TESIS

Título: Estudio tomográfico de la relación entre el piso del seno maxilar y los ápices de las primeras molares superiores, Lima- 2017

Para optar: El título profesional de Cirujano Dentista
Autor: Poma Blanco Carlos Alberto
Timana Portilla Nancy Violeta
Asesor: Mg. Sebastián Armando Passano Del Carpio

Área de Investigación: Odontología Clínica
Línea de Investigación: Investigación Clínica y Patológica
Lugar de investigación: Lima- Perú

Huancayo - Perú

2018
ASESOR

MG. C.D. SEBASTIAN ARMANDO PASSANO DEL CARPIO
DEDICATORIA

Esta tesis la dedico en primer lugar a Dios que día a día guía mi camino en lo personal, en lo profesional y en todo momento de la vida, de la misma manera a mi padre Q.E.P.D. que desde el cielo me dio fuerzas para seguir adelante y cumplir su sueño de ver a su hijo como un buen C.D. igualmente a mi madre Victoria que da todo el sacrificio día a día por sacar adelante a sus hijos, finalmente a mi hermana, hermanos, sobrinos, amigo para todos ellos con mucho cariño.

Carlos

Esta tesis dedico a Dios ya que gracias a Él he logrado concluir mi carrera. A mí querida abuelita Bella que siempre estuvo a mi lado brindándome su apoyo y dándome sus consejos para hacer de mí una gran persona

Nancy
AGRADECIMIENTO

Agradezco al todo poderoso por guiarme en estos años universitarios tan maravillosos que me dio la oportunidad de conocer personas tan valiosas y significativas en mi vida.

A mi madre gracias por sus constantes consejos y apoyo incondicional que siempre estaba pendiente a pesar de la distancia. A mi hermana y hermanos por su apoyo moral incesante para culminar la carrera. A María un persona muy especial, mil gracias por tu apoyo incondicional siempre presente en los momentos alegres y tristes de mi vida muchísimas gracias. A todos ellos mis agradecimiento que siempre les lleve dentro de corazón.

Agradezco a Dios por la fortaleza y perseverancia que me dio para poder culminar mis metas. A mis padres que con su amor y trabajo me educaron y apoyaron en toda mi formación profesional. A mis hermanos porque de una u otra forma a lo largo de mi vida estuvieron a mi lado apoyándome...
ÍNDICE

CAPÍTULO I. INTRODUCCIÓN ... 1

1. PROBLEMA ... 1
 1.1. PLANTEAMIENTO DEL PROBLEMA ... 1
 1.2. DELIMITACIÓN DEL PROBLEMA ... 2
 1.3. FORMULACIÓN DE PROBLEMA ... 3

2. OBJETIVOS ... 3
 2.1. OBJETIVO GENERAL ... 3
 2.2. OBJETIVOS ESPECÍFICOS ... 4

3. JUSTIFICACIÓN ... 4
 3.1. JUSTIFICACIÓN TEÓRICA ... 4
 3.2. JUSTIFICACIÓN SOCIAL .. 4
 3.3. JUSTIFICACIÓN METODOLÓGICA ... 5

4. MARCO TEÓRICO .. 6
 4.1. ANTECEDENTES DEL ESTUDIO ... 6
 4.2. BASES TEÓRICAS ... 16
 4.3. DEFINICIÓN DE TERMINOS .. 33

5. HIPÓTESIS .. 35
 5.1. HIPÓTESIS GENERAL .. 35
 5.2. OPERACIONALIZACIÓN DE VARIABLES .. 36

CAPÍTULO II: MÉTODO ... 37

6.1. TIPO, NIVEL Y DISEÑO DE INVESTIGACIÓN ... 37
6.2. LUGAR Y PERIODO DE INVESTIGACIÓN .. 37
6.3. POBLACIÓN O UNIVERSO ... 38
6.4. MUESTRA .. 38
6.5. CRITERIOS DE INCLUSIÓN Y EXCLUSIÓN ... 38
6.6. TÉCNICA DE RECOLECCIÓN DE DATOS .. 38
6.7. VALIDEZ Y CONFIABILIDAD DE LOS INSTRUMENTOS EMPLEADOS 38
6.8. PROCEDIMIENTOS DE RECOLECCIÓN DE DATOS A EMPLEAR 39
<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.9. ELABORACION Y PROCESAMIENTOS DE DATOS</td>
<td>39</td>
</tr>
<tr>
<td>6.10. PLAN DE ANÁLISIS E INTERPRETACIÓN DE DATOS</td>
<td>39</td>
</tr>
<tr>
<td>CAPÍTULO III RESULTADOS</td>
<td>41</td>
</tr>
<tr>
<td>CAPÍTULO IV ANALISIS Y DISCUSION DE RESULTADOS</td>
<td>89</td>
</tr>
<tr>
<td>CAPÍTULO V CONCLUSIONES</td>
<td>89</td>
</tr>
<tr>
<td>CAPÍTULO VI RECOMENDACIONES</td>
<td>91</td>
</tr>
<tr>
<td>CAPÍTULO VII REFERENCIAS BIBLIOGRÁFICAS</td>
<td>92</td>
</tr>
<tr>
<td>ANEXOS</td>
<td>97</td>
</tr>
</tbody>
</table>
RESUMEN

La relación entre el seno maxilar y los ápices radiculares de las primeras molares, fueron clasificados según Hee-Jin Kim, El objetivo de esta investigación tuvo como finalidad de determinar la relación entre el piso de seno maxilar y los ápices de las primeras molares del lado derecho y el lado izquierdo Lima - 2017. Se evaluaron 51 tomografías computarizadas cone beam (TCCB) de pacientes de ambos sexos, las edades estuvieron comprendidas de 18 años a más; en adelante siendo divididas en cuatro grupos, se analizó la relación del seno maxilar con respecto a los ápices de la primera molar superior Dentro de los resultados se encontró una relación directa y moderada (rs= 0.427), entre el piso de seno maxilar y los ápices de las primeras molares del lado derecho y el lado izquierdo, Lima – 2017. (p=0.012), así también no se encontró relación entre las medidas y/o distancias de la raíz Mesiovestibular con el piso de seno maxilar a diferencia de las raíces distovestibulares y palatinas, en las evaluaciones según el sexo y grupo etario; así también con la edad. Concluimos que si existe relación entre el seno maxilar y los ápices de las primeras molares sobre todo en la clase 2, el tipo de relación vertical se analizó entre el seno maxilar y los ápices de la primera molar

Palabras claves: Piso de seno maxilar, Tomografía cone beam, Ápice radicular.
ABSTRACT

The relationship between the maxillary sinus and the root tips of the first molars were classified according to Hee-Jin Kim. The purpose of this investigation was to determine the relationship between the maxillary sinus floor and the apices of the first molars on the side, right with the left side Lima - 2017. Fifty cone computed tomographies (TCCB) of both sexes patients were evaluated, the ages were between 20 and 60 years old being divided into four stages, the relationship of the maxillary sinus was analyzed with respect to the apexes of the first maxillary molar. Within the results a direct and moderate relationship \((rs = 0.427) \) was found, between the maxillary sinus floor and the apices of the first molars on the right side with the left side, Lima - 2017 \((p = 0.012) \), likewise, no relationship was found between the measurements and / or distances of the Mesiovestibular root with the floor of the maxillary sinus, unlike the roots of the stovestibular and palatal, in the evaluations according to sex and age group as well as age and / or age groups. We conclude that if there is a relationship between the maxillary sinus and the apices of the first molars, especially in class 2, the type of Vertical relationship was analyzed between the maxillary sinus and the apices of the first molar.

Key words: Maxillary sinus floor, Cone beam tomography, Root apicer.
CAPÍTULO I

INTRODUCCIÓN

1. PROBLEMA

1.1. PLANTEAMIENTO DEL PROBLEMA

En los últimos años los avances clínicos en la Odontología han permitido que ésta pueda desarrollarse y evolucionar, esto ante la necesidad de cubrir nuevas demandas y requerimientos del paciente que pueda cumplir con sus expectativas, pero que por sobre todo ofrezca un tratamiento adecuado, resultado de una planificación correcta.¹

Las nuevas tendencias y avances son necesarios, pero ello conlleva la gran responsabilidad de conocer los fundamentos de lo que se realiza en la práctica. Es por ello que el profesional en odontología debe manejar conocimientos que incluyan no sólo los que ejercen el aspecto meramente clínico sino además y con mayor razón, aquellos que nos proporcionan la base de ello, como lo son las ciencias básicas entre ellos la Anatomía Humana.¹
Las tomografías son utilizadas actualmente en múltiples áreas de la Odontología: como un medio de diagnóstico y control de patologías periapicales\(^2\)\(^,\)\(^3\), en el diagnóstico de enfermedad periodontal y la evaluación de su tratamiento mediante la pérdida o ganancia ósea \(^4\)\(^,\)\(^5\), para el diagnóstico de anomalías dentarias \(^6\), para el diagnóstico de patologías bucales y maxilofaciales, como ayuda al diagnóstico y tratamiento en ortodoncia, para el diagnóstico de patologías de glándulas salivales y de ATM entre otros\(^7\).

En el área quirúrgica así como en otras áreas es necesario conocer las estructuras anatómicas que se encuentran adyacentes a las piezas dentarias y así evitar posibles complicaciones durante algún tipo de tratamiento, el seno maxilar y su estrecha relación con los ápices radiculares de las piezas dentarias posteriores es un ejemplo de ello.\(^1\)

Por todo ello el objetivo de esta investigación es determinar la media proporcional de la relación entre el piso del seno maxilar y los ápices de las primeras molares superiores, Lima-2017.

1.2. **DELIMITACIÓN DEL PROBLEMA**

Delimitación Espacial:

El presente estudio se realizó en la Clínica Dental Henry ubicado en el distrito de Puente Piedra, en la ciudad de Lima Perú.
Delimitación temporal:

El presente trabajo de investigación se realizó en los meses de agosto del 2017 a octubre del 2017.

1.3. FORMULACIÓN DE PROBLEMA

1.3.1. PROBLEMA GENERAL

¿Cuál es la relación entre el piso de seno maxilar y los ápices de las primeras molares del lado derecho y el lado izquierdo Lima - 2017?

1.3.2. PROBLEMAS ESPECÍFICOS

- ¿Cuál es la relación entre las medidas de la distancia ápico sinusal de las tres raíces del lado derecho y la medida de la distancia ápico sinusal de las tres raíces del lado izquierdo de las primeras molares superiores, Lima – 2017?

- ¿Cuál es la diferencia significativa según el sexo, entre las medidas de las distancias ápico sinusales de todas las raíces de la primera molar superior, Lima – 2017?

- ¿Cuál es la diferencia significativa según el grupo etario, entre las medidas de las distancias ápico sinusales de todas las raíces de la primera molar superior, Lima – 2017?

2. OBJETIVOS

2.1. OBJETIVO GENERAL

Determinar la relación entre el piso de seno maxilar y los ápices de las primeras molares del lado derecho y el lado izquierdo Lima - 2017.
2.2. OBJETIVOS ESPECÍFICOS

- Determinar la relación entre las medidas de la distancia ápico sinusal de las tres raíces del lado derecho y la medida de la distancia ápico sinusal de las tres raíces del lado izquierdo de las primeras molares superiores, Lima – 2017.
- Determinar la diferencia significativa según el sexo, entre las medidas de las distancias ápico sinusales de todas las raíces de la primera molar superior, Lima – 2017.
- Determinar la diferencia significativa según el grupo etario, entre las medidas de las distancias ápico sinusales de todas las raíces de la primera molar superior, Lima – 2017.

3. JUSTIFICACIÓN

3.1. JUSTIFICACIÓN TEÓRICA

Gracias a los conocimientos que nos ofrece la tomografía sabemos que existe una estrecha relación entre lo ápices de las molares y el piso del seno maxilar. Muchas veces esta condición hace posible que, ante cualquier maniobra quirúrgica o posible lesión de alguna de estas piezas dentarias, se ocasione una comunicación entre el seno maxilar y la cavidad oral. El examen tomográfico es una ayuda en el diagnóstico, tratamiento y seguimiento a lo largo del tiempo de numerosas patologías adscritas a las especialidades de la Odontología.

3.2. JUSTIFICACIÓN SOCIAL

La utilización de las imágenes para el diagnóstico en general y de las tomografías en particular, es parte de una estrategia exploradora creativa
para realizar un diagnóstico lo más perfecto posible y una planificación del tratamiento oral integral, como así también evaluar la presencia y extensión de los procesos patológicos, su evolución durante el tratamiento y los efectos terapéuticos logrados.

El criterio profesional expresado en conocimientos teóricos y experiencia práctica resulta decisivo para seleccionar dentro del amplio espectro de técnicas para la obtención de imágenes la más conveniente para cada caso en particular, teniendo siempre presente la relación riesgo/beneficio.

3.3. JUSTIFICACIÓN METODOLÓGICA

El estudio de investigación será de tipo transversal retrospectivo comparativo y con un nivel de investigación correlacional. Se evaluará con una ficha de recolección de datos y se validará con una ficha de juicio de expertos, validada por tres expertos los cuales servirá como guía o formato para futuros trabajos de investigación.
4. **MARCO TEÓRICO**

4.1. **ANTECEDENTES DEL ESTUDIO**

Eberhardt J. y colaboradores (1992); realizaron un estudio tomográfico computarizado de las distancias entre el piso del seno maxilar y los ápices de los dientes posteriores maxilares, donde se podrá evaluar la distancia media entre los ápices de los dientes posteriores superiores (premolares y molares) y el piso del seno maxilar a partir de los datos obtenidos de estudios con tomografías computarizadas de 12 muestras de autopsia y 38 pacientes. Además, se midió la distancia desde estos ápices a las superficies óseas laterales adyacentes. Se tomaron en cuenta los 3 planos (axial, coronal y sagital). Obteniendo como resultados que las medias para el primer molar de 2.82 ± 0.59 en la raíz mesio bucal, 1.56 ± 0.77 para la raíz palatina y 2.79 ± 1.13 para la raíz distobucal. Para la segunda molar los resultados fueron de 0.83 ± 0.49 para la raíz mesiobucal, 2.04 ± 1.19 para la raíz palatina y 1.97 ± 1.21 para la raíz distovestibular. Llegando a la conclusión que los ápices de la raíz mesiovestibular del segundo molar superior eran más cercanos al piso del seno pero más alejados de la superficie ósea bucal.⁸

Jung Y. y Bong Ch. (2012); realizaron una investigación sobre la evaluación de la relación entre los molares maxilares y las estructuras adyacentes utilizando la tomografía computarizada de haz cónico investigaron la relación y medida de la distancia entre las raíces de los molares y el piso del seno, así como el espesor del hueso entre la raíz y la placa cortical alveolar. La muestra del estudio consistió en 83 pacientes.
con erupción bilateral de la primera y segunda molar. Un total de 332 molares superiores se examinaron mediante el uso de imágenes tomográficas. La relación vertical de cada raíz con el seno maxilar se clasificó en cuatro tipos según cortes transversales. Entre sus resultados hallaron que la raíz que sobresale lateralmente a lo largo de la cavidad sinusal (Tipo 2) era más común en las raíces palatinas de los primeros molares superiores, además las raíces mesio vestibulares del segundo molar estaban más cerca de los senos maxilares y las raíces mesio vestibulares del primer molar estaban más cerca de la placa cortical.

Ariji Y. y colaboradores (2005); realizaron una investigación sobre los raíces de los primeros molares y segundos molares maxilares en relación horizontal con las placas corticales alveolares y el seno maxilar evaluación de la tomografía computarizada para la diseminación de la infección, la relación horizontal (corte axial) de las raíces de molares superiores con las placas corticales y el seno maxilar e investigar la influencia de estas relaciones sobre la propagación de las infecciones odontogénicas. Se evaluaron 120 tomografías computarizadas de sujetos de control y 49 de pacientes con infecciones de origen dentario del primer o segundo molar superior. En los resultados el piso del seno maxilar se observó con mayor frecuencia a nivel de la bifurcación de ápices radiculares tanto en el primer como en el segundo molar. En los pacientes con infección, los cambios mostrados fueron engrosamiento de la mucosa del seno maxilar en un 87,8%.
Howe R. (2009); realizó una investigación sobre el primer hueso molar radiográfico cerca del seno maxilar: una comparación del análisis de CBCT y la disección anatómica macroscópica para la medición ósea pequeña, para poder realizar la evaluación comparativa entre las medidas obtenidas mediante CBCT y mediante disección para las dimensiones del hueso maxilar alrededor de las raíces del primer molar en cadáveres. Se estudiaron un total de 37 pares de maxilares humanos con 69 primeros molares y fueron analizados por CBCT. Los resultados se compararon con la disección macroscópica. Para cada raíz se realizaron 2 mediciones: la distancia mínima hacia el seno maxilar y la distancia hacia la pared cortical (vestibular y palatina). Los resultados arrojaron un valor promedio en la distancia al piso del seno maxilar de cada raíz de 1.3 ± 2.5 para la raíz mesiobucal, 1.2 ± 1.6 para la raíz distobucal y 0.9 ± 2.0 para la raíz palatina, tomados de la disección de maxilares. En cuanto a los datos obtenidos por la CBCT fueron 2.5 ± 3.4 mm para la raíz mesiobucal, 1.8 ± 2.2 para la raíz distobucal y 1.2 ± 2.2 para la raíz palatina. El análisis reveló un sesgo positivo para CBCT de 0.4 mm con una desviación estándar de 1.1 mm en relación con la disección, concluyéndose que es aceptable la exactitud de CBCT para la medición válida del hueso maxilar alrededor de los ápices radiculares posteriores y para el estudio del maxilar en general.

Arx T. y colaboradores (2014); realizaron una investigación titulada proximidad de las raíces premolares al seno maxilar: estudio radiográfico mediante tomografía computarizada con haz de cono. Un estudio
constante de la proximidad de los molares posteriores y premolares, es muy importante y complejo debido a que se podrían evitar muchos tratamientos y actos quirúrgicos erróneos, sobre todo al realizar una exodoncia, debemos de tener en cuenta que el seno maxilar se encuentra próximo al ápice del diente, es por tal motivo que es necesario el estudio que se realizó; mediante el uso de CBCT obteniendo medidas en los 3 planos (sagital, axial y coronal). Fueron un total de 192 tomografías de pacientes donde se cuantificó las distancias entre los ápices de las raíces de los premolares y el seno maxilar adyacente. Las medidas se tomaron para cada raíz, y los datos se correlacionaron con la edad, el sexo, el lado, y la presencia o ausencia tanto del primer como del segundo premolar. Los resultados obtenidos fueron de un total de 296 dientes (177 primero y 119 segundos premolares), las distancias medias entre las raíces vestibulares de la primera premolar y la frontera del seno maxilar en los planos sagital, coronal y axial variaron de 5.15 ± 2,99 a 8,28 ± 6.27 mm. En raíces palatinas las distancias medias variaron de 4,20 ± 3,69 a 7,17 ± 6,14 mm. Las distancias medias de los segundos premolares eran marcadamente más cortas en las raíces bucales variando de 2.32 ± 2.19 y 3.28 ± 3,17 mm y en las raíces palatinas entre 2,68 ± 3,58 y 3,80 ± 3,71 mm, respectivamente. Además, la frecuencia de una raíz saliente en el seno maxilar fue muy baja en los primeros premolares (0% -7.2%), pero mayor en los segundos premolares (2.5% -13,6%). El sexo, la edad, lado, y la presencia / ausencia de premolares no lograron significativamente influir en las distancias medias entre las raíces de los premolares y el seno maxilar. Al final concluyen que en base a las distancias medias
calculadas es poco frecuente que los premolares (y si es así los segundos premolares) presenten un riesgo de violar la frontera del seno maxilar durante un tratamiento endodóntico convencional o quirúrgico o en caso de la extracción del diente.¹²

Hernández H. (2010); realizó un estudio sobre la relación entre el piso del seno maxilar y el segundo molar superior, cuyo objetivo fue determinar la distancia entre el piso del seno maxilar y los ápices radiculares de la segunda molar superior según sexo y grupo etario en una muestra de 100 cráneos adultos. Con respecto a los resultados se obtuvo como valor promedio la distancia de 3.26 mm en cráneos masculinos del grupo etario de 31-40 años y 2.44 mm para el sexo femenino. Concluyen que según el grupo etario la distancia entre el piso del seno maxilar y los ápices del segundo molar superior, muestran una significativa tendencia decreciente conforme al aumento de edad.¹³

Low K. (2008); Este estudio comparó radiografías periapicales (PA) y la tomografía de haz cónico (TCC) para el diagnóstico preoperatorio en los dientes maxilares posteriores de pacientes que requieren una posible cirugía apical. Las imágenes fueron simultáneamente analizadas por un radiólogo oral y un endodoncista para llegar a un consenso en la interpretación de los hallazgos radiológicos. El material final incluyó 37 premolares y 37 molares con un total de 156 raíces. TCC mostraron significativamente más lesiones (34%) que la radiografía periapical. La detección de lesiones con la radiografía PA era más difícil en los
segundos molares o en raíces en las proximidades del piso del seno maxilar. Otros resultados adicionales fue que se observó una frecuencia significativamente mayor en la TCC en comparación con la radiografía PA en los procesos de expansión por lesiones en el seno maxilar así como engrosamiento de la membrana sinusal. Se concluye en este estudio que presenta más ventajas usar la TCC para el tratamiento preoperatorio y la planificación del tratamiento de los dientes posteriores superiores con patología apical.\(^{14}\)

Shanbhag S. y colaboradores (2013); realizaron un estudio sobre la asociación entre lesiones periapicales y engrosamiento de la mucosa del seno maxilar: un estudio tomográfico computarizado con haz cónico retrospectivo, la aposición ósea, después de un tratamiento recibido ante una alteración o lesión periapical en los premolares o molares que se encuentran próximos al seno maxilar, predispone al engrosamiento de su mucosa, pues muchos estudios han evaluado esta posibilidad, en este estudio se utilizó CBCT para poder evaluar este tipo de acción. Se evaluaron tomografías de 243 pacientes (485 senos paranasales), el engrosamiento > 2 mm se consideró patológico y fue clasificada por grados (2-5 mm, 5-10 mm, y > 10 mm) y tipo (plano). Los resultados encontrados fue que el engrosamiento de la mucosa > 2 mm era observado en 147 (60,5%) pacientes y 211 (44,6%) senos y era en su mayoría de tipo plana, además asocian al sexo masculino con mayor probabilidad de observar este engrosamiento de la mucosa sinusal.\(^{15}\)
Sharan A. y Madjar D. (2005); este estudio realiza una comparación de la relación topográfica del piso del seno maxilar a las raíces de los dientes posteriores mediante radiografías panorámicas y mediante el uso de tomografía computarizada de sección transversal (CT). Se analizaron un total de 80 radiografías panorámicas y 80 TC de maxilares de los mismos sujetos. Un total de 422 raíces maxilares se clasificaron de acuerdo con su relación topográfica para el seno maxilar y fueron medidos de acuerdo con su proyección en la cavidad del seno para ambas modalidades de imagen. Los resultados obtenidos mostraron que sólo el 39% de las raíces de los dientes que se proyectan en la cavidad del seno en las radiografías panorámicas de clasificación III mostraron protuberancia en el seno maxilar con CT. Así se concluye que para la mayoría de las raíces que se proyecta en la cavidad del seno en radiografías panorámicas, no se observó protuberancia en el seno en las imágenes de CT.

Kwak H. y colaboradores. (2004); Este estudio se realizó con el objetivo de aclarar las características morfológicas y clínicas del seno maxilar, en particular de la pared inferior, en una población coreana e identificar la relación entre esta estructura y las raíces de los dientes posteriores del maxilar superior. Se utilizaron 24 cabezas hemi seccionadas en los maxilares. Todas las muestras se seccionaron en sentido coronal. En las muestras seccionadas, 21 ítems fueron medidos utilizando un sistema de análisis de imágenes, entre estos ítems estaba la distancia entre cada ápice de la raíz y la pared inferior del seno maxilar. En los resultados se halló que la distancia desde el ápice de la raíz a la pared inferior del seno
fue la más corta en la zona de segundos molares y la más larga en la zona del primer premolar. La relación vertical entre la pared inferior y las raíces de los molares superiores se clasificaron en cinco tipos. Tipo I (La pared inferior del seno situado por encima del nivel de conexión de la bucal y lingual ápices radiculares) dominó (54,5% en la zona del primer molar, 52,4% en el área de segunda molar). La relación horizontal entre la pared inferior del seno y el ápice de la raíz se clasificó en tres tipos. Tipo 2 (la cavidad alveolar de la pared inferior del seno se encuentra entre la bucal y lingual raíces) era más común (80% en la primera y segunda zona molar). En general, este estudio demostró las muchas características anatómicas y determinó las relaciones entre el seno maxilar y sus estructuras circundantes.17

Shokri A. y Lari S. (2014); Este estudio se realizó para evaluar la relación vertical y horizontal entre el piso del seno maxilar y las raíces de los dientes posteriores superiores utilizando la tomografía computarizada de haz cónico. Se utilizaron las imágenes CBCT del departamento de radiología de la Facultad de Odontología de Hamadan. A partir de 450 CBCT observadas, 340 de ellas no cumplían con los criterios de inclusión del estudio y fueron seleccionados en última instancia 110 CBCT. Se incluyeron en total 214 primeros premolares, 217 segundos premolares, 220 primeros molares y 220 segundos molares. Para evaluar la relación entre el piso del seno maxilar y los dientes maxilares posteriores, se utilizó la clasificación aplicada en el estudio de Jung en 2012. La relación fue evaluada por dos radiólogos en dos oportunidades con un intervalo de
tiempo de 2 semanas. Los resultados obtenidos demostraron que la relación Tipo 0 (el suelo del seno maxilar se encuentra por encima de la punta de la raíz) se observó con mayor frecuencia con el primer y segundo premolar. El tipo más común observado en los primeros y segundos molares era de tipo 3 (protrusión apical es visto por encima del suelo del seno maxilar). La relación entre los diferentes tipos y géneros fue estadísticamente significativa, siendo el género masculino quien tiene mayor frecuencia de protrusión de la raíz dentro del seno maxilar, mientras que no se encontraron diferencias estadísticamente significativas entre el lado derecho y las evaluaciones del lado izquierdo.18

Pagin O. y colaboradores (2013); realizaron un estudio titulado seno maxilar y dientes posteriores acceso a una estrecha relación mediante el escaneo tomográfico computarizado con haz de cono en una población brasileña. Este estudio tuvo como objetivo evaluar la estrecha proximidad que se establece entre el piso del seno maxilar y los ápices de los dientes posteriores mediante el uso de CBCT. La población en estudio fue dividida en 2 grupos, el grupo 1 incluyó todos los ápices de raíces que se encuentran en contacto cercano con el suelo del seno maxilar sin elevación del suelo del seno, mientras que el grupo 2 incluyó a todos los ápices de raíces que sobresalían dentro del seno y producía una elevación de la cortical ósea. Los resultados fueron que de un total de 100 senos maxilares y 601 ápices evaluados, el grupo 1 presentó 130 de 601 (21,6%) raíces y el grupo 2 presentó el 86 de 601 (14,3%) raíces, siendo la raíz mesiovestibular del segundo molar quien se encuentra con mayor frecuencia en estrecha proximidad con el piso del seno.19
Evren O. y Enes G. (2013); el objetivo de este estudio fue evaluar la relación entre cada raíz de los premolares y molares maxilares y el piso del seno maxilar según el sexo y la posición de los senos paranasales. La estructura ósea, es diferente en mujeres como en varones, el sexo masculino sus estructuras suelen ser más anchas, pudiendo encontrar una ligera diferencia entre la cantidad de hueso que pueda separar el seno maxilar de los ápices de los molares y premolares. Se evaluó una base de datos de CBCT de 849 pacientes cuyas exploraciones permitieron un total de 5,166 piezas dentarias evaluadas (2,680 premolares y molares superiores 2,486). La relación vertical entre cada raíz de las molares y premolares al piso del seno maxilar se clasificaron en tres tipos: tipo 1, las raíces penetran el piso del seno; tipo 2, las raíces están en contacto con el piso del seno; y el tipo 3, las raíces se extendían debajo del piso del seno. Los resultados de la clasificación de cada raíz en relación con el seno maxilar fueron los siguientes: El tipo 3 se produjo con más frecuencia en la primera premolar (92,4%) y en el segundo premolar (71,6%), mientras que el tipo 1 (34,2%) fue el más frecuente en las raíces palatinas de los primeros molares y tipo 3 con mayor frecuencia en la raíz mesiovestibular (39,9%) de la primera molar y distovestibular (39,7%). El tipo 2 (36,7%) fue el más frecuente en la raíz mesiovestibular de los segundos molares. No se halló diferencias significativas entre los lados izquierdo y derecho, pero sí se encontraron en cuanto al sexo y a la relación en el intervalo de la década de edad. (p <0,05).
4.2. BASES TEÓRICAS

SENO MAXILAR

El seno maxilar, es una estructura, conocida también como “antro de Highmore”, es una cavidad neumática paranasal, par, encerrada entre huesos del macizo facial. Es el primero de los senos paranasales que se desarrolla en el embrión. Se localiza, en la zona maxilar, en el hueso maxilar a cada lado de las fosas nasales y por debajo de la órbita ocular.

FUNCIONES

Función de evacuación: durante la inspiración se favorece la evacuación de los senos por medio de corrientes aéreas que discurren en forma espiroidal en el interior de los senos.

Función respiratoria: calentamiento del aire

Función fonadora: resonancia de la voz.

Función defensiva: su secreción mucosa contiene Lisozima que es un principio antibacteriano.

Cavidad neumática: alivia el peso del cráneo.

Resistencia: aumente la resistencia cráneo facial a los golpes mecánico.

El seno maxilar es el primero de los senos paranasales en desarrollarse y se constituye a las diez semanas de vida intrauterina, a partir de un saco mucoso nacido por la invaginación de la mucosa del meato nasal medio, es decir, en el territorio del futuro esqueleto etmoidal. Este saco mucoso se encuentra flojamente enclavado en el ángulo que forma la pared externa de la cápsula nasal del condrocráneo con el esbozo cartilaginoso
del cornete maxilar. En este estadio el maxilar ya ha adquirido un cierto desarrollo, extendiéndose por fuera y contra la pared capsular por su apófisis ascendente, por la cara externa del futuro seno maxilar; se expande igualmente por debajo del cornete maxilar por su apófisis palatina; debajo de este cornete se forma el esbozo de la futura pared interna del seno.

El seno mucoso se va desarrollando, en relación estrecha con la pared externa de la cápsula nasal; cuando esta pared se reabsorbe, al igual que la raíz del cornete maxilar cartilaginoso, el seno se encuentra rodeado por un esqueleto óseo sobre el cual se aplica exactamente. En el sexto mes de vida fetal el seno maxilar está poco marcado, es una simple fosita. En el recién nacido está más individualizado y un año después, su tamaño no sobrepasa aún el nivel del canal infraorbitario; el suelo y el techo del seno están a una distancia mínima el uno del otro. A los 20 meses, el seno se extiende hasta la cercanía del germen del primer molar permanente. El seno maxilar irá creciendo al mismo tiempo que crece todo el hueso maxilar superior, siguiendo el desarrollo general de la cara, pero también la erupción de los dientes, puesto que los gérmenes dentarios ocupan un importante espacio en el hueso a nivel de la arcada alveolar y de la tuberosidad.

A los 6 años, el seno maxilar sobrepasa en unos 15 mm el canal infraorbitario y se insinúa en la apófisis malar. Hacia los 12 años, después de la erupción del segundo molar permanente, ya ha adquirido casi el tamaño y forma del adulto, aunque ésta será definitiva después de la erupción del tercer molar (18-25 años), abarcando también la zona más
posterior de la tuberosidad maxilar. A partir de los 15 años, su suelo, que estaba por encima de las cavidades nasales, se sitúa un poco por debajo de éstas. Cuando finaliza el crecimiento dento maxilofacial, el seno maxilar adquiere sus características anatómicas definitivas.¹

Su crecimiento o neumatización, sin embargo, no acaba ahí, sino que prosigue lentamente durante toda la vida y no responde a un patrón genético, sino que experimenta una clara influencia ambiental, sobre todo vinculada a la ausencia o preservación de los dientes maxilares con los que se relaciona: principalmente con las primeras y segundas molares, aunque puede extenderse hacia adelante hasta el canino y hacia atrás hasta el cordal o muela del juicio.²³

ANATOMÍA

Se puede describir al seno maxilar como una pirámide, la base que coincide con la superficie medial verticalmente y forma la pared nasal lateral. El ápice se extiende en el procesos cigomáticos del maxilar, contando con las siguientes lados:²¹,²²

Pared superior o techo: en la adultez va adelgazando; se ubica debajo de la órbita y es la lámina orbitaria del maxilar superior. Conteniendo un canal óseo para el nervio y vasos infraorbitarios.²¹ Forma piso de la órbita que contiene al nervio maxilar superior; puede ser destruida por neoplasias maxilares.²⁸

Pared inferior o piso: está estructurada por la apófisis alveolar del maxilar y el paladar óseo, se interrelaciona con los alvéolos dentarios de premolares y molares superiores.
Prolongación alveolar del maxilar superior, pueden encontrarse de 5 a 10 mm por abajo del nivel del piso de la cavidad nasal, el primer y segundo molar superior provocan elevaciones, así como también de las premolares.28

Pared antero lateral o fosa canina: es la parte facial del maxilar superior, está cubierta por los tejidos blandos de la mejilla, conformando la estructura de la cara.

Facilita el abordaje quirúrgico en la técnica de Cadwell lue, evitando al nervio sub orbitario, que emerge del orificio a 5 mm por debajo del reborde orbitario inferior.28

Pared posterior o esfenomaxilar: constituida por una pared delgada de hueso que separa la cavidad de las regiones pterigomaxilar e infra temporal. También formada por la tuberosidad donde se encuentran los nervios dentarios posteriores, relacionándose de esta manera con la fosa pterigopalatina.28

Pared nasal: separa el seno maxilar de la cavidad nasal. Esta pared nasal contiene la desembocadura del seno, el orificio u ostium maxilar o hiato semilunar, situado debajo del techo del antro.

Zona antero inferior o infra turbinal: pertenece al meato inferior y la zona posteroperior superior: corresponde al meato medio, donde se abre el ostium del seno maxilar.28

Vértice: en relación a la apófisis cigomática del hueso malar.28

La peculiar topografía del ostium impide un buen drenaje cuando el individuo está en posición vertical. A menudo existen sub compartimentos, divertículos y criptas, formados por tabiques óseos y membranosos.22
PRIMERO MOLAR SUPERIOR

La Calcificación comienza a las 25 semanas de vida intrauterina, erupciona los 6 años y termina de erupcionar a los 9 años.

La longitud total es de 22 mm, coronaria de 7.7 mm y radicular es de 14.3 mm.

Diámetros: mesio distal 10.3 mm y vestíbulo palatino es de 11.8 mm, ocluye con ¾ distales del primer molar y ¼ mesial del segundo molar inferior.³¹

PORCIÓN RADICULAR

Consta de tres raíces siendo la palatina más fuerte, suele ser cónica, el diámetro mayor en las raíces mesial y distal. Presenta convexidades en todas sus caras salvo en la palatina, donde el tercio cervical se observa un canal longitudinal, que no es más que la prolongación del surco y aplanamiento palatino. Las dos raíces vestibulares tienen su mayor diámetro en el sentido vestíbulo palatino. Suelen ser convexas en toda su extensión, salvo en las caras que se orientan hacia el espacio inter radicular, donde aparece un canal longitudinal.³¹

RELACIÓN CORONO RADICULAR

Examinando el diente desde vestibular, la raíz palatina se ve inclinada hacia distal, las vestibulares, la mesial muestra dos porciones, en cervical, que se aleja del eje del diente y otra apical. La distal aparece con una sola dirección centrífuga. Siendo de mayor tamaño la raíz distal pero la más delgada, la raíz mesial es más amplia, las tres raíces suelen tener tendencia a separarse. La relación corona raíz dependerá del examen clínico, dentro del examen radiográfico y anatómico, las raíces suelen
tener diferentes tamaños y longitudes. Por lo que esta se deberá tener en cuenta al momento de realizar cualquier tipo de intervención.31

INCLINACIÓN DEL PRIMER MOLAR SUPERIOR DERECHO E IZQUIERDO

Este ángulo está formado por el eje molar, mediante una línea que une el surco oclusal y la furca, pasando por medio del paladar, esta última línea suele ser perpendicular a una línea imaginaria, trazada tomando como referencia los puntos WALA tanto a la derecha e izquierda. Este punto WALA fue definido por Andrews como la cresta, una banda de tejido queratinizado suave y directamente adyacente a la unión mucogingival.32

TOPOGRAFÍA DENTOALVEOLO SINUSAL

Es el estudio de la relación que existe entre las estructuras anatómicas del maxilar con el piso del seno maxilar. Estas dependerán del tamaño o neumatización del hueso maxilar, pues esta característica condicionará el desarrollo del borde alveolar. Cuando los senos se neumatizan recubre los ápices de los dientes, convirtiéndose la base del seno más delgada, reconociendo las elevaciones llamadas cápsulas alveolares, correspondientes a las raíces de los dientes, mayormente esto se puede observar en el segundo molar, seguido del primer molar, el tercer molar, el segundo premolar y el primer premolar, entonces en el segundo molar se observa que la cúpula más elevada pertenece a la raíz mesial, seguidas de las raíces palatina y distal respectivamente, el segundo molar es el diente más próximo al piso o base sinusal, siguiéndole de gran importancia por milímetros por la primera molar, donde sus raíces más prominentes son la mesial, distal y palatino respectivamente, seguidos del
tercer molar, el segundo premolar y el primer premolar. El primer molar tiene las raíces más divergentes mientras que la segunda molar son más cercanas y más convergentes y ocasionalmente fusionadas, por lo que se ubican de bajo de la parte más declive del piso sinusal.28

COMUNICACIONES

• Conducto Maxilar
Comunica a la fosa nasal con la cavidad del seno maxilar, con una longitud de 6 a 8 mm, una anchura de 3 a 5 mm dirigiéndose de forma perpendicular a un canal con una orientación hacia atrás, hacia adentro de forma oblicua.

• Orificio Interno o Meático
Se encuentra situado en la parte inferior, por debajo de las celdas etmoidales anteriores del conducto naso frontal. Se encuentra cubierto por el meato medio y por la apófisis unciforme.

• Ostium del seno maxilar
Se encuentra entre en tercio anterior y medio del ángulo, hacia una hendidura que se encuentra formada por la pared lateral nasal y la porción del proceso uncinado. Sirve como el orificio de drenaje del seno maxilar.1

RELACIÓN DE LAS PIEZAS DENTARIAS POSTERIORES CON EL PISO DEL SENO MAXILAR
El conocimiento de la estructura topográfica entre las estructuras del maxilar y el seno maxilar son de gran importancia en la odontología, debido que se producen con mayor frecuencia complicaciones, al momento de las exodoncias, intervenciones ortognácticas, debido al
establecimiento de una comunicación bucosinusal, o por afecciones que a partir de infecciones periapicales dentarios o periodontales entre otros.\(^{24}\) El piso del seno maxilar forma la zona específica más declive de la cavidad, donde se unen la pared facial antero externa, infra temporal postero externa y nasal la parte interna. Es muy variable en su forma pudiendo tomar forma triangular, reniforme (forma semejante a riñones) o semilunar. Por lo general sigue una línea curva de concavidad superior, cuyos extremos corresponden a los alvéolos del canino y el tercer molar. La zona más declive se halla a nivel del primero o segundo molar.

la forma del piso del seno maxilar dependerá del grado de agrandamiento o neumatización que puede tener, que a su vez depende de la edad, de la conservación o ausencia de los dientes posteriores o enfermedades como la sinusitis.\(^{14}\) Las extracciones prematuras estimulan el proceso de neumatización del seno maxilar, sobre todo en el sector del alvéolo vacío, y es más frecuente observarla después de la avulsión del primer molar permanente. El descenso del seno maxilar puede alcanzar hasta la proximidad del vértice de la cresta alveolar.\(^{22}\)

El seno maxilar varía en su forma y tamaño. Por ejemplo, en los niños, el piso puede quedar situado a un nivel superior del piso nasal, ósea; a nivel de la línea palatina, en adultos la mayoría de las veces se ubica al mismo nivel o por debajo del piso de las fosas nasales, especialmente en la parte posterior, ya que la parte anterior suele estar algo más alta.

El piso del seno suele presentar crestas transversales u oblicuas, que hacen un relieve y se observan como tabiques en las imágenes radiográficas; estas crestas representan dificultades al drenaje de las
secreciones patológicas. La condición de que los tabiques se extiendan hasta la pared superior u orbital y dividan el seno maxilar, en senos accesorios, es poco probable.

En los senos grandes, las raíces de los dientes están cubiertas por una delgada capa del hueso y forman un relieve hacia el interior del seno llamado cúspide alveolar. El segundo molar es la que mayormente presenta este tipo de relieve con delgada capa de hueso. En el hueso seco se encuentra acribillado de diminutos orificios que le confieren el aspecto de una criba.24

Las cúspides alveolares son más frecuentes, en orden decreciente, en el segundo molar, el primer molar, el tercer molares, el segundo premolar y el primer premolar. El de mayor relación con el seno maxilar es el segundo molar porque sus raíces se presentan más cercanas y ocasionalmente se encuentran fusionadas, de modo que se colocan por debajo de la parte más declive del seno maxilar, mientras que las raíces del primer molar son más divergentes. Están mucho más separadas con ligeras curvas que hacen que disminuya la longitud de la raíz.24

La formación de las cúspides alveolares hace que en las películas radiográficas del seno en relación con los dientes se observe una imagen que no es real observándose que aparentemente los ápices radiculares se encuentran en el interior del seno. La íntima relación del piso del seno maxilar y las raíces dentales hace posible que los síntomas de origen sinusal pueden ser manifestados a nivel odontológico y viceversa.

Muchas veces el dolor que se irradia a los dientes proviene del seno

24
maxilar. Se debe realizar un examen cuidadoso para evitar confusiones con el origen de los síntomas.25

La pared anterior separa el seno maxilar de la piel de la mejilla y contiene los nervios alveolares superiores anterior y medio que inervan caninos, premolares y primeros molares. El nervio infraorbitario se encuentra aproximadamente 1.5 cm encima del primer y segundo premolar; esto es de importancia cuando se realiza la disección de la pared anterior del seno maxilar, el techo de éste es también el piso de la órbita. El piso del seno maxilar es de importancia debido a su íntima relación con los dientes maxilares. La raíz mesio bucal del segundo molar maxilar en el adulto es la más cercana al piso del seno maxilar con un promedio 1.97 mm y el ápice de la raíz bucal del primer premolar maxilar es el más lejano del piso del seno con un promedio 7.5 mm.27

CLASIFICACIÓN DE LA TOPOGRAFÍA EL PISO DEL SENO MAXILAR

El piso del seno maxilar, es más curva que plana, está conformada por el tercio inferior de la pared media y la pared vestíbulo-alveolar. La topografía de la pared inferior relacionado con el ápice radicular del maxilar superior puede variar de acuerdo con la edad del paciente, el tamaño y el nivel de neumatización del seno maxilar y del estado de la erupción dental. Tenemos 6 categorías de seno maxilar, basadas en la morfología de la pared inferior del seno maxilar el cual es de tipo I hasta el tipo VI.

Tipo I, se ha observado que la pared de la zona molar y premolar es plana (24.2%).
Tipo II y III, la pared inferior en más estrecha y puede ser plana en la zona molar (tipo II, 21,2%), o la pared inferior puede presentarse inclinada en la zona premolar del maxilar superior (tipo III, 15,2%).

Los tipos IV y V tienen la pared inferior con forma redondeada con un ángulo agudo en la zona del segundo premolar (21,2%) o del primer molar (9,1%).

El tipo VI se caracteriza por la pared inferior del seno maxilar más ancha que la pared superior (9.1%).

Visto laterales del maxilar superior y el seno maxilar tridimensionalmente reconstruidos.

CLASIFICACIÓN VERTICAL DE LA RELACIÓN DEL PISO DE SENO MAXILAR Y LOS ÁPICES DE LOS DIENTES.

Hee- Jin Kim realizó una clasificación vertical y transversal de las relaciones entre el seno maxilar y los ápices de los dientes superiores. Tipo I: Los ápices dentarios no están en contacto con la pared inferior del seno maxilar (55% de los casos).

Tipo II: La pared inferior del seno maxilar desciende entre las raíces vestibulares y palatinas pero no están dentro del seno maxilar (18%).
Tipo III: Las raíces vestibulares están dentro del seno maxilar pero no las palatinas (5%).
Tipo IV: Las raíces palatinas están dentro del seno maxilar pero no las raíces vestibulares (14%).
Tipo V: las raíces vestibulares y palatinas están dentro del seno maxilar (9%).

Tipos de relación vertical entre el piso del seno maxilar y las raíces de las molares superiores

RELACIONES ANATOMOTOPOGRÁFICAS DEL SENO MAXILAR CON LOS DIENTES

En el alveolo del primer premolar casi siempre hay una distancia de 3,4 o más milímetros de lámina que separa el hueso esponjoso del compacto. Alveolo del segundo premolar entre 1 a 5 mm y puede llegar a 10 mm, de espesor de la capa ósea.
En el alveolo del primer molar se encuentra la parte del seno de mediana capacidad 6 mm separan la raíz palatina del piso, 3 mm en la raíz mesial y 4 mm de la distal. En otros un espesor escaso de medio milímetro.

Alveolo del segundo molar una separación de 1 mm.

Alveolo del tercer molar una separación de 2 mm y en alveolo bifurcado 1 mm

IMAGENOLOGÍA DEL SENO MAXILAR

Los senos maxilares son estructuras que radiográficamente tienen apariencia radiolúcida o sombría sobre las raíces de los dientes posteriores, desde el segundo premolar hacia la tuberosidad del maxilar. Su aspecto es bastante radiolúcido debido a su contenido de aire que son cavidades vacías. La pared antral interna, la cual forma la superficie externa de las fosas nasales, es variable en grosor; este factor conlleva a variaciones en la apariencia del seno. El tejido blando de la mejilla también influye en la radiolúcidez. El suelo o piso se encuentra recubierto con una cortical laminilla de hueso continua y delgada, pero también se pueden observar pequeñas interrupciones debido a variaciones anatómicas.

La estrecha proximidad del seno maxilar con las raíces de los molares y el hueso alveolar hace obligatorio al operador reconocer la anatomía normal del seno en las radiografías intrabucales y extrabucales. Se cuenta con diferentes modalidades para el examen radiográfico: 25
RADIOGRAFÍAS PERIAPICALES

Son de limitado valor diagnóstico. Solo una porción del tercio inferior del seno es visible en las radiografías periapicales del sector postero superior.

En estas radiografías, las raíces de los molares superiores pueden aparecer proyectadas en el interior de la cavidad sinusal produciendo elevaciones crónicas del piso del seno; sin embargo, siempre existe una capa de hueso y mucosa que aíslan a estas raíces del seno. Se pueden observar zonas específicas donde aparentemente las raíces se encuentran dentro del seno, pues atraviesa en medio de la raíz una zona radioopaca.¹

RADIOGRAFÍAS OCLUSALES

La proyección anterior oclusal del maxilar, el maxilar anterior transversal y la lateral oclusal del maxilar, son técnicas excelentes para visualizar el maxilar desde la pared palatina. Usando esta técnica se puede visualizar la pre maxila y la dentición, las zonas antero inferiores de ambos senos, el paladar, el proceso cigomático, los canales lacrimales, el piso anterior de las fosas nasales y el tabique nasal.¹

CONSIDERACIONES CLÍNICAS

Seno maxilar supernumerario: es el caso de dos senos completamente separados, sobre el mismo lado o hemicara.

Disfunciones del sistema endocrino: en el gigantismo hipofisiario, todos los senos adquieren un volumen mayor que en individuos sanos.

Infecciones congénitas: en sífilis congénita, la neumatización está reducida, que da como resultado senos pequeños.
Comunicaciones del seno al aparato bucal: en maniobras quirúrgicas del 2do y 1er molar.

Quiste, granulomas, abscesos, en hipercementosis, infección de la mucosa (sinusitis), infecciones causadas por estreptococos, estafilococos, neumococos.

En las lesiones malignas: adenocarcinomas, carcinoma de células escamosas, osteosarcomas, fibrosarcomas, linfosarcomas.

Complicaciones del seno maxilar relacionados a implantes endóseos: los procedimientos innovadores utilizando injertos autógenos, alógenos y aloplastos en los implantes en el maxilar superior reabsorbido, a veces violan la integridad anatómica e interfieren con los mecanismos fisiológicos del seno maxilar.

Tomografía axial computarizada

La historia de la radiología es corta, es una historia de apenas cien años. La radiología abarca múltiples modalidades de imagen y cada una de estas técnicas ha influido activamente en el conocimiento de la historia natural de las enfermedades permitiendo confirmar o descartar entidades que antes únicamente se podían diagnosticar clínicamente. Sin duda, una de las modalidades radiológicas que desde su creación más ha evolucionado y se ha instaurado más rápidamente en la práctica clínica diaria es la tomografía computarizada. La palabra tomografía es formada por la unión de dos términos griegos “tomos” y “graphos” que significan respectivamente, partes y registro. De esta forma, la tomografía consiste en la obtención de imágenes del cuerpo en partes o cortes. Es una
técnica especializada que registra de manera clara objetos localizados dentro de un determinado plano y permite la observación de una región con poca o ninguna sobreposición de estructuras. De manera general, las tomografías pueden ser clasificadas en dos tipos:

- Tomografía convencional
- Tomografía computarizada

Esta última puede ser aún subdividida de acuerdo con el formato del haz de rayos x utilizado en:

- Tomografía computarizada tradicional de haz en rango (fan beam)
- Tomografía computarizada volumétrica de haz volumétrico (cone beam)

La tomografía computarizada de haz volumétrico utiliza una tecnología innovadora en la adquisición de la imagen, el haz cónico de rayos x. Este permite que la imagen sea adquirida como un volumen y no como un plano, como ocurre en la tomografía computarizada médica. El desenvolvimiento de esta nueva tecnología está proporcionando a la Odontología la reproducción de la imagen tridimensional de los tejidos mineralizados maxilofaciales, con mínima distorsión y dosis de radiación significativamente reducida en comparación a la tomografía computarizada tradicional.

- Tomografía Computarizada de Haz Volumétrico en Odontología

La tomografía computarizada de haz cónico, en inglés, Cone Beam Computed Tomography (CBCT), fue desarrollada a finales de los años noventa con el fin de obtener escáneres tridimensionales del esqueleto maxilofacial con una dosis de radiación menor que la TC revolucionando la imagen del complejo craneofacial y ofreciendo una alternativa a la
imagen convencional intraoral y panorámica, que elude la superposición y
los problemas de distorsión de imágenes. Diversos términos han sido
empleados para describir la técnica de la tomografía computarizada de
haz volumétrico incluyendo: tomografía computarizada de haz cónico,
tomografía volumétrica dental, imagen volumétrica del haz cónico y
tomografía computarizada dental. El término más frecuentemente utilizado
es tomografía computarizada de haz cónico. El resultado diferente de
generaciones de tomógrafos anteriores es un haz orientado de forma
piramidal, adquiriendo mayor volumen de área. Por lo tanto, el término
probablemente más preciso a ser utilizado es “tomografía computarizada
de haz volumétrico”. El equipo de tomografía computarizada de haz
volumétrico presenta dos componentes principales, posicionados en
extremos opuestos de la cabeza del paciente: la fuente o tubo de rayos X,
que emite un haz en forma de cono, y un detector de rayos X. La mayoría
escanean la cabeza del paciente sentado o de pie. El haz de rayos es de
forma cónica y obtiene un volumen de datos cilíndrico o esférico, descrito
como field of view (FOV). El tamaño del FOV es variable escáneres CBCT
de gran volumen (por ejemplo, i-CAT; Imaging Sciences International,
Hatfield, PA, USA y Newtom; QR, Verona, Italia) son capaces de capturar
el esqueleto maxilofacial completo.34
4.3. DEFINICIÓN DE TERMINOS

Seno maxilar: Seno Maxilar o antro de Highmore es una de las cavidades que conforma los senos paranasales en la cara, de ellas es la cavidad más grande y es de forma piramidal.

Tomografía: Técnica exploratoria radiográfica que permite obtener imágenes radiológicas de una sección o un plano de un órgano.

Ápice: El ápice radicular es la parte terminal de una raíz dental. Se comunican los nervios del conducto con el del nervio principal.

Topografía dentoalvéolo sinusal: estudio de las relaciones anatómicas de ciertos dientes del arco superior con el piso del seno maxilar.

Cúpulas dentarias: corresponden a las raíces dentarias.

Embriología: es la ciencia que se ocupa del estudio, la formación y el desarrollo de los embriones.

Neumatización: Proceso de creación de cavidades aéreas en el interior de las áreas sólidas.

Anatomía: al análisis de la conformación, el estado y los vínculos de los distintos sectores del cuerpo del ser humano y de otros seres vivientes.

Ostium: Palabra latina que significa orificio y sirve para designar dos orificios que aparecen sucesivamente en el tabique interauricular en desarrollo: ostium primum y ostium secundum. Este último es el que da lugar al agujero oval, que persiste hasta el nacimiento.

Senos accesorios: son un conjunto de cavidades aéreas que se encuentran en los huesos frontales, esfenoides, etmoides, y maxilar superior, que comunican con las fosas nasales.
Radiografía: es uno de los exámenes imagenológicos más utilizados en planificación quirúrgica de forma que es la primera en señalar patologías o alteraciones óseas.\(^{29}\)

Imagen radiolúcido: Es aquel término que se emplea en la acentuación de los rayos X, es decir, son tejidos blandos y que por tanto permiten el paso de la luz. Es todo aquel cuerpo que se deja atravesar por la energía radiante, se ve como una zona negra.\(^{25}\)

Alveolo: un término que también puede pronunciarse con la acentuación alveolo, son pequeñas celdas, casillas, cavidades o agujeros.\(^{22}\)
5. HIPÓTESIS

5.1. HIPÓTESIS GENERAL

H₁ = Existe relación directa y significativa entre el piso de seno maxilar y los ápices de las primeras molares del lado derecho y el lado izquierdo, Lima - 2017.

HIPÓTESIS ESPECÍFICOS

- H₁= Existe relación entre las medidas de la distancia ápico sinusal de las tres raíces del lado derecho y la medida de la distancia ápico sinusal de las tres raíces del lado izquierdo de las primeras molares superiores, Lima – 2017.

- H₁= Existe diferencia significativa según el sexo, entre las medidas de las distancias ápico sinusales de todas las raíces de la primera molar superior, Lima – 2017.

- H₁= Existe diferencia significativa según el grupo etario, entre las medidas de las distancias ápico sinusales de todas las raíces de la primera molar superior, Lima – 2017.
5.2. OPERACIONALIZACIÓN DE VARIABLES

<table>
<thead>
<tr>
<th>IDENTIFICACIÓN DE VARIABLES</th>
<th>CONCEPTO</th>
<th>TIPO</th>
<th>INDICADORES</th>
<th>ÍNDICES</th>
<th>ESCALA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ápice radicular y seno maxilar (Relación vertical)</td>
<td>Es la clasificación del tipo de posición que adopta el seno maxilar al descender en un sentido vertical con respecto a los ápices radiculares</td>
<td>Cualitativo Politómico</td>
<td>Tipo I
 Tipo II
 Tipo III
 Tipo IV
 Tipo V</td>
<td>Clasificación realizada por Kim, H.</td>
<td>Ordinal</td>
</tr>
<tr>
<td>Distancia del ápice radicular al piso del seno maxilar</td>
<td>Distancia más corta tomada desde punto más distal del ápice radicular hacia el piso del seno maxilar</td>
<td>Cuantitativo continua</td>
<td>Medición en mm</td>
<td>Tomografías plano sagital Cone Beam</td>
<td>De razón</td>
</tr>
<tr>
<td>Edad</td>
<td>Edad cronológica de los participantes del estudio que corresponde desde el inicio de su vida hasta la encuesta y/o evaluación en el estudio</td>
<td>Cualitativo Politómico</td>
<td>Joven de 18 a 29 años
 Adulto I (Adultez temprana) de 30 a 39 años
 Adulto II (Adultez madura) de 40 a 49 años
 Adulto mayor de 50 a más</td>
<td>Ficha de recolección de datos</td>
<td>Ordinal</td>
</tr>
<tr>
<td>Sexo</td>
<td>Conjunto de las peculiaridades que caracterizan los individuos de una especie dividiéndolos en masculinos y femeninos.</td>
<td>Cualitativo discreto</td>
<td>Masculino
 Femenino</td>
<td>Características físicas externas</td>
<td>Nominal</td>
</tr>
</tbody>
</table>
CAPÍTULO II:

MÉTODO

6. METODOLOGÍA

6.1. TIPO, NIVEL Y DISEÑO DE INVESTIGACIÓN

- TIPO DE INVESTIGACIÓN: Transversal, retrospectivo, comparativo
- NIVEL DE INVESTIGACIÓN: Correlacional
- DISEÑO DE INVESTIGACIÓN: Descriptivo- correlacional

6.2. LUGAR Y PERIODO DE INVESTIGACIÓN

El estudio se realizó en los meses de agosto, septiembre y octubre del 2017, con archivos de los años del 2015 al 2017, de la Clínica Dental Henry de la ciudad de Lima Perú.
6.3. POBLACIÓN O UNIVERSO

La población estuvo comprendida por 51 tomografías de los archivos de los años 2015, 2016 y 2017, de la Clínica Dental Henry de la ciudad de Lima durante los años.

6.4. MUESTRA

Tamaño de muestra: El tamaño de muestra fue de 51 tomografías considerándola a esta como muestra censal según Hernández Sampieri, considera a toda la población de tomografías Cone Beam de la clínica.

6.5. CRITERIOS DE INCLUSIÓN Y EXCLUSIÓN

CRITERIOS DE INCLUSIÓN

- Tomografías procesadas con el software ICAT visión, (años del 2015 al 2017).
- Tomografías que presenten la primera molar superior derecha e izquierda, (años del 2015 al 2017).

CRITERIOS DE EXCLUSIÓN

- Tomografías que no presenten la primera molar superior en ambos lados.

6.6. TÉCNICA DE RECOLECCIÓN DE DATOS

El método empleado para el presente estudio fue la fuente primaria para el análisis de hechos. La técnica empleada será observacional utilizando una ficha de recolección de datos (anexo1).

6.7. VALIDEZ Y CONFIABILIDAD DE LOS INSTRUMENTOS EMPLEADOS.

Para la validez y confiabilidad del instrumento se realizó mediante el juicio de expertos profesionales entendidos en el área y/o temática Docentes de:
• Docente de radiología

• Magister en estomatología. Mg. CD Daniel Felen Hinostroza

• Doctor en estomatología. Dr. CD Washington Ordoñez Hospital

Se les entregó una ficha de recolección de datos (anexo1), ficha para el juicio de expertos (anexo 2), matriz de consistencia (anexo 3).

La confiabilidad del instrumento estuvo dado mediante la ejecución de una prueba piloto con un tamaño mínimo muestra de individuos.

6.8. PROCEDIMIENTOS DE RECOLECCIÓN DE DATOS A EMPLEAR.

Para poder desarrollar el presente proyecto de investigación en primer lugar se consiguió las tomografías de la Clínica Dental Henry ubicado en el distrito de Puente Piedra, en la ciudad de Lima Perú. (Anexo3), luego se usó la ficha de recolección de datos (Anexo1) para detallar cada uno de los hallazgos encontrados.

6.9. ELABORACION Y PROCESAMIENTOS DE DATOS

La información obtenida se almacenó en el programa Microsoft office Excel, para almacenar la base de datos y luego ser procesada en un programa estadístico.

6.10. PLAN DE ANÁLISIS E INTERPRETACIÓN DE DATOS

ANALISIS DESCRIPTIVO:

Los datos obtenidos se presentaron mediante una tabla o gráficos mostrando el N° de frecuencias y el porcentaje de cada una de las variables.
ANALISIS INFERENCIAL:
Se utilizó pruebas estadísticas para verificar las hipótesis para hallar como la Rho de Spearman, U de Mann Whitney, Kruskal Wallis y Anova con un factor intrasujetos.

PAQUETES ESTADISTICOS:
Para el análisis e interpretación de los datos se utilizó el programa SPSS 23 versión en español.
CAPÍTULO III
RESULTADOS

TABLA N°1: VARIABLE SEXO

<table>
<thead>
<tr>
<th>SEXO</th>
<th>Frecuencia</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASCULINO</td>
<td>29</td>
<td>56.9</td>
</tr>
<tr>
<td>FEMENINO</td>
<td>22</td>
<td>43.1</td>
</tr>
<tr>
<td>Total</td>
<td>51</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia del archivo de tomografías–Lima ¨017

INTERPRETACIÓN:

En la tabla y figura N° 1 se observa que del total de 51 Tomografías Evaluadas, el 56,86% Representa al Sexo Masculino mientras que el 43,14% Representa al Sexo Femenino.
TABLA N°2: VARIABLE GRUPO ETARIO

<table>
<thead>
<tr>
<th>GRUPO ETARIO</th>
<th>Frecuencia</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>JOVEN (18-29 AÑOS)</td>
<td>16</td>
<td>31.4</td>
</tr>
<tr>
<td>ADULTO I (30-39 AÑOS)</td>
<td>17</td>
<td>33.3</td>
</tr>
<tr>
<td>ADULTO II (40 A 49 AÑOS)</td>
<td>14</td>
<td>27.5</td>
</tr>
<tr>
<td>ADULTO MAYOR (50 AÑOS A MAS)</td>
<td>4</td>
<td>7.8</td>
</tr>
<tr>
<td>Total</td>
<td>51</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia del archivo de tomografías – Lima “01 7

INTERPRETACIÓN:

En la tabla y figura N° 02 se observa que del total de 51 Tomografías Evaluadas, el 33,3% Representa al Adulto I (30 – 39 Años), el 31,4% Representa a Joven (18 – 29 Años), el 27,5% Representa al Adulto II (40 – 49 Años) y el 7,8% Representa al Adulto Mayor (50 Años a mas).
TABLA N°03: VARIABLE LADO DERECHO

LADO DERECHO

<table>
<thead>
<tr>
<th>Frecuencia</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI PRESENTA LA PRIMERA MOLAR</td>
<td>43</td>
</tr>
<tr>
<td>NO PRESENTA LA PRIMERA MOLAR</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>51</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia del archivo de tomografías–Lima “017

Figura N°03: Variable Lado Derecho

INTERPRETACIÓN:

En la tabla y gráfico N°03 se observa que del total de 51 Tomografías Evaluadas, el 84.3% Si Presentaron La Primera Molar, mientras que el 15.7% No Presentaron la Primera
<table>
<thead>
<tr>
<th></th>
<th>Frecuencia</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI PRESENTA LA PRIMERA MOLAR</td>
<td>41</td>
<td>80.4</td>
</tr>
<tr>
<td>NO PRESENTA LA PRIMERA MOLAR</td>
<td>10</td>
<td>19.6</td>
</tr>
<tr>
<td>Total</td>
<td>51</td>
<td>100.0</td>
</tr>
</tbody>
</table>

Figura N°04: Variable Lado Izquierdo

INTERPRETACIÓN:

En la tabla y gráfico N°04 se observa que del total de 51 Tomografías Evaluadas, el 80.4% Si Presentaron La Primera Molar, mientras que el 19.6% No Presentaron la Primera Molar.
INTERPRETACIÓN:

En la tabla y figura N° 05 se observa que de un total de 43 Tomografías Evaluadas, 2,46mm, se muestra como promedio o media con un error estándar de 0,1, encontrando así que el 50% de la población tiene más de 2,72mm y el otro 50% tiene menos de 2,72mm, teniendo así que la medida más común es de 2,72mm, asimetría hacia la derecha y los datos se comportan por debajo de la curva de forma leptocúrtica.
INTERPRETACIÓN:

En la tabla y figura N° 06 se observa que de un total de 43 Tomografías Evaluadas, 1,65mm, se muestra como promedio o media con un error estándar de 0,11, encontrando así que el 50% de la población tiene más de 1,92mm y el otro 50% tiene menos de 1,92mm, teniendo así que la medida más común es de 2,94mm, asimetría hacia la izquierda y los datos se comportan por debajo de la curva de forma platicúrtica.
TABLA N°07: VARIABLE DISTANCIA APICO SINUSAL PLATINO (DERECHO)

<table>
<thead>
<tr>
<th>Estadísticos</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>43</td>
</tr>
<tr>
<td>Valido</td>
<td>35</td>
</tr>
<tr>
<td>Perdidos</td>
<td>8</td>
</tr>
<tr>
<td>Media</td>
<td>1.1909</td>
</tr>
<tr>
<td>Error estándar de la media</td>
<td>0.05252</td>
</tr>
<tr>
<td>Mediana</td>
<td>1.2700</td>
</tr>
<tr>
<td>Moda</td>
<td>1.37</td>
</tr>
<tr>
<td>Desviación estándar</td>
<td>0.34438</td>
</tr>
<tr>
<td>Varianza</td>
<td>0.119</td>
</tr>
<tr>
<td>Asimetría</td>
<td>-0.296</td>
</tr>
<tr>
<td>Error estándar de asimetría</td>
<td>0.361</td>
</tr>
<tr>
<td>Curtosis</td>
<td>-0.203</td>
</tr>
<tr>
<td>Error estándar de curtosis</td>
<td>0.709</td>
</tr>
<tr>
<td>Máximo</td>
<td>1.86</td>
</tr>
<tr>
<td>Percentiles</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>1.0100</td>
</tr>
<tr>
<td>50</td>
<td>1.2700</td>
</tr>
<tr>
<td>75</td>
<td>1.3700</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia del archivo de tomografías-Lima '017

INTERPRETACIÓN:

En la tabla y figura N° 07 se observa que de un total de 43 Tomografías Evaluadas, 1,19mm, se muestra como promedio o media con un error estándar de 0,05, encontrando así que el 50% de la población tiene más de 1,27mm y el otro 50% tiene menos de 1,27mm, teniendo así que la medida más común es de 1,37mm, asimetría hacia la izquierda y los datos se comportan por debajo de la curva de forma platicúrtica.
TABLA N°08: VARIABLE DISTANCIA APICO SINUSAL MESIOVESTIBULAR (IZQUIERDO)

<table>
<thead>
<tr>
<th>Estadísticos</th>
<th>DISTANCIA APICO SINUSAL MESIOVESTIBULAR (IZQUIERDO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Validado 41</td>
</tr>
<tr>
<td></td>
<td>Perdidos 10</td>
</tr>
<tr>
<td>Media</td>
<td>2.0471</td>
</tr>
<tr>
<td>Error estándar de la media</td>
<td>.08529</td>
</tr>
<tr>
<td>Mediana</td>
<td>2.4300</td>
</tr>
<tr>
<td>Moda</td>
<td>2.43 *</td>
</tr>
<tr>
<td>Desviación estándar</td>
<td>.54612</td>
</tr>
<tr>
<td>Varianza</td>
<td>.298</td>
</tr>
<tr>
<td>Asimetría</td>
<td>-1.094</td>
</tr>
<tr>
<td>Error estándar de asimetría</td>
<td>.369</td>
</tr>
<tr>
<td>Curtosis</td>
<td>1.003</td>
</tr>
<tr>
<td>Error estándar de curtosis</td>
<td>.724</td>
</tr>
<tr>
<td>Mínimo</td>
<td>.49</td>
</tr>
<tr>
<td>Máximo</td>
<td>2.67</td>
</tr>
<tr>
<td>Percentiles</td>
<td>25 1.6750</td>
</tr>
<tr>
<td></td>
<td>50 2.4300</td>
</tr>
<tr>
<td></td>
<td>75 2.4500</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia del archivo de tomografías–Lima “017

INTERPRETACION:

En la tabla y figura N° 08 se observa que de un total de 41 Tomografías Evaluadas, 2,04mm, se muestra como promedio o media con un error estándar de 0,08, encontrando así que el 50% de la población tiene más de 2,43mm y el otro 50% tiene menos de 2,43mm, teniendo así que la medida más común es de 2,43mm, asimetría hacia la izquierda y los datos se comportan por debajo de la curva de forma leptocúrtica.
INTERPRETACIÓN:

En la tabla y figura N° 09 se observa que de un total de 41 Tomografías Evaluadas, 1,12mm, se muestra como promedio o media con un error estándar de 0,08, encontrando así que el 50% de la población tiene más de 1,13mm y el otro 50% tiene menos de 1,13mm, teniendo así que la medida más común es de 0,66mm, asimetría hacia la izquierda y los datos se comportan por debajo de la curva de forma platicúrtica.
TABLA N°10: VARIABLE DISTANCIA APICO SINUSAL PALATINA (IZQUIERDO)

<table>
<thead>
<tr>
<th>Estadísticos</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>41</td>
</tr>
<tr>
<td>Validos</td>
<td>41</td>
</tr>
<tr>
<td>Perdidos</td>
<td>10</td>
</tr>
<tr>
<td>Media</td>
<td>.7602</td>
</tr>
<tr>
<td>Error estándar de la media</td>
<td>.05341</td>
</tr>
<tr>
<td>Mediana</td>
<td>.7300</td>
</tr>
<tr>
<td>Moda</td>
<td>.79</td>
</tr>
<tr>
<td>Desviación estándar</td>
<td>.34202</td>
</tr>
<tr>
<td>Varianza</td>
<td>.117</td>
</tr>
<tr>
<td>Asimetría</td>
<td>-.059</td>
</tr>
<tr>
<td>Error estándar de asimetría</td>
<td>.369</td>
</tr>
<tr>
<td>Curtosis</td>
<td>.031</td>
</tr>
<tr>
<td>Error estándar de curtosis</td>
<td>.724</td>
</tr>
<tr>
<td>Mínimo</td>
<td>.03</td>
</tr>
<tr>
<td>Máximo</td>
<td>1.41</td>
</tr>
<tr>
<td>Percentiles</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>.5950</td>
</tr>
<tr>
<td>50</td>
<td>.7300</td>
</tr>
<tr>
<td>75</td>
<td>.9300</td>
</tr>
<tr>
<td>Moda</td>
<td>.79</td>
</tr>
<tr>
<td>Media</td>
<td>.7602</td>
</tr>
<tr>
<td>Error estándar de la media</td>
<td>.05341</td>
</tr>
<tr>
<td>Mediana</td>
<td>.7300</td>
</tr>
<tr>
<td>Moda</td>
<td>.79</td>
</tr>
<tr>
<td>Desviación estándar</td>
<td>.34202</td>
</tr>
<tr>
<td>Varianza</td>
<td>.117</td>
</tr>
<tr>
<td>Asimetría</td>
<td>-.059</td>
</tr>
<tr>
<td>Error estándar de asimetría</td>
<td>.369</td>
</tr>
<tr>
<td>Curtosis</td>
<td>.031</td>
</tr>
<tr>
<td>Error estándar de curtosis</td>
<td>.724</td>
</tr>
<tr>
<td>Mínimo</td>
<td>.03</td>
</tr>
<tr>
<td>Máximo</td>
<td>1.41</td>
</tr>
<tr>
<td>Percentiles</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>.5950</td>
</tr>
<tr>
<td>50</td>
<td>.7300</td>
</tr>
<tr>
<td>75</td>
<td>.9300</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia del archivo de tomografías–Lima ‘017

Figura N°10: Variable Distancia Apico Sinusal Palatina (Izquierdo) - Histograma

INTERPRETACIÓN:

En la tabla y figura N° 10 se observa que de un total de 41 Tomografías Evaluadas, 0,76mm, se muestra como promedio o media con un error estándar de 0,05, encontrando así que el 50% de la población tiene más de 0,73mm y el otro 50% tiene menos de 0,73mm, teniendo así que la medida más común es de 0,79mm, asimetría hacia la izquierda y los datos se comportan por debajo de la curva de forma leptocúrtica.
TABLA N°11: VARIABLE RELACIÓN VERTICAL CON EL PISO DEL SENO MAXILAR Y LOS ÁPICES (DERECHO)

RELACIÓN VERTICAL CON EL PISO DEL SENO MAXILAR Y LOS ÁPICES (DERECHO)

<table>
<thead>
<tr>
<th>Frecuencia</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIPO I</td>
<td>12</td>
</tr>
<tr>
<td>TIPO II</td>
<td>20</td>
</tr>
<tr>
<td>TIPO III</td>
<td>1</td>
</tr>
<tr>
<td>TIPO IV</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>34</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia del archivo de tomografías–Lima ‘017

INTERPRETACIÓN:

En la tabla y figura N° 11 se observa que del total de 34 Tomografías Evaluadas, el 19,6% Presento Relación Vertical tipo II, el 11,8% Presento Relación Vertical tipo I y el 1% Presentaron Relación Vertical tipo III y IV,
TABLA N°12: VARIABLE RELACIÓN VERTICAL CON EL PISO DEL SENO MAXILAR Y LOS ÁPICES (IZQUIERDO)

INTERPRETACIÓN:

En la tabla y figura N° 12 se observa que del total de 34 Tomografías Evaluadas, el 21,6% Presento Relación Vertical tipo II, el 8,8% Presento Relación Vertical tipo I y el 2,9% Presento Relación Vertical tipo IV,
CONTRASTE DE HIPÓTESIS GENERAL

Análisis de datos

1er paso. - Variable Relación entre el piso de seno maxilar y los ápices de la primera molar (Derecho) según sus categorías es una variable cualitativa (categórica) politómica ordinal.

2do paso. - Variable Relación entre el piso de seno maxilar y los ápices de la primera molar (Izquierdo) según sus categorías es una variable cualitativa (categórica) politómica ordinal.

Por lo tanto para realizar el contraste de hipótesis de nivel correlacional, para observar si estas categorías de la relación entre el piso de seno maxilar con el ápice de las primeras molares del lado derecho con el izquierdo están relacionadas o no, siendo estas dos variables cualitativas, ordinales, se tendría que utilizar una prueba no paramétrica como la Rho de Spearman.

Prueba de hipótesis

Prueba de hipótesis para la evaluar si existe relación entre el piso de seno maxilar y los ápices de la primera molar del lado derecho con el lado izquierdo.

Prueba de hipótesis general

Planteamiento

Ho: No existe relación entre el piso de seno maxilar y los ápices de la primera molar del lado derecho y el lado izquierdo de las primeras molares superiores,

Lima – 2017. Ho: $\rho = 0$
H₁: Existe relación entre el piso de seno maxilar y los ápices de la primera molar del lado derecho y el lado izquierdo de las primeras molares superiores, Lima – 2017

Ha: \(\rho \neq 0 \)

Cálculo del estadístico prueba paramétrica Rho de Spearman

<table>
<thead>
<tr>
<th>Rho de Spearman</th>
<th>Correlaciones</th>
<th>RELACIÓN VERTICAL CON EL PISO DEL SENO MAXILAR Y LOS APICES (DERECHO)</th>
<th>RELACIÓN VERTICAL CON EL PISO DEL SENO MAXILAR Y LOS APICES (IZQUIERDO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RELACIÓN VERTICAL CON EL PISO DEL SENO MAXILAR Y LOS APICES (DERECHO)</td>
<td>Coeficiente de correlación</td>
<td>1.000</td>
<td>.427</td>
</tr>
<tr>
<td>Sig. (bilateral)</td>
<td>N</td>
<td>34</td>
<td>34</td>
</tr>
</tbody>
</table>

| RELACIÓN VERTICAL CON EL PISO DEL SENO MAXILAR Y LOS APICES (IZQUIERDO) | Coeficiente de correlación | .427 | 1.000 |
| Sig. (bilateral) | N | 34 | 34 |

Interpretación de los coeficientes de correlación

<table>
<thead>
<tr>
<th>Coeficiente de correlación</th>
<th>Interpretación</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pm 1.00)</td>
<td>Correlación perfecta (+) o (-)</td>
</tr>
<tr>
<td>De (+ 0.90) a (+ 0.99)</td>
<td>Correlación muy alta (+) o (-)</td>
</tr>
<tr>
<td>De (+ 0.70) a (+ 0.89)</td>
<td>Correlación alta (+) o (-)</td>
</tr>
<tr>
<td>De (+ 0.40) a (+ 0.69)</td>
<td>Correlación moderada (+) o (-)</td>
</tr>
<tr>
<td>De (+ 0.20) a (+ 0.39)</td>
<td>Correlación baja (+) o (-)</td>
</tr>
<tr>
<td>De (+ 0.01) a (+ 0.19)</td>
<td>Correlación muy baja (+) o (-)</td>
</tr>
<tr>
<td>0</td>
<td>Correlación nula</td>
</tr>
</tbody>
</table>

En consecuencia el valor de la correlación \(r = 0.427 \), se ubica en el nivel correlación moderada, por lo tanto si existe correlación moderada entre el piso de seno maxilar y los ápices de la primera molar del lado derecho y el lado izquierdo de las primeras molares superiores, Lima – 2017.
Tabla cruzada RELACIÓN VERTICAL CON EL PISO DEL SEÑO MAXILAR Y LOS APICES (DERECHO)*RELACIÓN VERTICAL CON EL PISO DEL SEÑO MAXILAR Y LOS APICES (IZQUIERDO)

<table>
<thead>
<tr>
<th></th>
<th>TIPO I</th>
<th>TIPO II</th>
<th>TIPO IV</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIPO I</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>23.5%</td>
<td>8.8%</td>
<td>2.9%</td>
<td>35.3%</td>
</tr>
<tr>
<td>TIPO II</td>
<td>1</td>
<td>17</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2.9%</td>
<td>50.0%</td>
<td>5.9%</td>
<td>58.8%</td>
</tr>
<tr>
<td>TIPO III</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0.0%</td>
<td>2.9%</td>
<td>0.0%</td>
<td>2.9%</td>
</tr>
<tr>
<td>TIPO IV</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0.0%</td>
<td>2.9%</td>
<td>0.0%</td>
<td>2.9%</td>
</tr>
<tr>
<td>Total</td>
<td>9</td>
<td>22</td>
<td>3</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>26.5%</td>
<td>64.7%</td>
<td>8.8%</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Nivel de Significancia (alfa)

\[\alpha = 0.05 \] es decir el 5%

Estadística de prueba

n= 34
Fórmula de la prueba de Rho de Spearman

\[r_s = 1 - \frac{6 \sum d^2}{n^3 - n} \]

\(r_s = 0.427 \)

P-valor = 0.012 = 1.2%

Regla de decisión

Aceptar H\(_0\) si : \(p\)-valor > 0.05

Rechazar H\(_0\) si : \(p\)-valor ≤ 0.05

Lectura del \(p\)-valor \((0.012 \times 100 = 1.2\%)

Con una probabilidad de error del 1.2 % si existe relación entre el piso de seno maxilar y los ápices de la primera molar del lado derecho y el lado izquierdo de las primeras molares superiores, Lima – 2017

Toma de decisiones:

Se acepta la Hipótesis H\(_1\) en la correlación siendo el \(p\)-valor menor que el nivel de significancia (\(\alpha = 0.05 \))

Por lo Tanto, existe relación entre el piso de seno maxilar y los ápices de la primera molar del lado derecho y el lado izquierdo de las primeras molares superiores, Lima – 2017
CONTRASTE DE HIPÓTESIS ESPECÍFICO N° 01

RAIZ MESIOVESTIBULAR

Análisis de datos

1er paso.- Variable distancia ápico sinusal Mesiovestibular (Derecho) según sus medidas es una variable cuantitativa (numérica) continua de razón.

2do paso.- Variable distancia ápico sinusal Mesiovestibular (Izquierdo) según sus medidas es una variable cuantitativa (numérica) continua de razón.

Por lo tanto para realizar el contraste de hipótesis de nivel correlacional, para observar si estas medidas de distancia ápico sinusal están relacionadas o no, siendo estas dos variables cuantitativas, continua de razón, se tendría que utilizar una prueba paramétrica como la R de Pearson.

Pero para eso debe de cumplir con 02 supuestos:

- Distribución normal de sus datos
- Homogeneidad de varianza

Prueba de normalidad para las variables medidas de las distancias ápico-sinusal de la raíz Mesiovestibular del lado derecho e izquierdo.

Esta prueba se realizó mediante la prueba Kolmogorov Smirnov para la distribución normal y el test de Levene para la homogeneidad de varianzas para ello planteamos las hipótesis.
Por lo tanto:

$H_0 =$ La distribución de los datos, de la variable medida (mm) de las distancias ápico-sinusal de la raíz Mesiovestibular del lado derecho e izquierdo no es distinta a la distribución normal

$H_a =$ La distribución de los datos, de la variable medida (mm) de las distancias ápico-sinusal de la raíz Mesiovestibular del lado derecho e izquierdo es distinta a la distribución normal

<table>
<thead>
<tr>
<th>Pruebas de normalidad</th>
<th>Kolmogorov-Smirnova</th>
<th>Shapiro-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISTANCIA APICO SINUSAL MESIOVESTIBULAR (DERECHO)</td>
<td>.253</td>
<td>.070</td>
</tr>
<tr>
<td>DISTANCIA APICO SINUSAL MESIOVESTIBULAR (IZQUIERDO)</td>
<td>.327</td>
<td>.080</td>
</tr>
</tbody>
</table>

| Prueba de igualdad de Levene de varianzas de errora |
|----------------------|-------|-------|-------|
| **DISTANCIA APICO SINUSAL MESIOVESTIBULAR (DERECHO)** | 4.231 | 6 | 27 | .097 |
| **DISTANCIA APICO SINUSAL MESIOVESTIBULAR (IZQUIERDO)** | 1.389 | 6 | 27 | .255 |

Toma de decisión. Conforme a la evaluación de la distribución de datos observamos que el nivel crítico o significativo, es mayor que $p>0.05$ por lo tanto se rechaza la hipótesis alterna y concluimos que la distribución de los datos, de la variable medida (mm) de las distancias ápico-sinusal de la raíz Mesiovestibular del lado derecho e izquierdo, no es distinta a la distribución normal, así también observamos que si cumple con la homogeneidad de varianza.
Por lo tanto se puede utilizar una prueba paramétrica en vista de cumplir con los dos supuestos, por esto se escoge la prueba paramétrica R de Pearson.

Prueba de hipótesis

Prueba de hipótesis para la evaluar si existe relación entre las medidas de distancia ápico sinusal de la raíz Mesiovestibular del lado derecho y la medida de la distancia ápico sinusal de la raíz Mesiovestibular del lado izquierdo.

Prueba de hipótesis específicos n°01

Planteamiento

Ho: No existe relación entre las medidas de la distancia ápico sinusal de la raíz Mesiovestibular del lado derecho y la medida de la distancia ápico sinusal de la raíz Mesiovestibular del lado izquierdo de las primeras molares superiores, Lima – 2017.

Ho: $\rho_s = \rho$

Ha: Existe relación entre las medidas de la distancia ápico sinusal de la raíz Mesiovestibular del lado derecho y la medida de la distancia ápico sinusal de la raíz Mesiovestibular del lado izquierdo de las primeras molares superiores, Lima – 2017.

Ha: $\rho_s \neq \rho$
Cálculo del estadístico prueba paramétrica R de Pearson

<table>
<thead>
<tr>
<th>Correlaciones</th>
<th>DISTANCIA APICO SINUSAL</th>
<th>DISTANCIA APICO SINUSAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(MESIOVESTIBULAR</td>
<td>(MESIOVESTIBULAR</td>
</tr>
<tr>
<td>(DERECHO)</td>
<td></td>
<td>(IZQUIERDO)</td>
</tr>
<tr>
<td>Correlación de Pearson</td>
<td>1</td>
<td>.160</td>
</tr>
<tr>
<td>Sig. (bilateral)</td>
<td>43</td>
<td>.367</td>
</tr>
<tr>
<td>N</td>
<td>34</td>
<td>41</td>
</tr>
</tbody>
</table>

Nivel de Significancia (alfa)

\[\alpha = 0.05 \text{ es decir el } 5\% \]

Estadística de prueba

\[n= 34 \]
Formula de la prueba de R de Pearson

\[r = \frac{\sum XY - \frac{\sum X \sum Y}{N}}{\sqrt{\left(\sum X^2 - \frac{(\sum X)^2}{N} \right) \left(\sum Y^2 - \frac{(\sum Y)^2}{N} \right)}} \]

P-valor = 0.367 = 36.7%

Regla de decisión

- Aceptar H₀ si : \(p-valor > 0.05 \)
- Rechazar H₀ si : \(p-valor \leq 0.05 \)

Lectura del p-valor (0.367 x 100 = 36.7%)

Con una probabilidad de error del 36.7% si existe relación entre las medidas de la distancia ápico sinusal de la raíz Mesiovestibular del lado derecho y la medida de la distancia ápico sinusal de la raíz Mesiovestibular del lado izquierdo de las primeras molares superiores, Lima – 2017.

Toma de decisiones:

Se acepta la Hipótesis H₀ en la correlación siendo el p-valor mayor que el nivel de significancia (\(\alpha = 0.05 \))

Por lo Tanto, no existe relación entre las medidas de la distancia ápico sinusal de la raíz Mesiovestibular del lado derecho y la medida de la distancia ápico sinusal de la raíz Mesiovestibular del lado izquierdo de las primeras molares superiores, Lima – 2017.
CONTRASTE DE HIPÓTESIS RAÍZ DISTOVESTIBULAR

Análisis de datos

1er paso.- Variable distancia ápico sinusal Distovestibular (Derecho) según sus medidas es una variable cuantitativa (numérica) continua de razón.

2do paso.- Variable distancia ápico sinusal Distovestibular (Izquierdo) según sus medidas es una variable cuantitativa (numérica) continua de razón.

Por lo tanto para realizar el contraste de hipótesis de nivel correlacional, para observar si estas medidas de distancia ápico sinusal están relacionadas o no, siendo estas dos variables cuantitativas, continua de razón, se tendría que utilizar una prueba paramétrica como la R de Pearson.

Pero para eso debe de cumplir con 02 supuestos:

- Distribución normal de sus datos
- Homogeneidad de varianza

Prueba de normalidad para las variables medidas de las distancias ápico-sinusual de la raíz Distovestibular del lado derecho e izquierdo.

Esta prueba se realizó mediante la prueba Kolmogorov Smirnov para la distribución normal y el test de Levene para la homogeneidad de varianzas para ello planteamos las hipótesis

Por lo tanto:

H₀= La distribución de los datos, de la variable medida (mm) de las distancias ápico-sinusual de la raíz Distovestibular del lado derecho e izquierdo no es distinta a la distribución normal
Hₐ= La distribución de los datos, de la variable medida (mm) de las distancias ápico-sinusal de la raíz Distovestibular del lado derecho e izquierdo es distinta a la distribución normal.

Pruebas de normalidad

<table>
<thead>
<tr>
<th></th>
<th>Estadístico</th>
<th>gl</th>
<th>Sig.</th>
<th>Estadístico</th>
<th>gl</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISTANCIA APICO SINUSAL DISTOVESTIBULAR (DERECHO)</td>
<td>.149</td>
<td>34</td>
<td>.053</td>
<td>.953</td>
<td>34</td>
<td>.156</td>
</tr>
<tr>
<td>DISTANCIA APICO SINUSAL DISTOVESTIBULAR (IZQUIERDO)</td>
<td>.113</td>
<td>34</td>
<td>.200*</td>
<td>.954</td>
<td>34</td>
<td>.158</td>
</tr>
</tbody>
</table>

Prueba de igualdad de Levene de varianzas de error

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>df1</th>
<th>df2</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISTANCIA APICO SINUSAL DISTOVESTIBULAR (DERECHO)</td>
<td>1.541</td>
<td>6</td>
<td>27</td>
<td>.203</td>
</tr>
<tr>
<td>DISTANCIA APICO SINUSAL DISTOVESTIBULAR (IZQUIERDO)</td>
<td>.748</td>
<td>6</td>
<td>27</td>
<td>.616</td>
</tr>
</tbody>
</table>

Toma de decisión. Conforme a la evaluación de la distribución de datos observamos que el nivel crítico o significativo, es mayor que p>0.05 por lo tanto se rechaza la hipótesis alterna y concluimos que la distribución de los datos, de la variable medida (mm) de las distancias ápico-sinusal de la raíz Distovestibular del lado derecho e izquierdo, no es distinta a la distribución normal, así también observamos que si cumple con la homogeneidad de varianza.

Por lo tanto se puede utilizar una prueba paramétrica en vista de cumplir con los dos supuestos, por esto se escoge la prueba paramétrica R de Pearson.
Prueba de hipótesis

Prueba de hipótesis para la evaluar si existe relación entre las medidas de distancia ápico sinusal de la raíz Distovestibular del lado derecho y la medida de la distancia ápico sinusal de la raíz Distovestibular del lado izquierdo.

Prueba de hipótesis específicos n°01

Planteamiento

Ho: No existe relación entre las medidas de la distancia ápico sinusal de la raíz Distovestibular del lado derecho y la medida de la distancia ápico sinusal de la raíz Distovestibular del lado izquierdo de las primeras molares superiores, Lima – 2017.

Ho: \(\rho_s = 0 \)

Ha: Existe relación entre las medidas de la distancia ápico sinusal de la raíz Distovestibular del lado derecho y la medida de la distancia ápico sinusal de la raíz Distovestibular del lado izquierdo de las primeras molares superiores, Lima – 2017.

Ha: \(\rho_s \neq 0 \)
Cálculo del estadístico prueba paramétrica R de Pearson

<table>
<thead>
<tr>
<th>Correlaciones</th>
<th>DISTANCIA APICO SINUSAL DISTOVESTIBULAR (DERECHO)</th>
<th>DISTANCIA APICO SINUSAL DISTOVESTIBULAR (IZQUIERDO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISTANCIA APICO SINUSAL DISTOVESTIBULAR (DERECHO)</td>
<td>Correlación de Pearson Sig. (bilateral) N</td>
<td>1</td>
</tr>
<tr>
<td>DISTANCIA APICO SINUSAL DISTOVESTIBULAR (IZQUIERDO)</td>
<td>Correlación de Pearson Sig. (bilateral) N</td>
<td>.734**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coeficiente de correlación</th>
<th>Interpretación</th>
</tr>
</thead>
<tbody>
<tr>
<td>± 1,00</td>
<td>Correlación perfecta (+) o (-)</td>
</tr>
<tr>
<td>De ± 0,90 a ± 0,99</td>
<td>Correlación muy alta (+) o (-)</td>
</tr>
<tr>
<td>De ± 0,70 a ± 0,89</td>
<td>Correlación alta (+) o (-)</td>
</tr>
<tr>
<td>De ± 0,40 a ± 0,69</td>
<td>Correlación moderada (+) o (-)</td>
</tr>
<tr>
<td>De ± 0,20 a ± 0,39</td>
<td>Correlación baja (+) o (-)</td>
</tr>
<tr>
<td>De ± 0,01 a ± 0,19</td>
<td>Correlación muy baja (+) o (-)</td>
</tr>
<tr>
<td>0</td>
<td>Correlación nula</td>
</tr>
</tbody>
</table>

Interpretación de los coeficientes de correlación

En consecuencia el valor de la correlación \(r = 0.734 \), se ubica en el nivel correlación alta, por lo tanto si existe correlación alta entre las medidas de la distancia ápico sinusal de la raíz Distovestibular del lado derecho y la medida de la distancia ápico sinusal de la raíz Distovestibular del lado izquierdo de las primeras molares superiores, Lima – 2017.
Nivel de Significancia (alfa)

\[\alpha = 0.05 \] es decir el 5%

Estadística de prueba

n = 34

Formula de la prueba de R de Pearson

\[
 r = \frac{\sum XY - \frac{\sum X \sum Y}{N}}{\sqrt{\left(\sum X^2 - \frac{(\sum X)^2}{N}\right) \left(\sum Y^2 - \frac{(\sum Y)^2}{N}\right)}}
\]

P-valor = 0.000 = 0.000 %

Regla de decisión

Aceptar H_0 si : p-valor > 0.05
Rechazar H₀ si : \(p \)-valor \leq 0.05

Lectura del p-valor \((0.000 \times 100 = 0.00 \%)\)

Con una probabilidad de error del 0.00 % si existe relación entre las medidas de la distancia ápico sinusal de la raíz Distovestibular del lado derecho y la medida de la distancia ápico sinusal de la raíz Distovestibular del lado izquierdo de las primeras molares superiores, Lima – 2017.

Toma de decisiones:
Se acepta la Hipótesis H₁ en la correlación siendo el p-valor menor que el nivel de significancia (α=0.05)

Por lo Tanto, si existe relación entre las medidas de la distancia ápico sinusal de la raíz Distovestibular del lado derecho y la medida de la distancia ápico sinusal de la raíz Distovestibular del lado izquierdo de las primeras molares superiores, Lima – 2017.

CONTRASTE DE HIPÓTESIS RAIZ PALATINA

Análisis de datos

1er paso.- Variable distancia ápico sinusal Palatina (Derecho) según sus medidas es una variable cuantitativa (numérica) continua de razón.

2do paso.- Variable distancia ápico sinusal Palatina (Izquierdo) según sus medidas es una variable cuantitativa (numérica) continua de razón.

Por lo tanto para realizar el contraste de hipótesis de nivel correlacional, para observar si estas medidas de distancia ápico sinusal están relacionadas o no, siendo estas dos variables cuantitativas, continua de razón, se tendría que utilizar una prueba paramétrica como la R de Pearson.
Pero para eso debe de cumplir con 02 supuestos:

- Distribución normal de sus datos
- Homogeneidad de varianza

Prueba de normalidad para las variables medidas de las distancias ápico-sinusal de la raíz Palatina del lado derecho e izquierdo.

Esta prueba se realizó mediante la prueba Kolmogorov Smirnov para la distribución normal y el test de Levene para la homogeneidad de varianzas para ello planteamos las hipótesis

Por lo tanto:

H₀= La distribución de los datos, de la variable medida (mm) de las distancias ápico-sinusal de la raíz Palatina del lado derecho e izquierdo, no es distinta a la distribución normal

Hₐ= La distribución de los datos, de la variable medida (mm) de las distancias ápico-sinusal de la raíz Palatina del lado derecho e izquierdo, es distinta a la distribución normal

<table>
<thead>
<tr>
<th>Pruebas de normalidad</th>
<th>Kolmogorov-Smirnov</th>
<th>Shapiro-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>gl</td>
<td>Sig.</td>
</tr>
<tr>
<td>DISTANCIA APICO SINUSAL PALATINA (DERECHO)</td>
<td>.174</td>
<td>34</td>
</tr>
<tr>
<td>DISTANCIA APICO SINUSAL PALATINA (IZQUIERDO)</td>
<td>.198</td>
<td>34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prueba de igualdad de Levene de varianzas de error</th>
<th>F</th>
<th>df1</th>
<th>df2</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISTANCIA APICO SINUSAL PALATINA (DERECHO)</td>
<td>1.287</td>
<td>6</td>
<td>27</td>
<td>.296</td>
</tr>
<tr>
<td>DISTANCIA APICO SINUSAL PALATINA (IZQUIERDO)</td>
<td>.817</td>
<td>6</td>
<td>27</td>
<td>.566</td>
</tr>
</tbody>
</table>
Toma de decisión. Conforme a la evaluación de la distribución de datos observamos que el nivel crítico o significativo, es mayor que \(p > 0.05 \) por lo tanto se rechaza la hipótesis alterna y concluimos que la distribución de los datos, de la variable medida (mm) de las distancias ápico-sinusal de la raíz Palatina del lado derecho e izquierdo, no es distinta a la distribución normal, así también observamos que si cumple con la homogeneidad de varianza

Por lo tanto se puede utilizar una prueba paramétrica en vista de cumplir con los dos supuestos, por esto se escoge la prueba paramétrica R de Pearson.

Prueba de hipótesis

Prueba de hipótesis para la evaluar si existe relación entre las medidas de distancia ápico sinusal de la raíz Palatina del lado derecho y la medida de la distancia ápico sinusal de la raíz Palatina del lado izquierdo.

Prueba de hipótesis específicos n°01

Planteamiento

Ho: No existe relación entre la medida de la distancia ápico sinusal de la raíz Palatina del lado derecho y la medida de la distancia ápico sinusal de la raíz Palatina del lado izquierdo de las primeras molares superiores, Lima – 2017.

Ho: \(\rho_s = 0 \)

Ha: $\rho, \neq 0$

Cálculo del estadístico prueba paramétrica R de Pearson

<table>
<thead>
<tr>
<th>Correlaciones</th>
<th>DISTANCIA APICO SINUSAL PALATINA (DERECHO)</th>
<th>DISTANCIA APICO SINUSAL PALATINA (IZQUIERDO)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISTANCIA APICO SINUSAL PALATINA (DERECHO)</td>
<td>Correlación de Pearson N 43</td>
<td>1</td>
</tr>
<tr>
<td>Sig. (bilateral)</td>
<td>.636</td>
<td>.000</td>
</tr>
<tr>
<td>DISTANCIA APICO SINUSAL PALATINA (IZQUIERDO)</td>
<td>Correlación de Pearson N 34</td>
<td>1</td>
</tr>
<tr>
<td>Sig. (bilateral)</td>
<td>.636**</td>
<td>.000</td>
</tr>
</tbody>
</table>

Interpretación de los coeficientes de correlación

<table>
<thead>
<tr>
<th>Coeficiente de correlación</th>
<th>Interpretación</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pm 1,00$</td>
<td>Correlación perfecta (+) o (-)</td>
</tr>
<tr>
<td>± 0.90 $a \pm 0.99$</td>
<td>Correlación muy alta (+) o (-)</td>
</tr>
<tr>
<td>± 0.70 $a \pm 0.89$</td>
<td>Correlación alta (+) o (-)</td>
</tr>
<tr>
<td>± 0.40 $a \pm 0.69$</td>
<td>Correlación moderada (+) o (-)</td>
</tr>
<tr>
<td>± 0.20 $a \pm 0.39$</td>
<td>Correlación baja (+) o (-)</td>
</tr>
<tr>
<td>± 0.01 $a \pm 0.19$</td>
<td>Correlación muy baja (+) o (-)</td>
</tr>
<tr>
<td>0</td>
<td>Correlación nula</td>
</tr>
</tbody>
</table>

En consecuencia el valor de la correlación $r = 0.636$, se ubica en el nivel correlación moderada, por lo tanto si existe correlación moderada entre las medidas de la distancia ápico sinusal de la raíz Palatina del lado derecho y la medida de la distancia ápico sinusal de la raíz Palatina del lado izquierdo de las primeras molares superiores, Lima – 2017.
Nivel de Significancia (alfa)

$\alpha = 0.05$ es decir el 5%

Estadística de prueba

$n = 34$

Formula de la prueba de R de Pearson

$$r = \frac{\sum XY - \frac{\sum X \sum Y}{N}}{\sqrt{\left(\sum X^2 - \frac{(\sum X)^2}{N}\right) \left(\sum Y^2 - \frac{(\sum Y)^2}{N}\right)}}$$

P-valor $= 0.000 = 0.000\%$
Regla de decisión

Aceptar H_0 si p-valor > 0.05

Rechazar H_0 si p-valor ≤ 0.05

Lectura del p-valor ($0.000 \times 100 = 0.00 \%$)

Con una probabilidad de error del 0.00 % si existe relación entre las medidas de la distancia ápico sinusal de la raíz Palatina del lado derecho y la medida de la distancia ápico sinusal de la raíz Palatina del lado izquierdo de las primeras molares superiores, Lima – 2017.

Toma de decisiones:

Se acepta la Hipótesis H_1 en la correlación siendo el p-valor menor que el nivel de significancia ($\alpha=0.05$)

Por lo Tanto, si existe relación entre las medidas de la distancia ápico sinusal de la raíz Palatina del lado derecho y la medida de la distancia ápico sinusal de la raíz Palatina del lado izquierdo de las primeras molares superiores, Lima – 2017.

CONTRASTE DE HIPÓTESIS ESPECÍFICO N° 02

Análisis de datos

1er paso.- Variable distancias ápico sinusales de las raíces de la primera molar según sus medidas es una variable cuantitativa (numérica) continua de razón.

2do paso.- Variable sexo según sus categorías es una variable cualitativa dicotómica nominal de agrupación
Por lo tanto para realizar el contraste de hipótesis con el objetivo de comparación, para observar si existe diferencias según el sexo para estas medidas de distancia ápico sinusal de las raíces de la primera molar, siendo esta variable numérica considerada como variables cuantitativas, continua de razón, se tendría que utilizar una prueba paramétrica como la T de Student para muestras independientes.

Pero para eso debe de cumplir con 02 supuestos:

- Distribución normal de sus datos
- Homogeneidad de varianza

Prueba de normalidad para la variable medidas de las distancias ápico- sinusal de las raíces de la primera molar superior

Esta prueba se realizó mediante la prueba Kolmogorov Smirnov para la distribución normal y el test de Levene para la homogeneidad de varianzas para ello planteamos las hipótesis

Por lo tanto:

H_0: La distribución de los datos, de la variable medida (mm) de las distancias ápico- sinusal de las raíces de la primera molar, no es distinta a la distribución normal

H_a: La distribución de los datos, de la variable medida (mm) de las distancias ápico- sinusal de las raíces de la primera molar, es distinta a la distribución normal.
Pruebas de normalidad

<table>
<thead>
<tr>
<th></th>
<th>Kolmogorov-Smirnov</th>
<th>Shapiro-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estadístico</td>
<td>gl</td>
<td>Sig.</td>
</tr>
<tr>
<td>DISTANCIA APICO SINUSAL</td>
<td>.253</td>
<td>.070</td>
</tr>
<tr>
<td>MESIOVESTIBULAR (DERECHO)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISTANCIA APICO SINUSAL</td>
<td>.149</td>
<td>.053</td>
</tr>
<tr>
<td>DISTOVESTIBULAR (DERECHO)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISTANCIA APICO SINUSAL</td>
<td>.174</td>
<td>.107</td>
</tr>
<tr>
<td>PALATINA (DERECHO)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISTANCIA APICO SINUSAL</td>
<td>.327</td>
<td>.080</td>
</tr>
<tr>
<td>MESIOVESTIBULAR (IZQUIERDO)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISTANCIA APICO SINUSAL</td>
<td>.113</td>
<td>.200</td>
</tr>
<tr>
<td>DISTOVESTIBULAR (IZQUIERDO)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISTANCIA APICO SINUSAL</td>
<td>.198</td>
<td>.157</td>
</tr>
<tr>
<td>PALATINA (IZQUIERDO)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prueba de igualdad de Levene de varianzas de error

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>df1</th>
<th>df2</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISTANCIA APICO SINUSAL</td>
<td>4.231</td>
<td>6</td>
<td>27</td>
<td>.097</td>
</tr>
<tr>
<td>MESIOVESTIBULAR (DERECHO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISTANCIA APICO SINUSAL</td>
<td>1.541</td>
<td>6</td>
<td>27</td>
<td>.203</td>
</tr>
<tr>
<td>DISTOVESTIBULAR (DERECHO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISTANCIA APICO SINUSAL</td>
<td>1.287</td>
<td>6</td>
<td>27</td>
<td>.296</td>
</tr>
<tr>
<td>PALATINA (DERECHO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISTANCIA APICO SINUSAL</td>
<td>1.389</td>
<td>6</td>
<td>27</td>
<td>.255</td>
</tr>
<tr>
<td>MESIOVESTIBULAR (IZQUIERDO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISTANCIA APICO SINUSAL</td>
<td>.748</td>
<td>6</td>
<td>27</td>
<td>.616</td>
</tr>
<tr>
<td>DISTOVESTIBULAR (IZQUIERDO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISTANCIA APICO SINUSAL</td>
<td>.817</td>
<td>6</td>
<td>27</td>
<td>.566</td>
</tr>
<tr>
<td>PALATINA (IZQUIERDO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Toma de decisión. Conforme a la evaluación de la distribución de datos observamos que el nivel crítico o significativo, es mayor que $p>0.05$ por lo tanto se rechaza la hipótesis alterna y concluimos que la distribución de los datos, de...
la variable medidas (mm) de las distancias ápico-sinusales de la raíces de la primera molar superior, no es distinta a la distribución normal, así también observamos que si cumple con la homogeneidad de varianza.

Por lo tanto se puede utilizar una prueba paramétrica en vista de cumplir con los dos supuestos, por esto se escoge la prueba paramétrica T de Student para muestras independientes.

Prueba de hipótesis

Prueba de hipótesis para la evaluar si existe diferencia según el sexo, entre las medidas de distancia ápico sinusales de las raíces de la primera molar superior.

Prueba de hipótesis específicos n°02

Planteamiento

Ho: No existe diferencia significativa según el sexo, entre las medidas de las distancias ápico sinusales de todas las raíces de la primera molar superior, Lima – 2017.

Ha: Existe diferencia significativa según el sexo, entre las medidas de las distancias ápico sinusales de todas las raíces de la primera molar superior, Lima – 2017.

Cálculo del estadístico prueba paramétrica: T de Student para muestras independientes.
<table>
<thead>
<tr>
<th>Distancia Apico Sinusal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesiovestibular (Derecho)</td>
</tr>
<tr>
<td>-2.169</td>
</tr>
<tr>
<td>Distovestibular (Derecho)</td>
</tr>
<tr>
<td>.495</td>
</tr>
<tr>
<td>Palatina (Derecho)</td>
</tr>
<tr>
<td>.475</td>
</tr>
<tr>
<td>Mesiovestibular (Izquierdo)</td>
</tr>
<tr>
<td>.021</td>
</tr>
<tr>
<td>Distovestibular (Izquierdo)</td>
</tr>
<tr>
<td>-.617</td>
</tr>
<tr>
<td>Palatina (Izquierdo)</td>
</tr>
<tr>
<td>-.905</td>
</tr>
</tbody>
</table>

Estadísticas de grupo

<table>
<thead>
<tr>
<th>SEXO</th>
<th>N</th>
<th>Media</th>
<th>Desviación estándar</th>
<th>error estándar</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISTANCIA APICO SINUSAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MESIOVESTIBULAR (DERECHO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MASCULINO</td>
<td>24</td>
<td>2.2638</td>
<td>.48351</td>
<td>.09870</td>
</tr>
<tr>
<td>FEMENINO</td>
<td>19</td>
<td>2.7126</td>
<td>.85787</td>
<td>.19681</td>
</tr>
<tr>
<td>DISTOVESTIBULAR (DERECHO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MASCULINO</td>
<td>24</td>
<td>1.7071</td>
<td>.62044</td>
<td>.12665</td>
</tr>
<tr>
<td>FEMENINO</td>
<td>19</td>
<td>1.5874</td>
<td>.95863</td>
<td>.21992</td>
</tr>
<tr>
<td>PALATINA (DERECHO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MASCULINO</td>
<td>24</td>
<td>1.2133</td>
<td>.32591</td>
<td>.06653</td>
</tr>
<tr>
<td>FEMENINO</td>
<td>19</td>
<td>1.1626</td>
<td>.37348</td>
<td>.08568</td>
</tr>
<tr>
<td>DISTANCIA APICO SINUSAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MESIOVESTIBULAR (IZQUIERDO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MASCULINO</td>
<td>23</td>
<td>2.0487</td>
<td>.54209</td>
<td>.11303</td>
</tr>
<tr>
<td>FEMENINO</td>
<td>18</td>
<td>2.0450</td>
<td>.56699</td>
<td>.13364</td>
</tr>
<tr>
<td>DISTOVESTIBULAR (IZQUIERDO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MASCULINO</td>
<td>23</td>
<td>1.0830</td>
<td>.47933</td>
<td>.09995</td>
</tr>
<tr>
<td>FEMENINO</td>
<td>18</td>
<td>1.1844</td>
<td>.57263</td>
<td>.13497</td>
</tr>
<tr>
<td>PALATINA (IZQUIERDO)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MASCULINO</td>
<td>23</td>
<td>.7174</td>
<td>.33608</td>
<td>.07008</td>
</tr>
<tr>
<td>FEMENINO</td>
<td>18</td>
<td>.8150</td>
<td>.35130</td>
<td>.08280</td>
</tr>
</tbody>
</table>
Nivel de Significancia (alfa)

$\alpha = 0.05$ es decir el 5%
Estadística de prueba

$n=51$

Formula de la prueba de T de Student para muestras independientes

$$t_0 = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{s^2 \times \left(\frac{1}{n_1} + \frac{1}{n_2} \right)}}$$

P-valor = 0.036 = 3.6 %

Regla de decisión

Aceptar H_0 si : p-valor > 0.05

Rechazar H_0 si : p-valor ≤ 0.05

Lectura del p-valor (0.036 x 100 = 3.6 %)

Con una probabilidad de error del 3.6 % Si existe diferencia significativa según el sexo, entre las medidas de las distancias ápico sinusal de la raíz Mesiovestibular de la primera molar superior derecho, Lima – 2017.

Toma de decisiones:

Se acepta la Hipótesis H_1 en la correlación siendo el p-valor menor que el nivel de significancia ($\alpha=0.05$)

Por lo Tanto, si existe diferencia significativa según el sexo, entre la medida de la distancia ápico sinusal de la raíz Mesiovestibular de la primera molar superior derecho, mientras que en las demás raíces no existe una diferencia estadísticamente significativa según el sexo, Lima – 2017.
CONTRASTE DE HIPÓTESIS ESPECÍFICO N° 03

Análisis de datos

1er paso.- Variable distancias ápico sinusales de las raíces de la primera molar según sus medidas es una variable cuantitativa (numérica) continua de razón.

2do paso.- Variable grupo etario según sus categorías es una variable cualitativa politómica nominal de agrupación

Por lo tanto para realizar el contraste de hipótesis con el objetivo de comparación, para observar si existe diferencias según el sexo para estas medidas de distancia ápico sinusal de las raíces de la primera molar, siendo esta variable numérica considerada como variables cuantitativas, continua de razón, se tendría que utilizar una prueba paramétrica como la Anova con un factor intersujetos.

Pero para eso debe de cumplir con 02 supuestos:

- Distribución normal de sus datos
- Homogeneidad de varianza

Prueba de normalidad para la variable medidas de las distancias ápico-sinusal de las raíces de la primera molar superior

Esta prueba se realizó mediante la prueba Kolmogorov Smirnov para la distribución normal y el test de Levene para la homogeneidad de varianzas para ello planteamos las hipótesis.
Por lo tanto:

$H_0=$ La distribución de los datos, de la variable medida (mm) de las distancias ápico- sinusal de las raíces de la primera molar, no es distinta a la distribución normal

$H_a=$ La distribución de los datos, de la variable medida (mm) de las distancias ápico- sinusal de las raíces de la primera molar, es distinta a la distribución normal.

<table>
<thead>
<tr>
<th>Pruebas de normalidad</th>
<th>Kolmogorov-Smirnov</th>
<th>Shapiro-Wilk</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estadístico</td>
<td>gl</td>
</tr>
<tr>
<td>DISTANCIA APICO SINUSAL MESIOVESTIBULAR (DERECHO)</td>
<td>.253</td>
<td>34</td>
</tr>
<tr>
<td>DISTANCIA APICO SINUSAL DISTOVESTIBULAR (DERECHO)</td>
<td>.149</td>
<td>34</td>
</tr>
<tr>
<td>DISTANCIA APICO SINUSAL PALATINA (DERECHO)</td>
<td>.174</td>
<td>34</td>
</tr>
<tr>
<td>DISTANCIA APICO SINUSAL MESIOVESTIBULAR (IZQUIERDO)</td>
<td>.327</td>
<td>34</td>
</tr>
<tr>
<td>DISTANCIA APICO SINUSAL DISTOVESTIBULAR (IZQUIERDO)</td>
<td>.113</td>
<td>34</td>
</tr>
<tr>
<td>DISTANCIA APICO SINUSAL PALATINA (IZQUIERDO)</td>
<td>.198</td>
<td>34</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prueba de igualdad de Levene de varianzas de error</th>
<th>F</th>
<th>df1</th>
<th>df2</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISTANCIA APICO SINUSAL MESIOVESTIBULAR (DERECHO)</td>
<td>4.231</td>
<td>6</td>
<td>27</td>
<td>.097</td>
</tr>
<tr>
<td>DISTANCIA APICO SINUSAL DISTOVESTIBULAR (DERECHO)</td>
<td>1.541</td>
<td>6</td>
<td>27</td>
<td>.203</td>
</tr>
<tr>
<td>DISTANCIA APICO SINUSAL PALATINA (DERECHO)</td>
<td>1.287</td>
<td>6</td>
<td>27</td>
<td>.296</td>
</tr>
<tr>
<td>DISTANCIA APICO SINUSAL MESIOVESTIBULAR (IZQUIERDO)</td>
<td>1.389</td>
<td>6</td>
<td>27</td>
<td>.255</td>
</tr>
<tr>
<td>DISTANCIA APICO SINUSAL DISTOVESTIBULAR (IZQUIERDO)</td>
<td>.748</td>
<td>6</td>
<td>27</td>
<td>.616</td>
</tr>
<tr>
<td>DISTANCIA APICO SINUSAL PALATINA (IZQUIERDO)</td>
<td>.817</td>
<td>6</td>
<td>27</td>
<td>.566</td>
</tr>
</tbody>
</table>
Toma de decisión. Conforme a la evaluación de la distribución de datos observamos que el nivel crítico o significativo, es mayor que p>0.05 por lo tanto se rechaza la hipótesis alterna y concluimos que la distribución de los datos, de la variable medidas (mm) de las distancias ápico-sinusales de la raíces de la primera molar superior, no es distinta a la distribución normal, así también observamos que si cumple con la homogeneidad de varianza

Por lo tanto se puede utilizar una prueba paramétrica en vista de cumplir con los dos supuestos, por esto se escoge la prueba paramétrica T de Student para muestras independientes.

Prueba de hipótesis

Prueba de hipótesis para la evaluar si existe diferencia según el grupo etario, entre las medidas de distancia ápico sinusales de las raíces de la primera molar superior

Prueba de hipótesis específicos n°03

Planteamiento

Ho: No existe diferencia significativa según el grupo etario, entre las medidas de las distancias ápico sinusales de todas las raíces de la primera molar superior, Lima – 2017.
Cálculo del estadístico prueba paramétrica: Anova con un factor intersujetos

<table>
<thead>
<tr>
<th>GRUPO ETARIO</th>
<th>SUMA DE CUADRADOS</th>
<th>GL</th>
<th>MEDIA CUADRÁTICA</th>
<th>F</th>
<th>SIG.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISTANCIA APOCO SINUSAL MOSIOVESTIBULAR (DERECHO)</td>
<td>Entre grupos</td>
<td>6.595</td>
<td>3</td>
<td>2.198</td>
<td>6.052</td>
</tr>
<tr>
<td>DISTANCIA APOCO SINUSAL DISTOVESTIBULAR (DERECHO)</td>
<td>Entre grupos</td>
<td>.962</td>
<td>3</td>
<td>.321</td>
<td>.508</td>
</tr>
<tr>
<td>DISTANCIA APOCO SINUSAL PALATINA (DERECHO)</td>
<td>Entre grupos</td>
<td>.744</td>
<td>3</td>
<td>.248</td>
<td>2.284</td>
</tr>
<tr>
<td>DISTANCIA APOCO SINUSAL MOSIOVESTIBULAR (IZQUIERDO)</td>
<td>Entre grupos</td>
<td>.952</td>
<td>3</td>
<td>.317</td>
<td>1.069</td>
</tr>
<tr>
<td>DISTANCIA APOCO SINUSAL DISTOVESTIBULAR (IZQUIERDO)</td>
<td>Entre grupos</td>
<td>.443</td>
<td>3</td>
<td>.148</td>
<td>.530</td>
</tr>
<tr>
<td>DISTANCIA APOCO SINUSAL PALATINA (IZQUIERDO)</td>
<td>Entre grupos</td>
<td>.363</td>
<td>3</td>
<td>.121</td>
<td>1.036</td>
</tr>
</tbody>
</table>

Descriptivos

<table>
<thead>
<tr>
<th>N</th>
<th>Media</th>
<th>Desviación estándar</th>
<th>Error estándar</th>
<th>95% del intervalo de confianza para la media</th>
<th>Mínimo</th>
<th>Máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISTANCIA APOCO SINUSAL MOSIOVESTIBULAR (DERECHO)</td>
<td>Joven (18-29 años)</td>
<td>16</td>
<td>2.9056</td>
<td>.80931</td>
<td>.20233</td>
<td>2.4744</td>
</tr>
<tr>
<td>Adulto I (30-39 años)</td>
<td>15</td>
<td>2.3538</td>
<td>.47400</td>
<td>.11870</td>
<td>2.1027</td>
<td>2.6068</td>
</tr>
<tr>
<td>Adulto II (40 a 49 años)</td>
<td>10</td>
<td>1.8980</td>
<td>.30565</td>
<td>.10327</td>
<td>1.6644</td>
<td>2.1316</td>
</tr>
<tr>
<td>Adulto Mayor (50 años a más)</td>
<td>1</td>
<td>2.7400</td>
<td>.27400</td>
<td>.000</td>
<td>2.7400</td>
<td>2.7400</td>
</tr>
<tr>
<td>Total</td>
<td>43</td>
<td>2.4621</td>
<td>.75037</td>
<td>.10722</td>
<td>2.2457</td>
<td>2.6785</td>
</tr>
<tr>
<td>DISTANCIA APOCO SINUSAL MOSIOVESTIBULAR (DERECHO)</td>
<td>Joven (18-29 años)</td>
<td>16</td>
<td>1.5063</td>
<td>.70439</td>
<td>.17610</td>
<td>1.1309</td>
</tr>
<tr>
<td>Adulto I (30-39 años)</td>
<td>15</td>
<td>1.7288</td>
<td>.94269</td>
<td>.23567</td>
<td>1.2264</td>
<td>2.2311</td>
</tr>
<tr>
<td>Adulto II (40 a 49 años)</td>
<td>10</td>
<td>1.8980</td>
<td>.32656</td>
<td>.10327</td>
<td>1.6644</td>
<td>2.1316</td>
</tr>
<tr>
<td>Adulto Mayor (50 años a más)</td>
<td>1</td>
<td>1.1200</td>
<td>.11200</td>
<td>.000</td>
<td>1.1200</td>
<td>1.1200</td>
</tr>
<tr>
<td>Total</td>
<td>43</td>
<td>1.6542</td>
<td>.77992</td>
<td>.11894</td>
<td>1.4142</td>
<td>1.8942</td>
</tr>
<tr>
<td>DISTANCIA APOCO SINUSAL MOSIOVESTIBULAR (DERECHO)</td>
<td>Joven (18-29 años)</td>
<td>16</td>
<td>1.1100</td>
<td>.38689</td>
<td>.09217</td>
<td>.9135</td>
</tr>
<tr>
<td>Adulto I (30-39 años)</td>
<td>15</td>
<td>1.3138</td>
<td>.34902</td>
<td>.08527</td>
<td>1.1231</td>
<td>1.5954</td>
</tr>
<tr>
<td>Adulto II (40 a 49 años)</td>
<td>10</td>
<td>1.8710</td>
<td>.32656</td>
<td>.10327</td>
<td>1.6644</td>
<td>2.1316</td>
</tr>
<tr>
<td>Adulto Mayor (50 años a más)</td>
<td>1</td>
<td>1.1600</td>
<td>.11600</td>
<td>.000</td>
<td>1.1600</td>
<td>1.1600</td>
</tr>
<tr>
<td>Total</td>
<td>43</td>
<td>1.5190</td>
<td>.34438</td>
<td>.05252</td>
<td>1.0849</td>
<td>1.8942</td>
</tr>
</tbody>
</table>

Ha: Existe diferencia significativa según el grupo etario, entre las medidas de las distancias ápico sinusales de todas las raíces de la primera molar superior, Lima – 2017.
Nivel de Significancia (alfa)

$\alpha = 0.05$ es decir el 5%

Estadística de prueba

$n= 51$

Formula de la prueba Anova con un factor intersujetos

$$F = \frac{MC_{\text{min}}}{MC_{\text{den}}} = \frac{\frac{SC_{\text{min}}}{g_{\text{min}}}}{\frac{SC_{\text{den}}}{g_{\text{den}}}}$$

P-valor $=0.002 = 0.2\%$

P-valor $=0.037 = 3.7\%$

Regla de decisión

Aceptar H_0 si : p-valor > 0.05

Rechazar H_0 si : p-valor ≤ 0.05

Lectura del p-valor ($0.002 \times 100 = 0.2\%$)

Lectura del p-valor ($0.037 \times 100 = 3.7\%$)

Con una probabilidad de error del 0.2 % y 3.7 Si existe diferencia estadísticamente significativa según el grupo etario, entre las medidas de las distancias ápico sinusales de las raíces Mesiovestibulares de la primera molar superior lado derecho e izquierdo en Lima – 2017.
Toma de decisiones:

Se acepta la Hipótesis H_1 en la correlación siendo el p-valor menor que el nivel de significancia ($\alpha=0.05$)

Por lo Tanto, si existe diferencia estadísticamente significativa según el grupo etario, entre las medidas de las distancias ápico sinusal de las raíces Mesiovestibulares de la primera molar superior lado derecho e izquierdo mientras que en las demás raíces no existe una diferencia estadísticamente significativa según el grupo etario en Lima – 2017.
CAPÍTULO IV

ANÁLISIS Y DISCUSIÓN DE RESULTADOS

El objetivo del presente estudio fue determinar la media proporcional de la relación entre el piso del seno y los ápices de las primeras molares superiores, Lima- 2017, donde los resultados son corroborados por otras investigaciones. Ahora bien, los resultados de la presente investigación aseguran que existe relación entre el piso de seno maxilar y los ápices de la primera molar del lado derecho con el lado izquierdo de las primeras molares superiores, Lima – 2017, asimismo también asevera que no existe relación entre las medidas de la distancia ápico sinusal de la raíz Mesiovestibular del lado derecho con la medida de la distancia ápico sinusal de la raíz Mesiovestibular del lado izquierdo de las primeras molares superiores, Lima – 2017, de igual forma certifica que existe relación entre las medidas de la distancia ápico sinusal de la raíz Distovestibular del lado derecho con la medida de la distancia ápico sinusal de la raíz Distovestibular del lado izquierdo de las primeras molares superiores, Lima – 2017, del mismo modo confirma que existe relación entre las medidas de la distancia ápico sinusal de la raíz Palatina del lado derecho y la medida de la distancia ápico sinusal de la raíz Palatina del lado izquierdo de las primeras molares superiores, Lima – 2017, estos datos fueron confirmados por Eberhardt J. y col. quienes como objetivo general tuvieron que evaluar la distancia media entre los ápices de los dientes posteriores superiores.
(premolar y molares) y el piso del seno maxilar, demostrando así que los ápices de la raíz mesiovestibular del segundo molar superior eran más cercanos al piso del seno pero más alejados de la superficie ósea bucal; Jung Y. y Bong Ch. investigaron la relación entre las raíces de los molares superiores y el seno maxilar utilizando tomografías computarizadas de haz cónico (CBCT). Entre sus resultados hallaron que la raíz que sobresale lateralmente a lo largo de la cavidad sinusal (Tipo 2) era más común en las raíces palatinas de los primeros molares superiores, además las raíces mesiovestibulares de la segunda molar estaban más cerca de los senos maxilares y las raíces mesiovestibulares del primer molar estaban más cerca de la placa cortical; Pagin O. realizó un estudio donde tuvo como objetivo evaluar la estrecha proximidad que se establece entre el piso del seno maxilar y los ápices de los dientes posteriores mediante el uso de CBCT, siendo la raíz mesiovestibular de la segunda molar quien se encuentra con mayor frecuencia en estrecha proximidad con el piso del seno.

Además, los alcances del presente estudio afirma que existe diferencia significativa según el sexo, entre la medida de la distancia ápico sinusual de la raíz Mesiovestibular de la primera molar superior derecho, mientras que en las demás raíces no existe una diferencia estadísticamente significativa según el sexo, Lima – 2017; así mismo los productos de esta investigación también garantiza que existe diferencia estadísticamente significativa según el grupo etario, entre las medidas de las distancias ápico sinusal de las raíces Mesiovestibulares de la primera molar superior lado derecho e izquierdo mientras que en las demás raíces no existe una diferencia estadísticamente significativa según el grupo etario en Lima – 2017, conforme a lo que
menciona Hernández H. realiza un estudio cuyo objetivo fue determinar la distancia entre el piso del seno maxilar y los ápices radiculares de la segunda molar superior según sexo y grupo etario. Con respecto a los resultados se obtuvo como valor promedio la distancia de 3.26 mm en cráneos masculinos del grupo etario de 31-40 años y 2.44 mm para el sexo femenino, concluyendo que según el grupo etario la distancia entre el piso del seno maxilar y los ápices del segundo molar superior, muestran una significativa tendencia decreciente conforme al aumento de edad; Shokri A. y Lari S. realizaron un estudio para evaluar la relación vertical y horizontal entre el piso del seno maxilar y las raíces de los dientes posteriores superiores utilizando la tomografía computarizada de haz cónico, los resultados obtenidos demostraron que el tipo más común observado en los primeros y segundos molares era de tipo 3 (protrusión apical es visto por encima del suelo del seno maxilar). La relación entre los diferentes tipos y géneros fue estadísticamente significativa, siendo el género masculino quien tiene mayor frecuencia de protrusión de la raíz dentro del seno maxilar; y para finalizar Evren O. y Enes G. realizaron este estudio con el objetivo de evaluar la relación entre cada raíz de los premolares y molares maxilares y el piso del seno maxilar según el sexo y la posición de los senos paranales, resultando así que no se halló diferencias significativas entre los lados izquierdo y derecho, pero sí se encontraron en cuanto al sexo y a la relación en el intervalo de la década de edad. (p <0,05).
CAPÍTULO V
CONCLUSIONES

Por lo tanto se concluye que si existe relación entre el piso de seno maxilar y los ápices de la primera molar del lado derecho y el lado izquierdo de las primeras molares superiores, Lima – 2017. (rs=0.427), (p=0.012)

No existe relación entre las medidas de la distancia ápico sinusal de la raíz Mesiovestibular del lado derecho y la medida de la distancia ápico sinusal de la raíz Mesiovestibular del lado izquierdo de las primeras molares superiores, Lima – 2017. (r=0.160), (p=0.367), si existe relación entre las medidas de la distancia ápico sinusal de la raíz Distovestibular del lado derecho y la medida de la distancia ápico sinusal de la raíz Distovestibular del lado izquierdo de las primeras molares superiores, Lima – 2017. (r=0.734), (p=0.000). si existe relación entre las medidas de la distancia ápico sinusal de la raíz Palatina del lado derecho con la medida de la distancia ápico sinusal de la raíz Palatina del lado izquierdo de las primeras molares superiores, Lima – 2017. (r=0.636), (p=0.000).
• Si existe diferencia significativa según el sexo, entre la medida de la distancia ápico sinusal de la raíz Mesiovestibular de la primera molar superior derecho, mientras que en las demás raíces no existe una diferencia estadísticamente significativa según el sexo, Lima – 2017. (p=0.036).

• Si existe diferencia estadísticamente significativa según el grupo etario, entre las medidas de las distancias ápico sinusales de las raíces Mesiovestibulares de la primera molar superior lado derecho e izquierdo mientras que en las demás raíces no existe una diferencia estadísticamente significativa según el grupo etario en Lima – 2017. (p= 0.002), (p=0.037).
CAPÍTULO VI
RECOMENDACIONES

- Se recomienda más estudios de la Relación Vertical entre el piso del seno maxilar y los ápices de las primeras molares superiores (Hee-Jin Kim).
- Se recomienda tener en consideración estos resultados para los tratamientos endodónticos debido a la cercanía que tienen estas raíces con el piso de seno maxilar.
- Se recomienda mayor difusión de del manejo de las tomografías cone beam debido a que este equipo apoya mucho para los trabajos de investigación tridimensional los cuales son muy necesarios para el campo de la odontología.
CAPÍTULO VII
REFERENCIAS BIBLIOGRÁFICAS

14 Kenneth M.T. Low, Karl Dula, Walter Bürgin, Thomas von Arx, Comparison of Periapical Radiography and Limited Cone-Beam

26 Diccionario Medico Odontológico editorial panamericana- 2013
30 Alvaro J. Las relaciones con el seno maxilar. Scribd. 2013, 1-5.
32 Carabe L. Analisis tridimensional de la inclinación buco lingual de primeros y segundos molares superiores en los distintos patrones faciales. Universidad de Oviedo. España. 2014.

Ronda N. Aplicaciones de la TAC en endodoncia. 2011; (2).
ANEXOS
ANEXO 1

FICHA DE RECOLECCION DE DATOS

- Sexo:
 - Masculino
 - Femenino

- Grupo Etario:
 - Joven (18 – 29)
 - Adulto I (30 – 39)
 - Adulto II (40 – 49)
 - Adulto Mayor (50 a

- 1RA MOLAR SUPERIOR DERECHO:
 - Distancia Ápico Sinusal Mesiovestibular Derecho: …………
 - Distancia Ápico Sinusal Distovestibular Derecho: …………..
 - Distancia Ápico Sinusal Palatino Derecho: ……………

- 1RA MOLAR SUPERIOR IZQUIERDO:
 - Distancia Ápico Sinusal Mesiovestibular Izquierdo: …………
 - Distancia Ápico Sinusal Distovestibular Izquierdo: …………..
 - Distancia Ápico Sinusal Palatino Izquierdo: ……………

- Relación Vertical entre el piso del seno maxilar y los ápices de las primeras molares superiores (Hee-Jin Kim)

<table>
<thead>
<tr>
<th>TIPO DE RELACION VERTICAL</th>
<th>1RA MOLAR DERECHA</th>
<th>1ERA MOLAR IZQUIERDA</th>
</tr>
</thead>
</table>

Diagrama de Tipos de Relación Vertical
Estimado (a) señor (a):

Motiva la presente el solicitar su valiosa colaboración en la revisión del instrumento anexo, el cual tiene como objeto obtener la validación del cuestionario que se aplicará para la fundamentación y desarrollo de la tesis de grado titulada “Estudio tomográfico de la relación entre el piso del seno maxilar y los ápices de las primeras molares superiores, Lima- 2017”.

Acudo a usted debido a sus conocimientos y experiencias en la materia, los cuales aportarían una útil y completa información para la culminación exitosa de este trabajo de investigación.

Gracias por su valioso aporte y participación.

Atentamente,

Poma Blanco Carlos Alberto Timana Portilla Nancy Violeta
Identificación del Experto:

Nombre y Apellido: __

Instituto donde Trabaja: ___

Título de Pregrado: ___

Título de Postgrado: ___

Institución donde lo obtuvo: __

Año: ___

Título de la Investigación:

“Estudio tomográfico de la relación entre el piso del seno maxilar y los ápices de las primeras molares superiores, Lima- 2017”

INSTRUCCIONES

A) Lea detenidamente las preguntas antes de responder.

B) Este instrumento de validación consta de una sección en la que se pide el juicio de experto con respecto a la ficha de recolección de datos, la cual está formada por cuatro preguntas.

C) Marque en el espacio en blanco para cada pregunta con un check si no le encuentra ninguna objeción o una X si tiene que modificarse en ese aspecto la pregunta. La modificación que deba realizarse podrá ser detallada al final en el espacio de observaciones.
Instrucciones:
A continuación usted tienen columnas enumeradas por cuadros para evaluar cada una de las preguntas del cuestionario respectivamente en once aspectos diferentes:
Marque en el espacio en blanco para cada pregunta con un check () si no le encuentra ninguna objeción o una (x) si tiene que modificarse en ese aspecto la pregunta. La modificación que deba realizarse podrá ser detallada al final en el espacio de observaciones y sugerencias.

<table>
<thead>
<tr>
<th>N°</th>
<th>Preguntas</th>
<th>Edad</th>
<th>Sexo</th>
<th>Ápice radicular y seno maxilar</th>
<th>Distancia del ápice radicular al piso del seno maxilar</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>¿Esta pregunta permitirá alcanzar el objetivo planteado en el estudio?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>¿La pregunta está formulada en forma clara?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>¿El orden de esta pregunta es el adecuado?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>¿La redacción es entendible o coherente con el propósito del estudio?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>¿Sí, el contenido corresponde con el propósito del estudio?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>¿El vocabulario de esta pregunta es el adecuado?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Observaciones y sugerencias:
__
__
__
__
__

101
Yo, ______________________________, con Documento Nacional de Identidad No. ____________________ certifico que realicé el juicio de experto al instrumento diseñado por los bachilleres Poma Blanco Carlos Alberto y Timana Portilla Nancy Violeta en la investigación: “Estudio tomográfico de la relación entre el piso del seno maxilar y los ápices de las primeras molares superiores, Lima- 2017”

Huancayo, Setiembre 2017
Anexo 3
MATRIZ DE CONSISTENCIA

TITULO: Estudio tomográfico de la relación entre el piso del seno maxilar y los ápices de las primeras molares superiores, Lima- 2017

<table>
<thead>
<tr>
<th>PROBLEMA</th>
<th>OBJETIVOS</th>
<th>HIPÓTESIS</th>
<th>VARIABLES</th>
<th>INDICADORES</th>
<th>METODOLOGIA</th>
</tr>
</thead>
</table>
Objetivos Específicos:
• Identificar Determinar la relación entre las condiciones de la distancia ápico sinusal de las tres raíces del lado derecho y la medida de la distancia ápico sinusal de las tres raíces del lado izquierdo de las primeras molares superiores, Lima – 2017.
• Determinar la diferencia significativa según el sexo, entre las medidas de las distancias ápico sinusales de todas las raíces de la primera molar superior, Lima – 2017. | Hipótesis General:
H₁: Existe relación directa y significativa entre el piso de seno maxilar y los ápices de las primeras molares del lado derecho y el lado izquierdo Lima - 2017.
Hipótesis Específicas:
• H₁: Existe relación entre las medidas de la distancia ápico sinusal de las tres raíces del lado derecho y la medida de la distancia ápico sinusal de las tres raíces del lado izquierdo de las primeras molares superiores, Lima – 2017.
• H₁: Existe diferencia significativa según el sexo, entre las medidas de las distancias ápico sinusales de todas las raíces de la primera molar superior, Lima – 2017. | VARIABLE:
Ápice radicular y seno maxilar (Relación vertical)
VARIABLE:
Distancia del ápice radicular al piso del seno maxilar
EDAD |
Tipo I
Tipo II
Tipo III
Tipo IV
Tipo V
Medición en mm
Joven de 18 a 29 años
Adulto I (Adultez temprana) de 30 a 39 años
Adulto II (Adultez madura) de 40 a 49 años
Adulto mayor de 50 a mas | Método: Científico
Tipo: Transversal
Nivel: Correlacional
Población: 51 Tomografías
Muestra: Censal a toda la población
instrumento: Ficha de recolección de datos
Plan de análisis: Descriptivo: mostrando tablas o gráficos con el número y porcentaje. Inferencial: Utilizando pruebas paramétricas y no paramétricas Con el programa de SPSS versión 22 en español. |
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>significativa según el grupo etario, entre las medidas de las distancias ápico sinusales de todas las raíces de la primera molar superior, Lima – 2017?</td>
<td>significativa según el grupo etario, entre las medidas de las distancias ápico sinusales de todas las raíces de la primera molar superior, Lima – 2017.</td>
<td>significativa según el grupo etario, entre las medidas de las distancias ápico sinusales de todas las raíces de la primera molar superior, Lima – 2017.</td>
<td>SEXO</td>
<td>1) Masculino</td>
<td>2) Femenino</td>
</tr>
</tbody>
</table>
EVIDENCIAS FOTOGRAFICAS