 510 149 152 47 17,4 16,1 135 44,8 43,7 520 151 155 48 17,7 16,4 140 46,3 45,2 530 154 157 49 18,1 16,7 145 47,4 46,7 540 156 160 50 18,4 17,1 150 49,1 48,2 550 159 163													
47 17,4 16,1 135 44,8 43,7 520 151 155 48 17,7 16,4 140 46,3 45,2 530 154 157 49 18,1 16,7 145 47,4 46,7 540 156 160 50 18,4 17,1 150 49,1 48,2 550 159 163					ı			l		1			
48 17,7 16,4 140 46,3 45,2 530 154 157 49 18,1 16,7 145 47,4 46,7 540 156 160 50 18,4 17,1 150 49,1 48,2 550 159 163													
49 18,1 16,7 145 47,4 46,7 540 156 160 50 18,4 17,1 150 49,1 48,2 550 159 163					ı								
50 18,4 17,1 150 49,1 48,2 550 159 163													
								1		1			
		50	18,4	17,1					159	103			

Fuente: DER Brasil

Tabla 9:Formato para laboratorio del ensayo de Mini-CBR y expansión.

		EN	ISAYO DE SU	ELOS TRO	PICALES (M	IINI-CBR	Y EXPAN	ISION P	(CON	TRACCIO					
FECHA DE II	NICIO:		FECHA	DE TERM	IINO			CALIBR	ACION:	50.14		OS DE E		p2	-P3
ANALISA:								TOLER	ANCIA: 49.1	4-50.14	QUE SE	REALIZA	ARAN:	F2	
NOMBRE D	E LA MUEST	'RA:						P. ADIO	CIONAL:	9.7 gr	HUMED	AD OPTI	MA, %:		
TIPO DE EN	SAYO					INME	DIATO		GIDO 24 ONCARAGA	SUMERO HORAS SII	SIDO 24 N CARAGA		ACCION CARGA	CONTR SIN / C	ACCION CARGA
CANTIDAD	DE AGUA, m	nl													
NUMERO D															
PESO DEL N	OLDE SOLO) . g													
			SUELO HUM	EDO, g											
AS AS	1°		EL EXTENSO		nm										
AC TV	_		L ESPECIMEI												
ACI S ATA		MASA DEL	SUELO HUM	EDO COR	REGIDO, g										
COMPACTACIONE S TENTATIVAS	2°		EL EXTENSO												
8		ALTURA DE	L ESPECIMEI	N, mm											
MASA DEL S	SUELO HUM	IEDO + MOLE	DE+PESO AD	CIONAL											
TARRO N°															
MASA DEL 1	TARRO. g														
		IEDO + TARR	0												
		ECO + TARRO													
MASA DEL															
	SUELO SECO), G													
	DE HUMEI														
		DAD PROMEI	DIO, %												_
	APARENTE,		,												
		N Y CONTRA	CCION P2 - P	3											
	,	TIEMPO				PERI	ODO								
	_	MES	DIA	HORA	MINUTOS	-	NUTOS								
	5					0)								
	LECUTURA DEL EXTENSOMETRO					60									
	8					120									
	DEL					180									
	8					240									
	EN.					300									
	So					360									
	NET .					420									
	RÖ					480									
						1.50									
ABSORCION	I DE AGUA I	Molde + Mu	estra sumers	rida) er											
		ON MINI-CBI													
					PENET	RACION			PE	NETRACI	ON DESF	UES DE	24 HOR	AS	
				mm		EDIATA		SUN	MERGIDO				MERGIDO		RGA
					Lectura dial	_	ga Kg		ra dial		a Kg		ra dial		ga Kg
				0.25			- 0								
				0.50											
				0.75											
CONSTA	ANTE DEL AI	NILLO ()	70	1.00											
			PENETRACION	1.25											
			H	1.50											
			AC.	2.00											
			0			 									
	CELDA & C	`	2			1		_							
	CELDA S)	2	2.50				I							
	CELDA S		2	3.00											
	CELDA S)	2	3.00 3.50											
	CELDA S		2	3.00 3.50 4.00											
	CELDA S		2	3.00 3.50											

Fuente: Propia.

RESULTADOS DE LA CANTERA TROPEZON

: Roberto Julio De la Cruz Medina DOMICILIO LEGAL: San Borja Norte 1079, San Borja

PROYECTO

REFERENCIA

FECHA DE RECEPCIÓN: 2018.08.13

MPLEMENTACION DE LA METCCOLOGIA MINI COMPACTACION

TROFICAL PARA USOS VIALES EN SUELOS TROPICALES

MUESTRA

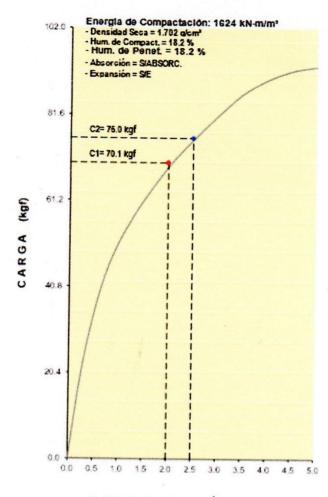
: Cantera Tropezon

IDENTIFICACION : Arcila

Km. 10 - 000 - Arcilla

CANTIDAD

: 25 kg


PRESENTACIÓN

Saco de polietileno

FECHA DE ENSAYO : 2018.06.14 al 2018.08.15

DER M-192/88 Ensayo Mini-CBR y Expansion PENETRACION INMEDIATA

: R. Nº 2118 - 2017 - DFI - UPLA

PENETRACIÓN (mm)

. CALCULO DE Mini-CBR

CBR a 2.0 mm

• CBR a 2.5 mm

25.1 %

25.5 %

ING. CESAR FERREYROS CORCUERA Coordinador de Estudios Dirección de Estudios Especiales

INGENIERO RESPONSABLE Lime, 14 de Junio del 2018

SOLICITANTE

PROYECTO

: Roberto Julio De la Cruz Medina DOMICILIO LEGAL: San Borja Norte 1079, San Borja

IMPLEMENTACION DE LA METOCOLOGIA MINI COMPACTACION TROFICAL PARA USOS VIALES EN SUELOS TROPICALES

MUESTRA IDENTIFICACION : Cantera Tropezon

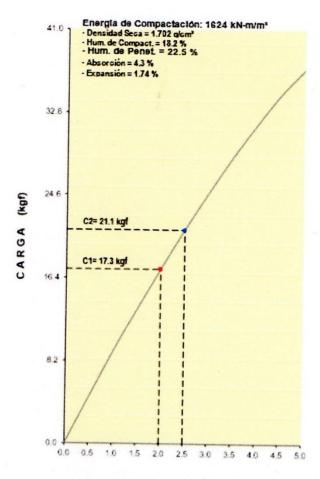
: Arcilla

Km. 10 + 000 - Tropezon-Arcita

REFERENCIA

: R. Nº 2118 - 2017 - DFI - UPLA

FECHA DE RECEPCIÓN: 2018.06.13


CANTIDAD PRESENTACIÓN : 25 kg

Saco de polietileno

FECHA DE ENSAYO : 2018.06.14 al 2018.06.15

DER M-192/88 Ensayo Mini-CBR y Expansion

PENETRACION CON INMERSION Y CON SOBRE CARGA

PENETRACIÓN (mm)

- . CALCULO DE Mini-CBR
- CBR a 2.0 mm
- CBR a 2.5 mm

7.2 % 7.7 %

ING. CESAR FERREYROS CORCUERA Coordinador de Estudios Dirección de Estudios Especiales

INGENIERO RESPONSABLE

Lime, 14 de Junio del 2018

SOUCITANTE

: Roberto Julio De la Cruz Medina

MUESTRA

Cantera Tropezon

DOMICILIO LEGAL: San Borja Norte 1079, San Borja

IDENTIFICACIÓN

Arclia

PROYECTO

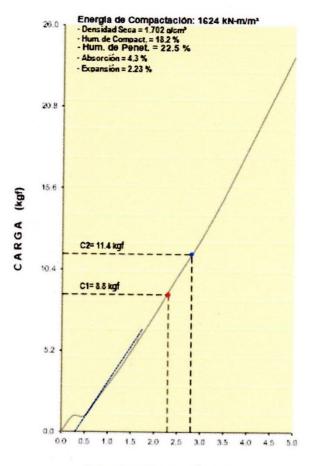
: IMPLEMENTACION DE LA METODOLOGIA MINI COMPACTACION TROPICAL PARA USOS VIALES EN SUELOS TROPICALES

Km. 10 + 000 - Arcile

REFERENCIA

: R. Nº 2118 - 2017 - DFI - UPLA

FECHA DE RECEPCIÓN: 2018.06.13


CANTIDAD PRESENTACION

25 kg

Saco de polietieno FECHA DE ENSAYO : 2018.06.14 al 2018.06.15

DER M-192/88 Ensayo Mini-CBR y Expansion

PENETRACION CON INMERSION

PENETRACIÓN (mm)

- CALCULO DE Mini-CBR
- CBR a 2.0 mm

• CBR a 2.5 mm

3.9 %

4.3 %

ING. CESAR FERREYROS CORCUERA Coordinator de Estudios Dirección de Estudios Especiales

INGENIERO RESPONSABLE Lime, 14 de Junio del 2018

RESULTADOS DE LA CANTERA INFIERNO

SOLICITANTE

: Roberto Julio De la Cruz Medina

MUESTRA

: Cantera Inflerno

DOMICILIO LEGAL: San Borja Norte 1079, San Borja

IDENTIFICACIÓN

: Arcilla

PROYECTO

: IMPLEMENTACION DE LA METODOLOGIA MINI COMPACTACION TROPICAL PARA USOS VIALES EN SUELOS TROPICALES

Km. 15 - 000 - Inferno

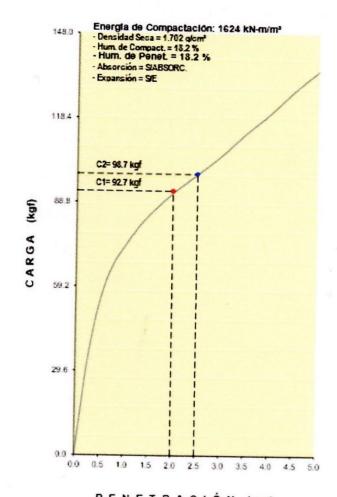
REFERENCIA

: R. N° 2118 - 2017 - DFI - UPLA

CANTIDAD

: 25 kg

: Saco de polietileno


FECHA DE RECEPCIÓN: 2017.06.13

PRESENTACIÓN

FECHA DE ENSAYO : 2018.01.29 al 2018.02.01

DER M-192/88 Ensayo Mini-CBR y Expansion

PENETRACION INMEDIATA

PENETRACIÓN (mm)

- CALCULO DE Mini-CBR
- CBR a 2.0 mm

- CBR a 2.5 mm

32.2 %

32.6 %

ING. CESAR FERREYROS CORCUERA Coordinador de Estudios Dirección de Estudios Especiales

INGENIERO RESPONSABLE Lima, 2 de Febrero del 2018

SOLICITANTE

: Roberto Julio De la Cruz Medina

PROYECTO

DOMICILIO LEGAL: San Borja Norte 1079, San Borja

MPLEMENTACION DE LA METOCOLOGIA MINI COMPACTACION

TROPICAL PARA USOS VIALES EN SUELOS TROPICALES

MUESTRA IDENTIFICACION : Cantera Infiemo

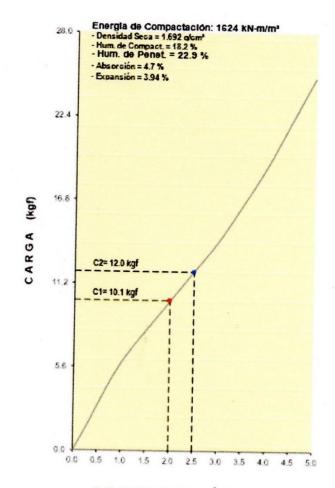
: Arcila

Km. 15 + 000 - Inferno

REFERENCIA

R. Nº 2118 - 2017 - DFI - UPLA

FECHA DE RECEPCIÓN: 2017.06.13


CANTIDAD PRESENTACIÓN : 25 kg

: Saco de polietileno

FECHA DE ENSAYO : 2018.01.29 al 2018.02.01

DER M-192/88 Ensayo Mini-CBR y Expansion

PENETRACION CON INMERSION Y CON CARGA

PENETRACIÓN (mm)

- . CALCULO DE Mini-CBR
- CBR a 2.0 mm

• CBR a 2.5 mm

4.4 %

4.5 %

ING. CESAR FERREYROS CORCUERA Coordinador de Estudios Dirección de Estudios Especiales INGENIERO RESPONSABLE

Lime, 2 de Febrero del 2018

SOLICITANTE

: Roberto Julio De la Cruz Medina

DOMICILIO LEGAL: San Borja Norte 1079, San Borja

: IMPLEMENTACION DE LA METODOLOGIA MINI COMPACTACION SALADIGORT SOLDUS NA SALAV SOSU ARRA LADIGORT

MUESTRA IDENTIFICACION

: Cantera Infierno

: Arcilla

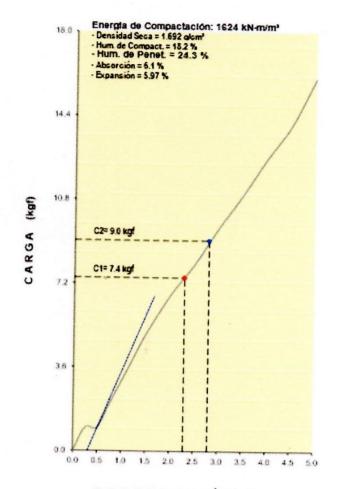
Km. 15 + 000 - Inferno

REFERENCIA

PROYECTO

: R. N° 2118 - 2017 - DFI - UPLA

FECHA DE RECEPCIÓN: 2018.06.13


CANTIDAD PRESENTACIÓN : 25 kg

: Saco de polictieno

FECHA DE ENSAYO : 2018.01.29 al 2018.02.01

DER M-192/88 Ensayo Mini-CBR y Expansion

PENETRACION CON INMERSION

PENETRACIÓN (mm)

- . CALCULO DE Mini-CBR
- CBR a 2.0 mm
- CBR a 2.5 mm

3.4 % 3.5 %

ING. CESAR FERREYROS CORCUERA Coordinador de Estudios Dirección de Estudios Especiales INGENIERO RESPONSABLE

Lima, 2 de Febrero del 2018

MUESTRAS DE EL RIO NOAYA

SOLICITANTE

: Roberto Julio De la Cruz Medina

PROYECTO

DOMICILIO LEGAL: San Borja Norte 1079, San Borja

MPLEMENTACION DE LA METODOLOGIA MINI COMPACTACION

TROPICAL PARA USOS VIALES EN SUELOS TROPICALES

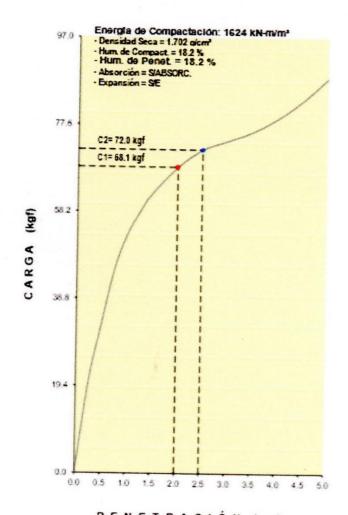
MUESTRA IDENTIFICACIÓN Cantora Noaya

Arena

Puente del rio Noeye - Arena

REFERENCIA R. N° 2118 - 2017 - DFI - UPLA

FECHA DE RECEPCIÓN: 2018.06.13


CANTIDAD PRESENTACIÓN

25 kg Saco de poliebleno

FECHA DE ENSAYO : 2018.03.01 al 2018.03.02

DER M-192/88 Ensayo Mini-CBR y Expansion

PENETRACION INMEDIATA

PENETRACIÓN (mm)

- · CALCULO DE Mini-CBR
- CBR a 2.0 mm

• CBR a 2.5 mm

24.5 % 24.2 %

> ING. CESAR FERREYROS CORCUERA Coordinador de Estudios irocción de Estudios Especiales NGENIERO RESPONSABLE

Lime, 3 de Merzo del 2018

SOLICITANTE

PROYECTO

REFERENCIA

FECHA DE RECEPCIÓN: 2018.08.13

: Roberto Julio De la Cruz Medina

DOMICILIO LEGAL: San Borja Norte 1079, San Borja

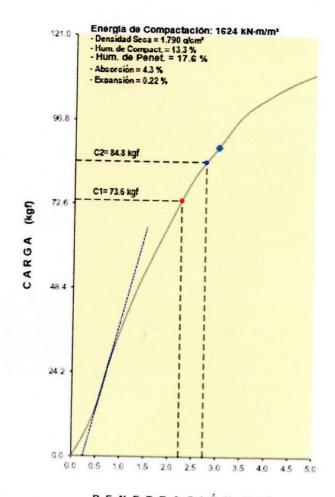
IMPLEMENTACION DE LA METODOLOGIA MINI COMPACTACION

MUESTRA **IDENTIFICACION** : Noaya : Arena

Puente del río Noaya - Avena

TROPICAL PARA USOS VIALES EN SUELOS TROPICALES

CANTIDAD


: 25 kg

PRESENTACIÓN : Saco de polietileno FECHA DE ENSAYO : 2018.03.01 al 2018.03.04

DER M-192/88 Ensayo Mini-CBR y Expansion

: R. Nº 2118 - 2017 - DFI - UPLA

PENETRACION CON INMERSION Y CON SOBRE CARGA

PENETRACIÓN (mm)

- CALCULO DE Mini-CBR
- CBR a 2.0 mm

. CBR a 2.5 mm

26.2 % 28.2 %

ING. CESAR FERREYROS CORCUERA Coordinader de Estudios Dirección de Estudios Especiales

INGENIERO RESPONSABLE

Lime, 4 de Marzo del 2018

SOLICITANTE

: Roberto Julio De la Cruz Medina

DOMICILIO LEGAL: San Borja Norte 1079, San Borja

PROYECTO

REFERENCIA

: IMPLEMENTACION DE LA METODOLOGIA MINI COMPACTACION

TROPICAL PARA USOS VIALES EN SUELOS TROPICALES

: R. Nº 2118 - 2017 - DFI - UPLA

FECHA DE RECEPCIÓN: 2018.05.13

MUESTRA

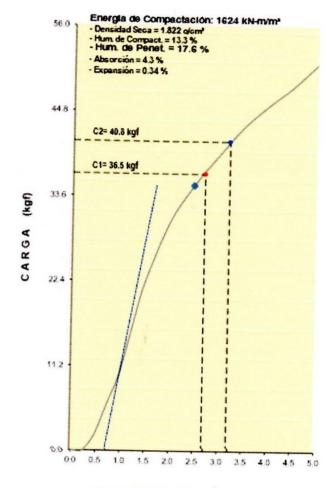
: Cantera Noaya

IDENTIFICACION : Arena

Pueme del no Noaya - Arena

CANTIDAD

: 25 kg


PRESENTACIÓN

Saco de polietileno

FECHA DE ENSAYO : 2018.03.01 al 2018.03.04

DER M-192/88 Ensayo Mini-CBR y Expansion

PENETRACION CON INMERSION

PENETRACIÓN (mm)

- . CALCULO DE Mini-CBR
- CBR a 2.0 mm

14.0 %

• CBR a 2.5 mm

14.2 %

ING. CESAR FERREYROS CORCUERA Coordinado de Estudios Dirección de Estudios Especiales

INGENIERO RESPONSABLE Lima, 4 de Marzo del 2018

4.2.3. Ensayo de Contracción (P-3).

4.2.3.1. Consideraciones Preliminares.

Es uno de los ensayos suplementarios más importantes para el mejor aprovechamiento de suelos tropicales en pavimentación, sobre todo de aquellos de granulación fina, apropiados para la peculiaridad del climática tropical - elevada temperatura todo el año y fuerte aumentando de la evaporación y acelera la pérdida de humedad en las capas de suelos compactados.

Sin embargo, tradicionalmente se consideran algunas propiedades de los suelos vinculados a la contracción, tales como el "límite de contracción" y la "contracción volumétrica", que poco representan para el propósito que necesitamos, debido a que se determinan a partir de cuerpos de prueba moldeados en estado de pasta (próximo al límite de liquidez) y, por lo tanto, con suelos no compactados. Además, tales ensayos son bastante laboriosos y, muchos de ellos, involucra el uso de mercurio, actualmente considerado material tóxico que requiere cuidados especiales para el manejo.

Propuesto por Villibor (1981), fue implantado en el DER-SP, con las mismas directrices, en su método del DER M 194-88. El método descrito, aunque se constituye en una importante contribución de la metodología MCT.

4.2.3.2. Equipos y Materiales Específicos.

- a) **Armazón** rígido que permita albergar, verticalmente, un cuerpo de prueba de unos 50,0 mm de diámetro y 50,0 mm de altura, y que pueda sostener el dial de manera permanente hasta que termine el ensayo y que posibilite buena ventilación del cuerpo de prueba por todos lados, incluso en la base.
- b) **Extensómetros** adaptables al armazón, al menos 3, lectura directa de 0,01 mm, recorrido de al menos 10 mm, provisto de un cuentavueltas.
- c) **Placas de piedra porosa** circulares, con diámetro alrededor de 50,0 mm y espesor de 5,0 mm, con poros visibles a simple vista y caras perfectamente

planas y paralelas, y esta destinadas a recibir la punta del extensómetro, deben tener un pequeño círculo o cuadrado de apoyo plano (de vidrio, acrílico, etc.).

4.2.3.3. Procedimiento de Ensayo.

Cuerpos de prueba.

Debe ser preparado según el procedimiento Mini-Proctor, o en casos preliminares, según el procedimiento Mini-MCV P5, o el descarte de cualquier ensayo que nos ponga a disposición CP para registrar deformación. En los casos rutinarios, se pueden utilizar cuerpos de prueba sometidos a la penetración Mini-CBR (evidentemente no embebidos).

Montaje.

Colocar una piedra porosa en el centro de la base del dispositivo de medida de la contracción y, sobre ella, colocar el cuerpo de prueba. En la parte superior del cuerpo de prueba, colocar una piedra porosa apropiada o pegar, con parafina o epoxi, una pequeña placa plana para servir de apoyo a la punta del vástago del extensómetro. Utilizar armazones con extensómetros, para cuerpos de prueba que tengan un contenido de humedad de Compactación en el ramo húmedo. Ajustar el extensómetro de manera que se pueda leer una eventual pequeña contracción (orden de unos centésimas de mm). Evitar al máximo, secado muy rápido o muy lento, evitando corrientes de aire.

Figura 106:Contracción de la muestra Tropezón sin sobre carga. Fuente: Propia.

Figura 107:Contracción de la muestra tropezón con sobrecarga con una pesa de 420 g.
Fuente: Propia.

Contracción de la muestra infierno en el horno a 32 °C simulando la temperatura de un ambiente tropical que es de 30 °C hasta más de 40 °C, ya que en la ciudad de Lima en el mes de junio es de 14 °C y 19 °C.

Figura 108:Ensayo de contracción en el horno.

Fuente: Propia.

4.2.3.4. Lecturas.

La lectura inicial (Li) del extensómetro (en centésimas de mm), debe realizarse cuanto antes, ya que ciertos cuerpos de prueba empiezan a contraer luego de la retirada del cuerpo de prueba del molde. Realizar la segunda lectura antes de completar una hora. Realizar lecturas cada hora; después de algunas horas el espaciamiento de las lecturas puede estar aumentado, pudiendo hacer coincidir con el período nocturno. Generalmente al día siguiente, es decir, después de aproximadamente 14 horas, los cuerpos de prueba alcanzan una variación constante periódica, considerada como la lectura final (Lf) del extensómetro (en centésimas de mm).

4.2.3.5. Calculo de Contracción.

Usar la siguiente formula:

$$Ct = \frac{Lf - Li}{Lo} \times 100 \, [\%]$$

Ct = Contracción Axial [mm];

Li = Lectura Inicial [mm];

Lf = Lectura Final [mm];

Lo = Lectura inicial del cuerpo compactado dentro del molde [mm];

4.2.3.6. Presentación de Resultados.

Representar Ct en función del contenido de humedad de Compactación, trazar la curva y determinar el valor correspondiente a la Humedad Óptima de Compactación; las curvas deben ser continuas. La presencia de depresiones de las curvas, generalmente corresponde a errores en las determinaciones.

Tabla 10:Para el ensayo de contracción.

			ISAYO DE SU		PICALES (M	·		NSION P		TRACCIO	N P3)				
FECHA DE II	NICIO:				IINOO/III				ACION:	50.14		OS DE EI	NSAYOS		
								-	ANCIA: 49.1			REALIZA		P2	-P3
1		'RA :							CIONAL:		HUMED	AD OPTI	MA. %:		
						INIME	DIATO		GIDO 24	SUMER	SIDO 24	CONTR	ACCION		ACCION
TIPO DE EN						INNE	DIATO	HDRAS CO	NCARAGA	HORAS SI	N CARAGA	CON /	CARGA	SIN /	CARGA
NUMERO D	DE AGUA, m	11				-		_		_		_			
						-		-							
	NOLDE SOLO		SUELO HUM	EDO =		-		_							
NO S	1°		EL EXTENSO			_		_							
MPACTACION S TENTATIVAS	1		L ESPECIMEI		nm	_		_							
S TAT			SUELO HUM	_	PECIDO ~	-		_							
IPA EN	2°		EL EXTENSO			_		_							
COMPACTACIONE S TENTATIVAS			L ESPECIMEI		nm	_		_							
	SHELO HIIM	EDO + MOLE		,		_		_				_			
TARRO N°	JOELO HOIVI	EDO + MOLL	ZETT ESO AD	CIOINE		_				_		_			
MASA DEL	TARRO =								\vdash						
		EDO + TARR	0			_									
		ECO + TARRO													
MASA DEL															
	SUELO SECO	, G													
	DE HUMEI														
		DAD PROMEI	010, %												
	APARENTE,														
		N Y CONTRA	CCION P2 - P	3		•				•		•			
		TIEMPO				PERI	ODO								
	=	MES	DIA	HORA	MINUTOS	EN MI	NUTOS								
	2					0									
	로					60									
	S .					120									
	LECUTURA DEL EXTENSOMIETRO					180									
	ä					240									
	NS.					300									
	≥ ≤					360									
	E					420									
	ö					480									
		Molde + Mu		gida), gr											
ENSAYO DE	PENETRACI	ON MINI-CBI	R												
						RACION					ON DESF				
				mm		EDIATA				CON CA		_	MERGIDO		
					Lectura dial	Carg	ga Kg	Lectu	ra dial	Carg	ga Kg	Lectu	ra dial	Car	ga Kg
				0.25		-									
				0.50		-									
CONST	ANTE DEL AN		- 70	0.75		-									
CONSTA	AINTE DEL AI		PENE	1.00		-									
			E	1.25		_		_							
			TRACION	2.00		_		_							
	CELDA C	`	ON ON	2.50		_									
	CELDA S	,	_	3.00		_									
				3.50		_									
				4.00		_									
				4.50		_									
				5.00											
				5.50											
				3.30											

Fuente: Propia.

: Roberto Julio De la Cruz Medina

PROYECTO

DOMICILIO LEGAL: San Borja Norte 1079, San Borja

: IMPLEMENTACION DE LA METODOLOGIA MINI COMPACTACION TROPICAL PARA USOS VIALES EN SUELOS TROPICALES

MUESTRA

: Cantera Tropezon

IDENTIFICACIÓN Arcilla

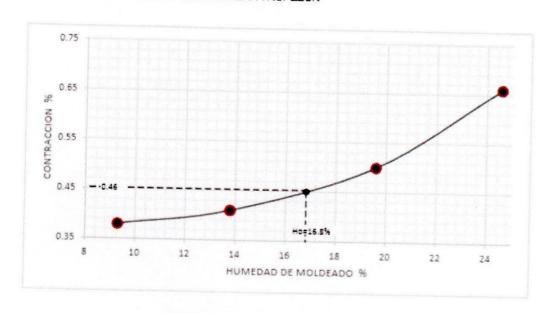
Km. 10 + 000 - Arcile

CANTIDAD

25 kg

PRESENTACIÓN

Saco de polietileno FECHA DE ENSAYO : 2018.03.27 al 2018.03.30


REFERENCIA

: R. Nº 2118 - 2017 - DFI - UPLA

FECHA DE RECEPCIÓN : 2018.03.10

DER M-194-88 Ensayo de Contracción

CONTRACCION DE LA CANTERA TROPEZON

HUMEDAD %	CONTRACCION %
9.3	0.38
13.8	0.41
19.6	0.50
24.6	0.66

. CALCULO DE CONTRACCION

· Contracción para el optimo contenido de humedad

Lime, 30 de Merzo del 2018

ING. CESAR FERREYROS CORCUERA Coordinador de Estudios Dirección de Estudios Especialos INGENIERO RESPONSABLE

SOLICITANTE

REFERENCIA

Roberto Julio De la Cruz Medina DOMICILIO LEGAL: San Borja Norte 1079, San Borja

: R. Nº 2118 - 2017 - DFI - UPLA

PROYECTO

IMPLEMENTACION DE LA METODOLOGIA MINI COMPACTACION

TROPICAL PARA USOS VIALES EN SUELOS TROPICALES

FECHA DE RECEPCIÓN: 2018.03.10

MUESTRA

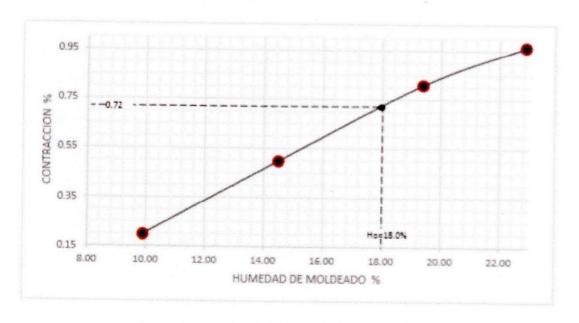
Cantera Infierno

IDENTIFICACIÓN Arcilla

Km. 15 + 000 - Arcita

CANTIDAD

: 25 kg


PRESENTACION

: Saco de polietileno

FECHA DE ENSAYO : 2018.03.27 al 2018.03.30

DER M-194-88 Ensayo de Contracción

CONTRACCION DE LA CANTERA INFIERNO

HUMEDAD %	CONTRACCION %
9.90	0.20
14.50	0.50
19.40	0.81
22.89	0.96

· Optimo contenido de humedad

13.00 %

CALCULO DE CONTRACCION

Contraccion para el optimo contenido de humedad

0.72 %

iNG. CESAR FERREYROS CORCUERA Coordinador de Estudios Dirección de Estudios Especiales INGENIERO RESPONSABLE

Lima, 30 de Marzo del 2018

SOLICITANTE

: Roberto Julio De la Cruz Medina

DOMICILIO LEGAL: San Borja Norte 1079, San Borja

PROYECTO

IMPLEMENTACION DE LA METODOLOGIA MINI COMPACTACION TROPICAL PARA USOS VIALES EN SUELOS TROPICALES

REFERENCIA R. Nº 2118 - 2017 - DFI - UPLA FECHA DE RECEPCIÓN: 2018.03.10

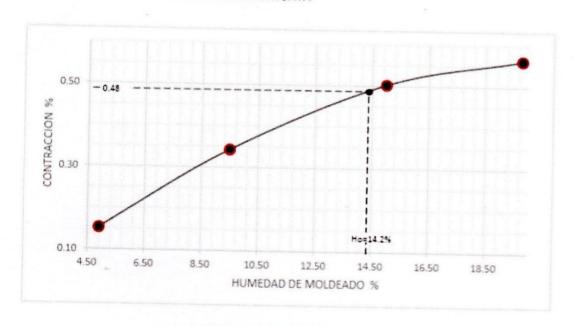
MUESTRA

: Puente del dio Noaya

IDENTIFICACIÓN Arena

Carretera Inter Oceanica

CANTIDAD


: 25 kg

PRESENTACIÓN

Saco de polietileno 2018.03.27 al 2018.03.30

FECHA DE ENSAYO : DER M-194-88 Ensayo de Contracción

CONTRACCION DE LA MUESTRA NOAYA

HUMEDAD %	CONTRACCION %
4.90	0.15
9.50	0.34
15.00	0.50
19.80	0.56

Optimo contenido de humedad

14.20 %

- . CALCULO DE CONTRACCION
- · Contracción para el óptimo contenido de humedad

0.43 %

ING. CESAR FERREYROS CORCUERA Coordinador de Estudios Dirección de Estudios Especiales INGENIERO RESPONSABLE

Lima, 30 de Marzo del 2018

4.2.4.1. Consideraciones para la Infiltrabilidad y Permeabilidad.

El ensayo de infiltrabilidad tiene como objetivo determinar la penetración de agua en cuerpos de prueba de suelos compactados a fin de que se pueda, cualitativamente, prever ese fenómeno en las capas de los pavimentos y sus adyacencias, sobre todo después de su compactación. Se observa que, en suelos tropicales, principalmente en los lateríticos, esta penetración puede alejarse bastante de los resultados obtenidos en cuerpos de prueba compactados en laboratorio, debido a la interferencia de grietas y fisuras que se desarrollan, generalmente por el uso de técnica constructiva no convencional (que incluye el secado durante esa fase), o después de varios años de servicio.

Lo propuesto por Villibor (1981), fue implantado en el DER-SP, con las mismas directrices, en su método DER M 194-88. El uso práctico de los resultados de este ensayo, se limita a la elección de suelos para caminos y para bases revestidas de capas bituminosas, sujetas eventualmente a considerable infiltración de agua, con eventual desarrollo de orificios llenas con contenido de agua. Los ensayos de infiltrabilidad no deben confundirse con los de permeabilidad, tradicionalmente considerados en mecánica de los suelos.

. El estudio de capas de suelos tropicales constituyentes en los pavimentos, se, mostró que casi no ocurre la necesaria exposición prolongada a una lámina de agua, hasta un régimen permanente, indispensable para que el proceso de la permeabilidad.

Además, para suelos arcillosos, arcillo-arenosos y limosos (coeficiente c '> 1), una idea de la Permeabilidad puede obtenerse a través del ensayo de Infiltrabilidad.

4.2.4.2. Ensayo de Infiltrabilidad

4.2.4.2.1. Equipos Especifico para el Ensayo de Infiltrabilidad.

Equipos para medida de infiltrabilidad.

Recipiente de Base: Provisto de una placa porosa circular (50,0 mm de diámetro y 5,0 mm de espesor), con Permeabilidad aproximada de 10⁻² cm/s, dispuesto horizontalmente, llena de agua, que se comunica con el tubo de vidrio mediante una manguera de látex (abajo mostrado) provisto de un dispositivo que permite un contacto hermético con la cara externa de la base del molde de Compactación (generalmente envuelta por un tubo de obturación de goma).

Figura 109:Recipiente base de 50.0 mm de diámetro interior.

Figura 110:Piedra porosa que se coloca entre el recipiente base y el molde con el cp. Fuente Propia.

Tubo de vidrio: diámetro interior de aproximadamente 5,0 mm de sección uniforme conocida, longitud de 1000 a 1400 mm, provisto de escala en milímetros, dispuesto horizontalmente de manera que el menisco de agua, dentro de él, permita mantener un nivel hidrostático coincidente con la superficie de la placa porosa arriba mencionada.

Figura 111:Colocación de la regla metálica y de las grapas para asentar los tubos de vidrio.

Soporte ajustable que posibilite nivelar el molde con el cuerpo de prueba, a la base del recipiente y el tubo de vidrio.

Figura 112:Soporte de madera que nivela el tubo de vidrio con el cuerpo de prueba. Fuente Propia

Montaje del Conjunto de Ensayo.

Enrollar o envolver, si es necesario, el jebe de goma en forma de tubo de manera que la parte enrollada o envuelta quede en el mismo plano de la piedra porosa del recipiente base. Compruebe que este recipiente esté libre de aire. La eliminación del aire se puede hacer sumergiendo el recipiente base dentro del agua e inyectando agua desde la punta del tubo de vidrio, de manera que la lámina de agua sea visible sobre la placa porosa, sin que haya derrame lateral.

Quitar los discos de polietileno, adheridos a las extremidades del cuerpo de prueba; colocar sobre el mismo un disco de piedra porosa y una placa perforada con vástago (Soporte de la pesa) y peso estándar. Transferir el molde, conteniendo el cuerpo de prueba, de manera que se adapte perfectamente sobre la placa porosa, apoyándose inicialmente de un lado y enderezando después, para expulsar agua y aire.

Desenrollar el tubo sellador de goma colocando, si es necesario, un "0" Ring para asegurar necesariamente el sellado. Retirar o añadir agua, en el tubo de vidrio horizontal, hasta que el menisco alcance el inicio o aproximado a la graduación.

La figura siguiente se ilustra el conjunto para la ejecución del ensayo en cuestión.

Figura 113:Equipos y materiales en el orden que se coloca antes del ensayo Fuente propio

Figura 114:La función del tubo de jebe ayuda a que sea más hermético.

4.2.4.2.2. Lecturas para el Ensayo de Infiltrabilidad.

Proceder a la lectura Lo, en el tubo horizontal, correspondiente al tiempo To. Cuando los cuerpos de prueba están en la rama seca de la curva de compactación, el desplazamiento del menisco en el tubo horizontal es muy rápido y la primera lectura, Lo, difícilmente coincidirá con el cero de la escala milimétrica.

Cuando los cuerpos de prueba estén en la rama húmeda de la curva de compactación, el ajuste del cero del menisco, en el tubo horizontal, puede ser hecho mediante retirada del agua con jeringa apropiada.

Efectuar lecturas sucesivas de los pares Li y Ti, en tiempos proporcionales a $T^{\frac{1}{2}}$, por ejemplo:

1, 4, 9, 16, 25, ..., n² (n = 1,2,3 ...) minutos, o cerca de estos valores (generalmente varía de 4 a 20). Considerar terminado el ensayo cuando el desplazamiento del menisco en el tubo horizontal se estabilice, lo que generalmente ocurre antes de las 23 horas.

Si no ocurre dicha estabilización, debe haber una fuga en el conjunto lo que invalida los resultados obtenidos.

Repetir las operaciones, similarmente, para otros cuerpos de prueba.

Figura 115:Las lecturas se realizan con el menisco como se muestra en la figura donde las lecturas serán 88.5 cm y 80 cm.

4.2.4.2.3. Representaciones Gráficas de Infiltrabilidad.

Para cada cuerpo de prueba, o para cada conjunto de lecturas para el mismo cuerpo de prueba (caso de repetición), los valores de las lecturas adoptando en ordenadas (eje y), las lecturas (en cm) del menisco en el tubo horizontal y en abscisas (eje x), el tiempo de lectura en escala proporcional a la raíz cuadrada del tiempo (en minutos) y verificar si los puntos se alinean según una recta inclinada.

A menudo, los puntos iniciales pertenecen a una curva.

En ese caso, desplazar paralelamente la parte rectilínea inclinada, de manera que pase de origen a fin de facilitar los cálculos. La alineación de los últimos puntos, debe tender a una horizontal.

La intersección de las rectas obtenidas, con la horizontal, dará para cada cuerpo de prueba, el tiempo de ascenso tiempo de ascenso (ta) en minutos, ver figura 117.

4.2.4.2.4. Cálculos Infiltrabilidad:

Coeficiente de absorción (o ...)

$$S = \frac{(L1 - L2) \times St}{(\sqrt{T_2} - \sqrt{T_1}) \times Sp} \dots \left[\frac{cm}{\sqrt{min}}\right]$$

Donde:

L1 y L2 = son puntos de la recta [cm] que pasa por el origen y correspondientes a lostiempos t1 y t2, de la misma recta, expresados en minutos. [mm];

St = Sección interna media del tubo horizontal [cm²];

Sp = Sección del cuerpo de prueba [cm²];

Velocidad de desplazamiento del frente de humedad

$$V = \frac{a}{\sqrt{Ta}} \dots \left[\frac{cm}{\sqrt{min}} \right]$$

Donde:

a = Altura inicial del cuerpo de prueba. [cm];

Ta = Tiempo de ascenso [min.];

Sp = Sección del cuerpo de prueba [cm²];

Equipos de materiales para manufacturar el equipo de infiltrabilidad:

02 tubos de vidrio de 5 mm Ø interior y 1.20 m de largo

02 mangueras de látex

01 regla metálica de 1 m

01 madera de 5 cm x 2 cm y 1.30 m de largo

06 grapas de cable de 8 mm

01 cola sintética

02 tacos de madera que sea más alto que el pico de la base

02 piedra porosa

02 base del cuerpo del cuerpo de prueba

02 tubos de jebe

10 abrazaderas de plástico

Figura 116:Pegado de las bases que son tacos de madera. Fuente: Propia.

Figura 117:Colocación de los tubos de jebe Fuente: Propia.

Figura 118:Colocación de las sobre cargas de 490 g encima del Cp. Fuente: Propia.

Figura 119: Ejecución de infiltrabilidad de la muestra Infierno. Fuente: Propia.

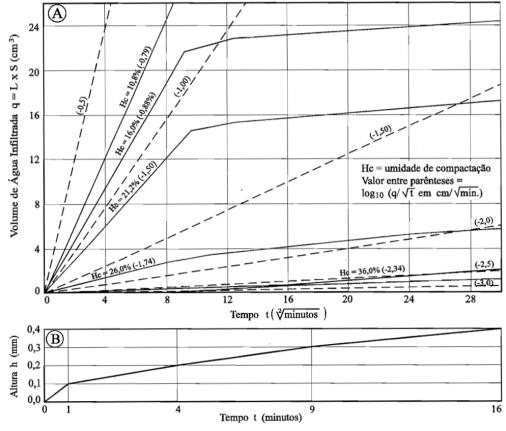


Figura 120:Resultados de un ensayo de determinación de las características de infiltración de suelos.

Fuente: Pavimento de bajo costo con suelos lateríticos, 1995

Tabla 11:Formato de ensayo para infiltrabilidad y permeabilidad.

		I:Forma			para in	пшта	DIIIQ	ad y pe	rmea	ibilida	a.			
		IDAD E INFIL				0 "		CALIBRACIO	N. 50	1.1			P4	
l						_	NFILTRABILIDAD PERMEABILIDAD	CALIBRACIC		── METO	DOS DE ENSAYOS		P4	
1						$\overline{}$		TOLERANCI		_	DAD ODTINA 0/	┼		
		NON	IBKE DE LA N	/IUESTRA :				P. ADICIONA			DAD OPTIMA, % :	 	ONTRA	
TIPO DE EN						INFILTE	RABILIDAD	INFILTRABILID	AD F	PERMEABILIDAD	PERMEABILIDAD		IUESTRA	
NUMERO D												₽		
PESO DEL M	10LDE SOLO											 		
S SE			SUELO HUME									ļ		
CIC	1°		EL EXTENSO									<u> </u>		
COMPACTACIONE S TENTATIVAS			L ESPECIMEN									<u> </u>		
PAC			SUELO HUME		iIDO, g									
M H	2°		EL EXTENSO											
S			L ESPECIMEN	•										
	MASA	DEL SUELO F	IUMEDO + N	IOLDE+PESO										
					TARRO N°									
				MASA D	EL TARRO, g									
			MASA DEL SI	JELO HUMEI	DO + TARRO									
			MASA DEL	SUELO SE	CO + TARRO									
				MASA [DEL AGUA, g									
			M	ASA DEL SUI	ELO SECO, G									
			CONT	ENIDO DE H	UMEDAD, %							1		
		CONT	TENIDO DE H	UMEDAD PR	OMEDIO, %		•	,		•	•	1		
			DENS	IDAD APARE	NTE, g/cm3							1		
				E	NSAYO DE,	INFILTR.	ABILIDA) - P4			•			
		TIEI	MPO				URA EN METROS	LECTURA EN		LECTURA EN MILIMETROS	LECTURA EN MILIMETROS		CTURA EN	
N°	DIA	HORA	MINUTOS	PERIODO (MINUTOS)	IVIILII	WIETROS	WILLIVIETRO	3	WILLINETROS	WILLIWIETROS	THE	IIVIETRO	1111
1		1101111		1								1	Ш	Ш
2				4								-		
3				9								-	Ш	
4				16										#
5				25		-						-	ш	Ш
6				36		-					+	-	###	ш
7				49								-	###	
8				64		<u> </u>						-		Ш
9												-	ш	ш
				81								-	##	Ш
10				100									ш	ш
11				121							+	-	##	Ш
12				144									###	#
13				169		-						-	₩	Ш
14				196		-						4	ш	Ш
15				225									###	Ш
16		1		256										
17				289										
18				324										
19				361									+	
20				400		<u> </u>								
					NSAYO DE,	PERME	ABILIDAD) - P4						
1				10										
2				20										
3				30									##	
4				40										Ш
5				60										
6				80										
7				120										Ш
8				240							1			
9				300										
		1		300							+			
	1	1			•	1			1					_

SOLICITANTE

: Roberto Julio De la Cruz Medina DOMICILIO LEGAL: San Borja Norte 1079, San Borja

PROYECTO IMPLEMENTACION DE LA METODOLOGIA MINI COMPACTACION TROPICAL PARA USOS VIALES EN SUELOS TROPICALES

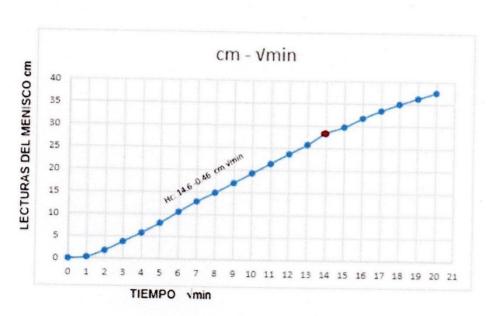
MUESTRA **IDENTIFICACION**

Cantera Inflerno

Arcilla

Km 15+00 Arcile - Inferno

REFERENCIA R. Nº 2118 - 2017 - DFI - UPLA FECHA DE RECEPCIÓN : 2018.05.18


CANTIDAD PRESENTACION


: 25 kg Saco de polietieno

FECHA DE ENSAYO : 2018.05.18 al 2018.05.20

DER M-194/88 Ensayo de Infiltrabilidad

INFILTRABILIDAD DE LA CANTERA INFIERNO

CALCULO DE INFILTRABILIDAD

Energia de compactación
 Densidad seca
 Humedad de la compactación
 Velocidad de frente de humedad
 Coeficiente de Absorción

1624.0 KN*m/m² 1.809 g/cm² 14.6 % 0.34 cm Amin 0.020 cm Amin-

-0.463 log(cm Almin)

ING. CESAR FERREYROS CORCUERA Coordinador de Estudios Dirección de Estudios Especiales INGENIERO RESPONSABLE

Lima, 21 de Meyo del 2018

SOLICITANTE

: Roberto Julio De la Cruz Medina DOMICILIO LEGAL : San Borja Norte 1079, San Borja

PROYECTO

METOCO DE ENSAYO PARA LA COMPACTACION DE SUELOS EN LABORATORIO CON ENERGIA MODIFICADA Y CONTRASTE CON LA

METCOOLOGIA MINI COMPACTACION TROPICAL Y CLASIFICACION EN

REFERENCIA

BUELOS TROPICALES : R. N° 2118 - 2017 - DFI - UPLA

FECHA DE RECEPCIÓN: 2018.05.10

MUESTRA IDENTIFICACION

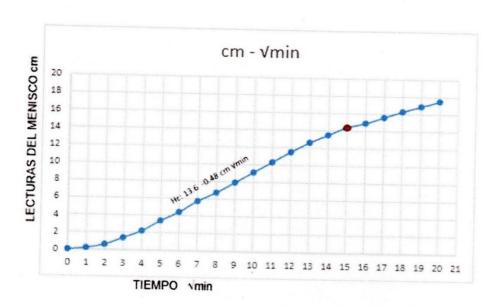
: Noaya

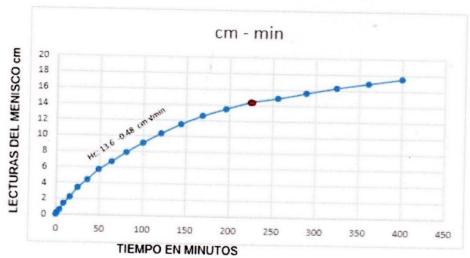
Arena

Puente del rio Noaye

CANTIDAD

25 kg


PRESENTACION


Saco de polietieno

FECHA DE ENSAYO : 2018.05.15 al 2018.05.17

DER M-194/88 Ensayo de Infiltrabilidad

INFILTRABILIDAD DE LA MUESTRA NOAYA

• CALCULO DE INFILTRABILIDAD

- Energia de compactación
 Densidad seca
- Humedad de la compactación
 Velocidad del frente de humedad
 Coeficiente de Absorción

1624.0 KN*mim* 1.809 g/cm² 13.6 % 0.3 cm //min 0.010 cm //min=

-0.481 : Log (cm //min)

ING. CESAR FERREYROS CORCUERA. Coordinador de Estudios Dirección de Estudios Especiales INGENIERO RESPONSABLE

Lima, 20 de Mayo del 2018

SOLICITANTE

: Roberto Julio De la Cruz Medina DOMICILIO LEGAL : San Borja Norte 1079, San Borja

PROYECTO

METODO DE ENRAYO PARA LA COMPACTACIÓN DE SUELOS EN LABORATORIO CON ENERGIA MOCIFICACIA Y CONTRASTE CON LA METODOLOGIA MINI COMPACTACIÓN TROPICAL Y CLASIFICACIÓN EN

8UELOS TROPICALES R. N° 2118 - 2017 - DFI - UPLA

REFERENCIA

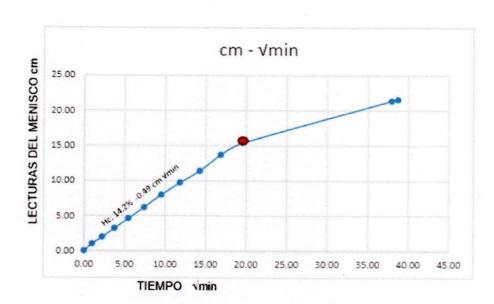
FECHA DE RECEPCIÓN: 2018.03.10

MUESTRA

: Cantera Tropezon

IDENTIFICACION Arcilla

Km. 10 + 000 - Arcile


CANTIDAD

: 25 kg

PRESENTACIÓN Saco de poletieno FECHA DE ENSAYO : 2018.03.14 al 2018.03.16

DER M-194/88 Ensayo de Infiltrabilidad

INFILTRABILIDAD DE LA CANTERA TROPEZON

CALCULO DE INFILTRABILIDAD

Energia de compactación
 Densidad sece

Humedad de la compactación
 Velocidad de frente de humedad
 Coeficiente de Absorción

1624.0 KN*m/m² 1.873 g/cm² 11.4 % 0.2 cm //min 0.023 cm //min =

-0.493 log (cm //min)

ING. CESAR FERREYROS CORCUERA Coordinado de Estudios Dirección de Estudios Especiales INGENIERO RESPONSABLE

Lima, 30 de Marzo del 2018

4.2.4.3. Ensayo de Permeabilidad

4.2.4.3.1. Equipo para Medida de la Permeabilidad.

- Bandeja de base que permite mantener firmes y en la vertical, los cuerpos de prueba, y escurrir el agua; contenedor basal (incluso utilizado en el ensayo de infiltrabilidad) que contiene placa, goma de sellado, boquilla y conexiones apropiadas.
- Tapón de goma perforada, que permite conectar la bureta al molde por medio de tubos de goma o de plástico, flexibles.
- Tubo de vidrio de sección de 2,0 cm² o 16 mm Ø, dispuestas verticalmente y vistas de escala milimétrica (para lectura del nivel de agua), graduadas con el cero coincidente con el nivel de descarga de la base del recipiente, referido en el punto a) anterior, y el final, un número entero, por ejemplo, 700, 800 mm, correspondiente al nivel máximo en la bureta, para facilitar las lecturas.
- Recipiente base de metal con un conducto metálico de 5 mm Ø, como se muestra en la figura 109.

4.2.4.3.2. Determinación de la Permeabilidad.

Cuerpos de prueba.

Pruebe a obtenerlos según el procedimiento Mini-Proctor, conforme al ensayo P1, pero en su humedad optima, de manera que los cuerpos de prueba estén debidamente desplazados a uno de los extremos del molde.

4.2.4.3.3. Saturación de los Cuerpos de Prueba para Ensayo de Permeabilidad.

Terminado el ensayo de infiltrabilidad, generalmente todos los cuerpos de prueba provenientes del mismo ensayo se utilizan sin retirar el recipiente embace y el tubo de goma sellador.

Si el cuerpo de prueba es arcilloso y tiene humedad superior a la óptima, para acelerar la saturación se puede sumergirlo en un baño de agua capaz de aplicar mayor columna de agua, colocar como complemento hermético el tapón de jebe

encima del molde, a continuación, un tubo flexible de jebe en la punta del receptor de la base, que se pueda conectar a una columna apropiada de agua.

Dejar caer agua hasta que la lámina de agua suba dentro del molde.

Cuando el cuerpo de prueba no se sometió previamente al ensayo de infiltrabilidad, se debe adaptar el mismo tipo de recipiente base utilizado en el ensayo de infiltrabilidad, teniendo el cuidado de llenarlo completamente con agua y mantener su pico conectado a un tubo flexible en contacto con un depósito de agua, con lámina de agua cerca del nivel de la placa porosa, hasta saturar el cp.

4.2.4.3.4. Montaje del Conjunto de Ensayo para Permeabilidad.

Transferir el conjunto (plantilla con cuerpo de prueba y su contenedor base y sobrecarga) a la bandeja de soporte. Llenar de agua en molde y adaptar el tapón con tubo de goma de manera que, al apretar el tapón, el agua suba por el tubo de vidrio, expulsando el aire. Llenar el tubo de vidrio hasta el nivel máximo entero de la escala, y dejar caer el agua.

4.2.4.3.5. Lecturas de Permeabilidad.

Las lecturas de la posición del menisco (Hi) en el tubo de vidrio de 16 mm Ø, se realizan en la escala graduada [mm]. En el caso de Permeabilidad, efectuar las lecturas de la posición del menisco en los tiempos 10, 20, 30, 40, 60, 80, 120, 240 y 300 minutos, o hasta agotar el volumen de agua en la bureta. Repetir las operaciones, similarmente, para otros cuerpos de prueba.

Coeficiente de Permeabilidad [K]

$$K = \frac{2.3 \times a \times Sb \times log}{60 \times Sp \times t} \times log \frac{H_1}{H_2} \dots [cm/s]$$

Donde:

```
a = Altura de cuerpo de prueba generalmente en 5.0 [cm];

Sb = Sección interna media de la bureta [cm².];

Sp = Sección del cuerpo de prueba [cm²];

H_1 = Nivel de menisco, correspondiente al tiempo T_1 [cm²];

H_2 = Nivel de menisco, correspondiente al tiempo T_2 [cm²];

t = T_2 - T_1 [min.];
```

4.2.4.3.6. Representación de los Resultados.

Representan, para cada contenido de humedad de compresión, los valores log k y s de usuarios y reciben la cantidad correspondiente al contenido de humedad óptimo de la energía adoptado. Indicar siempre el procedimiento seguido.

4.2.4.3.7. Representaciones Gráficas de Permeabilidad.

Representar los datos en las ordenadas (eje y), en escala logarítmica y el tiempo en las abscisas (eje x), en escala lineal. Los resultados deberán alinearse según una recta, de la cual se puede calcular el coeficiente de permeabilidad.

Figura 121:Ejecución del ensayo de Permeabilidad con tubos de 5 mm Ø Fuente: Propia

Figura 122:Observación de los meniscos en tubos de 5 mm ⊚. Fuente: Propia.

Figura 123:Preparación de un permeabilidad con tubo de 16 mm Ø equipo de nuevo Fuente: Propia.

Figura 124:Instalación de la manguera de silicona de 16 mm de Ø interior. Fuente: Propia.

Figura 125:Vista panorámica del equipo de permeabilidad con tubo de 16 mm Ø. Fuente: Propia.

Figura 126:Vista panorámica y la diferencia entre los que equipos de permeabilidad e infiltrabilidad.
Fuente: Propia.

Figura 127:Sellado de la manguera y el tapón de jebe con silicona gris. Fuente: Propia.

Formato de ensayo para infiltrabilidad y permeabilidad

NUMERO DE MOLDE PESO DEL MOLDE SOLO , g MASA DEL SUELO HUMEDO , g LECTURA DEL EXTENSOMETRO, mm ALTURA DEL ESPECIMEN, mm MASA DEL SUELO HUMEDO CORREGIDO , g LECTURA DEL EXTENSOMETRO, mm ALTURA DEL ESPECIMEN, mm ALTURA DEL ESPECIMEN, mm MASA DEL SUELO HUMEDO + MOLDE+PESO ADICIONAL		P4 CONTRA MUESTRA	A
PERCHA DE INICIO:FECHA DE TERMINO	ПМА, % :		Α
TIPO DE ENSAYO NUMERO DE MOLDE PESO DEL MOLDE SOLO , g MASA DEL SUELO HUMEDO , g LECTURA DEL EXTENSOMETRO, mm ALTURA DEL ESPECIMEN, mm MASA DEL SUELO HUMEDO + MOLDE+PESO ADICIONAL			Α
NUMERO DE MOLDE PESO DEL MOLDE SOLO , g MASA DEL SUELO HUMEDO, g LECTURA DEL EXTENSOMETRO, mm ALTURA DEL ESPECIMEN, mm MASA DEL SUELO HUMEDO CORREGIDO, g LECTURA DEL EXTENSOMETRO, mm ALTURA DEL EXTENSOMETRO, mm ALTURA DEL ESPECIMEN, mm MASA DEL SUELO HUMEDO + MOLDE+PESO ADICIONAL	MEABILIDAD		A
PESO DEL MOLDE SOLO , g MASA DEL SUELO HUMEDO, g LECTURA DEL EXTENSOMETRO, mm ALTURA DEL ESPECIMEN, mm MASA DEL SUELO HUMEDO CORREGIDO, g LECTURA DEL EXTENSOMETRO, mm ALTURA DEL EXTENSOMETRO, mm ALTURA DEL ESPECIMEN, mm MASA DEL SUELO HUMEDO + MOLDE+PESO ADICIONAL			
MASA DEL SUELO HUMEDO, g LECTURA DEL EXTENSOMETRO, mm ALTURA DEL ESPECIMEN, mm MASA DEL SUELO HUMEDO CORREGIDO, g LECTURA DEL EXTENSOMETRO, mm ALTURA DEL EXTENSOMETRO, mm ALTURA DEL ESPECIMEN, mm MASA DEL SUELO HUMEDO + MOLDE+PESO ADICIONAL			
MASA DEL SUELO HUMEDO + MOLDE+PESO ADICIONAL			
MASA DEL SUELO HUMEDO + MOLDE+PESO ADICIONAL			1
MASA DEL SUELO HUMEDO + MOLDE+PESO ADICIONAL			
MASA DEL SUELO HUMEDO + MOLDE+PESO ADICIONAL			
MASA DEL SUELO HUMEDO + MOLDE+PESO ADICIONAL			
MASA DEL SUELO HUMEDO + MOLDE+PESO ADICIONAL			
TARRO N°	_		
MASA DEL TARRO, g	+		
MASA DEL SUELO HUMEDO + TARRO	+		
MASA DEL SUELO SECO + TARRO	+		
MASA DEL SOLLO SICO FIAMO	+		
MASA DEL SUELO SECO, G	1		
CONTENIDO DE HUMEDAD, %			
CONTENIDO DE HUMEDAD PROMEDIO, %			
DENSIDAD APARENTE, g/cm3			
ENSAYO DE, INFILTRABILIDAD - P4			
TIEMPO MILIMETROS MILIMETROS MILIMETROS MILIMETROS MI	CTURA EN LIMETROS	LECTURA E MILIMETRO	
N° DIA HORA MINUTOS PERIODO (MINUTOS)			
1 1			
2 4			###
3 9			
4 16			
5 25			###
6 36 49			
8 64			
9 81			###
10 100			
11 121			
12 144			
13 169			
14 196			
15 225			
16 256			
17 289			###
18 324			
19 361			
20 400 500 500 500 500 500 500 500 500 50			###
ENSAYO DE, PERMEABILIDAD - P4			
1 10 20			
3 30 30			
4 40			
5 60			###
6 80			
7 120			
8 240			
9 300			##

SOLICITANTE

REFERENCIA

: Roberto Julio De la Cruz Medina

R. N* 2118 - 2017 - DFI - UPLA

DOMICILIO LEGAL : San Borja Norte 1079, San Borja PROYECTO

FECHA DE RECEPCION : 2018.03.10

IMPLEMENTACION DE LA METODOLOGIA MINI COMPACTACION

TROPICAL PARA LISOS VIALES EN SUELOS TROPICALES

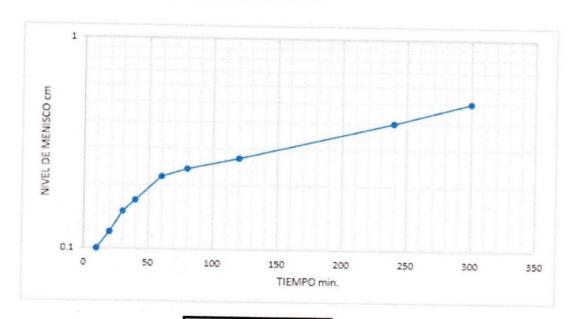
MUESTRA

: Cantera Tropezon

IDENTIFICACION : Arcilla

Km. 10 + 000 - Arcile

CANTIDAD


: 25 kg

PRESENTACIÓN : Saco de polietileno

FECHA DE ENSAYO : 2018.03.14 al 2018.03.16

DER M-192/88 Ensayo de Permeabilidad

PERMEABILIDAD DE LA CANTERA TROPEZON

TIEMPO min.	Nivel Menis, cm.
0	0
10	0.1
20	0.12
30	0.15
40	0.17
60	0.22
80	0.24
120	0.27
240	0.4
300	0.5

CALCULO DEPERMEABILIDAD

- Energia de compactación Densidad seca Humedad de la compactación

- Diametro del tubo
 Diametro del cuerpo de prueba
 Altura de cuerpo de prueba
- · Coeficiente de Permesbilidad

1624.0 KN 'mam'

1.873 g/cm/ 14.3 % 2.00 cm²

19.63 cm² 4.949 cm

0.000000151 cm/s

ING. CESAR FERRE PROS CORCUERA Coordinador de Estudios Dirección de Estudios Especiales

> INGENIERO RESPONSABLE Lima, 30 de Merzo del 2018

SOLICITANTE

: Roberto Julio De la Cruz Medina

PROYECTO

DOMICILIO LEGAL: San Borja Norte 1079, San Borja

IMPLEMENTACION DE LA METODOLOGIA MINI COMPACTACION TROPICAL PARA USOS VIALES EN SUELOS TROPICALES

MUESTRA

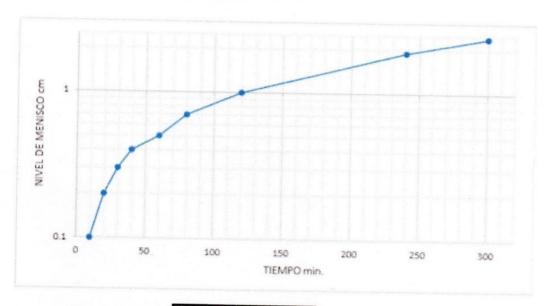
Cantera Inflemo

IDENTIFICACION Arcilla

Km. 15 + 000 - Arcile

REFERENCIA R. Nº 2118 - 2017 - DFI - UPLA

FECHA DE RECEPCIÓN : 2018.03.10


CANTIDAD PRESENTACION 25 kg

FECHA DE ENSAYO : 2018.03.27 al 2018.03.30

Saco de polietieno

DER M-192/88 Ensayo de Permeabilidad

PERMEABILIDAD DE LA CANTERA INFIERNO

TIEMPO min.	Nivel Ments, cm
0	0
10	0.1
20	0.2
30	0.3
40	0.4
60	0.5
80	0.7
120	1
240	1.5
300	2.4

. CALCULO DEPERMEABILIDAD

- Energia de compactación
 Densidad seca
 Humedad de la compactación
- Diametro del tubo
 Diametro del cuerpo de prueba

- Atura de cuerpo de prueba - Coeficiente de Permeablidad

1624 0 KN*mm* 1.769 alter 16.4 %

2.00 cm 19.53 cm²

5.010 cm 0.000000693 cm/s

ING. CESAR FERREYROS CORCUERA Coordinador de Estudios Dirección de Estudios Especiales

MGENIERO RESPONSABLE Lima, 30 de Marzo del 2018

SOLICITANTE

: Roberto Julio De la Cruz Medina

DOMICILIO LEGAL : San Borja Norte 1079, San Borja

PROYECTO

IMPLEMENTACION DE LA METOCOLOGIA MINI COMPACTACION

TROPICAL PARA USOS VIALES EN SUELOS TROPICALES

MUESTRA

Noaya Arena

DENTIFICACION

Fuente del rio Nosye

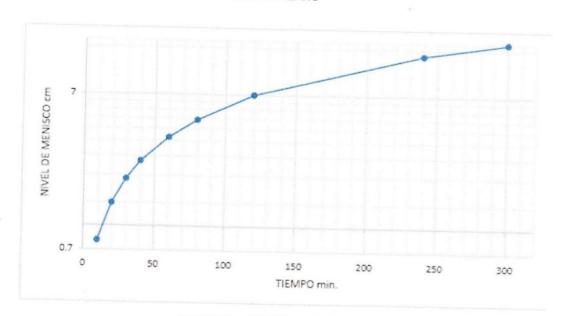
REFERENCIA

R. Nº 2118 - 2017 - DFI - UPLA

FECHA DE RECEPCIÓN : 2018.03.10

CANTIDAD

: 25 kg


PRESENTACIÓN

Saco de polietieno

FECHA DE ENSAYO : 2018.05.05 al 2018.06.09

DER M-192/88 Ensayo de Permeabilidad

PERMEABILIDAD DE LA CANTERA INFIERNO

TIEMPO mir	Nivel Menis, cm.
0	0
10	0.8
20	1.4
30	2
40	2.6
60	3.7
80	4.8
120	7
240	12.8
300	15.4

CALCULO DEPERMEABILIDAD

- Energia de compactación
 Densidad seca
 Humedad de la compactación
- Diametro del tubo
- Diametro del cuerpo de prueba
 Altura de cuerpo de prueba
- · Coeficiente de Permeabilidad

1624.0 KN*exim* 1.809 gicm* 13.6 %

2.00 cm²

19.63 cm² 4.955 cm

0.000005796 cm/s

ING. CESAR FERREYROS CORCUERA Coordinador de Estudios Dirección de Estudios Especiales

INGENIERO RESPONSABLE Lima, 10 de Junio del 2018

4.2.5. Ensayo de Compactación Mini-MCV (P-5).

4.2.5.1. Consideraciones Preliminares.

La Compactación Mini-MCV consiste en la miniaturización del método de compactación presentado por Parsons del Road Research Laboratory de Gran Bretaña en 1976 y difiere del Proctor tradicional por variar al mismo tiempo el contenido de humedad y la energía de compactación durante la ejecución del ciclo de prueba. Se obtiene así, al final del ensayo, una familia de curvas. El ensayo presentado por Parsons fue, racionalmente, desarrollado como un procedimiento para evaluar rápidamente el contenido de humedad de compactación en el campo. El Mini-MCV objetiva, sobre todo, la clasificación geotécnica de los suelos tropicales. La sigla MCV, abreviatura de "Moisura Condition Value", es una nueva propiedad geotécnica de suelos. Propuesto por Villibor (1981), fue implantado en el DER-SP, con las mismas directrices, en su método del DER M 191-88.

4.2.5.1.1. Dispositivos Específico y Preparación de la muestra

Se observar que el Compactador, para el Mini-Proctor del método P-1, fue adaptado para el desarrollo del Mini-MCV.

Se dispone del procedimiento siguientes:

LA SERIE DE GOLPES PROPUESTA POR PARSONS: que es la siguiente:

El objetivo es caracterizar, de manera integral la influencia los diversos grados de compactación.

4.2.5.1.2. Preparación de la Muestra

Preparar las mezclas para ensayo de manera similar a la adoptada en el Ensayo Mini-Proctor P-1, excepto en lo que se relaciona a la cantidad de suelo húmedo, cuyo peso recomendable a usarse sólo será 2.0 kg de suelo seco al aire y pasado en el tamiz de 2 mm de apertura y para CP solo se usará 200 gramos de muestra con una variación de humedad del 2%.

4.2.5.2. Procedimiento de Ensayo Utilizando la serie de Parsons

Comience la compactación pesando 200 g de la mezcla más húmeda, dando los golpes iniciales de la serie de Parsons, efectuando lecturas de la posición del vástago del zócalo después de esos números, y parando cuando las lecturas sucesivas de la serie sean igual o inferior a 0,1 mm. Esta condición corresponde a la máxima densidad alcanzable para su humedad, constituyéndose en una condición designada como de "nivel". Esto debe ocurrir con 8 a 12 golpes. En caso de no ocurrir, se debe proveer la preparación de muestras más húmedas, hasta que el "nivel" aparezca en esa banda. Los cuerpos de prueba que presenten el nivel con 6 o menos golpes, deben ser despreciados.

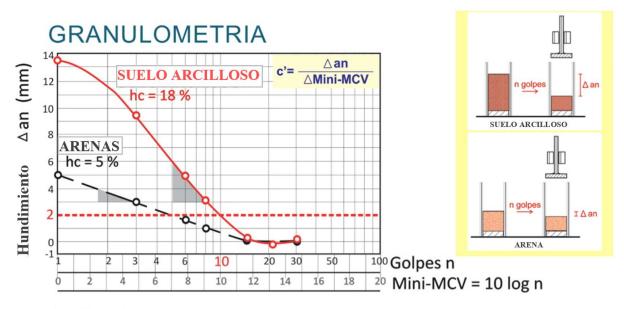
Si, incluso con la preparación de las mezclas más húmedas, no aparece el "nivel" en la referida banda, la muestra es arena o sílice, del grupo NA. La condición referida se asocia generalmente a una abundante exudación de agua. La adopción de un "nivel", lleva generalmente a la obtención de curvas de deformabilidad inapropiadas para fines clasificatorios. Efectuar la compactación, de manera idéntica, para las mezclas inmediatamente menos húmeda, la cual deberá presentar "compactada" con 16 a 32 golpes. Continuar la compactación para las muestras menos húmedas siguientes, despreciando aquellas en que el nivel aparezca después de los 256 golpes.

4.2.5.2.1. Curvas de Deformabilidad de la Serie de Parsons

Trazar estas curvas lanzando en ordenadas (eje y), las disminuciones sucesivas de la altura An de los cuerpos de prueba (o el desplazamiento del vástago del zócalo de compactación) para cada cuerpo de prueba.

$$An = Ln - L4n$$

donde:


A n = 1, 2, 3, ..., n.

Ln = lectura de la posición del vástago del martillo después de los golpes, expresada en mm, con aproximación de 0,1 mm.

L 4n =lectura de la posición del vástago del zócalo después de 4n golpes, expresada en mm, con aproximación de 0,1 mm. y en abscisas (eje x), los valores de n y a escala 10xlog n (escala de los Mini-MCV).

4.2.5.2.2. Función e Interpretación De las Curvas Trazadas:

- a) Mini-MCV de los Cuerpos de Prueba: La proyección en el eje x, de la intersección de cada curva de deformabilidad con la línea horizontal de ecuación y = 2 mm, proporciona una propiedad designada Mini-MCV, que puede expresarse tanto en golpes de zócalo, como en $10 x \log n$, la Curva de variación del Mini-MCV con la Humedad de compactación, es utilizable para fines de control de la humedad y su forma general (rectilínea, cóncava, convexa) es una indicación del eventual comportamiento del suelo si es laterítico o saprolítico.
- **b)** Coeficiente C: A cada contenido de humedad de compactación, corresponde una curva de deformabilidad; el coeficiente de fricción angular, dado por la inclinación de la parte rectilínea (o parte asimilable a una recta) de cada una de ellas, se denomina genéricamente de coeficiente C n. Cuando la curva de deformabilidad no presenta parte rectilínea, se traza una tangente a la misma en el punto en que es cortada por la línea horizontal y = 2 mm; el coeficiente angular de esta tangente, es el C n. Para fines clasificatorios se utiliza un C n en el cual n = 10 y cuya abreviatura es, simplemente, C. Como, casi siempre, no se obtiene curva de deformabilidad en esas condiciones, es obtenida por interpolación apropiada.

Coeficiente c': Arcillosidad de suelo

Figura 128:Cálculo del coeficiente angular c' que en el método MCT se le llama granulometría.

c) Curva de variación de la altura final del cuerpo de prueba con el Mini MCV:

Esta curva permite clasificar los suelos en dos grandes grupos: suelos de alta densidad, cuando la altura final del cuerpo de prueba, en Mini MCV = 10, es menor que 48 mm y densidad baja, en caso contrario. Esta distinción es necesaria para que se pueda determinar la "pérdida de masa por inmersión", según P-8 de este Anexo.

d) Familia de Curvas de Compactación y Línea de las MEAS máx. y Coeficiente d'(Procedimiento Serie de Parsons).

Representar en las abscisas las teorías de humedad de compactación y en las ordenadas las MEAS, después de los n golpes dados al cuerpo de prueba, uniendo los puntos obtenidos, con el mismo valor de n, obteniéndose una seria de curvas de compactación.

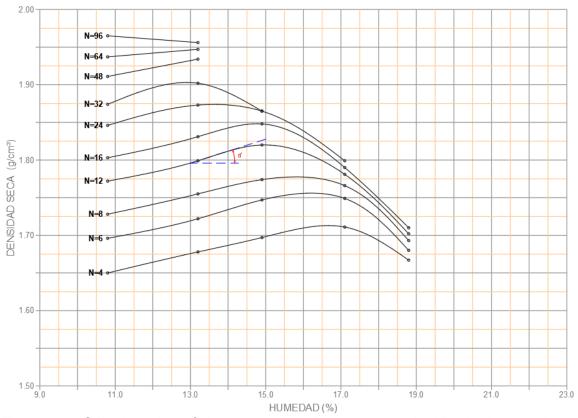


Figura 129:Cálculo del coeficiente angular d' que es la variación de densidad entre la diferencia de la humedad a los 12 golpes.

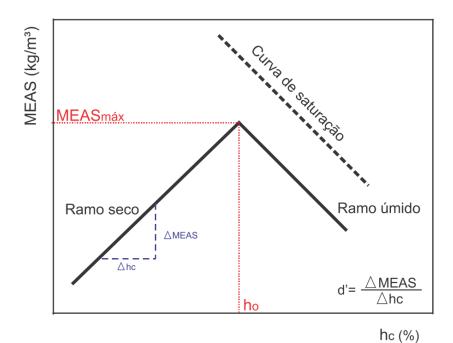


Figura 130:Calculo del d' con el ramo seco del ensayo de compactación.
Fuente propia

Figura 131:Posición del dial para empezar el ensayo Mini-MCV Fuente: Propia.

Figura 132:Equipo de compactación para ensayos de Mini-Proctor y Mini-MCV. Fuente: Propia.

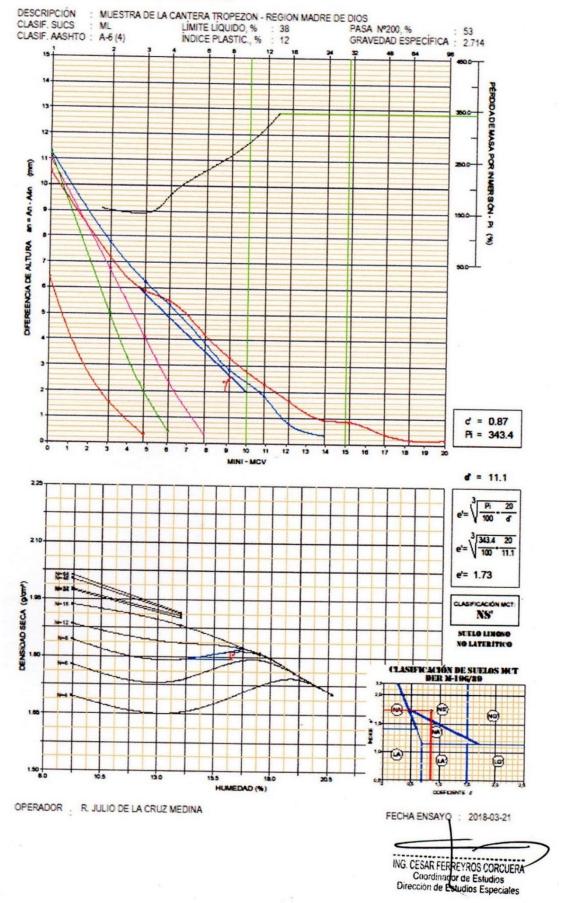
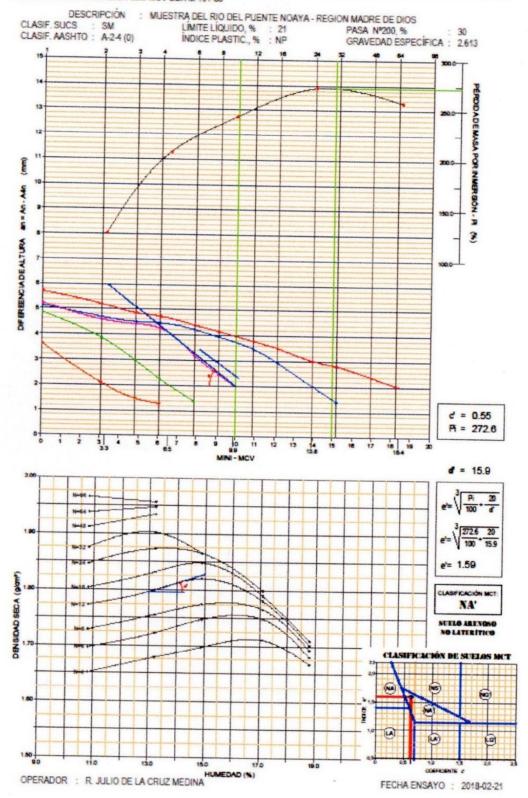
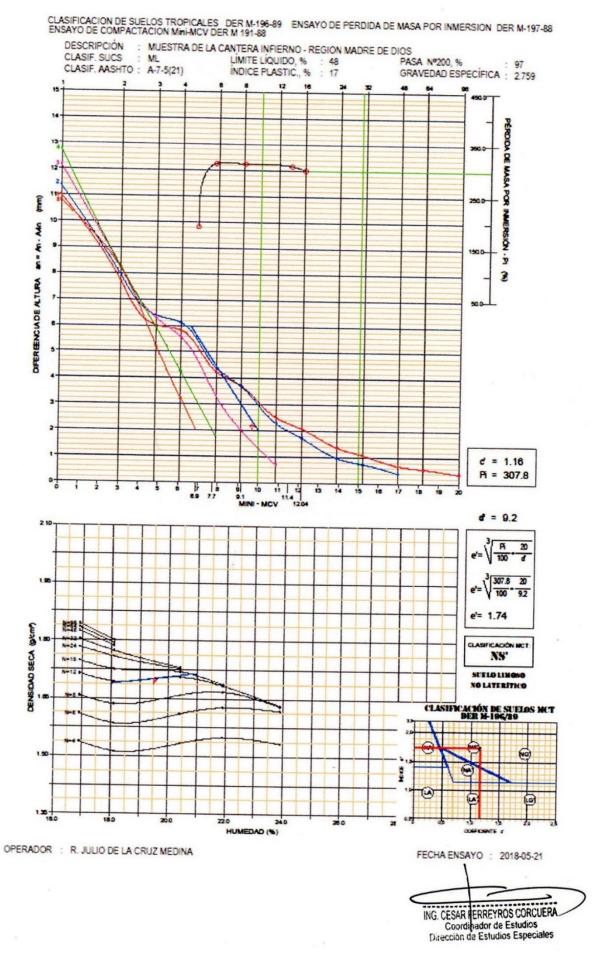


Figura 133:Posición del dial para la medición de los ensayos de Mini-MCV


MASA DEL MARTILLO & PESO ADICIONAL P		ENSAYO DE C	ENSAYO DE COMPACTACION MINI-MCV METODO CONVENCIONAL	MCV L	ИЕТОВО СС	NVEN	ICIONAL	>	PERDIDA DE MASA POR INMERSION	MAS,	A POR INMI	ERSIO	Z		
Feet			FECHA DE TERMINO.				MASA DEL N	1ARTI	LLO,g			PES	O ADICIONAL	L DEL N	10LDE: 10g
Column C	:					•									
Column C	:														
LECT.						•									
Heat of the control	bλ														
LECT. S. LECT. LECT. S. LECT. LECT. S. LECT. LEC	\lesssim 15	CTAPO FN TOPO	MOLDE g,												
LECT. S. LECT. L	<u>۲</u> ۱۵	AD ESTIMADA	JS LOS MOLDES												
MAZDE Zmm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				GOLPES	LECT. DIAL (0.1 mm)	СОГРЕЅ	LECT. DIAL (0.1 mm)	GOLPES	LECT. DIAL (0.1 mm)	СОГРЕЅ	LECT. DIAL (0.1 mm)	СОГРЕЅ	LECT. DIAL (0.1 mm)	GOLPES	LECT. DIAL (0.1 mm)
AMIZ DE Zmm 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	: 🕹	SANTE EL TAMI		0		0		0		0		0		0	
AMIZ DE Zmm 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		MAS		⊣		1		1		1		1		1	
AMIZ DE Zmm 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1			2		2		7		2		2		2	
SA SECO, g 4 6 <th< td=""><td></td><td>ENIDO EN EL TAI</td><td>MIZ DE 2mm</td><td>3</td><td></td><td>3</td><td></td><td>3</td><td></td><td>ж</td><td></td><td>3</td><td></td><td>3</td><td></td></th<>		ENIDO EN EL TAI	MIZ DE 2mm	3		3		3		ж		3		3	
6 6 6 6 6 6 6 6 6 6		MAS	A SECO, g	4		4		4		4		4		4	
DE PATRON 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 B				9		9		9		9		9		9	
DE PATRON 12 12 12 12 12 12 12 12 12 12 12 12 12				8		8		8		8		8		8	
Herey, cm2 16 16 16 16 16 16 16 16 16 16 16 16 16	S	FICAS DEL MOLD		12		12		12		12		12		12	
I 19.60 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 32 <		ALTURA, mm	AREA, cm2	16		16		16		16		16		16	
EAL, % 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 48		50.14		24		24		24		24		24		24	
EAL, % 48	 	A INMERSION		32		32		32		32		32		32	
64 65 65<	5			48		48		48		48		48		48	
96 96<	z	TODOS		64		64		64		64		64		64	
128 128	•			96		96		96		96		96		96	
192 192 192 192 192 256 256 256 256 192 192 192 193 194 195 194 195 256 195 256 256 196 197 197 197 198 198 198 199 192 199 190 190 190 190 190 <t< td=""><td></td><td></td><td></td><td>128</td><td></td><td>128</td><td></td><td>128</td><td></td><td>128</td><td></td><td>128</td><td></td><td>128</td><td></td></t<>				128		128		128		128		128		128	
EAL, % EAL, % FCAPSULA, g 1256 256 256 256 256 256 256 25				192		192		192		192		192		192	
O HUMEDO, g				256		256		256		256		256		256	
O HUMEDO,g O SECO,g UMEDAD REAL, % DESPRENDIDO + CAPSULA,g	_	oloque desprenc	lido												
O HUMEDO, g O SECO, g UMEDAD REAL, % UMEDAD REAL, % DESPRENDIDO + CAPSULA, g															
O HUMEDO, g .0 SECO.g LO SECO.g .0 SECO.g UMEDAD REAL, % DESPRENDIDO + CAPSULA, g															
O SECO.B OMEDAD REAL, % UMEDAD REAL, % OSPRENDIDO + CAPSULA, g	回	O HUMEDO, g													
UMEDAD REAL, % DESPRENDIDO + CAPSULA, g	回	.O SECO,g													
DESPRENDIDO + CAPSULA,g	エリ	UMEDAD RE													
DESPRENDIDO + CAPSULA,g															
DESPRENDIDO + CAPSULA,g	ρū														
	ΙΞ.	DESPRENDIDO + 1	CAPSULA, g												

The color The				1	EN	SAY	0	DEC	WO:	PA	CTA	COMPACTACIÓN	ON	MIN	NI.	MC	A						
1	CANTERA TROPEZO	N						REGIST	RO DE	DAT		DER	191.	88								1	
11 11 11 11 11 11 11 1	MOLDE N°					9			0	Γ			12	-		œ	Г		,				
1	MASA SUELO HUME	DO COMPACTADO + I	MOLDE, g	_		11042			1104.9	Γ	L		11051	+	1	404	Т		-				
1	MASA DEL MOLDE +	ADICIONAL (9.7), g				894.8	-		895.3	T			805.5	+		104.1	T		1096.				
Thirty T	MASA SUELO HUMEL	DO COMPACTADO, g				1997	-		4000	T			0.000	+		0.44.0	7		887.	2			
M20E2 mm Comparison Compa	CONTENIDO DE HUM	MEDAD, %		_		000	1		6.69	T			199.9	-		199.9			199.8	0			
March Marc	MASA SUELO SECO	COMPACTADO		_		70	1		14.0	7			17.5			19.0			20.7				
MASH SECO 4 20 20 20 20 20 20 20 2		8 0000000000000000000000000000000000000		٦,		182.8			175.4	7			170.1	H		168.0			165.6	1			
MACRIECO 1 66 400 1051 1424 66 270 1128 138 1 1124		PREPARACIÓN		GOLPES														Altura		-	Altura	an (mm)	DENSI-
MASA SECOL 9 2 68560 721 724 720 7	FRACCIÓN	I PASANTE EL TAMIZ	DE 2 mm	-	65.420	-	+		2	1	+		2	-		69	-1	(mm)			(mm)		(g/cm³)
Michael Common A 54906 558 1580 658 1580 658 1580 658 1580 658 1580 658 1580 658 1580 658 1580 658 1580 658 1580 658 1580 658 1580 658 1580 658 1580 658 1580 15	MASA HÜMEDC		ASA SECO. a	10	\perp	7.24	1	1	1	1	4		4				1	55.936	6.40	1.508			
MASA SECO. 9 6 15284 5.50 1.666 5.50 1.666 5.50 1.666 5.50 1.666 5.50 1.666 5.50 1.666 5.50 1.666 5.50 1.666 5.50 1.666 5.50 1.666 5.50 1.666 5.50 1.666 5.50 1.666 5.50 1.666 5.50 1.666 5.50 1.666 5.50 1.666 5.50 1.666 5.50 1.666 5.50 1.766 6.662 5.50 6.662 5.50		-		100		5.89	_		1	_	4		_	_				51.102	1.59	1.651			
MASA SECO. g 6 62344 425 1770 6 4012 1770 4 4010 1770 4 40540 1770 1774 4 40540 1770 1	FRACCIÓN R	RETENIDO EN ELTAM	IZ DE 2 mm	4		5.50	1	53 00 A		1	4			_				49.812	0.31	1.693			
Fig. 10 - 48 50 - 48 133 1844 48 48 14 138 18 48 48 48 18 18 18 1	MASA HÜMEDC		ASA SECO, g	9	_	4.23	_	54 366	1	_	-			_				49.540		1.703			
AFEA.cm² 12 49-405 200 1-504 4-504 1-505 4-7-914		_		8	\perp	3.33	\perp	00000	1	4	4		4	_	4	1.75		49.508		1.704			
AREA, cm² 16	CARACTERIS	STICAS DEL MOLDE D	DE ENSAYO	15	_	230	┸	00000	1	_		914	1.80		4	1.758		49.498	-	1.704			
1963 134 4774 1020 1360 1361 1362 1361 1362 1361 1362 1361 1362 1361 1362 1	DIÁMETRO, mm	ALTURA.mm	ARFA cm²	18	_	30,4		46.048	1	4		880	1.81		4	1.760			-	-	T		
MASA, g 48 466 0 0.38	90.00	50.14	19.63	24		8.00		204.14	\perp	-		942	1.80	21			16				\vdash	T	
MASA, g 48 46.466 0.38	CARACTERÍSTIC	AS DEL MARTILLO CO	OMPACTADOR	32		0.86	1	18 BOA	T	_	4 0	+	1	1	1		24						
K 46 46.256 0.17 2.021 48	TIPO	ALT. CAÍDA, cm	MASA, g	48	┸	0.38	4	16 600	1	_	7 0	+	1	1	1		32						
K 56 46.248 0.17 2014 1.20 1.	LIVIANO			64		0.17	\perp	16.030 16.618	-	_	2	+	1	1	1		48						
128 46.084 2.021 128	MASA COMPACTAL	04.0	2	88		0.17	\perp		+	_	+ (4	+	-	1			64	+	+	+			
192 46 083 2 027 2 021 2 027		8 '00	۷	128			2021	+	+	120	0 0	+	1	1	1		8	1	+				
256 46.082 2.021 266 10 192 04 192 04	CALIB. EXTENSO	ÓMETRO, mm		192		-	2.021	+	+	100	2 0	+	1	1			128	1	+	1			
1000 1000	(Ka = Ac	orta)		256		-	2.021	+	+	286	4 "	+	1	1	1		192	+	+	1	1		
10.00 10.0	CÁPSULA Nº						8	$\ $	$\ $	٦,	1	$\ $	$\ $				256	1	1	1	1	1	
19.00 10.0	ALTURA EXPUESTA mi	8					3			8			106	15		115	_			04			r
19.10 19.1	VOLUMEN EXPUESTO	cm³					10.00		9	8			10.00			10.00	_			10.00			T
RA, g 38 61 36 60 34 58 33 62 32 56 188.00 169 60 138 40 114 00 114 00 114 00 114 00 114 00 113 40 113 40 113 40 113 40 150 50 150 30 150 30 150 30 150 30 150 30 150 40 150 40 150 40 150 40 150 40 150 40 150 40 150 40 150 40 150 40 150 40 150 40 150 40 150 40 150 50 150 40 150 50	MACA CITEL O CECO EV	CTOTION IN					19.10		19	10			19.10			19.10	_			10 10		1	T
148, g 198.00 183.60 138.40 114.00 114.00 138.40 114.00 114.00 138.40 114.00 113.40 113.80 183.80 183.80 183.70 113.80 183.70 115.20 11	MASA SUELO SECO EX	roesio, g					38.61		36	09	L		34.58			33.62	_		1	32.65			T
65.40 70.20 83.80 89.40 63.70 65.80 49.00 65.30 154.50 154	MASA SUELO SECO DE	SPRENDIDO + I ARA	6,9			#	98.00		183	99			150.60	1		430 40	_		1	32.30			1
132.60 113.40 66.80 49.00 50.30 154.50 145.70 145.70 FECHA DE BNSAYO	IARA, g						35.40		70	20			83.80			130.40	_			14.00			1
343.40 309.80 193.20 145.70 50.30 FECHA DE ENSAYO :	MASA SUELO SECO DE	SPRENDIDO, g				12	12.60		113	40			00.00	1		88.40				63.70			
JULIO DE LA CRUZ MEDINA 193.20 145.70 FECHA DE ENSAYO	PÉRDIDA DE MASA PO	IR INMERSIÓN, %				3	13.40		300	8			00.00			49.00				50.30			
FECHA DE ENSAYO		DE LA CRUZ MEDINA	A	-			-		200	8			193.20			145.70	_		#	54.50			Γ
ADDITION TO BE DESCRIPTION OF THE PROPERTY OF																			FECH	A DE ENSA	: OX:	21/Ma	ayo/2018
ADDITION OF THE PROPERTY OF TH																				1	1		1
																					000	Chinon	1

CLASIFICACION DE SUELOS TROPICALES DER M-196-89 ENSAYO DE PERDIDA DE MASA POR INMERSION DER M-197-88 ENSAYO DE COMPACTACION Mini-MCV DER M 191-88



MUESTRA NOAYA											8	3									
MOLDE N°					SN			SN	_		SN	r		NS.	Γ			180	-		
MASA SUELO HUMEDO COMPACTADO + MOLDE, g	· MOLDE, g	_		110	1105.0		106	1096.6	_		1101.1	t		11053	T		1	NIC	+		
MASA DEL MOLDE + ADICIONAL (9.7), g				88	895.5		88	887.3	_		891.4	t		896.1	T			97011	+		
MASA SUELU HUMEDO COMPACTADO, g	0	_		18	199.8		18	199.6	_		2000	t		1005	T			8.880	+		
CONTENIDO DE HUMEDAD, %				-	10.8	L	-	13.2	_		14.9	t		17.1	T			198.0	+		
MASA SUELO SECO COMPACTADO, g		_		18	180.3		17	176.3	ш		174.1	H		170.4	T			18.8	+		
PREPARACIÓN		GOLPES	Altura A (mm)	an (mm)	DENSI- DAD (g/cm³)	Altura A (mm)	an (mm)	DENSI- DAD (g/cm³)	COLPES	Alfura A (mm)	an (mm)	DENSI- DAD (a/cm³)	Aftura A (mm)	an D	DENSI-	Altura A	an (mm)	DENSI-	- Altura	a au	1
FRACCIÓN PASANTE EL TAMIZ DE 2 mm	Z DE 2 mm	-	61.362	5.70	1 497	58 640	5.13	1 524	1	100	-	+		-	-	-	_	(godin	_		(g/cm²)
MASA HÚMEDO, g	MASA SECO, g	2	58.368			┸		150.1	- 0	104.70	5.23	1.543	55.558	4.84	1.562	1 54.532		2 1.557	2		L
		3	56.692	3.54		\perp		1,650	1	50 430	3.85	4	52.980	3.36	1.638	2 52.245			5		H
FRACCIÓN RETENIDO EN ELTAMIZ DE 2 mm	MIZ DE 2 mm	4	55.658	3.83	1.650	53.514		1,678	+	50 000	3.10	4	51.696	2.58	1.678	3 51.338	1.19	1.653	3		H
MASA HÚMEDO, g M	MASA SECO, g	9	54.152	3.22		52 152	3.10	172	+	20 724	3.01	4	30.776	1.99		_			7		
		80	53.156	3.40		51.166		1755	_	40 095	244	1.14/	49.018	1.14	_	4	2 0.87		0		
RISTIC	DE ENSAYO	12	51.832	2.82		49.910		1,790	_	48 724	1 18	4	49.120	+			9	1.693	8	-	Н
mm AL	ÁREA, cm²	16	50.930	2.88	1.803	49.048		1831		47 977	1	1	10.170	+	18/1			1.702	~	4	4
50.00 50.14	19.63	24	49.754	2.34	1.846	47.936	1.82	1.873		47 543	+	_	40.470	+	_	16 49.646	9	1.710		-	4
CARACTERISTICAS DEL MARTILLO COMPACTADOR	COMPACTADOR	32	49.008	228	1.874	47.222	131	1902		47 542	+		74.77	+			1				-
TIPO ALT. CAÍDA, cm	MASA, g	48	48.046	1.86	1.911		-	1.834	48	7	+	000	+	+	32		1		4	-	
LIVIANO		2	47.418	1.75	1.937			1.947	64	+	+	\dagger	+	+	48		1		4	-	4
MASA COMPACTADA, o	×	88	46.728		1.965			1.956	98	+	+	\dagger	\dagger	+	4 8		1		1	4	
0		128	46.188		1.988	45.822		1.960	128	+	+	+	+	+	8 8		1		1	4	4
CALIB. EXTENSÓMETRO, mm		192	45.666		2.011				192	+	+	\dagger	\dagger	+	120		1			1	4
(Ka = Ac+La)		256	45.366		2.024				256	+	+	+	+	+	781		1		1	1	4
CÁPSULA N°		_			8			F	╀┖	$\ $	$\ $	╢	\parallel	\parallel	н,					4	4
ALTURA EXPUESTA, mm		_			3 8			5	_			8			05			10			
VOLUMEN EXPUESTO om ³		_			3.0			00.01	_			10.00		-	10.00			10.00			
MACA CITI O COO CITI O COO					19.10			19.10	_		-	19.10		-	9.10			10 10	L		
MASA SUELO SECO EXPUESTO, g		_			38.67			37.44			(6)	35.63		1	34.37			10.10	1		
MASA SUELO SECO DESPRENDIDO + TARA, 9	A, g				114.10			141.00	L		15	152.00		18	180 00			32.07			
IARA, g					65.40			63.40	L		9	65.40		9	66.40			101.80			
MASA SUELO SECO DESPRENDIDO, g					48.70			77.60			8	86.60		0	02.00			8.10			
PERDIDA DE MASA POR INMERSIÓN, %		_			125.90			207.00	L		1	1		6	3.5			84.10			
1000		,			00:00			87.78	_		24	243.10		76	DE CTC			00 200			

ING. CESAR FIRREYROS CORCUERA Coordinador de Estudios Dirección de Estudios Especiales

MUESTRA DE LA CANTERA INFIERNO		1				REGISTRO DE DATOS	RO DE	DAT		STRO DE DATOS · DER M 191 · 88	191.	88									
MOLDE N°				9	r		9	Γ	L		SN	-		NS	Г		SA	2			
MASA SUELO HUMEDO COMPACTADO + MOLDE, g	OLDE, g			1104.5			1104.5	T	L		1108.2	-		1103.8	Т		1105.1	-			
MASA DEL MOLDE + ADICIONAL (9.7), g				894.8			894.8		L		898.5	-		894.0	_		895.4	4			
MASA SUELO HUMEDO COMPACTADO, g				200.0			200.0	Г	L		200.0	-		200.1	Т		2000	0			
CONTENIDO DE HUMEDAD, %				16.9			19.9		L		222	-		14.3	Т		24	,			
MASA SUELO SECO COMPACTADO, g				171.1	H		166.8	П	Ш		163.7	H		175.1			160.4	4			
PREPARACIÓN		COLPES	Altura A (mm)	an (mm)	DENSI- DAD (g/cm³)	Altura A (mm)	an (mm)	DENSI- DAD (9/cm³)	€ E	Altura an A (mm)	DENSI- DAD (g/cm³)	Si- Altura	a an (mm)	DENSI- DAD (g/cm³)	GOLPES	Altura A (mm)	an (mm)	DENSI- DAD,	Alfura A (mm)	an (mm)	DENSI-
FRACCIÓN PASANTE EL TAMIZ DE 2 mm	E2mm	-	67.612	11.02	1 289	68 428	11.38	1 242	1	C1 246 40	34.04	4	1	1	-						
MASA HÜMEDO, g MASA	MASA SECO, g	2	61.756	7.70	1.411	62.346	7 93	1363	2 6			1370 605.17		1.530	1	_	10.80	1.268	1	T	
		3	58.538	6.02	1.488	59.150	6.39	1.436	+		_	1 454 56 082	187 5 OF		7 6	55,666	8.10	1.385	1	T	
ENIDO EN ELT	DE 2 mm	4	965.96	5.82	1.540	57.050	6.11	1.489	4 55						_	53.600	3.22	1,40/	1	T	
MASA HÜMEDO, g MASA	MASA SECO, g	9	54.052	4.26	1.612	54.412	4.41	1.561			L			L			27.0	1 607	1	T	
		8	52.516	3.72	1.659	52.756	3.71	1.610			2.04 1.6	L	L	L	L		T	1620	†	T	
RISTK	ENSAYO	12	50.774	2.51		50.940	2.28	1.668	12 49	49.616 0		1.680 49.686	98	1.794	L	50.380	T	1621	T	T	
mm AL	AREA, cm ²	16	49.796	2.09		49.998	1.74	1.699		49.220	1.6		82	1.798	\perp		T	T	T	T	
50.00	19.63	24	48.792	1.37	1.786	49.050	26.0		24 48	48.986	1.7	1.702			24			T	T	T	
THOUSE THE THE THE THE COMPACTABOR	MPACTADOR	32	48.266	1.09	1.805	48.656	0.75			48.910	1.7	04			32		T	T	T	T	
IIPO ALL CAIDA, cm	MASA, g	8	47.706	99.0	1.826	48.254	0.40		48			-	-		48		T	T	T	T	
LIVIANO		64	47.426	0.56	1.837	48.082		\Box	64		Н	Н			64		T	T	1	T	
MASA COMPACTADA, g	×	8 6	47.174	0.37	1.847	47.902	+	_	98	+	-	-			96						
CALIB EXTENSÓMETBO mm		8 5	42.024	+	1.803	47.852	+	1.775	128	+	1	1	-		128						
(Ka = Ac-La)	Г	761	40.004	1	909.	1	+	-	92	+	4	1			192						
П		007	40.800	1	7.802	1	1	2	256	-	-				256						
CAPSULA N°		_			10			10	L		1	60		90				07			
ALTURA EXPUESTA, mm					10.00			10.00	L		10.00	0		10.00	_			10.00			
VOLUMEN EXPUESTO, am²					19.10			19.10			19.10	0		19 10	_			40 40			
MASA SUELO SECO EXPUESTO, g		_			35.57			33.91			32 F.F.	u		34.26	_			0.00			
MASA SUELO SECO DESPRENDIDO + TARA, g	6	_		-	172.10		-	73.30			160 10	2 0		462.00	_			30.97		1	
TARA, g		_			67 an			67.40			3			100.00	_			128.40			
MASA SUELO SECO DESPRENDIDO a		_		-	06.00			2 8			00.99	0		63.10				68.80			
PÉRDIDA DE MASA POR INMERSIÓN %		_			104.30			100.20			103.10	0		100.80				29.60			-
OPERADO		_		7	33.20		3	313.20			316.70	0		293.50				192.50			
																	בבע		07170		07000
																	71	FECHA DE ENSAYO	SAYO	W/17	Z1/Mayo/2018

4.2.6. Ensayo de Penetración de La Imprimación (P-6).

4.2.6.1. Consideraciones Preliminares.

Este ensayo permite prever, preliminarmente, el comportamiento del suelo en cuanto a la penetración de la imprimación bituminosa, utilizando cuerpos de prueba compactados en laboratorio según la sistemática MCT.

Propuesto por Villibord 1981, fue implantado en la DER-SP con las mismas directrices en su método DER M-199/89.

4.2.6.2. Equipos y Materiales Específicos.

- a) Disco Metálico Espaciador
- b) Imprimante MC-30 o MC-70
- c) Parafina
- d) mechero

4.2.6.3. Procedimiento para la Penetración de la Imprimación.

Montaje, extracción y secado de los cuerpos de prueba.

Se obtienen, preferentemente, cuerpos de prueba compactados según el procedimiento Mini-Proctor introduciendo o colocando en la muestra de suelo asentado, el disco metálico, debidamente centrado luego de completar la compactación con 12 golpes se extrae cuidadosamente el CP de prueba con el extractor de palanca, luego se retira el disco espaciador. Dejar los cuerpos de prueba a la sombra durante 60 minutos.

Se aplica la parafina en todo el contorno del CP menos en la parte donde ira el material Bituminoso.

Seguidamente se humedecerá los cuerpos de prueba aplicando uniformemente en la parte superior de los mismos, aproximadamente 0,5 ml (correspondiente a la tasa de 0,5 l / m2) de agua.

Después de 15 minutos efectuar la imprimación con asfalto diluido, aplicando 1,2 ml (correspondiente a la tasa de 1,2 l / m2), cumpliendo las condiciones fijadas en la tabla 13.

Una vez que se coloca la imprimación, dejarlos en reposo durante 72 horas.

Partir los cuerpos de prueba, longitudinalmente, midiendo la penetración del elemento bituminoso en cada cuerpo de prueba, considerando que cada cuerpo de prueba varía el contenido de humedad

Graficar la penetración de la imprimación en milímetros con la teoría de humedad de compactación, seguidamente graficar también la curva de compactación y una vez situado la humedad optima, restar dos por ciento de humedad en el eje x e interceptar en la curva de penetración bituminosa pudiendo calcular la penetración en milímetros.

Tabla 13:Viscosidad y temperatura de aplicación.

TIPO DE ASFALTO DILUIDO	MC-30	MC-70
Temperatura De aplicación	30°	40°
Viscosidad Saybolt-Furol	100 a 125 (25°)	80 a 100 (50°)

Disco Espaciador.

Es de acero inoxidable con un diámetro de 35 mm y 1.5 mm de espesor.

Figura 134:Colocación del disco espaciador de 35 mm de Ø y 1.5 mm de espesor. Fuente: Propia.

Figura 135:Disco espaciador, siempre al centro de cp cuero de prueba. Fuente: Propia.

Figura 136:Compactación del Cp con el martillo intermedio. Fuente: Propia.

Figura 137:Expulsión del disco espaciador. Fuente: Propia

Parafinado el cuerpo de CP, excepto el área de depresión mencionada se repite los procedimientos, para los 5 CP

Figura 138:Parafinado del Cp.

Fuente: Propia

Humedecer la parte circular no parafinada del CP en una tasa aproximada de 0.5 L/m² de agua con la ayuda de cuenta gotas, dejar en reposo durante 15 minutos a fin de garantizar una distribución homogénea de agua.

Tabla 14: Cantidades de materiales usados en el ensayo

Imprimante MC-30	1.15 ml
Agua	0.5 ml

Tabla 15:Características del MC-30

REPORTE DE RESULTADOS DE ENSAYO DEL IMPRIMANTE MC - 30

ENSAYOS REALIZADOS A LA MUESTRA ORIGINAL	NORMA	RESULTADO
VISCOSIDAD CINEMÁTICA, 60 °C (cSt)	ASTM D-2170	51.6
PUNTO DE INFLAMACIÓN - Tag, copa abierta (°C)	ASTM D-3143	83.0
GRAVEDAD ESPECIFICA a 15 °C (kgr/m³)	ASTM D-3142	926.0
DESTILA CIÓN		
Volumen Total Destilado a 360 °C (%)		
a 190 °C (374 °F)		27.8
a 225 °C (437 °F)	ASTM D-402	71.1
a 260 °C (500 °F)		90.0
a 316 °C (600 °F)		41.7
Residuo Destilado a 360 °C (680 °F), Volumen por diferencia (9		58.3
ENSAYOS REALIZADOS AL RESIDUO DE LA DESTILACIÓN		
PENETRACIÓN, 25 °C (77 °F), 100 g, 5 s, 0,1 mm	ASTM D-5	189
DUCTILIDAD, 25 °C, 5 cm/min (cm)	ASTM D-113	+ 100
VISCOSIDAD ABSOLUTA, 60 °C, 300 mm Hg (Pa - s)	ASTM D-2171	52.6
SOLUBILIDAD EN TRICLOROETILENO, (%)	ASTM D-2042	99.94

Observaciones:

⁻ Muestra de Asfalto líquido, proporcionada e identificada por el solicitante.

Figura 139:Humedecimiento de CP. Fuente: Ensayo de penetración de imprima dura DERP

Figura 140:Reposo de los cp parafinados. Fuente: Propia

Figura 141:Reposo de los cp parafinados. Fuente: Ensayo de penetración de imprima dura DERP.

Efectuar la imprimación con un MC-30 con una tasa de riego de 1.2 L/m² o MC-70 con una tasa de riego de 0.7 L/m² y dejar los CP en reposo durante 72 horas hasta que penetre el compuesto bituminoso.

Figura 142:Muestra con imprimación bituminosa, mezcla de Tropezón. Fuente: Propia.

Figura 143: Muestra con imprimación bituminosa, mezcla de Infierno.

Figura 144:Muestra con imprimación bituminosa a la izquierda Noaya a medio Tropezón y a la derecha Infierno. Fuente: Propia

Figura 145:Preparación para la penetración con cada punto de humedad de la muestra Noaya.

Después de pasar 72 horas partir los CP por la parte longitudinal y medir la penetración de la imprimación asfáltica en 6 lugares distintos en cada muestra.

Figura 146:Penetración de la muestra de Noaya.

Figura 147:Medición de la penetración de la muestra de Tropezón. Fuente: Propia

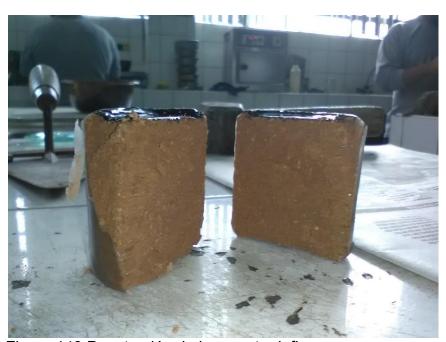


Figura 148:Penetración de la muestra infierno. Fuente: Propia

Tabla 16:Formato de laboratorio de penetración de bituminosas

ENSAYO DE PENETRA				Poriotia					
FECHA DE INICIO:				т°	de la parafina	87 C°	E	NSAYOS	P6
TEMPERATURA AMB	IENTE			Tipo de	imprimacion		Ø٥	ISCO METAL	35 mm
ANALISA:		NOMBRE DE LA N	//UESTRA :				ESPESO	OR D METAL:	1.5 mm
TIPO IMPRIMACION									
NUMERO DE MOLDE									
PESO DEL MOLDE SO	LO,g								
N N	MASA DEL SUELO	HUMEDO, g							
S & 1°	LECTURA DEL EXT	ENSOMETRO, mm							
COMPACTACIONE S TENTATIVAS 1,	ALTURA DEL ESPE	CIMEN, mm							
NT.		HUMEDO CORREGII	DO, g						
₩ H 2°		ENSOMETRO, mm							
	ALTURA DEL ESPE								
MASA DEL SUELO HU	IMEDO + MOLDE+P	ESO ADICIONAL				<u> </u>			
TARRO N°									
MASA DEL TARRO, g					\perp	\perp		\longrightarrow	
MASA DEL SUELO HU					\perp	\perp		\longrightarrow	
MASA DEL SUELO	SECO + TARRO				\perp	\perp		\longrightarrow	
MASA DEL AGUA, g						+	\rightarrow	\longrightarrow	
MASA DEL SUELO SE					+	+	\rightarrow	\longrightarrow	
CONTENIDO DE HUM						\perp	\rightarrow		
CONTENIDO DE HUM		76					\rightarrow		
DENSIDAD APARENT									
ENSAYO DE, EXPANC				PENETRACION	PENETRACION	PENETE	CION	PENETRACION	PENETRACION
	FECHAS DE LAS L	ECTURAS		MILIMETROS	MIUMETROS	MLMS		MIUMETROS	MILIMETERS
CANTIDAD DE ACTO	ANTEC DEL MARCO	IANTE!	, 		1	+	\rightarrow		
CANTIDAD DE IMPRII		IANTE, MI	 		1	+	\rightarrow		
CANTIDAD DE IMPRII TIPO DE IMPRIMANT			 		 	+	\rightarrow		
TEMPERATURA DE LA		MODIMANTE CO	 		 	+	\rightarrow		
LEWIFERATURA DE LA	ACLICACION DEL I	INIF KIIVIAIVIE, C	 		 	+	\rightarrow		
			 		 	+	\rightarrow		
			 		 	+	\rightarrow		
PENETRACION mm					1	+	\rightarrow		
UMIDADES DE COMP	PACTACION %		 			+	\rightarrow		
C.VIIDADES DE COIVIE									
									7
							_		-
E									
ASION mm							_		-
z									
<u> </u>									
l S l									-
E									
PENETF									-
<u> </u>									
									-
									_
	= -								
	C	ONTENIDO D	E HUME	:DAD %					

ENSAYOS DE SUELOS TROPICALES

SOLICITANTE

: Roberto Julio De la Cruz Medina

DOMICILIO LEGAL: San Borja Norte 1079, San Borja

FECHA DE RECEPCIÓN: 2018.03.09

IMPLEMENTACION DE LA METODOLOGIA MINI COMPACTACION

TROPICAL PARA USOS VIALES EN SUELOS TROPICALES

MUESTRA

Noaya Arena

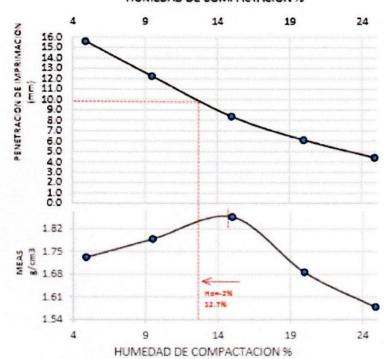
IDENTIFICACIÓN

Puente del rio Noeya

CANTIDAD

: 25 kg

PRESENTACIÓN


: Saco de polietileno

FECHA DE ENSAYO : 2018.03.14 al 2018.03.19

DER M-199/89 Penetracion de Imprimante

PENETRACION DE IMPRIMACION DE LA MUESTRA NOAYA

HUMEDAD DE COMPACTACION %

HUMEDAD %	PENETRACION mm
24.9	4.4
20	6.1
15	8.4
9.5	12.3
4.9	15.6

- · Tipo de imprimente
- · Temperatura de aplicación
- Cantidad de Imprimentel// C-30
- Cantidad de agus Maxima Densidad Secs
- Optimo contenido de humedad
- Humedad despues de 15 minutos :
 Reposo despues de la imprimación :

MC-30

30.0 C° 1,150 ml

0.5 ml 1.852 g/om

14.7 % 72.horas

ING. CESAR FERREYROS CORCUERA Coordinador de Estudios Dirección de Estudios Especiales

INGENIERO RESPONSABLE Lime, 16 de Abril del 2018

ENSAYOS DE SUELOS TROPICALES

SOLICITANTE

FECHA DE RECEPCIÓN: 2018.03.09

Roberto Julio De la Cruz Medina DOMICILIO LEGAL: San Borja Norte 1079, San Borja

PROYECTO

IMPLEMENTACION DE LA METODOLOGIA MINI COMPACTACION TROPICAL PARA USOS VIALES EN SUELOS TROPICALES

MUESTRA

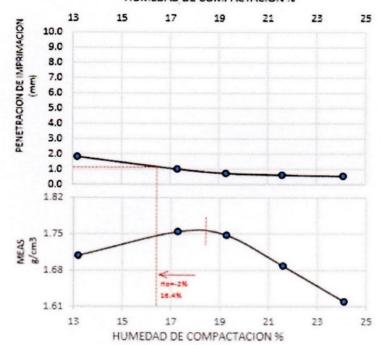
: Cantera Infierno

IDENTIFICACIÓN Arcilla

Km. 15 + 000 - Arcille-Infierno

CANTIDAD

: 25 kg


PRESENTACIÓN Saco de polietileno

FECHA DE ENSAYO : 2018.03.14 al 2018.03.19

DER M-199/89 Penetracion de Imprimante

PENETRACION DE IMPRIMACION DE LA MUESTRA INFIERNO

HUMEDAD DE COMPACTACION %

HUNEDAD %	PENETRACION mm
13.2	1.8
17.3	1.0
19.3	0.7
21.6	0.6
24.1	0.5

- · Tipo de Imprimente
- Temperature de aplicación
- · Cantidad de ImprimenteMIC-30
- Cantidad de agua
- Maxima Densided Secs
- Optimo contenido de humedad
- Humedad despues de 15 minutos : -2%
 Reposo despues de la imprimación :

MC-30

30.0 C 1,150 ml

0.5 ml 1.769 g/cm²

18.4 % 16.4 %

72 horas

ING. CESAR FERREYROS CORCUERA Coordinador de Estudios Dirección de Estudios Especiales INGENIERO RESPONSABLE

Lima, 15 de Abril del 2018

ENSAYOS DE SUELOS TROPICALES

SOLICITANTE

: Roberto Julio De la Cruz Medina DOMICILIO LEGAL: San Borja Norte 1079, San Borja

PROYECTO

IMPLEMENTACION DE LA METCOCLOGIA MINI COMPACTACION TROPICAL PARA USOS VIALES EN SUELOS TROPICALES

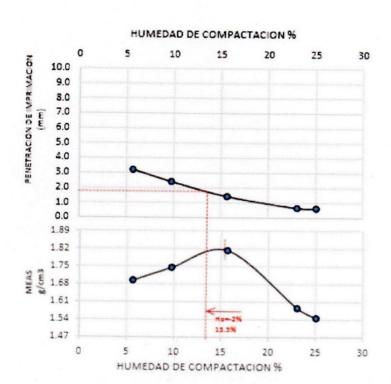
: Cantera Tropezon

IDENTIFICACIÓN Arolla

Km. 10 + 000 - Arails

CANTIDAD

MUESTRA


25 kg

PRESENTACIÓN Saco de polietileno FECHA DE ENSAYO : 2018.03.14 al 2018.03.19

FECHA DE RECEPCIÓN : 2018.03.09

DER M-199/89 Penetracion de Imprimante

PENETRACION DE IMPRIMACION DE LA MUESTRA TROPEZON

HUMEDAD %	PENETRACION mm
5.7	3.2
9.8	2.4
15.7	1,4
23.1	0.7
25.1	0.6

- Tipo de imprimante
- · Temperatura de aplicación
- Cantidad de imprimanteMC-30 Cantidad de ague
- · Maxima Densidad Beca
- Optimo contenido de humedad
 Humedad despues de 15 minutos : -2%
 Reposo despues de la imprimación :

MC-30

30.0 C* 1.150 ml

0.5 mi

1.813 g/cm²

15.3 %

13.3 % 72 horas

ING. CESAR FERRETROS CORCUERA

Coordinador de Estudios Dirección de Estudios Especiales

INGENIERO RESPONSABLE Lime, 30 de Marzo del 2018

4.2.7. Ensayo Mini-CBR de Campo Procedimiento Dinámico (Aplicación de Golpes de Martillo) (P-7).

4.2.7.1. Consideraciones Preliminares.

Hay varios procedimientos para determinar el Mini-CBR en el campo. Cuando la determinación se efectúa estáticamente, como en el procedimiento P2 de este anexo, se dispone de dos procedimientos: uno que utiliza carga estática de un vehículo y otro que utiliza pesos apropiados (pesos de sondeos a percusión, etc.) - Propuesto por Villibor (1981), fue implantado en el DER-SP, con las mismas directrices, en su método DER M-191-88. En este anexo se presenta, sólo, el procedimiento, Densidad dinámica portátil, por las ventajas que presenta sobre aquellos que se basan en el uso de carga estática.

Aparatos Específicos:

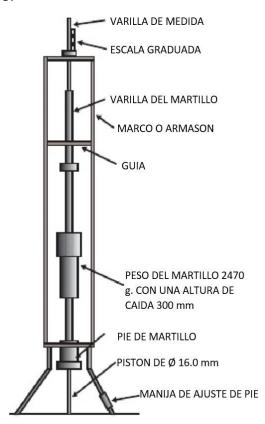


Figura 149:Aparato portátil, Mini-CBR de campo Fuente: Propia.

4.2.7.2. Procedimiento.

Aplanar el área donde se quiere determinar el Mini-CBR, o elegir una superficie plana preexistente. Apoyar cuidadosamente la punta del penetrómetro, sobre la superficie que se pretende ensayar. Si es necesario, nivelar el conjunto variando la altura de uno de los pies. Realizar la lectura inicial Li. Aplicar un golpe del zócalo y, a continuación, efectuar la lectura Lf. Utilizar la siguiente fórmula de correlación o tablas o gráficos derivados de la misma:

log (Mini-CBRd) = 2,28 - 1,5 log (Li-Lf)

donde: Mini-CBRd = Mini-CBR obtenido por el procedimiento dinámico.

Efectuar, por lo menos, 3 determinaciones en un radio de cerca de 10 cm de la primera, adoptando la media. Dependiendo de los valores obtenidos, efectuar determinaciones adicionales para que el resultado final tenga representatividad estadística.

En el lugar en que se efectuó la penetración, retirar una alícuota de suelo, pesando cerca de 100gf, para la determinación del contenido de humedad y, eventualmente, otras propiedades del mismo.

Figura 150:Penetrómetro de campo. Fuente: Libro de pavimentos económicos.

4.2.8. Ensayo de Pérdida de Masa por Inmersión (P-8).

4.2.8.1. Consideraciones Preliminares.

Este ensayo proporciona una de las propiedades de los suelos tropicales compactados, considerados en la Clasificación Geotécnica, según la Sistemática MCT. El objetivo es representar la erosión de los suelos y así poder calcular el índice de laterización. Propuesto por Villibor (1981), fue implantado en el DER-SP, con las mismas directrices, en su método DER M-197/88.

4.2.8.2. Equipos Específicos.

a) Soporte de los moldes, para que pueda sumergirse en posición horizontal,
 con el respectivo cuerpo de prueba (cp) y, además, acomodar un recipiente para recoger el suelo, eventualmente desprendido.

Figura 151:Soporte que mantiene los molde en posición horizontal. Fuente: Propia

b) Tanque de agua permita acomodar, en posición horizontal por lo menos 5 cilindros de compactación, cada uno con el respectivo cuerpo de prueba compactado, completamente sumergido en medio acuoso.

Figura 152:Tanque de inmersión de acero inoxidable. Fuente: Propia

c) Recipiente para captar todo el material desprendido de preferencia de aluminio y con diámetro y profundidad adecuada.

Figura 153:Recipiente que capta toda la muestra desprendida por inmersión llamado capsula.

Fuente: Propia

4.2.8.3. Procedimiento del Ensayo de Pérdida de Masa por Inmersión.

Preparación de los Cuerpos de Prueba.

Según el método Mini-MCV, realizados por los ensayos de Parsons, se extraen sólo parcialmente 10 mm quedando expuesto del cuerpo de prueba, efectuar esta operación luego de la compactación, recordando que la parte expuesta debe ser protegida contra pérdida de humedad. Esperar al menos 1 hora antes de proseguir el ensayo que es sumergirlo en el tanque de agua.

Inmersión y Recogida del Suelo Desprendido.

Colocar un recipiente adecuado para la recolección del suelo que, eventualmente, desprender del extremo del tubo en el cual el cuerpo de prueba está expuesto y, a continuación, sumergir cuidadosamente el conjunto (cilindro con el cuerpo de prueba), asentándolo en el soporte de manera que quede completamente sumergido, en posición horizontal, en el baño de agua, y quede 1.0cm por debajo de la superficie, al menos durante 20 horas. Retirar cuidadosamente los recipientes en los que se haya depositado el suelo y anotar el aspecto del material depositado, eliminar el agua limpia que queda en el recipiente por decantación, luego debe colocarse en un horno, a 105-110 ° C (hasta constancia de peso), para la determinación de su masa seca desprendida (Md).

Cálculo de la Pérdida por Inmersión.

Para los cuerpos de prueba en que no ocurrió desprendimiento de material, adoptar la Pérdida por Inmersión Pi = 0. Para los cuerpos de prueba en que hubo desprendimiento, calcular la pérdida Pi, por la fórmula:

$$Pi = \frac{Md \ x \ Fc}{Me} \ x \ 100\%$$

Me = Masa de la parte extraída del cuerpo de prueba [g];

Md = Masa seca desprendida [g];

Fc = 0.5 Solamente cuando la parte desprendida es un monobloc [cm²];

Fc = 1.0 Para los otros casos;

Representar los valores de Pi obtenidos, en función de sus respectivos Mini-MCV, en obtener las pérdidas de masa P, por interpolación, según las siguientes situaciones:

Suelos de baja densidad (hcp ≥ 48 mm), cálculo de perdida en Mini-MCV = 10 Suelos de alta densidad (hcp < 48 mm), Calculo de perdida en Mini-MCV = 15

Donde:

hcp = Altura de cuerpo de prueba al final de la compactación o valor de perdida, P, obtenidos conforme las instrucciones arriba, será usado para fines clasificatorios.

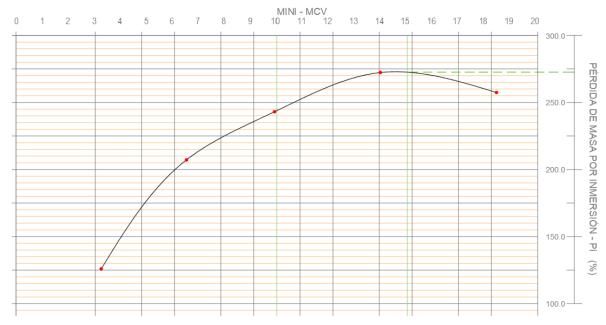


Figura 154:Representación gráfica para determinar la Pi con intersección con Mini-MCV 15.

Fuente: Propia.

Figura 155:Procediendo a expulsar el cuerpo de prueba. Fuente: Propia.

Figura 156:Se expulsa de tal modo de que sobresalga aproximadamente 1 cm. Fuente: Propia

Figura 157: Medición del cuerpo parcialmente expulsado con un vernier.

Figura 158:Expulsión de la muestra de la cantera Tropezón. Fuente: Propia

Figura 159: Medición con vernier de la muestra Tropezón.

Figura 160:Los 5 cuerpos de prueba del ensayo Mini-MCV con expulsión de 1 cm cada una con distintas humedades.

Fuente: Propia

Figura 161:Cuerpos de prueba Infierno listas para sumergir.

Figura 162:Esquema de funcionamiento de la perdida por inmersión Fuente: Popia

Figura 163:Primer cuerpo sumergido de la muestra Infierno. Fuente: Propia.

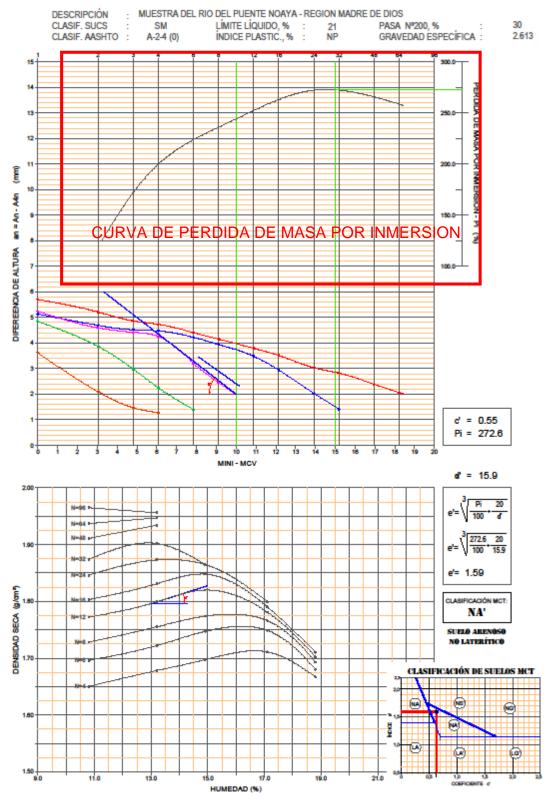
Figura 164:Colocación de la totalidad de los cuerpos de prueba. Fuente: Propia

Figura 165:Erosión artificial después de 10 minutos de estar sumergido. Fuente: Propia.

Figura 166:Muestras extraídas desprendidas después de estar sumergidas 24 horas Fuente: Propia

Figura 167:Una vez extraídas ponerlas en el horno hasta que seque toda el agua

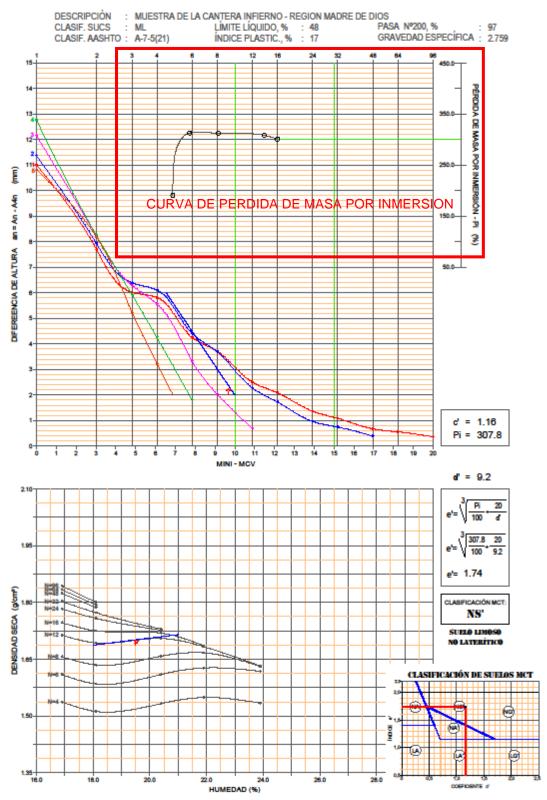
Figura 168:Muestras salidas de horno y listas para calcular la Pi. Fuente: Propia.


Figura 169:Muestras salidas del horno listas para el cálculo Pi. Fuente: Propia.

Formato de laboratorio para determinar la muestra seca desprendida, recuadro rojo

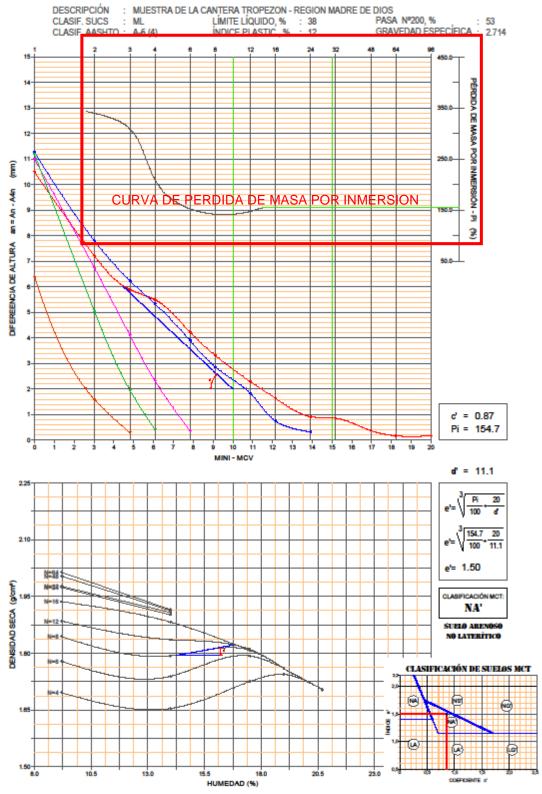
ENSAYO DE COMPACTACION MINI-MCV METODO CONVENCIONA	M-INIM	CV METODO	CONV	ENCIONAL	>	PERDIDA D	E MA	PERDIDA DE MASA POR INMERSION	ERSIO	Z		
FECHA DE INICIO FECHA DE TERMINO.	AINO			MASA DEL	MART	MASA DEL MARTILLO,g			PES	PESO ADICIONAL DEL MOLDE: 10g	. DEL N	MOLDE: 10g
MUESTRA												
MOLDE N°												
PESO EL MOLDE SOLO g,												
PESO DESCRIPTION COMPACTADO EN TODOS LOS MOLDES CONTENIDO DE HIMEDAD ESTIMADA					\coprod						Ш	
INQUIETUDES:		DIPES PIAL DIAL	S∃dTC	LECT. DIAL	S∃dTC	LECT. DIAL	S∃dTC	LECT. DIAL	SEES	LECT. DIAL	SEES	LECT. DIAL
		(0.1 mm)	_	(0.1 mm)	9	(0.1 mm)	9	(0.1 mm)	9	(0.1 mm)	9	(0.1 mm)
FRACCION PASANTE EL TAMIZ DE 2mm		0	0		0		0		0		0	
MASA HUMEDO, g MASA SECO, g		1	1		1		1		1		1	
		2	2		2		2		2		2	
FRACCION RETENIDO EN EL TAMIZ DE 2mm		3	3		3		3		3		3	
MASA HUMEDO, g MASA SECO, g		4	4		4		4		4		4	
		9	9		9		9		9		9	
		8	8		8		8		8		8	
ERIST		12	12		12		12		12		12	
DIAMETRO, mm ALTURA, mm AREA, cm2		16	16		16		16		16		16	
50.00 50.14 19.60		24	24		24		24		24		24	
HORA DE INICIO DE LA INMERSION		32	32		32		32		32		32	
HORA FINAL DE LA INMERSION		48	48		48		48		48		48	
MASA COMPACTADA EN TODOS		64	64		64		64		64		64	
LOS MOLDES, g		96	96		96		96		96		96	
		128	128	8	128		128		128		128	
		192	192	5	192		192		192		192	
	2	256	256	9	256		256		256		256	
OBSERVASION con o sin bloque desprendido												
N° DE TARRO												
MASA DEL TARRO, g												
MASA DEL TARRO + SUELO HUMEDO, g												
MASA DEL TARRO + SUELO SECO,g												
CONTENDIO DE HUMEDAD REAL, %			+									
N° DE CAPSULA												
MASA DE LA CAPSULA, g												
MASA DEL SUELO SECO DESPRENDIDO + CAPSULA, g												
MASA SECA, G												
					ı		ı		ı		ı	

RESULTADOS.


21/Febrero/2018 DENSI-DAD (g/cm³) an (mm) FECHA DE ENSAYO: Altura A (mm) 19.10 32.67 1.557 1.625 1.667 1.680 1.693 1.702 67.80 84.10 257.40 1.710 10.00 151.90 5 DENSI-DAD (g/cm³) S/N 1107.6 899.9 198.0 18.8 166.7 1.19 1.05 an (mm) 54.532 52.245 51.338 50.914 50.512 50.146 49.864 49.646 Altura A (mm) 16 24 32 48 64 96 128 192 256 COLPES 1.766 1.799 1.678 1.749 1.790 66.40 93.60 272.30 1.562 1.638 1.711 19.10 160.00 - M C V DENSI-DAD (g/cm³) 34.37 S/N 1105.3 199.5 170.4 896.1 17.1 4.84 3.36 2.58 1.99 an m MINI 55.558 52.980 50.716 49.618 48.722 48.242 51.696 49.120 48.478 Altura A (mm REGISTRO DE DATOS - DER M 191 - 88 1.848 1.865 19.10 35.63 152.00 65.40 86.60 243.10 1.697 1.774 1.820 1.624 1.668 1.747 1.865 03 DENSI-DAD (g/cm³) 891.4 S/N 1101.1 174.1 COMPACTACIÓN 14.9 3.85 3.51 2.75 2.44 an (mm) 53.139 49.985 47.543 47.542 57.461 52.233 47.977 50.731 Altura A (mm) 128 192 256 COLPES 1.531 1.902 1.947 63.40 77.60 207.20 DENSI-DAD (g/cm³) 1.650 1.831 1.960 40 19.10 141.00 S/N 1096.6 887.3 199.6 13.2 176.3 3.25 3.60 3.23 2.69 2.62 .82 1.31 an (mm) 58.640 47.936 47.222 46.118 53.514 49.048 45.822 Y A 54.420 52.152 Altura ٩ <u>آ</u> 1.988 1.573 1.650 1.728 1.803 .846 1.874 1.937 1.965 2.024 02 10.00 19.10 114.10 65.40 48.70 125.90 1.497 1.620 38.67 DENSI-DAD (g/cm³) 895.5 199.8 S/N 105.0 180.3 SAY 10.8 4.22 3.83 3.40 2.88 2.34 2.28 1.86 an (iiii) N 61.362 49.008 47.418 46.188 45.366 55.658 53.156 49.754 51.832 50.930 56.692 54.152 Altura A (mm) 48 49 128 256 192 COLPES ÁREA, cm² CARACTERÍSTICAS DEL MARTILLO COMPACTADOR
TIPO ALT. CAÍDA, cm MASA, g 19.63 MASA SECO, 9 MASA SECO, g CARACTERÍSTICAS DEL MOLDE DE ENSAYO FRACCIÓN RETENIDO EN ELTAMIZ DE 2 mm ASA SUELO HÚMEDO COMPACTADO + MOLDE, g FRACCIÓN PASANTE EL TAMIZ DE 2 mm \prec AASA SUELO SECO DESPRENDIDO + TARA, 9 OPERADOR: JULIO DE LA CRUZ MEDINA ASA SUELO HÚMEDO COMPACTADO, 9 MASA SUELO SECO DESPRENDIDO, 9 PÉRDIDA DE MASA POR INMERSIÓN, % MASA DEL MOLDE + ADICIONAL (9.7), g ALTURA, mm WASA SUELO SECO COMPACTADO, g **PREPARACIÓN** CALIB. EXTENSÓMETRO, mm 50.14 ONTENIDO DE HUMEDAD, % MASA COMPACTADA, g (Ka = Ac+La) OLUMEN EXPUESTO, cm3 TURA EXPUESTA, mm MASA HÚMEDO, 9 MASA HÚMEDO, g DIÁMETRO, mm LIVIANO 20.00 **NOLDE N°**

OPERADOR : R. JULIO DE LA CRUZ MEDINA FECHA ENSAYO : 2018-05-21

RESULTADOS.


MIESTDADELACAN	ESTDA DE LA CANTEDA INFIEDMO						REGIS	REGISTRO DE DATOS	E DAT		- DER M 191 - 88	1191 -	88									
MOLDE N°			_		9				9			31			2	Г			6	L		
MASA SUELO HÚMED	MASA SUELO HÚMEDO COMPACTADO + MOLDE, g	OLDE, g	_		1104.2	1.2		1104.5	10			1108.2			1103.8			11	1105.1			
MASA DEL MOLDE + ADICIONAL (9.7), g	ADICIONAL (9.7), g		_		894.8	8:		894.8				898.5			894.0			8	895.4			
MASA SUELO HÚMEDO COMPACTADO, 9	O COMPACTADO, g		_		199.7	7.1		200.0	0			200.0			200.1			2	200.0			
CONTENIDO DE HUMEDAD, %	EDAD, %		_		16	16.9		18.1				20.4			21.9				23.9			
MASA SUELO SECO COMPACTADO, g	COMPACTADO, g		_		170.8	8.1		169.3	_	Ш		166.1	Н		164.2	П			161.4	Ц		
	PREPARACIÓN		GOLPES	Altura A (mm)	an (mm)	DENSI- DAD (g/cm³)	Altura A (mm)	an (mm)	DENSI- DAD (g/cm³)	EOLPES	Altura an A (mm)		DENSI- Ali DAD (g/cm³) (n	Altura s A (mm)	an DEr (mm) (g/c	DENSI- DAD (g/cm³)	Altura A (mm)	an (mm)	DENSI- DAD (g/cm³)	- Altura A A	an (mm)	DENSI- DAD (g/cm³)
FRACCIÓN	FRACCIÓN PASANTE EL TAMIZ DE 2 mm	DE 2 mm	_	67.612	11.02	1.287	68.428	11.38	1.260	1	67.346 12	┸	_	66.720	12.77	1.253	64.404	10.80	0 1.276	9,	L	1
MASA HÚMEDO, g		MASA SECO, g	2	61.756		1.409	62.346	7.93	1.383	2 60	L	8.21	1.392 5		L	1.402	58.976		L	4		
			3	58.538	6.02	1.486	59.150	6.39	1.458	3	57.320	6.30	1.476 5	56.082	5.95	1.491	55.666	5.23	3 1.477	7		
FRACCIÓN F	FRACCIÓN RETENIDO EN ELTAMIZ DE 2 mm	Z DE 2 mm	4	56.596		1.537	57.050	6.11	1.512	4 5	55.188	5.57	1.533 5	53.954	4.27	1.549 4	53.600	3.22	1.534	4		
MASA HÚMEDO, g		MASA SECO, g	9	54.052		1.610	54.412	4.41	1.585	9	L	3.34	1.610 5	51.398	$ldsymbol{ldsymbol{ldsymbol{eta}}}$	1.627 6	50.816	9	1.618	8		
			8	52.516	3.72	1.657	52.756	3.71	1.635	8	51.022	2.04	1.658 5	50.136	_	1.667	50.434	1	1.630	01		
CARACTERÍ	CARACTERÍSTICAS DEL MOLDE DE ENSAYO	E ENSAYO	12	50.774	2.51	1.714	50.940	2.28	1.693	12 49	49.616		1.705 4	49.686		1.683 12	50.380		1.632	12		
DIÁMETRO, mm	ALTURA, mm	ÁREA, cm²	16	49.796		1.747	49.998	1.74	1.725	16 49	49.220	1	1.719 4	49.582	_	.686 16						
20.00	50.14	19.63	24	48.792	1.37	1.783	49.050	76.0	1.758	24 48	48.986	1	1.727			24						
CARACTERÍSTIC	CARACTERÍSTICAS DEL MARTILLO COMPACTADOR	OMPACTADOR	32	48.266		1.803	48.656	0.75	1.773	32 48	48.910	1	1.730			32						
TIPO	ALT. CAÍDA, cm	MASA, g	48	47.706	89'0	1.824	48.254	0.40	1.787	48						48						
LIVIANO			64	47.426	0.56	1.834	48.082		1.794	64						64						
MASA COMPACTADA	3DA 9	74	96	47.174	0.37	1.844	47.902		1.801	96						96						
	6,501	4	128	47.026		1.850	47.852		1.802	128						128						
CALIB. EXTENSÓMETRO, mm	SÓMETRO, mm		192	46.864		1.856			,	192						192						
(Ka = /	(Ka = Ac+La)		256	46.800		1.859			.,	256	-					256						
CÁPSULA N°			L			10			10	H			60			80	L		07			
ALTURA EXPUESTA, mm	mm					10.00			10.00			1	10.00		_	10.00			10.00	0		
VOLUMEN EXPUESTO, cm ³	J, cm³					19.10			19.10			3	19.10		-	19.10			19.10	0		
MASA SUELO SECO EXPUESTO, g	EXPUESTO, g					35.51			34.43			33	33.05		8	32.21			31.18	8		
MASA SUELO SECO L	MASA SUELO SECO DESPRENDIDO + TARA, 9	6,4				172.10			173.30			169	169.10		16	163.90			128.40	0		
TARA, g			•			67.80			67.10			99	00:99		9	63.10			68.80	0		
MASA SUELO SECO DESPRENDIDO, 9	DESPRENDIDO, 9					109.30			106.20			103	103.10		10	100.80			29.60	0		
PÉRBIBA BE MASA POR INMERSIÓN,	OR INMERSIÓN, %					907.00			998.50	4		948	98.5		10	313.00			191.2	6		

OPERADOR : R. JULIO DE LA CRUZ MEDINA FECHA ENSAYO : 2018-05-21

RESULTADOS

Things to the property Things Thi					ENS	3 A Y 0		DE C	COMPACTACIÓN	AC	TA C	I Ó N	MIN	N I	MC	Λ						
The content							~	EGISTR	O DE D	ATOS	٠.	R M 19	1 - 88									
NOTICE 2 NOTICE 2	MUESTRA DE LA CAN	ITERA TROPEZON				œ			σ	Г		15	F		α	Г		11	L			
This bound Thi	MASA SUELO HÚMEDO	COMPACTADO + M	OLDE. a	_		1104.2	1		1104.9	1		1105.1	+		1104.1	T		1096.8				
The continue of the continue	MASA DEL MOLDE + A	DICIONAL (9.7), g		_		894.8			895.3	ī		895.5			894.5	Т		887.2	21			
This continue	MASA SUELO HÚMEDO	O COMPACTADO, g		_		199.7			199.9	Ī		199.9			199.9	<u> </u>		199.9	0			
The continue contin	CONTENIDO DE HUME	EDAD, %		_		9.2			14.0	ī		17.5			19.0	Г		20.7				
MASA SECOLO 9 2	MASA SUELO SECO CO	OMPACTADO, g		_		182.9	H		175.4	П		170.1			168.0	П		165.6	(0			
MACA SECO. 9 1 66 420 1 612 1 424 65 20 1 128 1 420 1 412 1		PREPARACIÓN		COLPES	Altura A (mm)						Altura A (mm)						Altura A (mm)			Altura A (mm)	an (mm)	DENSI- DAD (g/cm³)
MACH SECOLO, g	FRACCIÓN	PASANTE EL TAMIZ I	DE 2 mm	-	65.420	10.51	_	L		1	61.232	11.01	<u> </u>	L		120	55.936	6.40	1.508			
1	MASA HÚMEDO,		SA SECO, g	2	59.550	7.21	╙	L		L	55.052	6.74	L	53.676		┖	51.102	1.59	1.651			
MASA SECOLO 6 65.00 1.000 5.00 1.000 5.00 1.00				3	56.386	5.89	_				52.030	4.12		50.604			_	0.31	1.693			
NSA SECO 6 6 52.34 4.23 1.779 51.366 2.97 1.779 6 43.12 0.37 1.792 46.64 1.759 6 45.69 1.704 1.704 1.2	FRACCIÓN RE	ETENIDO EN ELTAMI,	Z DE 2 mm	4	54.908	5.50					50.222	2.34	L	49.042			ᆫ		1.703			
Figure F	MASA HÚMEDO,		SA SECO, g	9	52.344	4.23	Ш				48.312	0.37	Ш	48.634	1.7		ᆫ		1.704			
DEFINANO 12 49.06 2.96 48.64 86 1.89 1.89 47.89 1.80 48.64 1.80 48.64 1.80 48.64 1.80 47.82 1.80 <td></td> <td></td> <td></td> <td>8</td> <td>50.499</td> <td>3.33</td> <td></td> <td></td> <td></td> <td></td> <td>47.914</td> <td></td> <td>Ш</td> <td>48.634</td> <td>10</td> <td></td> <td>Ш</td> <td></td> <td>1.704</td> <td></td> <td></td> <td></td>				8	50.499	3.33					47.914		Ш	48.634	10		Ш		1.704			
AREACM	CARACTERÍS	TICAS DEL MOLDE D	E ENSAYO	12	49.408	2.30	Ш				47.880			48.614	10							
1963 136 137 46.94 137 46.94 130	DIÁMETRO, mm	ALTURA, mm	ÁREA, cm²	16	48.114	1.65					47.942		1.807			16						
COMPACTADOR 32 47.106 0.86 1.977 46.804 1.906 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20.00	50.14	19.63	24	47.174	0.92			1							24						
MASA, g 46 0.20 4.65 G 0.20 4.65 G 0.20 4.65 G 0.191 G 4.6 G 6.4 G <t< td=""><td>CARACTERÍSTICA</td><td>AS DEL MARTILLO CO</td><td>OMPACTADOR</td><td>32</td><td>47.108</td><td>98.0</td><td></td><td>46.804</td><td>1.9</td><td>ш</td><td></td><td></td><td></td><td></td><td></td><td>32</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	CARACTERÍSTICA	AS DEL MARTILLO CO	OMPACTADOR	32	47.108	98.0		46.804	1.9	ш						32						
K 46 250 0.17 2.014 46.618 1.916 64 6 6 6 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7	TIPO	ALT. CAÍDA, cm	MASA, g	48	46.466	0.38		16.690	1.9							48						
K 46 6.44 0.17 2.014 96	LIVIANO			64	46.250	0.17		46.618	1.9							64						
TAB 46.084 2.021 128 12	MASA COMPACTAL	DA. a	~	96	46.248	0.17	2.014			96						96						
192 46.083 2.021 192 19		9	:	128	46.084		2.021			128						128						
26 46.062 2.021 2.66 46.062 2.021 2.66 100	CALIB. EXTENS(ÓMETRO, mm		192	46.083		2.021			192						192						
RA, g 10.00 <th< td=""><td>(Ka = A≀</td><td>c+La)</td><td></td><td>256</td><td>46.082</td><td></td><td>2.021</td><td></td><td></td><td>256</td><td></td><td></td><td></td><td></td><td></td><td>256</td><td></td><td></td><td></td><td>1</td><td></td><td></td></th<>	(Ka = A≀	c+La)		256	46.082		2.021			256						256				1		
IRA g 10.00 <th< td=""><td>CÁPSULAN</td><td></td><td></td><td>Ţ</td><td></td><td></td><td>U3</td><td></td><td></td><td>9</td><td></td><td></td><td>106</td><td></td><td>_</td><td>Ω</td><td></td><td></td><td>40</td><td></td><td></td><td>ſ</td></th<>	CÁPSULAN			Ţ			U3			9			106		_	Ω			40			ſ
RA, g 19.10 <th< td=""><td>ALTURA EXPUESTA. m</td><td>mt.</td><td></td><td></td><td></td><td></td><td>10.00</td><td></td><td>10.0</td><td>9</td><td></td><td></td><td>10.00</td><td></td><td>10.</td><td>8</td><td></td><td></td><td>10.00</td><td></td><td></td><td></td></th<>	ALTURA EXPUESTA. m	mt.					10.00		10.0	9			10.00		10.	8			10.00			
IRA, g 38.61 36.60 34.58 33.62 32.55 32.55 IRA, g 198.00 183.60 150.60 138.40 114.00 114.00 IRA, g 65.40 70.20 83.80 89.40 63.70 63.70 IRA, g 132.60 113.40 66.80 49.00 50.30 50.30 IRA, g 343.40 309.80 193.20 145.70 FECHA DE ENSAYO :	VOLUMEN EXPUESTO	; cm³		_			19.10		19.	0			19.10		19.	9			19.10			
IRA, g 188, g 150, 60 138,40 141,00 114,00	MASA SUELO SECOE)	XPUESTO, g		_			38.61		36.6	, ,			34.58		33.	62			32.55			
65.40 70.20 83.80 89.40 63.70 63.70 132.60 113.40 66.80 49.00 50.30 50.30 NIA 343.40 309.80 193.20 145.70 154.50 FECHA DE ENSAYO :	MASA SUELO SECO DE	ESPRENDIDO + TARA	4,9				198.00		183.6	00			150.60		138.	40			114.00			
132.60 113.40 66.80 49.00 50.30 50.30 343.40 309.80 193.20 145.70 154.50 FECHA DE ENSAYO :	TARA, g			_			65.40		70.3	02			83.80		.68	40			63.70			
343.40 309.80 193.20 145.70 154.50 156.450 DINA FECHA DE ENSAYO :	MASA SUELO SECO DE	ESPRENDIDO, g		_			132.60		113.	g.			08.99		49.	00			50.30			
JULIO DE LA CRUZ MEDINA FECHA DE ENSAYO :	PÉRDIDA DE MASA PO	OR INMERSIÓN, %					343.40		309.	30			193.20		145.	20			154.50			
) DE LA CRUZ MEDIN	ΑV													ı		FE(CHA DE ENS	SAYO :	21/Ma	arzo/2018

OPERADOR : R. JULIO DE LA CRUZ MEDINA FECHA ENSAYO : 2018-03-21

4.2.9.1. Consideraciones Generales.

Esta clasificación fue desarrollada teniendo en cuenta que las clasificaciones tradicionales basadas en las propiedades índices (tales como granulometría y límites de liquidez e índice de plasticidad, incluyendo aquellas conocidas por Clasificación Unificada-USCS y HRB-AASHTO), cuando se aplican a los suelos típicos de los climas tropicales húmedos (incluidos los lateríticos y saprolíticos), resultan en incongruencias considerables en relación con sus propiedades mecánicas e hídricas y, por consiguiente, en el establecimiento de un rango para los grupos. En el método DER M-196/89, con la denominación "Clasificación de suelos tropicales, según la metodología MCT", se implantó en el DER-SP, con las mismas directrices, en su método DER M-196/89, con la denominación "Clasificación de suelos tropicales, según la metodología MCT".

Así, los suelos considerados por aquellas clasificaciones como inservibles para bases de pavimentos, a menudo poseían elevada capacidad de soporte. Como resultado, la aplicación de esas clasificaciones hacía la elección preliminar de suelos para uso en carreteras, a menudo incorrecta y restringía el uso de los yacimientos de suelos de buena calidad, con el consiguiente aumento de los costos de construcción. Los hechos arriba relatados fueron verificados luego de la introducción de los principios de la Mecánica de los Suelos en el estudio de suelos para carreteras, a principios de la década de los cuarenta. En el inicio de la década de los setenta, ingenieros del DER-SP e investigadores de la USP, comenzaron a desarrollar una nueva clasificación más adaptada para los suelos y ambiente tropical húmedo, brasileños. El procedimiento que pareció más prometedor fue el uso de CBR en escala miniatura, reduciendo las dimensiones de los equipos a l/3, en relación a los tradicionales. Esta disminución resultó en una drástica reducción de los costos de ese ensayo y permitió, con menores gastos, la determinación de otras propiedades tales como soporte sin embebido, contracción, infiltrabilidad, permeabilidad, etc. Se utilizó con éxito un nuevo ensayo de compactación denominado MCV - de Moisura Condition Value, propuesto en 1976, por Parsons del entonces Road Research Laboratory, original de Gran Bretaña.

4.2.9.2. Ensayos y Procedimiento Clasificatorio.

La compactación MCV, realizada en moldes usados en el ensayo MiniCBR, fue designada de Mini-MCV (el MCV usa cuerpos de prueba de 100 mm de diámetro y el Mini-CBR, cuerpos de prueba de 50 mm de diámetro). El ensayo Mini-MCV proporciona dos propiedades de interés clasificatorio, que son: la inclinación de la curva de deformabilidad, denominada coeficiente c' y la inclinación de la rama seca de la curva de compactación correspondiente a la energía de 12 golpes del zócalo ligero (4.5 kg, caída de 30 cm, con un martillo de sección completa), denominada coeficiente d'. El ensayo de la pérdida de masa por inmersión, proporciona el coeficiente Pi. Para la clasificación MCT, se considera la laterización expresada, numéricamente, por la fórmula:

$$e' = \sqrt[3]{\left(\frac{Pi}{100}\right) + \left(\frac{20}{d'}\right)}$$

Donde:

e' = Índice de laterización;

Pi = Pérdida de masa por inmersión, determinado según el ensayo P8 [%];

d' = Inclinación de ramo seco de la curva de compactación obtenida del ensayo Mini MCV[cm²] correspondientes a 12 golpes del martillo leve obtenido según el ítem (Expresado en [Kg/m³(teoria_de_humedad_en%)].

En esta fórmula y en el gráfico clasificatorio, los valores numéricos fueron obtenidos considerando como modelo de comportamiento laterítico, los suelos clasificados pedológicamente como latosol púrpura y latosol rojo oscuro, de la clasificación del "Levantamiento de Reconocimiento de Suelos del Estado de São Paulo" realizado en el Ministerio de Agricultura en 1960.

La raíz cúbica fue adoptada, gracias a la evidencia de un centenar de datos disponibles hasta 1984, a fin de que los suelos de las dos clases, de comportamiento laterítico y no laterítico, ocuparan áreas equivalentes en el gráfico clasificatorio.

La clasificación de suelos es determinar previamente sus propiedades y luego enumerar uno o más cualidades como base para el propósito propuesto el suelo ha sido estudiado para diferentes especialidades. En la Ingeniería Civil, por ejemplo, la clasificación geotécnica es bastante utilizada para estudios y determinación de suelos empleados en obras viales, por ejemplo, en bases, subbases y refuerzo de pavimentos. Por medio de la clasificación geotécnica es posible:

- Evaluar preliminarmente la calidad del suelo;
- Jerarquizar el suelo indicando sus probables propiedades para determinada finalidad;
- Correlacionar cada clase de suelos con su comportamiento en campo.

La clasificación de los suelos con uso de la Metodología MCT fue desarrollada especialmente para el estudio de suelos tropicales y está basada en propiedades mecánicas e hídricas obtenidas de cuerpos de prueba (CP) compactados con dimensiones reducidas. La MCT posibilita separar los suelos tropicales en dos grandes clases: los de comportamiento laterítico y los de comportamiento no laterítico.

Los suelos lateríticos y saprolíticos según la clasificación MCT, pueden pertenecer a los siguientes grupos:

Tabla 17: Suelos lateríticos

Suel	os de comportamiento laterítico, designados por la letra "L",
subdivi	didos en 3 grupos:
LA:	Arena laterítica cuarzosa
LA':	Suelo arenoso laterítico
LG':	Suelo arcilloso laterítico

Tabla 18:Suelos saprolítico

Suelo	os de comportamiento no laterítico (saprolíticos), designados por
la letra	"N", subdivididos en 4 grupos:
NA':	Arenas con arcillas y mezclas de arenas y limos con predominio
	de grano de cuarzo y.o mica, no laterítico
NA:	Mezclas de arenas cuarzosas con finos de comportamiento no
	laterítico (suelos arenosos)
NS ':	Suelos limosos no laterítico
NG':	Suelo arcilloso no laterítico

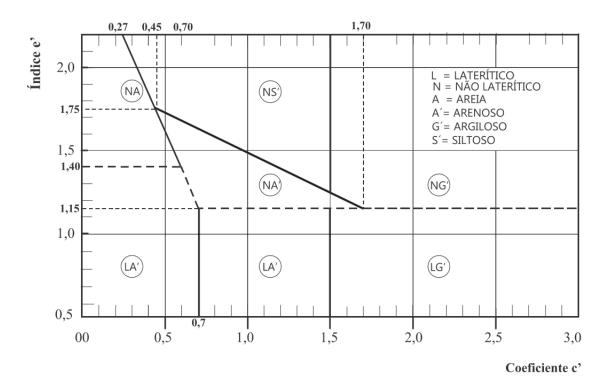
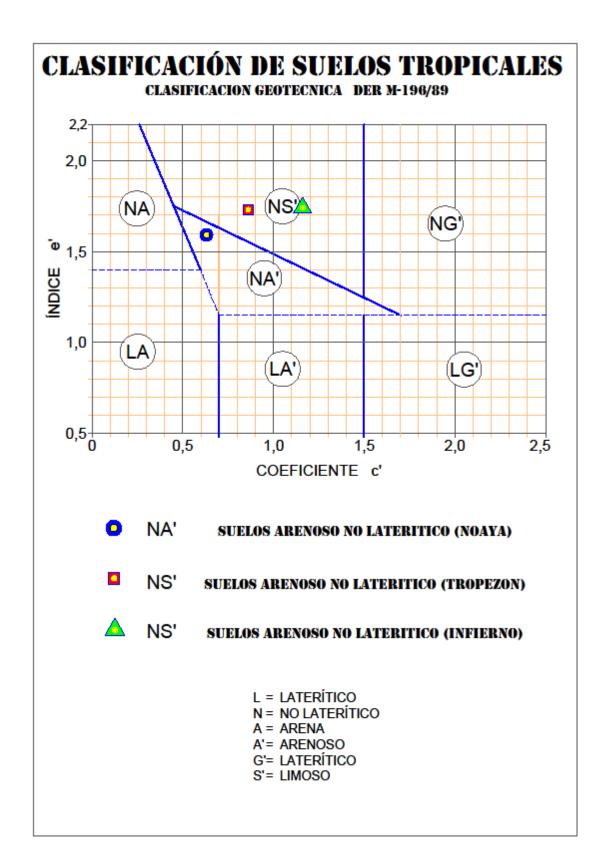



Figura 170:Gráfico de Clasificatorio de suelos tropicales. Fuente: Pavimentos Económicos, Villibor y Nogami Pág. 54

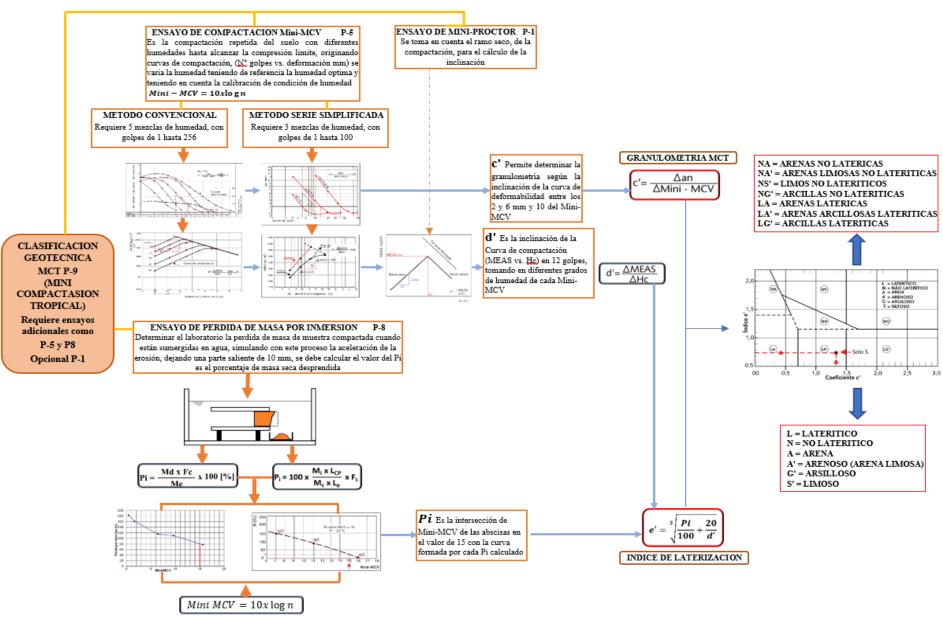


Figura 171:Esquema del sistema de clasificación de MCT.

Fuente: Propia

4.2.10. Resultados Alternativos del Laboratorio.

ENSAYOS DE LABORATORIO

SOLICITANTE DOMICILIO LEGAL DE LA CRUZ MEDINA ROBERTO JULIO

MUESTRA DENTIFICACIÓN ACES El que se indica

PROYECTO

UNIVERSIDAD PERUANA LOS ANDES

120 kg

IMPLEMENTACION DE LA METODOLOGIA MINI COMPACTACION TROPICAL PARA USOS VIALES EN SUELOS TROPICALES

CANTIDAD

REFERENCIA

R Nº 2118 - 2017 - DFI - UPLA

PRESENTACIÓN

Sacos de polietieno

FECHA DE RECEPCIÓN :

2 017.08.08.

FECHA ENSAYO

2 017 08 21 # 23

MALLA	s	DENOMINACIÓN	Vecinal D Tropezón (le cemetere N. Km168- (cm00+000- (+680)	Vecinal Inflamo (ki	h Carretorn La Joyn - m 00+000 - 8+000)	Noaya,	e del rio cametera cianica
SERIE AMERICANA	ABERTU RA (mm)	NORMAS ENSAYO	REY(%)	PASA (N)	RET (%)	PASA (%)	RET(%)	PASA (N
•	78,205							
2 1/2"	83,500							
7	50,800							4
1157	36.100							
1"	25,400							
34	19.050							
1/2"	12.700							
38	9.525							
1.44*	8.350							
Nº 4	4.760							
Nº 8	3.360	NTP 400,012 (2.013)						
Nº 8	2.380							
Nº 10	2.000							
Nº 16	1,190							
N° 25	0.840							
N* 30	0.590			100				
Nº 40	0.428		1	99				100
Nº 50	0.297	(9	90			3	97
N° 80	0.177		27	83		100	30	67
Nº 100	0.149		4	59	1	99	13	54
Nº 200	0.074		8	53	2	9.7	24	30
- N° 200		NTP 400 018 (2013)	59		97		30	-
MITE LÍQUIDO (Walte Nº 40)	MITO E-1 10 (2016)	2	15	•	18	2	1
MITE PLASTICO	Mala Nº 4	M10 E-110 (2016)	1	2		7	N	P.
INDICE PLAST	000 (N)	M10 E-110 (2016)	,	2	1	7		
Chesificación	SUCS	NTP 339.134 (2014)				r.	3	W
Clasificación A	ASHTO	NTP 339 136 (2014)	Ad	(4)	A-7-5	5 (21)	A-2-	4 (0)

Observaciones:

- Muestra proporcionada e identificada por el solicitante.

- Este documento no autoriza el empleo de los materiales analizados, siendo la interpretación del mismo de exclusiva responsabilidad del usuario.

ING. CESAR FERREY ROS CORCUERA
Coordinador de Estudios
Dirección de Estudios Especiales
INGENIERO RESPONSABLE

Litte, 29 de Erero del 2 018

⁻ Los resultados de ensayos no deben ser utilizados como una certificación de conformidad con normas de productos o como certificado del sistema de calidad de la entidad que lo produce (Resolución Nº 0002-98/INDECOPI-CRT del 07.01.98).

SOLICITANTE

: DE LA CRUZ MEDINA ROBERTO JULIO

: Arcilla

DOMICILIO LEGAL

: UNIVERSIDAD PERUANA LOS ANDES

IDENTIFICACION

: El que se indica

PROYECTO

: IMPLEMENTACION DE LA METODOLOGIA MINI COMPACTACION TROPICAL PARA USOS VIALES EN CANTIDAD

MUESTRA

: 120 kg c/u.

REFERENCIA

SUELOS TROPICALES : R. Nº 2118 - 2017 - DFI - UPLA

PRESENTACION : Sacos de polietileno

FECHA DE RECEPCIÓN

: 2 017.08.08.

FECHA DE ENSAYO : 2 017.08.21 al 23.

DETERMINACIÓN DE MATERIAL MÁS FINO QUE PASAN TAMIZ Nº 200 (0.75 µm) POR MTC E - 202 (2 016) LAVADO EN AGREGADOS (PROCEDIMIENTO A) (*).

IDENTIFICACIÓN	RESULTADO (%)
Cantera de la carretera vecinal:Dv.Km168-Tropezón (km00+000-km10+680)	12,4
Cantera de la Carretera Vecinal:La Joya - Infiemo (km 00+000 - km 18+000)	9.3
Puente del rio Noaya, carretera Interocianica	2.1

Observaciones:

- (*) Referencia ASTM C-117-4 "Standard test for material finer than 75-µm (N° 200) sieve in mineral aggregates by washing"
- Muestra proporcionada e identificada por el personal técnico de la Dirección de Estudios Especiales.
- Fecha de orden de ensayo y/o preparación: 2 017.08.08.
- Los resultados de ensayos no deben ser utilizados como una certificación de conformidad con normas de productos o como certificado del sistema de calidad de la entidad que lo produce (Resolución Nº 0002 - 98/INDECOPI - CRT del 07.01.98).

- Este documento no autoriza el empleo de los materiales analizados; siendo la interpretación del mismo de exclusiva responsabilidad del usuado

> ING. CESAR FERREYFOS CORCUERA Coordinador de Estudios Dirección de Estudios Especiales

> > INGENIERO RESPONSABLE Lima, 29 de Enero del 2 018

SOLICITANTE

: DE LA CRUZ MEDINA ROBERTO JULIO

MUESTRA

; indicada

DOMICILIO LEGAL

: UNIVERSIDAD PERUANA LOS ANDES

IDENTIFICACION

: El que se Indica

PROYECTO

: IMPLEMENTACION DE LA METODOLOGIA MINI COMPACTACION TROPICAL PARA USOS VIALES EN SUELOS TROPICALES CANTIDAD

: 120 tg c/u.

REFERENCIA

: R. Nº 2118 - 2017 - DFI - UPLA

PRESENTACIÓN : Sacos de poletieno

FECHA DE RECEPCIÓN

: 2 017.08.08.

FECHA DE ENSAYO : 2 017.08.18 a 23.

MTC E-205 (2 016)

MÉTODO DE ENSAYO NORMALIZADO PARA PESO ESPECÍFICO

IDENTIFICACIÓN	ENSAYO	RESULTADO
ARCILLA Cantera de la carretera vecinal Dv.Km166-Tropezón (km00+000-km10+680)	Peso específico aparente (base seca) giomi	2.714 g cm3
ARCILLA Cantera de la Carretera Vecinal La Joya - Inflemo (km 00+000 - km 18+000)	Peso específico aparente (base seca) giom ³	2.759 g/cm3
ARENA Puente dei rio Noaya, carretera Interocianica	Peso específico aparente (base seca) giom ³	2.613 g cm3

ING. CESAR FERREYROS CORCUERA Coordinador de Estudios Dirección de Estudios Especiales

INGENIERO RESPONSABLE Lima, 29 de Enero del 2 018

SOLICITANTE

DE LA CRUZ MEDINA ROBERTO JULIO

MUESTRA

: Ardila

DOMICILIO LEGAL

: UNIVERSIDAD PERUANA LOS ANDES

IDENTIFICACIÓN : El que se indica

PROYECTO

: IMPLEMENTACION DE LA METODOLOGIA MINI COMPACTACION TROPICA. CANTIDAD PARA USOS VIALES EN SUELOS TROPICALES

: 120 kg

REFERENCIA

: R. Nº 2118 - 2017 - DFI - UPLA

PRESENTACIÓN : Sacos de polietileno

FECHA DE RECEPCIÓN : 2 017.08.08.

FECHA DE ENSAY: 2017.08.8 al 23.

TP 339.127 (2 014) SUELOS. CONTENIDO DE HUMEDAD	DE UN SUELO (*)
IDENTIFICACIÓN	RESULTADO (%)
Cantera de la carretera vecinal:Dv.Km166-Tropezon (km00+000-km10+680)	3,3
Cantera de la Carretera Vecina:La Joya - Inflemo (km 00+000 - km 18+000)	4,7
Puente del rio Noaya, carretera Interocianica	2,0

Observaciones:

(*) Referencia: ASTM D-2216 (2 010) "Standard test method for laboratory determination of water (moisture) content of soil and rock ".

- Fecha de orden de ensayo y/o preparación: 2 017.08.08.

- Los resultados de ensayos no deben ser utilizados como una certificación de conformidad con normas de productos o como certificados del sistema de calidad de la entidad que lo produce (Resolución Nº 002 - 98/INDECOP) - CRT del 07/01/98).

- Este documento no autoriza el empleo de los materiales analizados; siendo la interpretación del mismo de exclusiva responsabilidad de usuario.

ING. CESAR FERREYROS CORCUERA Coordinador de Estudios Dirección de Estudios Especiales

INGENIERO RESPONSABLE Lima, 29 de Enero del 2 018

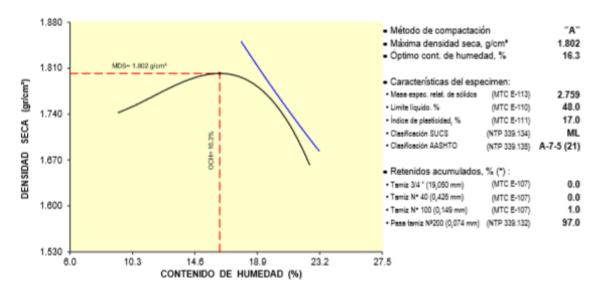
LABORATORIO DE LA DIRECCIÓN DE ESTUDIOS ESPECIALES INFORME DE ENSAYO Nº 002 - 2017 - MTC/14.01

SOLICITANTE : ROBERTO JULIO DE LA CRUZ MEDINA MUESTRA : Arcilla - Infierno

IDENTIFICACIÓN : Km 15+000 Cantera Inferno - Arcilla

DOMICILIO LEGAL : San Borja Norte 1079

PROYECTO : IMPLEMENTACION DE LA METODOLOGIA MINI COMPACTACION TROPICAL


PARA USOS VIALES EN SUELOS TROPICALES

CANTIDAD : 150 kg

REFERENCIA : R. N° 2118 - 2017 - DFI - UPLA PRESENTACIÓN : Saco de polietileno FECHA DE RECEPCIÓN : 2017.04.15 FECHA DE ENSAYO : 2018.03.16 al 2018.03.17

MTC E-115 (2000) COMPACTACIÓN DEL SUELO UTILIZANDO UNA ENERGÍA MODIFICADA (2700 kN- m/m³ (56000 pie-lbf/pie³))

01 - Masa Suelo Humedo + Molde (g)	343	2.5	351	9.7	354	3.3	351	7.0
02 - Masa del Molde (g)	158	0.0	158	0.0	156	30.0	156	0.0
03 - Masa Suelo Humedo (g)	187	2.5	195	9.7	198	3.3	195	7.0
04 - Volumen del Molde (cm ³)	936	8.0	936	3.0	93	6.0	93	8.0
05 - Densidad Suelo Humedo (g/cm ³)	2.0	01	2.0	94	2.1	119	2.0	91
06 - Tarro N°	114	22	93	17	84	49	50	138
07 - Masa suelo humedo + tarro (g)	315.7	384.1	311.3	335.3	361.2	351.3	358.9	278.5
08 - Masa suelo seco + tarro (g)	290.1	351.1	279.6	300.8	317.8	308.9	311.3	245.2
09 - Masa del agua (g)	25.6	33.0	31.7	34.5	43.4	42.4	47.6	33.3
10 - Masa del tarro (g)	87.8	90.0	84.5	88.0	87.8	84.6	84.4	86.8
11 - Masa suelo seco (g)	202.3	261.1	195.1	212.8	230.0	224.3	226.9	158.4
12 - Contenido de Humedad (%)	12.65	12.64	16.25	16.21	18.87	18.90	20.98	21.02
13 - Promedio de Humedad (%)	12	2.6	16	.2	18	3.9	21	.0
14 - Densidad del Suelo Seco (g/cm3)	1.7	77	1.8	02	1.7	82	1.7	28

ING. CESAR FERREYROS CORCUERA
Coordinador de Estudios
Oirección de Estudios Especiales

SOLICITANTE : ROBERTO JULIO DE LA CRUZ MEDINA

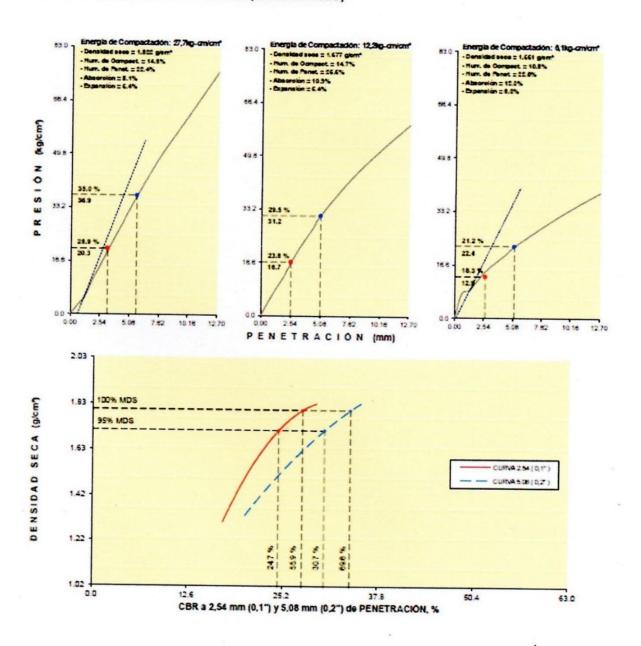
MUESTRA : Ardila - Inflemo

IDENTIFICACION : Km 15-000 Carters Inferro - Arcilla

DOMICILIO LEGAL: San Borja Norte 1079

PROYECTO

: IMPLEMENTACION DE LA METODOLOGIA MINI COMPACTACION TROPICAL PARA USOS VIALES EN SUELOS TROPICALES


: 150 kg CANTIDAD : R Nº 2118 - 2017 - DFI - UPLA PRESENTACIÓN : Saco de poletieno

FECHA DE RECEPCIÓN: 2017.04.15

REFERENCIA

FECHA DE ENSAYO : 2017.10.30 a 2017.11.03

MTC E-132 (2000) C.B.R. DE SUELOS (LABORATORIO)

ING. CESAR FERREYROS CORCUERA Coordinador de Estudios Dirección de Estudios Especiales INGENIERO RESPONSABLE

Lima, 4 de Noviembre del 2017

SOLICITANTE : ROBERTO JULIO DE LA CRUZ MEDINA

MUESTRA IDENTIFICACION : Km 15-000 Cartere Inferno - Arcille

: Arcilia - Inflemo

DOMICILIO LEGAL: San Borja Norte 1079

PROYECTO

: IMPLEMENTACION DE LA METODOLOGIA MINI COMPACTACION TROPICAL

PARA USOS VIALES EN SUELOS TROPICALES

CANTIDAD

: 150 kg

REFERENCIA

R. Nº 2118 - 2017 - DFI - UPLA

PRESENTACIÓN

: Saco de polietieno

(17.67 kN/m²)

FECHA DE RECEPCIÓN : 2017.04.15

FECHA DE ENSAYO : 2017.10.30 al 2017.11.03

MTC E-132 (2000) C.B.R. DE SUELOS (LABORATORIO)

· Procedimiento de Compactación

(MTC E-115 (2000)) :

· Método de Preparación

(MTC E-115 (2000)) :

Humedo

• Maxima Densidad Seca (MDS)

(MTC E-115 (2000)) :

1.802 g/cm3

(MTC E-115 (2000)) 16.3 %

. Optimo Contenido de Humedad (OCH)

 Penetración . CBR al 100% de la MDS 2,54 mm (0.1") 27.8 %

5,08 mm (0,2") 34.2 %

• CBR al 95% de la MDS

24.7 %

30.7 %

· Condición de la muestra ensayada

Embebido en agua: 4 días

	Especimen N° 01	Especimen N° 02	Especimen Nº 03
 Energia de compactación 	27.7 kg*cm/cm*	12.2 kg*cm/cm*	6.1 kg'cm/cm ³
 Densidad seca (antes de ser remojada) 	1.822 g/cm³	1.677 g/cm*	1.375 g/cm³
Masa de sobrecarga	4.53 kg	4.53 kg	4.53 kg
Expansion (hinchamiento)	6.35 %	5.42 %	3.02 %
Humedad (antes de la compactación)	14.3 %	14.7 %	10.8 %
Humedad de penetración	22.4 %	25.6 %	11.4 %
Absordion	8.1 %	10.9 %	0.6 %

Características de los especimenes

Retenido acumulado en tamices (*) (MTC E-107) : 3/4* (19,050 mm) 0.0 %

(MTC E-107) : Nº 40 (0,426 mm) 0.0 %

(MTC E-107) : Nº 100 (0,149 mm) 1.0 %

· Pasa tamiz Nº 200

(NTP 339.132) : N*200 (0,074 mm) 97.0 %

· Peso Específico Relativo de Particulas Solidas

(MTC E-113) : 2.759

Limite líquido

(MTC E-110) : 48.0 %

Indice de plasticidad

(MTC E-111) : 17.0 %

· Clasification SUCS

(NTP 339.134) : ML

ING. CESAR FERREYROS CORCUERA Coordinador de Estudios Dirección de Estudios Especiales

SOLICITANTE

: ROBERTO JULIO DE LA CRUZ MEDINA

MUESTRA IDENTIFICACION : Arcita - Tropezon

DOMICILIO LEGAL: San Borja Norte 1079

FECHA DE RECEPCIÓN: 2017.04.15

PROYECTO

REFERENCIA

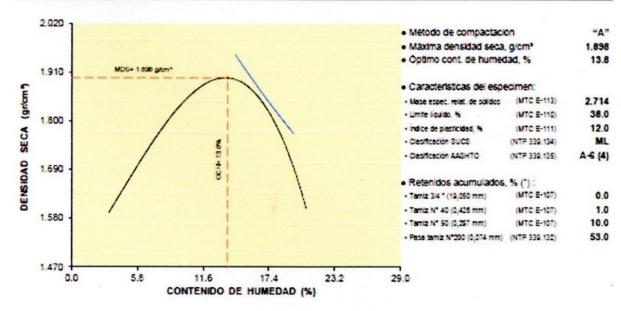
: IMPLEMENTACION DE LA METODOLOGIA MINI COMPACTACION TROPICAL

PARA USOS VIALES EN SUELOS TROPICALES

: R. Nº 2118 - 2017 - DFI - UPLA

CANTIDAD

150 kg


PRESENTACIÓN : Saco de polietieno

FECHA DE ENSAYO : 2018.03.16 al 2018.03.17

: Km 10+000 Cartere Tropezon - Arcilla

MTC E-115 (2000) COMPACTACIÓN DEL SUELO UTILIZANDO UNA ENERGÍA MODIFICADA (2700 kN- m/m3 (56000 pie-lbf/pie3))

01 - Masa Suelo Humedo + Molde (g)	350	9.0	3140	0.0	358	0.0	337	5.0
02 - Masa del Molde (g)	156	0.0	1560	0.0	156	0.0	156	0.0
03 - Masa Suelo Humedo (g)	194	9.0	1580	0.0	202	0.0	181	5.0
04 - Volumen del Molde (cm²)	936	0.0	936	.0	936	.0	936	0.0
05 - Densidad Suelo Humedo (gicm²)	2.0	82	1.68	8	2.1	58	1.9	39
06 - Tarro N*	95	23	153	52	60	46	92	76
07 - Masa suelo humedo + tarro (g)	161.1	145.7	167.5	151.0	200.0	206.5	174.5	172.0
08 - Masa suelo seco + tarro (g)	149.8	137.3	164.5	148.5	186.8	192.3	167.9	165.1
09 - Masa del agua (g)	11.3	9.4	2.9	2.5	13.2	14.2	6.6	5.9
10 - Masa del tarro (g)	88.8	87.6	85.5	89.5	89.2	89.8	84.7	84.5
11 - Masa suelo seco (g)	61.0	49.7	79.1	58.9	97.6	102.5	83.2	80.6
12 - Contenido de Humedad (%)	18.53	18.91	3.67	4.24	13.53	13.85	7.93	8.56
13 - Promedio de Humedad (%)	18.	7	4.0		13.	7	8.3	2
14 - Densidad del Suelo Seco (gicm ³)	1.75	54	1.62	23	1.89	98	1.7	92

ING. CESAR FERREYROS CORCUERA Coordinador de Estudios Dirección de Estudios Especiales

SOLICITANTE : ROBERTO JUJO DE LA CRUZ MEDINA

MUESTRA : Arolla - Tropezon

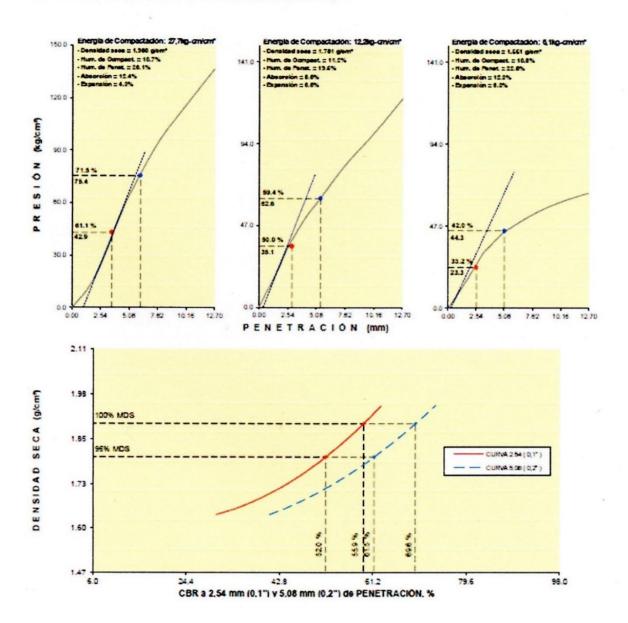
IDENTIFICACION : Km 10+000 Carters Tropezon - Araille

DOMICILIO LEGAL: San Borja Norte 1079

PROYECTO

: IMPLEMENTACION DE LA METODOLOGIA MINI COMPACTACION TROPICAL

PARA USOS VIALES EN SUELOS TROPICALES


REFERENCIA : R. N° 2118 - 2017 - DFI - UPLA FECHA DE RECEPCIÓN : 2017.04.15

: 150 kg CANTIDAD

PRESENTACION

: Saco de poletieno FECHA DE ENSAYO : 2017.10.30 a 2017.11.03

MTC E-132 (2000) C.B.R. DE SUELOS (LABORATORIO)

ING, CESAR FERREYROS CORCUERA Coordinador de Estudios Dirección de Estudios Especiales

SOUCITANTE

: ROBERTO JULIO DE LA CRUZ MEDINA

MUESTRA

: Arolla - Tropezon

DOMICILIO LEGAL: San Borja Norte 1079

PROYECTO

: IMPLEMENTACION DE LA METODOLOGIA MINI COMPACTACION TROPICAL

IDENTIFICACION : Km 10-000 Centere Tropezon - Arolle

PARA USOS VIALES EN SUELOS TROPICALES

CANTIDAD PRESENTACIÓN 150 kg

REFERENCIA FECHA DE RECEPCIÓN: 2017.04.15

R. Nº 2118 - 2017 - DFI - UPLA

: Saco de polietieno

FECHA DE ENSAYO : 2017.10.30 al 2017.11.03

MTC E-132 (2000) C.B.R. DE SUELOS (LABORATORIO)

Procedimiento de Compactación

(MTC E-115 (2000))

"A"

 Método de Preparación Maxima Densidad Seca (MDS) (MTC E-115 (2000))

Humedo

1.898 g/cm³ (18.61 kN/m²)

Optimo Contenido de Humedad (OCH)

(MTC E-115 (2000)) (MTC E-115 (2000))

13.8 %

Penetración

2,54 mm (0.1")

5,08 mm (0,2")

:

. CBR al 100% de la MDS CBR al 95% de la MDS

59.4 % 52.0 %

69.6 % 61.5 %

Condición de la muestra ensayada

Embebido en agua: 4 días

	Especimen N° 01	Especimen N° 02	Especimen N° 03
Energia de compactación	27.7 kg*cm/cm*	12.2 kg cm/cm	6.1 kg*cm/cm*
 Densidad seca (antes de ser remojada) 	1.923 g/cm²	1.781 g/cm²	1.661 g/cm²
Masa de sobrecarga	4.53 kg	4.53 kg	4.53 kg
Expansion (hinchamiento)	4.03 %	3.35 %	3.02 %
 Humedad (antes de la compactación) 	10.7 %	11.2 %	10.8 %
Humedad de penetración	16.1 %	19.5 %	22.8 %
Absortion	5.4 %	8.3 %	12.0 %

Características de los especimenes

Retenido acumulado en tamices (*) (MTC E-107) : 3/4* (19,050 mm) 0.0 %

(MTC E-107) : Nº 40 (0,426 mm) 1.0 %

(MTC E-107) : Nº 50 (0,297 mm) 10.0 %

· Pasa tamiz Nº 200

(NTP 339.132) : N*200 (0,074 mm) 53.0 %

- Peso Específico Relativo de

Particulas Solidas

(MTC E-113) : 2.714

 Limite liquido Indice de plasticidad (MTC E-110) : 38.0 %

· Clasification SUCS

(MTC E-111) : 12.0 %

- Clasificación AASHTO

(NTP 339.134) : ML

(NTP 339.135) : A-6 (4)

ING. CESAR FERREYROS CORCUERA Coordinador de Estudios Dirección de Estudios Especiales

CLASIFICACION DE SUELOS SUCS, AASHTO Y MCT (Clasificación Tropical).

MUESTRA	мст	sucs	AASHTO	CARACTERÍSTICAS FÍSICO - MECÁNICAS
TROPEZON	NS' Suelo Arenoso no laterítico	ML	A-6 (4)	Con índices de plasticidad de 12%, altamente impermeables, de capilaridad elevada, propensos a cambios de volumen en presencia de humedad.
INFIERNO	NS' Suelo Arenoso no laterítico	ML	A-7-5	Con índices de plasticidad de (17%), altamente impermeables, de capilaridad elevada, propensos a cambios de volumen en presencia de humedad
NOAYA	NA' Suelo arenoso no laterítico	SM	A-2-4(0)	No presenta índice de plasticidad, alta permeabilidad contiene limo

Características Físicas y Mecánicas de los Suelos hallados en el Camino Vecinal Tropezón (km 6+900).

ING. CESAR FERREYROS CORCUERA Coordinador de Estudios Dirección de Estudios Especiales Características Físicas y Mecánicas de los Suelos hallados en el Camino Vecinal La Joya – Infierno (km 15+800).

DIFERENCIAS DE PROCTOR MODIFICADO Y MINIPROCTOR

MUESTRA	MINI PROCTOR gr/cm³	PROCTOR MODIFICADO gr/cm³
TROPEZON	1.813	1.898
INFIERNO	1.771	1.802

MEZCLA DE CANTERAS

Mezcla de cantera Puente Noaya y la Cantera Tropezón (km 6+900).

Cantera Noaya	Cantera	CARACTERÍSTICAS	
(Arena)	Tropezón	FÍSICO – MECÁNICAS	
	(Ligante)	DE LA MEZCLA DE	
		CANTERAS	
40 %	60 %	Se consiguió un índice	
		de plasticidad de 7 %, ideal	
		para lo requerido	

Mezcla de cantera Puente Noaya y la Cantera La Joya – Infierno (km 15+800).

Cantera Noaya	Cantera Infierno	CARACTERÍSTICAS
(Arena)	(Ligante)	FÍSICO - MECÁNICAS
60 %	40 %	Se consiguió un índice de plasticidad de 7%, ideal para lo requerido.

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA

LABORATORIO DE ANALISIS DE SUELOS, PLANTAS, AGUAS Y FERTILIZANTES FACULTAD DE AGRONOMIA - DEPARTAMENTO DE SUELOS

ANALISIS DE SUELOS : CARACTERIZACION

JULIO DE LA CRUZ MEDINA Solicitante

MADRE DE DIOS Departamento : Distrito :

Referencia

H.R. 58108-048C-17

TAMBOPATA 12/04/17 Provincia : Predio : Fecha : Sat. De Bases

100	U)		-		
Suma	de	Bases		3.95	7.53
Suma Suma	de	Cationes Bases		4.95	7.83
K. Caku	AI ⁺³ + H ⁺			0.72 2.5 25 25 28 44 28 Fr.Ar. 10.72 2.93 0.87 0.08 0.07 1.00 4.95 3.95	12.32 5.19 2.15 0.10 0.09 0.30 7.83
oiables	a+			0.07	0.09
Cationes Cambiables	a+2 Mg+2 K+ N	100g		80.0	0.10
Cation	Mg ⁺²	/baw		0.87	2.15
TO SERVICE	Ca ⁺²			2.93	5.19
CIC				10.72	12.32
Análisis Mecánico Clase	Textural			Fr.Ar.	Fr.
ánico	Limo Arcilla	%		28	14
sis Mec	0-10	%		44	36
Análi	Arena	%		28	20
	¥	mdd	THE WAY	25	31
	Д	mdd		2.5	3.8 31
	M.O.	%		0.72	99.0
EU K S	(1:1) CaCO ₃ M.O.	%			00.0
C.E.	(1:1)	dS/m		5.01 0.07 0.00	20.0
throstopping the state of the s	Ha	(1:1)		5.01	5.32
ero de Muestra	Claves			M1	M2

A = Arena ; A.Fr. = Arena Franca ; Fr.A. = Franco Arenoso ; Fr.E. = Franco Limoso ; L.E. Limoso ; Fr.Ar.A. = Franco Arcillos Franco Arcillos Fr.Ar.L. = Franco Arcillo Limoso; Ar.A. = Arcillo Arenoso; Ar.L. = Arcillo Limoso; Ar. = Arcilloso

2756

Lab

Sady García Bendezy

efe del Laboratorio

Av. La Molina s/n Campus UNALM - Telf.: 614-7800 Anexo 222 Teléfono Directo: 349-5622 e-mail: labsuelo@lamolina.edu.pe

METODOS SEGUIDOS EN EL ANALISIS DE SUELOS

alinidad: medida de la conductividad eléctrica (CE) del extracto acuoso		
	S	 Salinidad: medida de la conductividad eléctrica (CE) del extracto acuoso

PH: medida en el potenciómetro de la suspensión suelo: agua relación 1:1 ó en suspensión suelo: KCI N, relación 1:2.5.

Materia orgánica: método de Walkley y Black, oxidación del carbono Calcareo total (CaC03): método gaso-volumétrico utilizando un calcímetro.

Orgánico con dicromato de potasio. %M.O.=%Cx1.724. Nitrógeno total: método del micro-Kjeldahl.

Fósforo disponible: método del Olsen modificado, extracción con NaHCO3=05M, pH 8.5 9

Potasio disponible: extracción con acetato de amonio (CH₃ - COONH₄)N, DH 7.0 8

Capacidad de intercambio catiónico (CIC): saturación con acetato de

Ca+2, Mg+2, Na+, K+ cambiables: reemplazamiento con acetato de amonio amonio (CH.,- COOCH.,)N; pH 7.0

10.

6

(CH₃-COONH₂)N; pH 7.0 cuantificación por fotometría de llama y/o absorción atómica.

Al⁺³+ H⁺: método de Yuan. Extracción con KCl, N
 Iones solubles:

a) Ca+², Mg+², K+, Na+ solubles: fotometría de llama y/o absorción atomica. b) Cl, Co₃=, HCO₃=, NO₃ solubles: volumetría y colorimetría. SOଛ

turbidimetría con cloruro de Bario.

c) Boro soluble: extracción con agua, cuantificación con curcumina. d) Yeso soluble: solubilización con agua y precipitación con acetona.

Equivalencias:

1 millimho (mmho/cm) = 1 deciSiemens/metro 1 ppm=1 mg/kilogramo

1 miliequivalente / 100 g = 1 cmol(+)/kg

Sales solubles totales (TDS) en ppm ó mg/kg = 640 x CEes CE (1:1) mmho/cm \times 2 = CE(es) mmho/cm

TABLA DE INTERPRETACION

Salinidad			Materia Orgánica	Fósforo disponible	Potasio disponible	Relacio	Relaciones Catiónicas	S
Clasificación del Suelo *muy ligeramente salino 'ligeramente salino *moderadamente salino *tuertemente salino	CE(es)	CLASIFICACIÓN *bajo *medio *alto	% <2.0 2 - 4 >4.0	ppm P < 7.0 < 7.0 > 14.0 > 14.0	ppm K <100 100 - 240 >240	Clasificación *Normal *defc. Mg *defc. K *defc. Mg	K/Mg 0.2 - 0.3 >0.5 >0.2	Ca/Mg 5 - 9
Reacción o pH	1		CLASES TEXTURALES	TURALES		Dis	Distribución de	
Clasificación del Suelo *fuertemente ácido *moderadamente ácido *ligeramente ácido *neutro *ligeramente alcalino	pH <5.5 5.6 - 6.0 6.1 - 6.5 6.6 - 7.0 7.1 - 7.8	A = arena A.Fr = arena franca Fr.A = franco arenoso Fr. = franco Fr.L. = franco limoso L = limoso	ca 10SO ISO	Fr.Ar.A = franco arcillo arenoso Fr.Ar. = franco arcilloso Fr.Ar.L = franco arcilloso limoso Ar.A = arcilloso arenoso Ar.L. = arcilloso limoso Ar. = arcilloso	franco arcillo arenoso franco arcilloso franco arcilloso limoso arcilloso arenoso arcilloso limoso	Ca+² mg+² K+ Na+	Cationes %	60 - 75 15 - 20 3 - 7 <15
moderadamente alcalino *fuertemente alcalino	7.9 - 8.4							

4.3. Análisis Estadístico.

4.3.1. Características de Ensayos: Area de Compactación y CBR.

Cuadro de variables Compactación y CBR.

Nº	Ensayo	Norma	Año	Título	Producto							
1	Máxima	MTC E-115	2017	Método de ensayo	Arcilla							
	densidad			para la compactación								
	seca de una			del suelo en laboratorio								
	arcilla			utilizando una energía								
				modificada (2700 kN-								
				m/m3)								
Mu	estras de Arcill	a: A (Tropezón)	y B (Infier	no)	Muestras de Arcilla: A (Tropezón) y B (Infierno)							

Fuente: Propia.

Se ha ejecutado con la finalidad de verificar que los resultados obtenidos tienen precisión y exactitud aceptables. Para evaluar las muestras de cada ensayo se comparó los resultados obtenidos, por cada muestra (repetibilidad de cada muestra) Se ha realizado un análisis de resultados mediante el test de COCHRAN.

Los resultados de ensayos obtenidos se han realizado utilizando los softwares Microsoft Excel y Minitab para Windows v.15, que permiten hacer cálculos de los test de análisis de atípicos (COCHRAN) y análisis de variancia (ANOVA) respectivamente. En Excel, se realizó los test de Cochran.

En Minitab se verificó la normalidad de los datos, homogeneidad de varianzas, análisis de varianza.

Determinación de la Máxima densidad seca de una arcilla mediante compactación en laboratorio utilizando una energía modificada (2700 kN-m/m3) – MTC E-115 (2000)

Cuadro de Normalidad, Bartlett, ANOVA.

Muestras	Normalidad	Bartlett	AN	OVA	Observación
	p-value	p-value	F	pvalue	
A, B	>0,100	0,128	22,	0,0	• Los residuales de los
			69	09	 datos de las muestras se ajustan a una distribución normal Existe Homogeneidad de Varianzas. Existen diferencias significativas entre las muestras A y B

Fuente: Propia.

4.3.2. Conclusiones.

- Los residuales de las muestras se ajustan a una distribución normal
- Existe Homogeneidad de Varianzas.
- Existen diferencias en las muestras A (Tropezón) y B (Infierno), en el Método de ensayo para determinar la Máxima densidad seca de un suelo mediante compactación en laboratorio utilizando una energía modificada (2700 kN-m/m3) - NTP 339.141 (1999)

4.3.3. Resultados Estadísticos.

Método de ensayo para determinar la Máxima densidad seca de un suelo mediante compactación en laboratorio utilizando una energía modificada (2700 kN-m/m3) - NTP 339.141 (1999):

Variable A y variable B.

	А	В
1	1,913	1,859
2	1,907	1,825
3	1.899	1,806

- Prueba estadística para verificar valores atípicos

Los resultados de los cálculos estadísticos para verificar valores atípicos de acuerdo al test de COCHRAN figuran en el siguiente cuadro:

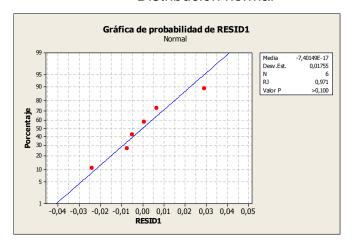
Muestras estadísticas A y B

	Muestras	S2ij
1	А	4,93333E-05
2	В	0,000721
	Σ=	0,000770333

	TEST DE	COCHRAN	
VARIANZA			
MÁXIMA	MAX) =	0,000721	
С		0,93595846	REZAGADO

		Nivel de		
Test de Coch	ıran	Significancia	1%	5%
		Valor		
P =	2	Crítico	0,93700	0,877

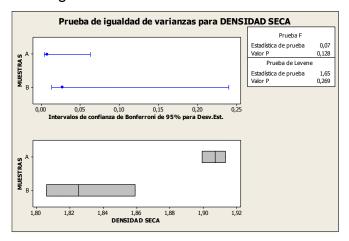
De acuerdo al cuadro se concluye que el máximo valor crítico 0,93595846 es mayor que 0,877 y menor que 0,93700; por lo que no presenta valores atípicos, se le considera como rezagado.


Test de Normalidad y Homogeneidad de Varianza.

 Verificación de normalidad usando residuales mediante la prueba de Shapiro Wild

Ho: Los residuales de los datos de densidad seca siguen una distribución normal

H1: Los residuales de los datos de densidad seca no siguen una distribución normal


De Acuerdo a esta gráfica P valor > 0,010 y α = 0,05; se observa que $Pvalor > \alpha = 0,05$; implica que no se rechaza Ho; por lo que se concluye que los residuales de los datos de densidad seca de muestras de arcilla se ajustan a una distribución normal.

- Prueba de homogeneidad de varianza

Ho: $\sigma_A^2 = \sigma_B^2$ (no se rechaza la hipótesis Ho, existe homogeneidad de varianza)

H1: $\sigma_A^2 \neq \sigma_B^2$ (se rechaza Ho, al menos una σ^2 es diferente, no hay homogeneidad de varianza)

homogeneidad de varianza en las muestras.

De Acuerdo a la gráfica usando el test de Barttlet P valor = 0,128 y α = 0,05; se observa que α = 0,05 < Pvalor = 0,128 , implica que no se rechaza Ho; por lo que se concluye que existe homogeneidad de varianza en las muestras.

- Prueba de diferencias significativas entre muestras

Prueba de igualdad de varianzas para DENSIDAD SECA ANOVA unidireccional: DENSIDAD SECA vs. MUESTRAS Fuente GL SC MC F Р MUESTRAS 1 0,008740 0,008740 22,69 0,009 Error 4 0,001541 0,000385 Total 5 0,010281 S = 0.01963 R-cuad. = 85.01% R-cuad. (ajustado) = 81.27% ICs de 95% individuales para la media basados en Desv.Est. agrupada Nivel N Media Desv.Est. -----+------(-----*----) Α 3 1,9063 0,0070 В 3 1,8300 0,0269 (-----*----) -----+-----1,820 1,855 1,890 1.925

Desv.Est. agrupada = 0,0196

De los resultados de dos muestras, P = 0,009 y α = 0,05; se concluye que $Pvalor = 0,009 > \alpha = 0,05$, implica que se rechaza Ho: μ A $\neq \mu$ B; se concluye que existen diferencias significativas entre las dos muestras.

CAPÍTULO V : DISCUSION DE LOS RESULTADOS.

- a) El comparativo con la metodología convencional de Proctor modificado ASTM D1557 dio un resultado igual que el mini Proctor DER-SP M-191/88 reduciendo el tiempo y la cantidad de material debido a que el área del martillo es igual al área del molde.
- b) El comparativo del CBR ASTM D 1883 convencional con el Mini CBR, DER M-192/88 según los desarrollos prácticos, se producen en cantidades más pequeñas de muestras, se ejecuta más rápido y se realiza menos esfuerzo físico y la variación de operados a operador es mínima, debido a que el área del martillo es igual al área del molde.
- c) La aplicación de la metodología MCT no es convencional, y se pudo aplicar todos los ensayos en las muestras que se trajeron desde Madre de Dios, donde se pudieron encontrar suelos de origen tropical y suelos transportados de origen tropical.

CONCLUSIONES

- Con esta metodología que se aplicó a los suelos tropicales obtenidas de las canteras, no pudo ser optimizada porque su identificación es suelo soprolítico, tanto en la vía de Tropezón como en la vía de Infierno.
- 2. Se desarrolló la implementación ejecutando cada uno de los ensayos, los instrumentos y accesorios fabricados respetando las normas actualizadas DER-SP siendo aplicado para usos viales en suelos tropicales, en la red vecinal de "Tropezón" y red vecinal de "Infierno".
- La metodología tradicional geotécnica ha sido complementada con la clasificación MCT, en los suelos tropicales de la red vecinal "Tropezón" y red vecinal de "Infierno".
- 4. Se mejoro el equipo de mini compactación con los trabajos adicionales de metal mecánica obteniendo cuerpos de prueba de 50 mm con una tolerancia de ± 1 mm, verificando los resultados con la ayuda de un vernier, prosiguiendo los ensayos con Mini Proctor para determinar la MDS y OCH para la red vecinal de "Tropezón" y red vecinal "Infierno".
- 5. Se construyo el pitón de penetración DM 5016 con un diámetro de 16 mm para el uso de Mini-CBR Logrando ejecutar los ensayos, así mismo obtuvo los resultados de expansión con carga y expansión sin carga, logrando observar el comportamiento de la para usos viales en suelos tropicales, en la red vecinal de "Tropezón" y red vecinal "Infierno".

- 6. Se demostró la contracción de acuerdo a la norma existente, con carga y contracción sin carga, en los hornos se pudo simular las temperaturas de zonas tropicales 30 °C Y 40 °C para usos viales en suelos tropicales, en la red vecinal de "Tropezón" y red vecinal "Infierno".
- 7. Se fabricó los instrumentos de infiltrabilidad y permeabilidad, cumpliendo las medidas según las normas modernas para operacionalizará obteniendo los resultados siguientes, para usos viales en suelos tropicales, en la red vecinal de "Tropezón" y red vecinal "Infierno".
- 8. La mejora del equipo de mini compactación contribuyo para un correcto ensayo del Mini-MCV obteniendo un c' aceptable de una curva de deformabilidad correcta siendo indispensable para la clasificación MCT, para usos viales en suelos tropicales, en la red vecinal de "Tropezón" y red vecinal "Infierno".
- 9. Se confecciono el disco espaciador de 35 mm de Ø y 1.5 mm de altura cumpliendo las normas recientes, con los forados en cada cuerpo de prueba y agregando imprimante MC-30, se obtuvo los resultados de penetración de imprimación, para usos viales en suelos tropicales, en la red vecinal de "Tropezón" y red vecinal "Infierno".
- 10. Para los ensayos de perdida por inmersión se adaptó envases de aluminio que captaron mejor la muestra desprendida funcionando de manera óptima, para usos viales en suelos tropicales, en la red vecinal de "Tropezón" y red vecinal "Infierno".
- 11. La clasificación geotécnica requiere de los ensayos Mini-MCV y pérdida de masa por inmersión obteniéndose la granulometría c' y el índice de laterización e' localizando por coordenadas en la carta de clasificación MCT e identificando el tipo de suelo para usos viales en suelos tropicales, en la red vial de "Tropezón" y red vecinal "Infierno".

RECOMENDACIONES

- Para la aplicación de la metodología Mini Compactación Tropical requiere contar con un laboratorio adecuado, adaptado para realizar todos los ensayos y ambientes para almacenar las muestras y los cuerpos de prueba.
- La extracción de más muestras de toda la zona tropical del Perú para incrementar la identificación geotécnica con la metodología Mini Compactación Tropical y complementar los estudios geotécnicos tradicionales.
- 3. Adquirir equipos que cumplan con la certificación para validar resultados de laboratorio.
- 4. Difundir la nueva metodología en universidades y escuelas técnicas e institutos, debido a que existen grandes extensiones de suelos tropicales.

REFERENCIAS BILIOGRAFICAS

- 1. A.W. Parson. (1992). Compaction of soils and granular materials: a review of research performed at the Transport Research Laboratory. Londres: HMSO.
- Carrillo G., A. (27 de Julio de 2017). Geotécnica en los suelos Peruanos.
 (U.N.I., Ed.) Recuperado el 15 de Agosto de 2017, de Diseño Geotécnico en los suelos de la selva Conferencia Especial.: https://documentslide.org > Documents
- D.T.Davidson. (1960). METHODS FOR TESTING ENGINEER SOILS.
 OWA ENGINEERING EXPERIMENT STATION, 243-308.
- Fadur V., D., Shuji N., J., Cincerre, J. R., Miranda S, P. R., & Zuppolini N.,
 A. (2009). Pavimentos de baixo custo para vias urbanas. Sao Paolo,
 Brasil.
- Ministerio de Transportes y Comunicaciones Dirección General de Caminos y Ferrocarriles. (2013). Manual de Carreteras "Suelos, Geología, Geotecnia y Pavimentos". En M. d. Comunicaciones., & M. d. Comunicaciones (Ed.). Lima, Perú: MTC Sede Central.
- Ministerio de Transportes y Comunicaciones Dirección General de Caminos y Ferrocarriles. (2016). Manual de carreteras - Ensayo de Materiales (EM - 2016). Lima: Eestado Peruano.
- Ministerio de Transportes y Comunicaciones Seccion Suelos Tropicales.
 (2014). Manual de Carreteras-Seccion Suelos Tropicales. Lima: Ministerio de Transportes y Comunicaciones.
- 8. Shuji N, J., & Fadul V., D. (1995). *Pavimentacao de baixo custo.* Brasil: Editorial Villibor.
- Villibor, D. F., & Nogami, J. S. (2009). Pavimentos Economicos.
 Tecnología do uso dos solos finos lateriticos. Sao Paulo, Brasil: Arte & Ciencia.
 Obtenido de https://es.scribd.com/document/355761832/PAVIMENTOS-ECONOMIC

ANEXOS

TROPICALES

PROBLEMA	OBJETIVOS	HIPOTESIS	VARIABLES	DIMENSIONES	
PROBLEMA GENERAL ¿De qué manera se realizaría los ensayos de Mini Compactación Tropical para los estudios geotécnicos comprendidas, en la red vial departamental y vecinal de Tropezón e Infierno? PROBLEMA ESPECÍFICO a) ¿De qué manera se podría implementarse la metodología Mini Compactación Tropical en los suelos tropicales en la red vial de "Tropezón" y la red vecinal de "Infierno"? b) ¿De qué manera se complementaría la identificación geotécnica con la metodología Mini Compactación Tropical para usos viales en suelos tropicales, en la red vecinal "Tropezón" y red vecinal de "Infierno"? c) ¿Cómo se ejecutaría los ensayos de Mini Compactación Tropical MCT en los suelos tropicales en la red vecinal de "Tropezón" y la red vecinal de "Infierno"? d) ¿Cómo se realizaría los ensayos de minitrabilidad y permeabilidad en los suelos tropicales en la red vecinal de "Tropezón" y la red vecinal de "Infierno"? g) ¿Cómo se determinaría los ensayos de compactación Mini-MCV en los suelos tropicales en la red vecinal de "Tropezón" y la red vecinal de "Infierno"? g) ¿Cómo se mostraría los ensayos de compactación de imprimación los suelos tropicales en la red vecinal de "Tropezón" y la red vecinal de "Infierno"? h) ¿Cómo se especificaría los ensayos de penetración de imprimación los suelos tropicales en la red vecinal de "Tropezón" y la red vecinal de "Infierno"? i) ¿Cómo se desarrollaría los ensayos de penetración de imprimación los suelos tropicales en la red vecinal de "Tropezón" y la red vecinal de "Infierno"? i) ¿Cómo se desarrollaría los ensayos de pérdida de masa por inmersión en los suelos tropicales en la red vecinal de "Tropezón" y la red vecinal de "Infierno"? i) ¿Cómo se desarrollaría los ensayos de pérdida de masa por inmersión en los suelos tropicales en la red vecinal de "Tropezón" y la red vecinal de "Infierno"? i) ¿Cómo se indicaría la clasificación de suelos en el sistema Mini Compactación Tropical MCT	OBJETIVO GENERAL Determinar de qué manera se realizaría los ensayos de Mini Compactación Tropical para los estudios geotécnicos comprendidas, en la red vial departamental y vecinal de Tropezón e Infierno. OBJETIVO ESPECIFICO Determinar de qué manera se hace la mplementación de la metodología MCT (Mini Compactación Tropical) para usos viales en suelos ropicales, en la red vecinal de "Tropezón" y red vecinal "Infierno". Designar de qué manera se complementa la dentificación geotécnica para la clasificación de la suelos tropicales con la metodología MCT (Mini Compactación Tropical) para usos viales en suelos ropicales, en la red vecinal "Tropezón" y red vecinal de "Infierno". Registrar de qué manera se ejecuta los ensayos de Mini Proctor en los suelos tropicales en la red vecinal de "Tropezón" y la red vecinal de "Infierno" Establecer de qué manera se ejecuta los ensayos de Mini-CBR y expansión en los suelos tropicales en la red vecinal de "Tropezón" y la red vecinal de "Infierno" Mostrar de qué manera se ejecuta los ensayos de contracción en los suelos tropicales en la red vecinal de "Tropezón" y la red vecinal de "Infierno" Deracionalizar de qué manera se ejecuta los ensayos de infiltrabilidad y permeabilidad en los suelos tropicales en la red vecinal de "Infierno" Especificar de qué manera se ejecuta los ensayos de compactación Mini-MCV en los suelos tropicales en la red vecinal de "Infierno" Especificar de qué manera se ejecuta los ensayos de compactación Mini-MCV en los suelos tropicales en la red vecinal de "Infierno" Especificar de qué manera se ejecuta los ensayos de compactación Mini-MCV en los suelos tropicales en la red vecinal de "Infierno" Especificar de qué manera se ejecuta los ensayos de compactación Mini-MCV en los suelos tropicales en la red vecinal de "Tropezón" y la red vecinal de "Infierno" Especificar de qué manera se ejecuta los ensayos de compactación Mini-MCV en los suelos tropicales en la red vecinal de "Tropezón" y la red vecinal de "Infierno"	HIPOTESIS GENERAL Con la implementación de la metodología Mini Compactación Tropical se optimizará los recursos geológicos de origen tropical, en el uso de vías de transporte en la red vial vecinal "Tropezón" y red vecinal "Infierno" departamental de Madre de Dios. HIPOTESIS ESPECÍFICO a) La implementación de la metodología Mini Compactación Tropical se determinará con la norma contemporánea y con los instrumentos y accesorios fabricados, para usos viales en suelos tropicales, en la red vial de "Tropezón" y red vecinal "Infierno". b) La complementación geotécnica se hará clasificando los suelos tropicales con la metodología Mini Compactación Tropical para usos viales en suelos tropicales, en la red vial "Tropezón" y red vecinal de "Infierno". c) los ensayos de Mini Proctor se registrarán de acuerdo a la norma vigente y mejorando el equipo de mini compactación, para usos viales en suelos tropicales, en la red vial de "Tropezón" y red vecinal "Infierno". d) La preparación de Mini-CBR y Expansión se establecerá de acuerdo a la norma actual, diseñando y construyendo el pistón de penetración DM 5016, para usos viales en suelos tropicales, en la red vial de "Tropezón" y red vecinal "Infierno". e) La prueba de contracción se demostrará de acuerdo a la norma existente, usando hornos para recrear el clima tropical, para usos viales en suelos tropicales, en la red vial de "Tropezón" y red vecinal "Infierno". f) La experimentación de la infiltrabilidad y permeabilidad se operacionalizará de acuerdo a la norma moderna, esbozando y fabricando los instrumentos, para usos viales en suelos tropicales, en la red vial de "Tropezón" y red vecinal "Infierno". g) La investigación Mini-MCV se especificará de acuerdo a la norma flagrante, en el equipo de mini compactación mejorado, para usos viales en suelos tropicales, en la red vial de "Tropezón" y red vecinal "Infierno". h) El estudio de penetración de imprimación se explicará de acuerdo a la norma reciente, esquematizando y confeccionando el disco espaciador, para usos viales	VARIABLES INDEPENDIENTES (X) Metodología Mini Compactación Tropical. VARIABLES DEPENDIENTES (Y) Usos viales en suelos tropicales.	IMPLEMENTACI ON DE LA METODOLOGIA TIPOS DE ENSAYOS	METODO DE INVESTIGACIÓN Científico Analítico sintético Medición TIPO DE INVESTIGACIÓN Es aplicada, NIVEL DE INVESTIGACIÓN Descriptivo - explicativo, Con un enfoque cuantitativo DISEÑO DE INVESTIGACIÓN Es experimental POBLACIÓN N Y MUESTRA POBLACIÓN Son todas las carreteras en zonas tropicales de la Región Madre de Dios. MUESTRA El tipo de muestreo es el no probabilístico o dirigido o o intencional debido a la naturaleza del estudio, se eligió a la carretera Vecinal Tropezón y la carretera Vecinal Infierno.

ANEXO 2: Documentos de Gestión

"Año del Buen Servicio al Ciudadano"

Lima,

1 2 ABR, 2017

OFICIO Nº 090-2017-MTC/14.01

Señor
Ph.D. NOHAMED MEHDI HADI MOHAMED
Decano (e) de la Facultad de Ingeniería
De la universidad Peruana Los Andes
Av. Calmell del Solar s/n Chorrillos
Teléf. 064-265145

Huancayo.-

Ref.

Oficio Nº 0330-2017-DFI-UPLA.

Me dirijo a usted en relación al documento de la referencia, mediante el cual solicita facilidades para el estudiante Roberto Julio De la Cruz Medina, de la Escuela Profesional de Ingeniería Civil de la Filial Lima de la Universidad Peruana Los Andes, a fin de realizar los ensayos para la elaboración de la Tesis: USO DE SUELOS TROPICALES ESTABILIZADOS PARA PAVIMENTOS EN LA RED VIAL DEPARTAMENTAL Y VECINAL, de Departamento de Madre de Dios.

Al respecto, esta Dirección ve por conveniente la realización de dicha tesis, con el compromiso de que una copia sea entregada a este laboratorio como elemento de consulta por tratarse de un tema de investigación, así mismo se debe precisar que cualquier material o insumo para el desarrollo de la indicada tesis, será por cuenta del tesista.

Sin otro particular, es propicia la oportunidad para expresar los sentimientos de mi especial consideración.

Atentamente

SPORTES CONTROL OF CON

Ing. Segundo S. Villalobos Celis Direccionde Estudios Especiales DIRECTOR (E)

www.mtc.gob.pe

Av. Túpac Amaru N° 150 Rímac, Lima 25 - Perú (511) 481-3707

UNIVERSIDAD PERUANA LOS ANDES **FACULTAD DE INGENIERÍA DECANATO**

"Año del Buen Servicio al Ciudadano"

Huancayo, febrero 27 del 2017

OFICIO Nº 0330-2017-DFI-UPLA

Señor:

Ing. SEGUNDO VILLALOBOS CELIS Director de Ensayos Especiales

MINISTERIO DE TRÂNSPORTES Y COMUNICACIONES

DIRECCION DE ESTUDIOS ESPECIALES MTC - DGCYF

Presente.-

ASUNTO

: SOLICITO DAR FACILIDADES PARA REALIZAR ENSAYOS PARA ELABORACIÓN DE TESIS

Es grato dirigirme a Ud. para saludarle cordialmente, y a la vez solicito a su despacho dar facilidades al estudiante De La Cruz Medina Roberto Julio de la Escuela Profesional de Ingeniería Civil de la Filial Lima de la Universidad Peruana Los Andes, a fin de poder realizar los ensayos para elaboración de su Tesis: USO DE SUELOS TROPICALES ESTABILIZADOS PARA PAVIMENTOS EN LARED VIAL DEPARTAMENTAL Y VECINAL.

En espera de su gentil atención al presente, hago propicia la oportunidad para expresarle las muestras de mi mayor consideración y estima personal.

Atentamente,

Ph.D. MOHAMED MEHDI HADI MOHAMED

DECANO (e)

cc..archivo MMHM/rbm

Av. Calmell del Solar s/n Chorrillos Telf. 064-265145

DIRECCION DE ESTUDIOS ESPECIALES

O S ABR. 2018

Hora: //- (04 a M)

Por: MAP

"Año del Diálogo y Reconciliación Nacional"

Lima, 9 de abril de 2018

Señor:

Ing. SEGUNDO VILLALOBOS CELIS. Director del Laboratorio, Dirección de Ensayos Especiales Ministerio de Transportes y Comunicaciones.

Distinguido señor.

Por medio de la presente me dirijo a usted para manifestarle que, los suelos tropicales en el Perú requieren ser estudiados con mayor interés teniendo las siguientes consideraciones.

- 1. La construcción de las vías de comunicación en las zonas tropicales en el Perú, aplicando metodologías y normas como AASHTO, SUCS, ASTM, y al tratar de cumplir con estas normas se elevan los costos de los materiales.
- 2. La clasificación de suelos tropicales en la actualidad es muy limitada, según las metodologías SUCS, AASHTO dejando en incertidumbre y limitaciones geotécnicas.
- 3. Teniendo en cuenta el origen pedológico y geológico de suelos para este trópico, se creó una metodología que es el sistema MCT "Mini Compactación Tropical" apropiada para optimizar y hacer una nueva clasificación de suelos tropicales propuesta en Brasil en 1975.

Por estas consideraciones solicito que se aplique en el Ministerio de Transportes y Comunicaciones y Laboratorio Dirección de Ensayos Especiales, el sistema MTC "Mini Compactación Tropical", asimismo, oficialización de la norma MTC para cumplir con la clasificación de suelos tropicales en forma correcta y adecuada que se ha desarrollado en nuestro trópico, optimizando el suelo en el uso de las carreteras y bajando los costos.

Me permito proponer ante usted como tesista por haberme dado la oportunidad de desarrollar la investigación en suelos tropicales conforme al oficio 090-2017 MTC/14.01 y como referencia el oficio N° 0330-2017-DFI-UPLA.

Sin otro en particular me suscribo muy respetuosamente.

Atentamente

ROBERTO JULIO DE LA CRUZ MEDINA

DNI: 42074859

"Decenio de la Igualdad de Oportunidades para hombres y mujeres"
"Año del Dialogo y la Reconciliación Nacional"

CONSTANCIA DE CAPACITACION

El que suscribe, Director de la Dirección de Estudios Especiales de la Dirección General de Caminos y Ferrocarriles del Ministerio de Transportes y Comunicaciones, hace constar:

Que, en atención al Oficio Nº 0330-2027-DFI-UPLA del Decano D.Mohamed Mehdi Hadi Mohamed de la Escuela Profesional de Ingeniería Civil de la Filial Lima de la Universidad Peruana Los Andes, se dio apoyo al SR. DE LA CRUZ MEDINA ROBERTO JULIO para su capacitación.

El desarrollo de dicha capacitación se realizó del 14 de abril del 2017 al 14 de mayo del 2018, desarrollando sus actividades de practica y de Investigación en los Estudios de Suelos Tropicales con la Metodología MCT "Mini Compactación Tropical" de acuerdo a las Normas Vigentes, demostrando interés y responsabilidad durante su permanencia.

Se expide el presente, a solicitud del interesado.

Lima, 14 de mayo del 2018

MINISTERIC

Add SPORTES

Atentamente,

Ing. Segundo S. Villalobos Celis Dirección de Estudios Especiales DIRECTOR (E)

SEKIOD JECK	AI EYAMDDA DEDII S A O	C V O I I O	Luis Cas	tro Ronceros 7. Sucursal: Calle I	77 (Cdra 20 Av.)	Luis Castro Ronceros 777 (Cdra 20 Av. Argentina) - Lima - Peru Sucursal: Calle Luis Castro Ronceros 777 - Lima	ņ	3	COLICACION	E/ 0031601	OY LOG
	CON 58953 - 01 CALMISTI NRO. YANAHUARA, AR	CON 58953 - 01 AG: 2%+ CALMISTI NRO. 416 DPTO. 401 YANAHUARA, AREQUIPA, AREQUIPA		C CON	VENDEDOR: ENTREGAR EN:	PAGU: OFICINA LIM	5			FECHA : HORA : MONEDA:	29/09/2017 02:11p.m. Dólares
SOLICITANTE: JULIO DE LA CRUZ	JULIO DE LA C	หบZ		CO	CONTACTO:					VALIDEZ DE LA OFERTA: 7 DÍAS SALVO PREVIA VENTA	OFERTA: 7 DÍAS VENTA
E-MAIL: Agradeciendo su	u interés, nos	E-MAIL. Agradeciendo su interés, nos es grato ofrecerle lo siguiente:		TELÉF	ij.	Vis	Visítenos en www.bohlerperu.com	rw.bohler	peru.com	(En caso de pedido, indicar Nº de cotización)	dicar N° de cotización)
N° CÓDIGO	PZAS	SCRIPCIÓN DE LA	MERCADERÍA	3	CANTIDAD	VALOR UNITARIC	RIC TOTAL ITEM	W	IMPORTE	OBSE	OBSERV, ITEM
1 1-41-6447	- A 5	AC. H-1045 RED 70mm x 250mm		z	1.00 pz *	13.26	And the second s	13.26	13.26	15,64	51.16
2 1-30-8250	1 A X	AC. VCL Bon RED 70mm x 250mm		z	1.00 pz	23.12	The storm manufacture and storm stor	23.12	23.12	27.28	89.219
				**************************************	- 5				The state of the s		
ur eur beineh											
				3					of the state of th	The state of the s	
											The second secon
										1	
TO THE OWNER OF THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.									the control of the co		
OBS::					TOT	TOTAL DESCUENTO	V. VTA APROX. IGV 18 %	\$SN %	36.38	REG. PERCEPCIÓN 2%+ US\$ 0.00	ÓN 2%+
M BĊ	BÖHLER		Ventas 619 Planta-TT 619	619-3232 619-3240	\$SO	-0.01	TOTAL NETO APROX.US\$ EL VALOR APROXIMADO	APROX. US\$	42.93 JEDE VARIAR DE ACUE	TOTAL NETO APROX US\$ 42.93 US\$ 42.93 42.93 EL VALOR APROXIMADO PUEDE VARIAR DE AQUERDO AL PESO REAL DE BALANZA.	3 BALANZA.
YRMA	Directo	619-3238	ø	619-3247 (054)28-2884 619-3231	Sirvase dep BANCO BCP	Sirvase depositar en las siguientes cuentas. BANCO CTA. CTE. DOLARES U BCP 193-0749487-1-84	ren las siguientes cuentas: CTA. CTE. DOLARES US\$	CTA. CTE. NUEVOS	CTA. CTE. NUEVOS SOLES	OWGX	ACACCASA DI ASCOLA
OLASCOAGA Dpto. de Ventas			vertas@bohlerperu.com creditos@bohlerperu.com traterm@bohlerperu.com soldaduras@bohlerperu.com	com com eru.com	Scotiabar	Scotiabank 000-0081582	5	000-0678368	88	Preparado po ACEPTAMOS: VISA	Preparado por:
*			La compra o aprobación de la cotización, implica la aceptación de las Condiciones Generales del Servicio disponible en	ación de la ceptación de nerales del	Enviar copia	Enviar copia del abono al siguiente e-mall, para registro del pago: correo electrónico: creditos@bohlerperu.com	iguiente e-mall, para re tos@bohlerperu.com	registro del p m	el pago:	Esta cotización queda sujeta a la	da sujeta a la

ACEROS BOEHLER DEL PERU S.A.

E-mail: ventas@bohlerperu.com - creditos@bohlerperu.com www.bohlerperu.com ros : (01) 619-3232 Planla TT. : (01) 619-324

Planta TT. Control Mat. : (01) 619-3240 : (01) 619-3248 Administración Créditos : (01) 619-3244 : (01) 619-3250

R.U.C. N° 20100036101 **FACTURA ELECTRÓNICA**

N° FF03-00036263

Sucursal Ate Sucursal Arequipa Sucursal Los Olivos

Av. Nicolás de Ayllón Nro. 2158 Z.I. Sta. Lucia - Lima - Lima - Ate / Teléfono : (01) 619-3247 Av. Angamos 204 Urb. Maria Isabel - Arequipa - Arequipa - Arequipa / Teléfono : (054) 28-2884
Av. Carlos Izaguirre 1347 urb. Las Palmas Reales - Lima - Lima - Los Olivos / Telef. : (01) 619-3231

Planta Tratamiento Térmico

R.U.C.

: Calle Luis Castro Ronceros 777 - Lima - Lima - Lima

SEÑOR(ES) DIRECCIÓN

: ALEXANDRA PERU S.A.C. : CAL.MISTI NRO. 416 DPTO. 401 AREQUIPA - AREQUIPA - YANAHUARA

COD. CLIENTE : 58953 AG. PERCEP.

: NO : 3.244

VENDEDOR: OFICINA LIM	ZONA:	OTRO DOCUMENTO :	EMITIDO POR : KATHERINE HERMOZA	FECHA DE EMISIÓN : 19/10/2017 09:42:00	TIPO DE MONEDA : Nuevo Sol Peruano
NÚMERO PEDIDO :	K50006455	ORDEN DE COMPRA :		CONDICIONES DE PAGO : VENTA	AL CONTADO

MERO DE CÓDIGO D GUIA ARTÍCULO
- 1-30-8250

LA COMPRA IMPLICA LA ACEPTACIÓN DE LAS CONDICIONES GENERALES DEL SERVICIO DISPONIBLE

EN WWW.BOHLERPERU.COM
* C A N C E L A D O / P A G A D O *

OP. GRATUITA OP. EXONERADA OP. INAFECTA OP. GRAVADA : S/. 74.96 TOT. DSCTO. CARGOS I.G.V. : S/. 13.49 I.S.C. OTROS TRIB. TOTAL ANTICIPOS : S/. 88.45

Alcance certificado: La Venta y la Asesoria Técnica; el Corte y la Distribución de Aceros Especiales. La Venta y la Asesoria Técnica y la Distribución de Soldaduras y Máquinas de Soldar.

REPRESENTACIÓN IMPRESA DE FACTURA ELECTRÓNICA, ESTA PUEDE SER CONSULTADA EN WWW.BOHLERPERU.COM AUTORIZADO MEDIANTE RESOLUCIÓN N° 300-2014/SUNAT

gOkLJ8dZFJYa0jQJQ7S6foVVLLU=

MTC

DIRECCION GENERAL DE CAMINOS

R.U.C. 20131379944

Central

: Jr. Zorritos Nº 1203 Cercado - Lima

DIRECCION DE ESTUDIOS ESPECIALES

002

GUIA DE REMISION Nº 002- 2018-MTC/14.01.OP.

FECHA

12/01/2018

Portador

; JULIO DE LA CRUZ MEDINA

Transportista

Cargo

Tesista

Dirección

: Movilidad particular

Motivo

: Correccion de hilos en plancha

Placa

Referencia: Ing. Harry Rodriguez Camacho

Procedencia : DIRECCION ESTUDIOS ESPECIALES

Chofer

Lic.Conducir

Direccion

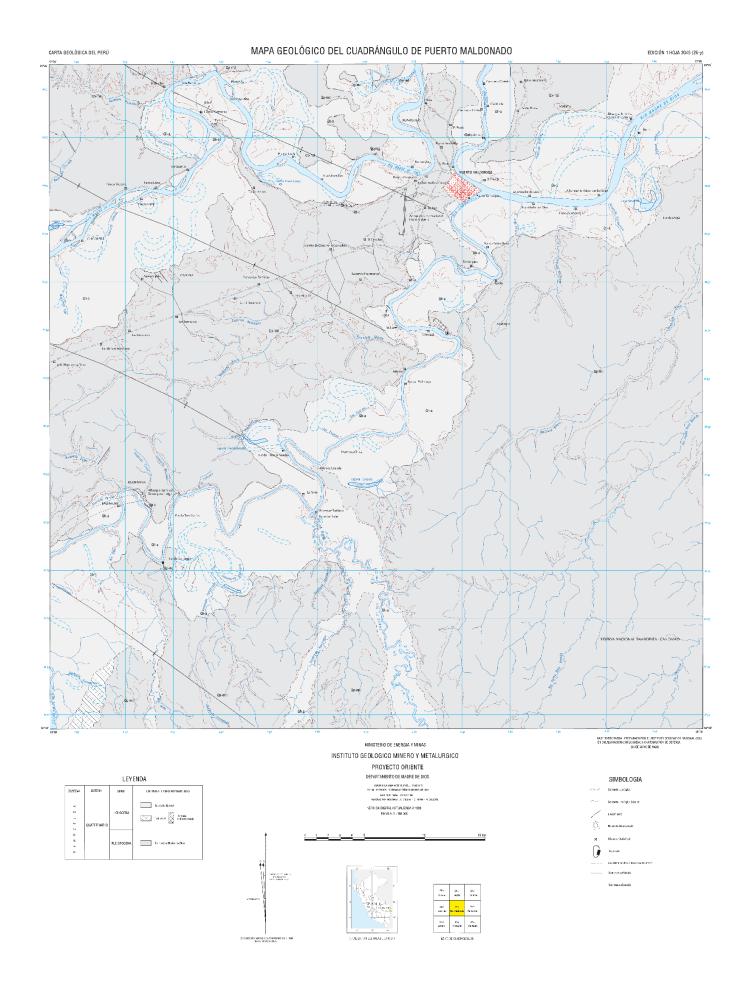
: Av. Tupac Amaru N° 150 Rimac - LIMA

Laboratorio DEE

D.N.I.

CANT	ID 2016		Marca	MODELO	SERIE	Codigo Patrimonial
		Accesorios	_			
02	unid.	Planchas Guias	S.M.	S.M.	S.S.	S.Cp
01	unis	Arandela a presion	S.M.	S.M.	S.S.	S.Cp
01 xxxx	unid. xxxxx	Tuerca Milimetrica	S.M.	S.M.	S.S.	S.Cp
			4			
		177			-	
	NOTA:	Pertenece al equipo de Mini Proctor de la sala de CBR va a trabajo de torno	X			
		MTC - DGCF DIRECCION DE ESTUDIOS ESPECIALES		DIRECCIONO	C - DGC E ESTUDIOS ES	F
-		VIGILANCIA			LAN	4
100	in in	Fecha: 12-01-17Hora: 17-06 Reg. (S) Firma:		-	1/Siora:	4
RODRIGUEZ	8	ALTERNATION OF THE PROPERTY OF		Rea. CZ	Firma:	Buf
Manager of Street		,,				

Entregue Conforme


Ing. Segundo S. Villalobos Celis Dirección de Estudios Especiales DIRECTOR (E)

Recibi conforme JULIO DE LA CRUZ MEDINA D.N.I. 42074859

Telf.: 481-3707 Fax: 481-0677

Cuadro de clasificación de suelos

	DESIGN	NAÇÃO				GRANU Designa	LOMETR ções do T1-	IAS TÍ 71 do D	PICAS ER-SP	
	k=caolinítico s= sericítico	m=mic q= quar		areias siltes (q.s)	areias siltosas	siltes(k,m) siltes arenosos	argilas argila arenosa argila siltosa siltes argilosos	areias	areias argilosas	argilas argila arenosa argila siltosa siltes argilosos
	COMPOR	TAMENTO)			N = Não L	aterítico	L =	Lateriti	со
	GRUP	O MCT		NA	NA'	NS'	NG'	LA	LA'	LG'
	MINI-	sem in		M, E	Е	M, E	Е	Е	E, EE	Е
	CBR (%)	perda por	imersão	B, M	В	Е	Е	В	В	В
les	EXPANSÃO		(Es)	В	В	Е	M, E	В	В	В
Propriedades	CONTRAÇÃO		(Ct)	В	B, M	M	M, E	В	B, M	M, E
prie	COEF. DE PER	MEABILII	DADE (k)	M, E	В	B, M	B, M	B, M	В	В
Pro	COEFICIENTE	DE SORÇA	ÃO (s)	Е	B, M	Е	M, E	В	В	В
	Corpos de prova massa específica da energia norm	aparente s			= Muito = Elevac	Elevado do	M = Médio B = Baixo			
	Base de pavimer	nto		n	4°	n	n	2°	1°	3°
0	Reforço do suble	eito compac	tado	4º	5°	n	n	2°	1°	3°
açã	Subleito compac	etado		4º	5°	70	6°	2°	1°	3°
Utilização	Aterro (corpo) c	ompactado		4º	5°	6°	7°	2°	1°	3°
n	Proteção à erosã	0		n	3°	n	n	n	2°	1°
	Revestimento pr	rimário		5°	3°	n	n	4°	1°	2°
							n = não	recom	endado	
	upos tradicionais o		USCS	SP SM	MS SC ML	SM, CL ML, MH	MH CH	SP SC	SC	MH ML CH
	pos MCT discrimi os das colunas	inados nos	AASHO	A - 2	A - 2 A - 4 A - 7	A - 4 A - 5 A - 7 - 5	A - 6 A - 7 - 5 A - 7 - 5	A - 2	A - 2 A - 4	A - 6 A - 7 - 5

Arenas lateríticas (AL)

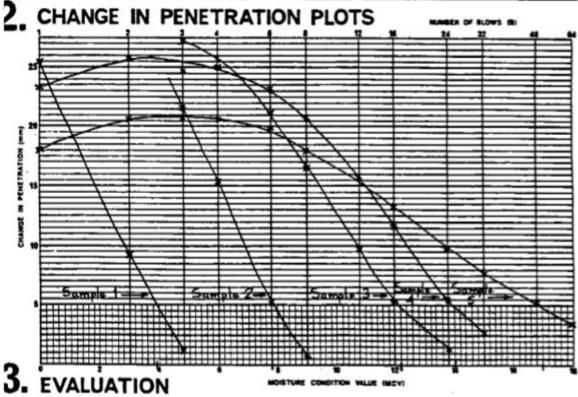
Suelos arenosos lateríticos (LA')

Suelos arcillosos lateríticos (LG')

Arenas no lateríticas (NA)

Suelos arenosos no lateríticos (NA')

Suelos sedimentarios no lateríticos (NS')


RESUMEN DE RESULTADOS DE LA METODOLOGIA MCT Y LA NORMA ASTM TRADICIONAL

	METODOLOGIA MIN	NI COMPACTACION 1	TROPICAL	
	NORMA	TROPEZON	NOAYA	INFIERNO
DER-SP M- 191/88	Mini-Proctor	1.813 g/cm³	1.852 g/cm³	1.771 g/cm³
DER M-192/88	Mini-CBR	7.7	28.2	4.5
DER M-192/88	Expansión %	1.74%	0.22%	3.94%
DER M-192/88	Permeabilidad cm/s	1.510E-07	5.796E-06	6.930E-07
DER M-192/88	Infiltrabilidad cm/√mm	0.023 cm/Vmm	0.010 cm/√mm	0.020 cm/√mm
DER M-194-88	Contracción %	0.46%	0.48%	0.72%
DER M-199/89	Imprimación de bituminosos mm	1.8 mm	9.9 mm	1.1 mm
DER M 191-88	Mini MCV	10.6	9.9	9.1
DER M-197/88	Pérdida por Inmersión %	154.70%	272.60%	307.80%
DER M-196/89	Clasificación MCT	NS'	NA'	NS'

	NC	DRMA ASTM		
	NORMA	TROPEZON	NOAYA	INFIERNO
ASTM D1557	Proctor Modificado	1.802 g/cm ³	No disponible	1.898 g/cm³
ASTM D1887	CBR	69.60%	No disponible	34.20%
ASTM D1887	Expansión	4.03%	No disponible	6.36%
ASTM D2434	Permeabilidad	No disponible	No disponible	No disponible
ASTM D5093	Infiltrabilidad	No disponible	No disponible	No disponible
ASTM D427	Contracción	-	-	-
No Presenta	Imprimación de bituminosas	No disponible	No disponible	No disponible
Report LR-750	MCV	No disponible	No disponible	No disponible
No Presenta	Perdida por inmersión	No disponible	No disponible	No disponible
ASTM D 2487	Clasificación SUCS	ML	ML	SM
AASHTO	Clasificación AASHTO	A-6(4)	A-2-4(0)	A-7-5

1. M.C.V. TESTING SITE M 876 FORM MCA PENETRATION MEASUREMENTS DATE 4:7:79

SAMPLE NO.	1		2		3		- 4		5			
SOIL TYPE	Sandy	silky CH	Ya	51	a	s 1	4	1		1		
BLOWS (B)	(P)	Change in Prostration P(48)- P(8)	Persetration (P)	Change in Penetration P(48) - P(B)	(P)	Change in Penetration PAGE:-P(B)	(2)	Champs in Pengiration PIES-PIES	Promote replace	Charge in Panetration PRS - P(S)	91	Change Panetra PASI-1
1	71.1	25.5	50.5	34.2	47.2	25.6	44.5	23.3	47.8	18.0		
2	87.3	9.3	67.2	32.2	58.8	28.5	55.1	25.9	55.8	20.7		
3	95.6	1.1	78.2	21.6	66.8	27.2	63.2	24.8	61.6	20.8		
4	96.6		84.7	15.4	72.B	25.9	67.8	25.0	65.8	20.7		
6	96.6		95.0	5.4	81.3	21.2	75.8	23.2	71.9	49.B		
	96.6		99.4	0.7	87.3	16.5	84.0	20.9	76.5	18.0		
12	96.7		99.8		94.0	9.8	88.0	15.9	82.4	15.6		$\overline{}$
16			100.1		98.7	5.2	92.8	11.7	86.5	13.3		
24			100-1		102.5	1.4	99.0	5.5	94.7	9.8		
32			100.1		103-8		101.9	2.7	94-5	7.6		
48					103.B		103-9		98.0	5.3		$\overline{}$
64					103.9		104.5		99·B			
96					103.9		104.5		101-5			
128							104.6		102-1			
192									103.3			$\overline{}$
256									103-3			$\overline{}$

SAMPLE MO.	M.C.V.	ACCEPTABLE UNACCEPTABLE	FINES CONTENT	COMMENT
1	3.9	1		
2	78			
3	42.2	1	26%	
4	4.0			
5	17.0			

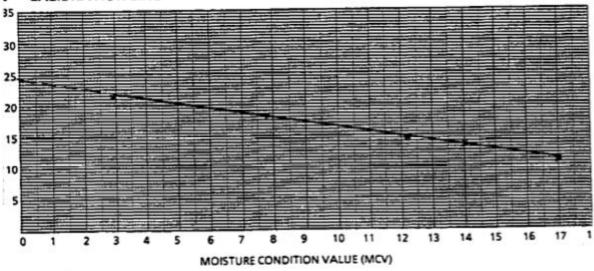
MOISTURE CONDITION TEST CALIBRATION LINE

Form MCA2

Site: M876
Bulk Location: Baxler cut CH 4/80
Soil Type: Sondy silly CLAY with gravel
Fines Content: 2670 ATE 4:7:79

SAMPLE DETAILS

AMPLE No.	1	2	3	4	-5	
STIMATED MOISTURE ONTENT	21 %	18%	159	13%	112	


MOISTURE CONTENT DETERMINATION (after MCV testing)

ONTAINER No.	71	72	73	74	75	
ONTAINER MASS (C)	496	495	497	496	496	
lass of wet soil + ontainer (W)	1989	1985	1982	1985	1980	
lass of dry soil + ontainer (D)	1726	1755	1793	1808	1833	
ADISTURE CONTENT A = (W-D) × 100	21.4	18.3	14:6	13.5	11.0	

MOISTURE CONDITION VALUES & MOISTURE CONTENTS

MCV (FROM MCA 1.3)	3.9	7.8	12.2	14.0	17.0	
	21.48	18.39	14.68	13.5 %	11.0%	

CALIBRATION LINE

5 CHARACTERISTICS OF CALIBRATION LINE

INTERCEPT (extrapolation to M% axis)	24.5	
SLOPE (tan < between line and MCV axis)	-0.79	For protractor measurement on above scale \$1,091 • \$2 MAC
SENSITIVITY (1/slope)	1.26	MCV's 1's Mosture comen
	77 - 000	

6 COMMENTS Good colibration line no Ineffective part