UNIVERSIDAD PERUANA LOS ANDES

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

TESIS

INFLUENCIA DE LAS PRECIPITACIONES PLUVIALES FRENTE A LA CAPACIDAD HIDRAULICA DE LA RED DE TUBERIAS DEL JIRON BASADRE – CHILCA- 2019

PRESENTADO POR:

Bach. ALEXANDER PIHUE YLIZARBE

LINEA DE INVESTIGACION INSTITUCIONAL

Salud y Gestión de la Salud

PARA OPTENER EL TITULO PROFESIONAL DE:

INGENIERO CIVIL

HUANCAYO-PERÚ

2020

Ing. EDMUNDO MUÑICO CASAS ASESOR

DEDICATORIA

Mi tesis la dedico a mi madre Genoveva Del Rocío Ylizarbe Meza quien me apoyó incondicionalmente en todo el transcurso de mi formación profesional y a todos mis maestros por hacer de mi un profesional competente.

Alexander Pihue Ylizarbe

AGRADECIMIENTO

- Agradezco a mi asesor por ser mi mentor en todo el proceso del desarrollo de la investigación.
- Agradezco a mis familiares que a pesar de las dificultades que te da la vida supieron apoyarme en todo momento para el cumplimiento de mis objetivos y metas trazadas durante mi formación académica.
- Agradezco a mi alma mater Universidad Peruana Los Andes, por permitirme formar parte de los profesionales competentes en esta ciudad de ardua competencia profesional.

Alexander Pihue Ylizarbe

CONFORMIDAD DE LOS JURADOS

DR. RUBEN DARIO TAPIA SILGUERA Presidente	•
PH. D MOHAMED MEHDI HADI MOHAME JURADO	- D
ING. ALCIDES LUIS FABIAN BRAÑEZ JURADO	
ING. NATALY LUCIA CORDOVA ZORRILI JURADO	LA
MG. MIGUEL ANGEL CARLOS CANALES Secretario Docente	8

INDICE

DEDICATORIA	II
AGRADECIMIENTO	III
CONFORMIDAD DE LOS JURADOS	IV
INDICE	VI
INDICE DE TABLAS	XI
INDICE DE IMÁGEN	XIII
CAPITLO I: PLANTEAMIENTO DEL PROBLEMA	5
1.1 DESCRIPCIÓN DEL PROBLEMA	5
1.2 FORMULACIÓN DEL PROBLEMA	6
1.2.1 Problema General	6
1.2.2 Problemas Específicos	6
1.3 JUSTIFICACIÓN	6
1.3.1 Metodológica	6
1.3.2 Social o Práctica	7
1.3.3 Científica o teórica	7
1.4 DELIMITACIÓN DE LA INVESTIGACIÓN	7
1.4.1 Delimitación espacial	7
1.4.2 Delimitación temporal	9
1.4.3 Delimitación económica	9
1.5 LIMITACIONES	9

	1.5.1 Limitación tecnológica	9
	1.5.2 Limitación económica	9
	1.6 OBJETIVOS	10
	1.6.1 Objetivo general:	10
	1.6.2 Objetivos específicos:	10
(CAPITULO II: MARCO TEORICO	11
	2.1 ANTECEDENTES	11
	2.1.1 Antecedentes Internacionales	11
	2.1.2 Antecedentes Nacionales	12
	2.2 MARCO CONCEPTUAL	14
	2.2.1 Alcantarillado pluvial	14
	2.2.2 Sistemas de drenaje urbano	14
	2.2.2.1 Tipos de sistemas de drenajes urbanos	14
	2.2.2.1.1 Alcantarillado Sanitario.	14
	2.2.2.1.2 Alcantarillado pluvial	14
	2.2.2.1.3 Alcantarillado Combinado	14
	2.2.3 Escorrentía directa o superficial	15
	2.2.3.1 Hietograma	15
	2.2.3.2 Hidrograma Unitario	15
	2.2.4 Precipitación	15
	2.2.4.1 Pluviómetro	16
	2.2.4.2 Intensidad de precipitación	16

	2.2.4.3 Tiempo de concentración	. 16
	2.3 DEFINICION DE TERMINOS	. 16
	2.4 HIPOTESIS	. 17
	2.4.1 Hipótesis General	. 17
	2.4.2 Hipótesis Específicas	. 18
	2.5 VARIABLES	. 18
	2.5.1 Definición conceptual de la variable	. 18
	2.5.1.1 Precipitaciones Pluviales o intensidad	. 18
	2.5.1.2 Capacidad Hidráulica	. 18
	2.5.2 Definición operacional de la variable	. 19
	2.5.3 Operacionalización de las variables	. 19
C	CAPITULO III: METODOLOGIA DE LA INVESTIGACIÒN	. 21
	3.1 Método investigación	. 21
	3.2 Tipo de investigación	. 21
	3.3 Nivel de investigación	. 21
	3.4 Diseño de investigación	. 21
	3.5 Población y muestra	. 22
	3.5.1 La población	. 22
	3.5.2 La muestra	. 22
	3.6 Técnicas e instrumentos de recopilación de datos	. 22
	3.6.1 Técnicas de recolección de datos	. 22
	3.6.2 Instrumentos de recolección de datos	. 23

3.7 Procesamiento de la información	. 23
3.8 Técnicas y análisis de datos	. 24
CAPITULO IV	. 25
RESULTADOS	. 25
4.1 Resultados obtenidos	. 25
4.1.1 Consideraciones generales	. 25
4.1.1.1 Servicio meteorológico e hidrológico Senamhi – Huancayo	. 25
4.1.1.2 Determinación de los caudales máximos con el método racional.	. 27
4.1.1.3 Calculo de la precipitación neta con el HEC-HMS	. 47
4.1.2 Consideraciones hidráulicas en sistemas de drenaje urbanismo	
menor captación de aguas se pluviales en zonas urbanas	. 48
4.1.2.1 Consideraciones del caudal de diseño	. 48
4.1.2.2 Disposiciones de la red de alcantarilla	. 54
4.1.2.2.1 Sistemas perpendiculares	. 54
4.1.2.2.2 Sistemas perpendiculares con interceptor	. 55
4.1.2.3 Evacuación de las aguas transportadas por las cunetas	. 57
CAPÍTULO V:	. 66
DISCUSION DE RESULTADO	. 66
CONCLUSIONES	. 68
RECOMENDACIONES	. 69
REFERENCIAS BIBLIOGRAFICAS	. 70
ANEXO	. 71

Anexo 01: matriz de consistencia	72
Anexo 02: Perfil estratigráfico	62
Anexo 03: Perfil estratigráfico	63
Anexo 04: Densidad máxima seca	64
Anexo 05: Densidad máxima seca	65
Anexo 06: Cálculo del IDF de las precipitaciones	66
Anexo 07: Estudio de ingeniería	68
Topografía	68
Trabajo de campo – Recopilación de datos	70
Anexo 08: Planos	73

INDICE DE TABLAS

Tabla 1: Definición operacional de las variables	. 19
Tabla 2 : Operacionalización de las variables	. 19
Tabla 3 : Coeficiente de escorrentía	. 28
Tabla 4: Tiempo de concentración	. 29
Tabla 5: Cálculo de las láminas de frecuencias	. 31
Tabla 6: Precipitación para diferentes tipos de duración de lluvias	. 31
Tabla 7: Intensidades de la lluvia para diferentes tiempos de duración	. 33
Tabla 8: Periodo de retorno de T= 2 años	. 34
Tabla 9: Periodo de retorno de T=5 años	. 35
Tabla 10: Periodo de retorno de T=10 años	. 36
Tabla 11: Periodo de retorno para T=25 años	. 37
Tabla 12: Periodo de retorno para T= 50 años	. 38
Tabla 13: Periodo de retorno para T= 75 años	. 39
Tabla 14: Periodo de retorno para T= 100 años	. 40
Tabla 15: Periodo de retorno para T= 500 años	. 41
Tabla 16: Regresión potencial para los periodos de retorno	. 42
Tabla 17: Regresión potencial IDF	. 43
Tabla 18: Termino constante de regresión	. 44
Tabla 19: Tabla de intensidad IDF	. 44
Tabla 20: Calculo de caudal de diseño	. 48
Tabla 21: Coeficiente de Manning para concreto	. 51
Tabla 22: Coeficiente de Mannig para PVC	. 52
Tabla 23: Determinación de las pendientes	. 57

Tabla 24: Capacidad de evacuación de aguas de lluvia de la cuneta	. 58
Tabla 25: Verificaciones de los caudales a aporte Qtotal > Qi	. 59

INDICE DE IMÁGEN

Imagen 1: Ubicación geográfica del distrito de chilca	8
Imagen 2: Ubicación geografía del área de investigación	8
Imagen 3: Ubicación geográfica del área de investigación	9
Imagen 4: Datos meteorológicos del SENAMHI- VIQUES	26
Imagen 5: Precipitación máxima anual	26
Imagen 6: Precipitaciones máximas promedios mensuales	27
Imagen 7: Parámetros de coeficiente de escorrentía	30
Imagen 8: Intensidad de precipitación para T=2 años	34
Imagen 9: Intensidad de precipitación para T=5 años	36
Imagen 10: Intensidad de precipitación para T= 10 años	37
Imagen 11: Intensidad de precipitación para T=25 años	38
Imagen 12: Intensidad de precipitación para T= 50 años	39
Imagen 13: Intensidad de precipitación para T= 75 años	40
Imagen 14: Intensidad de precipitación para T= 500 años	41
Imagen 15: Intensidad de precipitación para T= 500 años	42
Imagen 16: Regresión potencias IDF	44
Imagen 17: Regresión potencial para cada periodo de retorno	46
Imagen 18: Determinación del coeficiente de escorrentía HEC-HMS	47
Imagen 19: Altura de agua en conductos circulares	53
Imagen 20: Trazo perpendicular lateral	55
Imagen 21: Trazo longitudinal en gradas o abanico	55
Imagen 223: Trazo radial	56
Imagen 235: Trazo en atarjea en bayoneta	56

Imagen 24: Trazo alcantarillado con interceptor	56
Imagen 25: Cuneta	58
Imagen 26: Cambio de unidades al sistema internacional "SewerGEMS"	60
Imagen 27: Diámetros de las tuberías SewerGEMS	60
Imagen 28: Parámetros de acuerdo OS-060 RNE SewerGEMS	60
Imagen 29: Insertamos nuestras constantes de diseño – SewerGEMS	61
Imagen 30: Cuneta sin depresión y/o con depresión OS-060-RNE SewerGE	MS
	61
Imagen 31: Coeficientes de diseño para cunetas – SewerGEMS	62
Imagen 32: Validación de los datos insertados al programa – SewerGEMS.	62
Imagen 33: Esquema del sistema de alcantarillado pluvial – SewerGEMS	63
Imagen 34: Diámetros de los conductos BZ5-BZ8	63
Imagen 35: Diámetro de los conductos BZ9-BZ8	64
Imagen 36: Diámetros de los conductos BZ9-BZ11	64
Imagen 37: Pendiente de la red de tuberías	65
Imagen 38: Pendiente del tramo TUB10=0.7%>0.5% Oky Cumple	65
Imagen 39: Obstrucción del canal a base de Grass Jirón Basadre-Jirón Tole	∍do.
	66
Imagen 40: Cuneta con presencia de grass en el Jirón Basadre	67
Imagen 41: Registro de la calita C1	62
Imagen 42: Registro de la calita C2	63
Imagen 43: Estudio de suelos de CBR	64
Imagen 44: Densidad máxima seca M01	65
Imagen 45: IDF periodos de retorno para 2 y 10 años	66
Imagen 46: IDF para periodo de 2 años	66

Imagen 47: IDF para periodos de 10 años.	66
Imagen 48: IDF para periodos de 2 a 500 años	67
Imagen 49: Levantamiento topográfico - catastro	70
Imagen 50: Inspección de los buzones in situ	70
Imagen 51: Buzón BZ5	71
Imagen 52: Falta de mantenimiento y limpieza	71
Imagen 53: Presencia de grass que obstruye el paso de aguas de lluvia	71
Imagen 54: Presencia de grass en las cámaras de captación	72

RESUMEN

La presente investigación empieza a base de una pregunta general que se formuló:

¿Cómo influye las precipitaciones pluviales frente a la capacidad hidráulica de la red

de tuberías en el Jirón Basadre - Chilca 2019, provincia de Huancayo, ¿región Junin-

2020?, siendo el objetivo general: Determinar la influencia precipitaciones pluviales

frente a la capacidad hidráulica de la red de tuberías en el Jirón Basadre - Chilca

2019.

Dicha investigación está sujeta a una investigación científica; el tipo de

investigación es aplicada, el nivel es descriptivo - correlacional y diseño de

investigación es no experimental. La población estuvo conformada por el Jirón

Basadre del distrito de Chilca región Junín.

Como conclusión: la prueba de hipótesis permitió las verificaciones de la pendiente

se contrastó de que en tramo de evacuación BZ14-IO - TUB14 la pendiente es de

0.692% cumpliendo así a una pendiente mínima del 0.5% estipulado en la OS.060 del

RNE satisfaciendo esta para una velocidad mínima a tubo lleno.

Palabras claves: Precipitación pluvial, capacidad hidráulica.

1

ABSTRAC

This research begins with a general question that was formulated: How does rainfall

influence the hydraulic capacity of the pipe network in Jirón Basadre - Chilca 2019,

Huancayo province, Junin-2020 region? The general objective: Determine the

influence of rainfall against the hydraulic capacity of the pipe network in Jirón Basadre

- Chilca 2019.

Such investigation is subject to scientific investigation; the type of research is

applied, the level is descriptive - correlational, and the research design is non-

experimental. The population was made up of the Jirón Basadre of the Chilca district

of the Junin region.

In conclusion: the hypothesis test allowed the verifications of the slope, it was

contrasted that in the evacuation section BZ14-IO - TUB14 the slope is 0.692%, thus

complying with a minimum slope of 0.5% stipulated in OS.060 of the RNE satisfying

this for a minimum speed to full tube.

Keywords: Rainfall, hydraulic capacity.

2

INTRODUCCIÓN

La presente tesis titulado: INFLUENCIA DE LAS PRECIPITACIONES PLUVIALES FRENTE A LA CAPACIDAD HIDRÁULICA DE LA RED DE TUBERÍAS DEL JIRON BASADRE – CHILCA – 2019.

Trata sobre:

El trabajo de investigación que presento a continuación constituye una propuesta activa que consiste en el mejoramiento del sistema de alcantarillado pluvial y la capacidad hidráulica del Jirón Basadre del Distrito de Chilca. En tal sentido se buscó aplicar un estudio de la precipitación pluvial y la identificación de los diámetros de tuberías de dicho sector.

El problema general del cual partimos fue: ¿Cómo influye las precipitaciones pluviales frente a la capacidad hidráulica de la red de tuberías del Jirón Basadre - chilca - 2019?

En tal sentido el objetivo general planteado es: Determinar la influencia de las precipitaciones pluviales frente a la capacidad hidráulica en la red de tuberías del Jirón Basadre - chilca - 2019, para esto se ha determinado la utilización de las técnicas de observación y evaluación de la situación actual del Jr. del Jirón Basadre del distrito de Chilca.

Capítulo I: Problema de investigación, referido al planteamiento y formulación del problema general, así mismo los problemas específicos; del mismo modo el objetivo general y específico; la justificación teórica, metodológico y practico; su delimitación y limitaciones de la investigación.

Capítulo II: Marco teórico, se muestra los antecedentes nacionales e

internacionales de la investigación, marco conceptual, hipótesis, variables y

definiciones.

Capítulo III: metodología, se muestran dentro de esta una investigación; en el que

se expone el método general, el tipo, nivel y el diseño de la investigación, la población

y muestra; las técnicas usadas y los instrumentos usados para la recolección de datos

de la investigación, así como las técnicas empleadas para el procesamiento de la

información.

Capitulo IV: Resultado, Contiene los resultados, la comprobación de la hipótesis.

El desarrollo de la investigación en la verificación por el software que se está

empleando en la investigación.

Capítulo V: Discusión de resultado,

Finalmente, se plasma las conclusiones, recomendaciones, referencias

bibliográficas y anexos.

Bach. Alexander Pihue Ylizarbe

4

CAPITLO I: PLANTEAMIENTO DEL PROBLEMA

1.1 DESCRIPCIÓN DEL PROBLEMA

El sistema de alcantarillado pluvial del Jirón Basadre del distrito de Chilca presenta un mal funcionamiento debido a la falta de mantenimiento y el diseño inadecuado ya que en las temporadas de lluvias que son más intensos como los meses de (diciembre, enero, febrero, marzo y abril) se evidencia el colapso del sistema de alcantarillado pluvial afectando así a las viviendas, peatones, transporte y la vida útil de los pavimentos. Este problema afecta directamente a la población en mención ya que, en periodos de lluvia intensa, estos sistemas colapsan inundando las calles y casas, por lo que es necesario proponer alternativas de solución para este determinado problema.

A. La alternativa de solución a este problema; colapso del sistema de alcantarillado pluvial del Jirón Basadre del distrito de Chilca es una propuesta técnica de diseño ya que se evaluará las precipitaciones pluviales y los caudales máximos que se obtendrán bajo estudios estadísticos del SENAMHI.

B. Ya que en el marco de diseño del sistema de alcantarillado pluvial debe de tener en cuenta que el sistema de alcantarillado pluvial y de aguas de lluvia en varios tramos son la misma, quiere decir que el sistema en épocas de lluvia no se abastece para el aumento radical del caudal debido a las lluvias intensas y a la constante vertido de aguas de lluvia de las viviendas, es por ello que colapsan causando los problemas

que dieron lugar al planteamiento del problema en estudio.

1.2 FORMULACIÓN DEL PROBLEMA

1.2.1 Problema General

¿Cómo influyen las precipitaciones pluviales frente a la capacidad hidráulica
 de la red de tuberías del Jirón Basadre – Chilca - 2019?

1.2.2 Problemas Específicos

- ¿Cómo influye la pendiente frente a la capacidad hidráulica de la red de tuberías?
- ¿Cómo influye el volumen de aguas de lluvia frente a la capacidad hidráulica de la red de tuberías?
- ¿En qué medida favorece la política de mantenimiento frente a la capacidad hidráulica de la red de tuberías?

1.3 JUSTIFICACIÓN

1.3.1 Metodológica

La investigación tiene justificación metodológica, ya que para el desarrollo de esta investigación el sustentante hizo uso de metodologías propias para la recopilación de información de campo, procesamiento de la información y formulación de las conclusiones, las mismas que podrán ser utilizadas en otras investigaciones posteriores a esta.

De esta manera la investigación pretende dar validez al modelo matemático que permite analizar los comportamientos que tiene dichos sistemas.

El análisis de la influencia de las precipitaciones pluviales en el efecto a la capacidad hidráulica es correlacional, donde se busca obtener las precipitaciones máximas y la capacidad de las tuberías en evacuar las aguas de lluvia.

1.3.2 Social o Práctica

La investigación permite mejorar la situación actual del Jirón Basadre del distrito de Chilca ya que se plantea resolver el problema que se suscita a base de las precipitaciones pluviales.

Se pretende difundir el mantenimiento de vías, cunetas y buzones, como una alternativa de solución para contrarrestar que estas colapsen con las lluvias, ya que corroborará en el bienestar social de la comunidad del sector.

1.3.3 Científica o teórica

Teniendo en cuenta el periodo de Iluvias, y la recopilación de datos estadísticos de las precipitaciones que servirán de sustento para dar la iniciativa de demás posteriores investigaciones siendo el cual un aporte para la ingeniería se evidencia el colapso del sistema de alcantarillado pluvial en el Jr. Basadre del distrito de Chilca, provincia de Huancayo, región Junín.

Esta incógnita afecta claramente a los pobladores ya que en periodos de intensas precipitaciones pluviales estas redes colapsan e inundan las calles, perjudicando así viviendas, por lo que es obligatorio exponer alternativas de solución.

1.4 DELIMITACIÓN DE LA INVESTIGACIÓN

1.4.1 Delimitación espacial

La investigación se encuentra delimitado espacialmente en el Sector Sc – 09 Zona R3 - A, con coordenadas UTM: 8663241.28N; 477706.26E Distrito de Chilca, Provincia de Huancayo, Departamento de Junín.

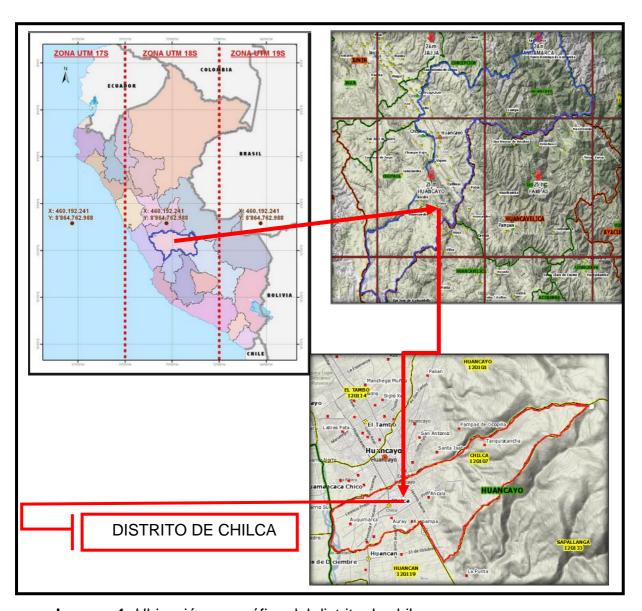


Imagen 1: Ubicación geográfica del distrito de chilca.

Nota: Elaboración propia del autor.

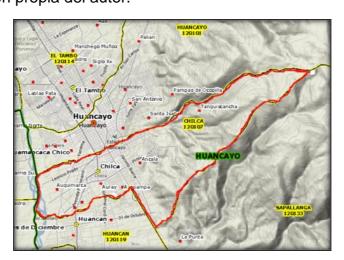


Imagen 2: Ubicación geografía del área de investigación.

Nota: Elaboración propia del autor.

Imagen 3: Ubicación geográfica del área de investigación.

Nota: Elaboración propia del autor.

1.4.2 Delimitación temporal

Se delimita temporalmente en el año 2020 desde septiembre a diciembre.

1.4.3 Delimitación económica

Los gastos ocasionados por la investigación fueron asumidos por el investigador al 100 %.

1.5 LIMITACIONES

1.5.1 Limitación tecnológica

La investigación necesita hacer las verificaciones de los cálculos con software, así como el AUTOCAD CIVIL, SEWERD CAD, y el HEC-HMS v4.3, que se requieren, así como otros softwares especializados para su modelamiento.

1.5.2 Limitación económica

Por los limitados recursos no se realizaron la compra de más datos del SENAMHI

para el cálculo hidráulico a mayor precisión.

1.6 OBJETIVOS

1.6.1 Objetivo general:

- Determinar la influencia de las precipitaciones pluviales frente a la capacidad hidráulica de la red de tuberías del Jirón Basadre-Chilca-2019.

1.6.2 Objetivos específicos:

- Evaluar la influencia de la pendiente frente a la capacidad hidráulica de la red de tuberías.
- Calcular la influencia del volumen de aguas de lluvia frente a la capacidad hidráulica de la red de tuberías.
- Verificar en qué medida favorece la política de mantenimiento frente a la capacidad hidráulica de la red de tuberías.

CAPITULO II: MARCO TEORICO

2.1 ANTECEDENTES

2.1.1 Antecedentes Internacionales

Divaldo, (2015), realizo la investigación: Estrategia para el diseño de redes de drenaje pluvial, empleando la modelación matemática, para su aplicación en la ciudad de Luanda. En la facultad de Ingeniería Civil de Instituto Superior Politécnico José Antonio Echeverría La Habana de Cuba. La investigación llego a las siguientes principales conclusiones:

- 1. Se elaboró una estrategia para el diagnóstico, diseño y verificación de redes de drenaje pluvial, basada en el uso de modelos del terreno y aplicando herramientas de modelación matemática, apta para su aplicación en la ciudad de Luanda.
- 2. Se aplicó la estrategia propuesta en la zona seleccionada como caso de estudio, lo que permitió establecer criterios sobre los peligros de inundación ante intensas lluvias, como etapa de diagnóstico de la situación actual del barrio. Para este diagnóstico se adoptó la estrategia de calibración basada en los caudales máximos para las dos vertientes de la cuenca correspondiente al barrio Marçal.

Ya que dicha investigación nos permite proponer una posible solución, frente al problema que genera las precipitaciones pluviales.

Rey (2019) realizo la investigación: "Propuesta de sistema de drenaje urbano sostenible para cuencas de montaña con alta pendiente". En el programa de maestría en ingeniería de recursos Hidráulicos de la Universidad Nacional de Colombia.

La investigación llego a las siguientes conclusiones: "Se realizó un análisis de

velocidades en áreas impermeables en el cual se obtuvo que el modelo es muy sensible a las modificaciones que se dan en los siguientes parámetros de entrada: coeficiente de rugosidad para áreas impermeables y áreas permeables en las subcuencas, y coeficiente de rugosidad del cauce. En el diagnóstico de las inundaciones pluviales por medio de la correlación de las zonas críticas y los registros de inundación se encontró que una de las causas es la condición topográfica abrupta, lo que se verifica por medio de la modelación hidrodinámica, donde se evidenció que las inundaciones son difíciles de reducir por las altas velocidades de flujo y la respuesta rápida dada por las elevadas pendientes de las sub-cuencas y las cortas distancias para el ingreso a la red".

Esta investigación nos permite dilucidar la filosofía de diseño a través del flujo de escorrentías y de los coeficientes de rugosidad para las áreas impermeables, para nuestra discusión de los resultados.

2.1.2 Antecedentes Nacionales

Palomino (2016) realizó la investigación: "Evaluación y propuesta de mejoramiento del sistema de alcantarillado sanitario de las asociaciones pro vivienda 28 de julio, Kantu, Villa Mercedes y Vista Alegre – Cusco". En la Facultad De Ingeniería y Arquitectura de la Universidad Andina del Cusco, con la finalidad de optar el Título de Ingeniero Civil conclusiones:

En su conclusión afirma que

Se logró demostrar la hipótesis general afirmando que el caudal de aguas residuales es mayor al que pueden soportar las tuberías de la red de alcantarillado sanitario de las Asociaciones Pro Vivienda 28 de Julio, Kantu, Villa Mercedes y Vista Alegre, siendo críticas la Vía Expresa 01 y Vía Expresa 02 en donde el volumen rebasado es del 177% y 279% respectivamente en relación a la capacidad de la red

actual, datos mostrados en la tabla N° 212, lo cual ocurre por la antigüedad del sistema y el ingreso indebido de las aguas pluviales en la red.

Palomino (2016) realizó la investigación: "Evaluación y propuesta de mejoramiento del sistema de alcantarillado sanitario de las asociaciones pro vivienda 28 de julio, kantu, villa mercedes y vista alegre – Cusco". En la facultad de ingeniería civil de la Universidad Andina del Cusco La investigación llegó a las siguientes principales conclusiones:

Se logró presentar la sub hipótesis N°3, ya que la generalidad de las viviendas no cuenta con una red de aguas pluviales y las aguas de lluvia se van evacuados directamente a la red de desagüe, y estos volúmenes sobrepasan a los que puede soportar el sistema de alcantarillado sanitario, como se muestra en las tablas N°210 y N°211.

Garate y Rioja (2018) realizó la investigación: "Diseño hidráulico y estructural del sistema de drenaje pluvial urbano del distrito de Cacatachi, provincia de san Martín región san Martín". En la Facultad de Ingeniería Civil y Arquitectura. La investigación llegó a las siguientes principales conclusiones:

El análisis y procesamiento de información hidrológica para el cálculo de la intensidad máxima es de mucha importancia, sirviéndonos para determinar el caudal de diseño, para con este determinar las dimensiones de cualquier estructura hidráulica, los cuales nos van a prevenir de posibles estragos que produzcan las precipitaciones pluviales".

La investigación nos permite explicar el cálculo del caudal de diseño por estados de información hidrológica para así poder terminar las dimensiones de cualquier estructura hidráulica.

2.2 MARCO CONCEPTUAL

2.2.1 Alcantarillado pluvial

Se define como el conjunto de conductos y estructuras destinados a recibir, evacuar, conducir y disponer las aguas servidas; fruto de las actividades humanas, o las que provienen como fruto de la precipitación pluvial. (carmona, 2015)P.01-25.

2.2.2 Sistemas de drenaje urbano.

2.2.2.1 Tipos de sistemas de drenajes urbanos.

2.2.2.1.1 Alcantarillado Sanitario.

Se diseña para recibir, evacuar, conducir y disponer las aguas domésticas, de establecimientos comerciales y pequeñas plantas industriales, por lo general, las aguas negras sin fermentación son ligeramente alcalinas o neutras, y bastante diluidas. (carmona, 2015) P.01-25

Es el sistema de recolección diseñado para llevar exclusivamente aguas residuales domesticas e industriales. (RNE 2016, p.10-163).

2.2.2.1.2 Alcantarillado pluvial.

Se diseña y construye para recibir, y disponer las aguas de lluvia producto de la precipitación, puede caer en forma líquida, granizo o de nieve. (carmona, 2015) P.01-28.

Es el sistema de evacuación de la escorrentía superficial producido por las lluvias. (RNE 2016, p.10-163).

2.2.2.1.3 Alcantarillado Combinado

Es el diseñado y construido para conducir aguas negras, industriales y lluvias. En la actualidad son pocos los alcantarillados de este tipo en zonas urbanas; sin embargo, dada la ubicación de privilegio en cuanto a los accidentes topográficos y a

la restricción de desarrollo urbano, es posible su construcción. (carmona, 2015)P.01-29.

Es el sistema de alcantarillado que conduce simultáneamente las aguas residuales (domesticas e industriales) y las aguas de las lluvias. (RNE 2016, p.10-163).

2.2.3 Escorrentía directa o superficial.

2.2.3.1 Hietograma.

Es un gráfico de forma escalonada como un histograma, que representa la variación de la intensidad expresada en mm/hora de la tormenta, en el transcurso de la misma expresada en minutos u horas. Mediante este histograma es muy fácil decir a qué hora, la precipitación adquirió su máxima intensidad de la tormenta y cuál fue el valor de esta. VILLON (2002, p. 2-89).

Distribución temporal de la lluvia usualmente expresada en forma gráfica. En el eje de las abscisas se anota el tiempo y en el eje de las ordenadas la intensidad de la lluvia. (RNE 2016, p.10-162).

2.2.3.2 Hidrograma Unitario.

Hidrograma resultante de una lluvia efectiva unitaria (1cm) de intensidad constante, distribución especial homogénea y una duración determinada. (RNE 2016, p.10-162).

2.2.4 Precipitación.

La precipitación, es toda forma de humedad que, originándose en las nubes, llega hasta la superficie del suelo; de acuerdo a esta definición puede ser en forma de lluvias, granizadas, garuas y nevadas desde el punto de vista de la ingeniería hidrológica, la precipitación es la fuente primaria de agua de la superficie terrestre, y

sus mediciones y análisis, forman el punto de partida de los estudios concernientes al uso y control del agua. (Béjar, 2002) P.2-69

2.2.4.1 Pluviómetro

Consiste en un recipiente cilíndrico de lámina, de aproximadamente de 20cm de diámetro y de 60 cm de alto. La tapa del cilindro es un embudo receptor, el cual se comunica con una probeta de sección 10 veces menor que la de la tapa. (Béjar, 2002)P.02-73

2.2.4.2 Intensidad de precipitación.

Cuando la intensidad de lluvia excede a la capacidad de infiltración del suelo, se presenta el escurrimiento superficial, observándose para incrementos posteriores a la intensidad de lluvia, aumento en al caudal trasportado en el rio. (Béjar, 2002)P.02-138

Es el caudal de la precipitación pluvial en una superficie por unidad de tiempo. Se mide en milímetros por hora (mm/hora) y también en litros por segundo por hectárea (l/s/Ha) (RNE 2016, p.10-162).

2.2.4.3 Tiempo de concentración.

Es el tiempo requerido, después del comienzo de la lluvia intensa durante un aguacero, para que la escorrentía de todas las partes de un área determinada llegue al punto de colector que debe ser diseñado. (carmona, 2015)P.01-186

El Hidrograma unitario (HU) de una cuenca, se define como el Hidrograma de escurrimiento debido a una precipitación con altura en exceso (hpe) unitaria (un mm, un cm, una pulg, etc), requerida uniformemente sobre la cuenca, con una intensidad constante durante un periodo especifico de tiempo (duración en exceso de).

2.3 DEFINICION DE TERMINOS

• Aguas residuales: según Montero (2004, p. 124) "(...) son

provenientes de industrias y zonas urbanas, que contienen sustancias y residuos peligrosos, desagradables a los sentidos, incluidas las aguas negras y las aguas servidas (...)".

- Aguas negras: según Montero (2004, p. 124) "(...) son parte de las aguas residuales, que no has atravesado un proceso industrial o pretratamiento y pueden ser una mezcla de aguas servidas y aguas fecales (...)".
- Aguas pluviales: según Montero (2004, p. 124) "(...) son las provenientes de las precipitaciones pluviales (...)".
- Sumidero: según Montero (2004, p. 124) "(...) es una estructura hidráulica destinada a captar las aguas superficiales, constante en una rejilla conectada a una cámara receptora ubicada debajo de la acera o la cuneta.
- Cámara de inspección: según Montero (2004, p. 124) "(...) es el pozo de visita construido en la intersección de dos o más colectores con acceso a través de una abertura en su parte superior, cubierta por una tapa a nivel de la rasante de la calle (...)".
- Cuneta: según Montero (2004, p. 124) "(...) Canal de sección triangular o rectangular que se forma entre el cordón de la acera y la calzada, destinado a conducir las aguas pluviales que escurren superficialmente, hacia los sumideros.

2.4 HIPOTESIS

2.4.1 Hipótesis General

- Las precipitaciones pluviales influyen directamente para el cálculo de la

capacidad hidráulica de la red de tuberías del Jirón Basadre del distrito de Chilca, Huancayo – 2019.

2.4.2 Hipótesis Específicas

- La determinación de las pendientes frente a un diseño nos permite evitar que estos sistemas de drenajes pluviales colapsen en épocas de lluvia el cual influye en la capacidad hidráulica de la red de tuberías.
- El volumen de aguas de lluvia nos permite verificar la correcta elección del diámetro de tuberías que fue instalada en dicho sistema de alcantarillado pluvial el cual es un factor principal para determinar la capacidad hidráulica de la red de tuberías.
- La política de mantenimiento de un sistema de alcantarillado pluvial es indispensable para evitar el colapso de estas en épocas de lluvia.

2.5 VARIABLES

2.5.1 Definición conceptual de la variable

2.5.1.1 Precipitaciones Pluviales o intensidad

Las precipitaciones son causadas por fenómenos atmosféricos. Como se dijo anteriormente, se mide la altura por milímetros de agua caída durante una lluvia, durante un periodo de tiempo determinado o bien por la intensidad en milímetros por hora durante un aguacero. (carmona, 2015)P.01-29

La precipitación es la fuente primaria de agua de la superficie terrestre, y sus mediciones y análisis, forman el punto de partida de los estudios concernientes al uso y control del agua. (Béjar, 2002)P.2-69

2.5.1.2 Capacidad Hidráulica

Caudal máximo de aguas residuales admitido en un ramal, bajante o colector de desagüe, expresado en litros por segundo. (Wikipedia, 2001)

Característica física, de un cauce abierto que, en función de la superficie de la sección transversal y su rugosidad, multiplicado por la raíz cuadrada de la pendiente, da el caudal correspondiente del cauce o canal. Caudal máximo que un conducto, canal u otra estructura hidráulica es capaz de conducir. Caudal máximo que puede manejar un componente o una estructura hidráulica conservando sus condiciones normales de operación. (Aguamarket, 2017)

2.5.2 Definición operacional de la variable

Tabla 1: Definición operacional de las variables

VARIABLE	DEFENICION OPERACIONAL
	1Precipitacion Máxima
INDEPENDIENTE Precipitación Pluvial	2Curva intensidad, frecuencia y duración
	3Coeficiente de escorrentía
	1 Pendiente
DEPENDIENTE Capacidad hidráulica	2 Radio Hidráulico
•	3 Caudal a tubo lleno

Nota: Elaboración propia del autor.

2.5.3 Operacionalización de las variables

Tabla 2 : Operacionalización de las variables

VARIABLE	DIEMENCIONES	INDICADORES
Precipitación Pluvial	Precipitación máxima diaria probable	mm/hora

	Tiempo de concentración de la lluvia	minutos
	Intensidad máxima	mm/hora
	Periodo de retorno	años
Capacidad hidráulica	Pendiente	% , m/m
	Radio hidráulico	m
	Capacidad de arrastre de las partículas	N/m2

Nota: Elaboración propia del autor.

CAPITULO III: METODOLOGIA DE LA INVESTIGACIÓN

3.1 Método investigación

El método general de investigación fue el método científico, ya que se seguirá los procedimientos ordenados con la finalidad de dar respuesta a los problemas planteados.

3.2 Tipo de investigación

(Tan Málaga, y otros, 2008 pág. 147) Menciona que "La investigación aplicada ha enfocado la atención sobre solución de teorías cual concierne solo a un grupo en particular mas no generaliza, se refiere a resultados inmediatos y busca perfeccionar a los individuos implicados en el proceso de investigación".

Dicha investigación es de tipo aplicada, ya que está sujeta a la búsqueda de solucionar el problema específico, analizando las causas de las posibles soluciones del mismo, experimentando para ello los conocimientos obtenidos durante la investigación que sirven para la resolución de una situación específica el trata de comprender y resolver el problema.

3.3 Nivel de investigación

El nivel de investigación es descriptivo, ya que describe los fenómenos tal y cual se presentan en el proceso de investigación.

3.4 Diseño de investigación.

El diseño metodológico por la naturaleza del estudió será del diseño-correlacional; ya que se relacionara mis dos variables que viene a ser las variables dependiente e

independiente.

Esquema del diseño de investigación

$$Y = f(X1)$$

Dónde:

Y = Capacidad Hidráulica

X₁ = Precipitación Pluvial

3.5 Población y muestra

Según (Hernandez Sampieri, Fernandez Collado, & Baptista Lucio, 2014, pág. 173). La muestra es un subgrupo de la población de interés sobre el cual se recolectarán datos, y que tiene que definirse y delimitarse de antemano con precisión, además de que debe ser representativo de la población.

3.5.1 La población

Está constituida por la red de alcantarillado pluvial del Jirón Basadre del distrito de Chilca.

3.5.2 La muestra

La investigación tiene una muestra no probabilística por lo tanto no aleatoria y está conformada por el colector principal del Jirón Basadre del Distrito de Chilca.

3.6 Técnicas e instrumentos de recopilación de datos

3.6.1 Técnicas de recolección de datos

Observación:

Es el proceso sensorial de aplicación selectiva de la intensidad reflexiva de la atención en un determinado fenómeno u objeto con la finalidad de examinar, interpretar y conocer sus particularidades como color, forma, dimensiones, ubicación en el espacio, su movimiento en el espacio, el tiempo y el contexto respecto a otros fenómenos de su contorno.

Guía de observación: Para la obtención de los datos concerniente a la investigación, se tendrá en cuenta las siguientes actividades: Se realizó la inspección de los componentes estructurales hidráulicos y la observación en estado actual con la que se encuentra el sistema de alcantarillado pluvial del sector en investigación.

3.6.2 Instrumentos de recolección de datos

Mediante el exhaustivo análisis de la bibliografía referida al tema, están relacionados con el análisis y referencial dentro del informe de investigación

Cuestionarios

Se aplicarán cuestionarios orientados a titulares, gerentes y funcionarios públicos de los gobiernos locales a fin de obtener información relevante para la investigación.

Visitas de Trabajo

Se efectuarán visitas de trabajo a los principales actores del sector público en estudio

Entrevistas a Expertos

Se a titulares, funcionarios públicos vinculados al tema de la actividad gubernamental.

3.7 Procesamiento de la información

Para el análisis de los datos se utilizará la siguiente técnica de investigación: Se utilizó los programas AUTOCAD CIVIL y HEC-HMS, que permitirán procesar datos obtenidos con los instrumentos.

HEC-HMS: mediante el programa HEC-HMS se realizará el desarrollo del HIETOGRAMA como las pérdidas de agua por infiltración insertando los datos estadísticos del SENAMHI, la normalidad o no normalidad de datos que se pudiera

obtener, las gráficas de tendencia también se obtendrán mediante este programa.

Microsoft Excel: Para mediante el programa de Excel se realizará el procesamiento de datos del SENAMHI, donde se desarrollará tablas donde se muestre de manera clara y explicativa el comportamiento de las precipitaciones pluviales que se dieron estos 10 últimos años.

Microsoft Word: Instrumento de suma importancia para realizar el arte descriptiva de una investigación como las sistematizaciones y organización de fichas de toma de datos de campo.

AutoCAD: Un programa que nos permite realizar las localizaciones como las delimitaciones del campo de estudio que se está realizando.

3.8 Técnicas y análisis de datos

Para el análisis de datos se consideró los antecedentes de la investigación.

Para la Técnicas de análisis de datos se realizaron las verificaciones con los softwares

AUTOCAD CIVIL y HEC-HMS.

CAPITULO IV

RESULTADOS

4.1 Resultados obtenidos.

Los resultados se presentan en forma detallada de la siguiente forma:

4.1.1 Consideraciones generales

Tenemos la adquisición de los resultados del senamhi para la obtención de las precipitaciones pluviales del sector en estudio el cual se presenta a continuación:

4.1.1.1 Servicio meteorológico e hidrológico Senamhi – Huancayo.

Sen	amh	i	SERVIC						HIDROL	OGIA D	EL PER	U'	
-112				Di	rección	Regio	nal de J	Junin					
ESTACION : N° CATEGORIA:	112037				LATITUD LONGITU ALTITUD	JD:	8656170. 475148 3218		12º09'21. 75º13'42.	PROV	Junín Huancay Viques	0	
Parámetro:	Precipitad	cion Total	Mensual	(mm)			Periodo:						
AÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SET	OCT	NOV	DIC	AN
2000	85,5	99,0	89,3	18,3	13,0	2,8	5,8	35,1	36,1	68,4	34,2	84,3	5
2001	163,7	103,8	143,1	29,3	23,0	0,0	23,6	8,8	53,5	116,9	47,0	104,6	8
2002	121,4	127,9	81,3	19,6	0,0	1,1	20,8	0,0	41,6	72,4	98,2	51,2	6
2003	75,4	166,3	129,3	43,0	14,2	0,0	0,0	7,4	30,4	26,0	79,9	90,8	6
2004	22,0	135,3	67,1	40,5	25,8	23,5	11,1	14,2	29,6	33,0	52,3	89,7	5
2005	54,1	74,2	61,8	21,2	11,9	0,0	0,0	17,5	32,4	108,0	51,1	80,6	5
2006	131,7	81,0	87,8	34,8	0,0	4,4	0,0	27,7	21,6	51,8	39,9	110,3	5
2007	84,1	42,1	108,1	25,1	0,0	0,0	9,2	0,0	23,4	31,2	37,2	35,0	3
2008	123,8	109,2	69,1	0,0	2,1	9,6	0,0	0,0	38,0	78,4	52,8	104,8	5
2009	87,8	57,5	114,7	39,9	22,1	0,0	5,8	21,4	9,9	59,0	83,1	171,8	6
2010	149,0	89,5	103,5	38,0	0,0	22,1	0,0	6,8	15,4	28,8	59,2	188,6	7
2011	202,6	298,8	180,7	96,7	17,3	0,0	8,4	11,0	69,4	53,4	56,0	128,6	11:
2012	115,5	153,4	92,1	122,1	20,2	19,7	5,6	6,2	55,7	42,9	42,2	144,3	8
2013	110,4	152,4	77,8	9,0	18,3	15,2	5,8	23,5	40,2	50,5	22,4	143,1	6
2014	173,4	134,5	160,8	55,6	31,3	16,3	2,0	3,1	63,3	74,6	73,1	116,5	9
2015	105,4	116,7	75,1	30,9	16,3	26,1	7,2	13,5	46,1	56,7	60,4	92,2	6
2016	114,7	150,3	25,7	35,8	22,8	0,0	0,0	0,0	26,9	59,3	50,1	74,2	5
2017	183,0	137,6	82,9	43,5	9,6	0,0	0,0	3,0	52,5	37,6	41,7	65,4	6
2018	157,6	86,0	179,0	30,6	9,5	3,6	4,1	13,1	18,0	96,0	47,2	67,8	7
2019	143,0												
2020												-	
NORMALES	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SET	OCT	NOV	DIC	ANI
PROM	120,2	121,9	101,5	38,6	13,5	7,6	5,8	11,2	37,1	60,3	54,1	102,3	6
Max	202,6	298,8	180,7	122,1	31,3	26,1	23,6	35,1	69,4	116,9	98,2	188,6	
Min	22,0	42,1	25,7	0,0	0,0	0,0	0,0	0,0	9,9	26,0	22,4	35,0	39

Imagen 4: Datos meteorológicos del SENAMHI- VIQUES

Nota: Senamhi - Huancayo 2019.

Imagen 5: Precipitación máxima anual.

En la figura siguiente se observa una precipitación máxima anual de 1122.9 mm y una precipitación mínima anual de 395.4 mm

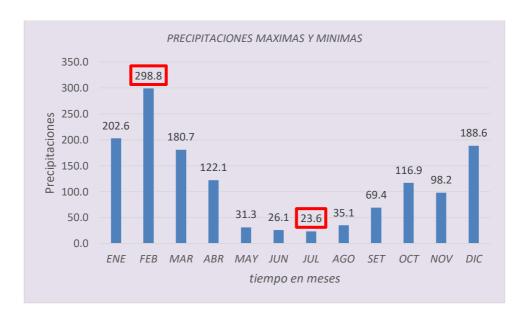


Imagen 6: Precipitaciones máximas promedios mensuales.

Nota: Elaboración propia del autor.

En la figura siguiente se observa una precipitación máxima Mensual de 298.8 mm y una precipitación mínima Mensual de 23.6 mm

4.1.1.2 Determinación de los caudales máximos con el método racional

$$Q=C.\,I.\,A\,\,...\,...\,...\,\,m^3/seg$$

Q: Caudal máximo en m^3/Seg

C: Coeficiente de escorrentía, con valores para cuencas urbanas y rurales

I: intensidad de la Iluvia de diseño, con duración igual al tiempo de concentración de la cuenca y con frecuencia igual al periodo de retorno seleccionado para el diseño (curva I-D-F) (mm/h).

A: Área de la cuenca

Calculo del coeficiente de escorrentía tabla del reglamento nacional de edificaciones OS 060.

Tabla 3 : Coeficiente de escorrentía

CARACTERISTICAS DE		F	PERIOD	O DE RE	TORNO	(AÑOS)	
LA SUPERFICIE	2	5	1	2	5	1	500
			0	5	0	00	
AREAS URBANAS							
Asfalto	0	0	0	0	0	0	1.00
	.73	.77	.81	.86	.90	.95	
Concreto / Techos	0	0	0	0	0	0	1.00
	.75	.80	.83	.88	.92	.97	
Zonas verdes (jardines, parques,	etc)						
Condición pobre (cubierta de pas	sto meno	r del 50°	% del ár	ea)			
Plano 0 - 2%	0	0	0	0	0	0	0.58
	.32	.34	.37	.40	.44	.47	
Promedio 2 - 7%	0	0	0	0	0	0	0.61
	.37	.40	.43	.46	.49	.53	
Pendiente Superior a 7%	0	0	0	0	0	0	0.62
	.40	.43	.45	.49	.52	.55	

Fuente: Reglamento nacional de edificaciones os060.

Viendo la tabla 03 para poder determinar el coeficiente de escorrentía para un periodo de retorno de 25 años tenemos un coeficiente de C= 0,86.

■ Calculo de la pendiente para la aplicación en la fórmula de Kirpich.

$$S = \frac{Cincial - Cfinal}{Lh} = \frac{3239 - 3232}{581.98} = 0.01203$$

Remplazando tenemos que la pendiente es de: S= 0.012 m/m

Calculo del tiempo de concentración para ello se aplicara la fórmula de Kirpich.

$$Tc = 0.066. \left(\frac{L}{\sqrt{S}}\right)^{0.77}$$

Remplazando tenemos que el tiempo de concentración es de:

Tabla 4: Tiempo de concentración

TC:	0.23880854	Horas
CTE:	0.066	Adimensional
L:	0.582	Km
S:	0.012	m/m
TC:	14.3285124	Min

Fuente: Elaboración propia del autor

Por lo tanto el tiempo de concentración se de: Tc= 14.4 min

■ Calculo área del micro-cuenca.

El área es de A= 58189.24 m2 = 5.886 Ha

■ Calculo de la intensidad de la lluvia para los 25 años.

gistros pluviométricos Estación VIQUES - Método Gum						
	. ~	Mes	Precipitad	ción (mm)		
No	Año	Max. Precip.	хi	(xi - x)^2		
1	2008	ENE	80.1			
2	2009	FEB	82.7	2146.37		
3	2010	MAR	64.3	780.60		
4	2011	ABR	24.5	141.71		
5	2012	MAY	8.6	772.14		
6	2013	JUN	4.8	995.66		
7	2014	JUL	3.6	1070.66		
8	2015	AGO	7.1	857.95		
9	2016	SET	23.5	166.43		
10	2017	OCT.	38.2	3.22		
11	2018	NOV	34.3	4.41		
12	2019	DIC	64.8	808.03		
		Suma	436.4	9662.93		
		$\overline{x} = \frac{\sum x_i}{\sum x_i} = \frac{1}{2}$	00.0=			
		$x = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$	36.37	mm		
		,,,				
	$\sum_{n=1}^{\infty}$	-)2				
_	<u></u>	$(x_i - x_i)$				
S	$=\sqrt{\frac{i-1}{i}}$	$\frac{(x_i - \overline{x})^2}{n - 1} =$	29.64	mm		
	·					
	~	$=\frac{\sqrt{6}}{2}*s=$	23.11			
	α	π π	23.11	mm		
и	$= \bar{x} - 0.5$	$5772 * \alpha =$	23.03	mm		

Imagen 7: Parámetros de coeficiente de escorrentía

Para determinar los parámetros "s","α","u" se considera las precipitaciones máximas en 24 horas (mm).

Según el estudio de miles de estaciones - año de datos de lluvia, realizado por L. L. Wells, los resultados de un análisis probabilístico llevado a cabo con lluvias máximas anuales tomadas en un único y fijo intervalo de observación, al ser incrementados en un 13% conducían a magnitudes más aproximadas a las obtenidas en el análisis basado en lluvias máximas verdaderas. Por tanto el valor representativo adoptado para la cuenca será multiplicado por 1.13 para ajustarlo por intervalo fijo y único de observación.

■ Calculo de las láminas para distintas frecuencias

Tabla 5: Cálculo de las láminas de frecuencias.

Periodo	Variable	Precip.	Prob. de	Corrección
Retorno	Reducida	(mm)	ocurrencia	intervalo fijo
Años	YT	XT'(mm)	F(xT)	XT (mm)
2	0.3665	31.4987	0.5000	35.5935
5	1.4999	57.6912	0.8000	65.1911
10	2.2504	75.0329	0.9000	84.7872
25	3.1985	96.9443	0.9600	109.5470
50	3.9019	113.1994	0.9800	127.9153
75	4.3108	122.6474	0.9867	138.5916
100	4.6001	129.3344	0.9900	146.1479
500	6.2136	166.6200	0.9980	188.2806

Fuente: Elaboración propia del autor.

■ Precipitaciones máximas para diferentes tiempos de duración de lluvias

Tabla 6: Precipitación para diferentes tipos de duración de lluvias.

Tiem	Coci	P.M.	P.M.P. (mm) para diferentes tiempos de duración Sg. Periodo						
po de	ente		de Retorno						
Dura		2	5	10	25	50	75	100	500
ción		años	años	años	años	años	años	años	años

24 hr	X24	35.	65.	84.	109.	127.	138.	146.	188.
24 111	724	5935	1911	7872	5470	9153	5916	1479	2806
	X18	32.	59.	77.	99.6	116.	126.	132.	171.
18 hr	= 91%	3901	3239	1564	878	4029	1183	9946	3354
40.1	X12	28.	52.	67.	87.6	102.	110.	116.	150.
12 hr	= 80%	4748	1529	8298	376	3322	8733	9183	6245
0 6 4	X8 =	24.	44.	57.	74.4	86.9	94.2	99.3	128.
8 hr	68%	2036	3299	6553	920	824	423	806	0308
0 1	X6 =	21.	39.	51.	66.8	78.0	84.5	89.1	114.
6 hr	61%	7120	7666	7202	237	283	409	502	8512
	X5 =	20.	37.	48.	62.4	72.9	78.9	83.3	107.
5 hr	57%	2883	1589	3287	418	117	972	043	3200
4.1	X4 =	18.	33.	44.	56.9	66.5	72.0	75.9	97.9
4 hr	52%	5086	8994	0894	645	159	676	969	059
0.1.	X3 =	16.	29.	39.	50.3	58.8	63.7	67.2	86.6
3 hr	46%	3730	9879	0021	916	410	521	280	091
	X2 =	13.	25.	33.	42.7	49.8	54.0	56.9	73.4
2 hr	39%	8815	4245	0670	233	870	507	977	295
A 1	X1 =	10.	19.	25.	32.8	38.3	41.5	43.8	56.4
1 hr	30%	6781	5573	4362	641	746	775	444	842

Fuente: Elaboración propia del autor.

Basándose en los resultados de la anterior tabla, y los tiempos de duración adoptados, calculamos la intensidad equivalente para cada caso, según:

$$I = \frac{P (mm)}{t \text{ duracion (horas)}}$$

■ Intensidades de lluvia para diferentes tiempos de duración.

Tabla 7: Intensidades de la lluvia para diferentes tiempos de duración

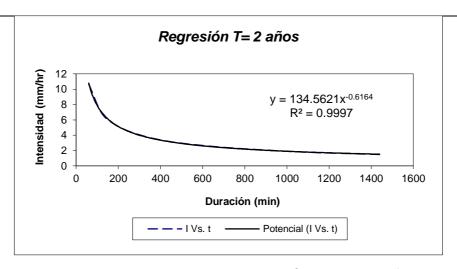
Tiempo de du	duración Intensidad de la lluvia (mm /hr) según el Per					eriodo de	Retorno	
Hr	Min	2 años	5 años	10 años	25 años	50 años	75 años	100 años
24 hr	1440	1.4831	2.7163	3.5328	4.5645	5.3298	5.7746	6.0895
18 hr	1080	1.7994	3.2958	4.2865	5.5382	6.4668	7.0066	7.3886
12 hr	720	2.3729	4.3461	5.6525	7.3031	8.5277	9.2394	9.7432
8 hr	480	3.0254	5.5412	7.2069	9.3115	10.8728	11.7803	12.4226
6 hr	360	3.6187	6.6278	8.62	11.1373	13.0047	14.0901	14.8584
5 hr	300	4.0577	7.4318	9.6657	12.4884	14.5823	15.7994	16.6609
4 hr	240	4.6272	8.4748	11.0223	14.2411	16.629	18.0169	18.9992
3 hr	180	5.4577	9.996	13.0007	16.7972	19.6137	21.2507	22.4093
2 hr	120	6.9407	12.7123	16.5335	21.3617	24.9435	27.0254	28.4988
1 hr	60	10.6781	19.5573	25.4362	32.8641	38.3746	41.5775	43.8444

Fuente: Elaboración propia del autor.

La representación matemática de las curvas Intensidad - Duración - Período de retorno, Sg. Bernard es:

$$I = \frac{a \cdot T^b}{t^c}$$

En el cual: I: Intensidad en mm/hr


T: periodo de retorno en años

t: duración de la lluvia en min

a,b,c: parámetros de ajuste

Tabla 8: Periodo de retorno de T= 2 años

		Periodo	o de retorno pa	ara T = 2 años		
N°	х	у	ln x	In y	ln x*ln y	(lnx)^2
1	1440	1.4831	7.2724	0.3941	2.8661	52.8878
2	1080	1.7994	6.9847	0.5875	4.1034	48.7863
3	720	2.3729	6.5793	0.8641	5.6852	43.2865
4	480	3.0254	6.1738	1.1071	6.8347	38.1156
5	360	3.6187	5.8861	1.2861	7.5702	34.6462
6	300	4.0577	5.7038	1.4006	7.9888	32.5331
7	240	4.6272	5.4806	1.5319	8.3960	30.0374
8	180	5.4577	5.1930	1.6970	8.8126	26.9668
9	120	6.9407	4.7875	1.9374	9.2753	22.9201
10	60	10.6781	4.0943	2.3682	9.6962	16.7637
10	4980	44.0608	58.1555	13.1740	71.2285	346.9435
Ln (A) =	4.9020	A =	134.5621	B =	-0.6164	

Imagen 8: Intensidad de precipitación para T=2 años

Tabla 9: Periodo de retorno de T=5 años Periodo de retorno para T = 5 años

Nº	Х	У	ln x	In y	ln x*ln y	(lnx)^2
1	1440	2.7163	7.2724	0.9993	7.2671	52.8878
2	1080	3.2958	6.9847	1.1926	8.3303	48.7863
3	720	4.3461	6.5793	1.4693	9.6667	43.2865
4	480	5.5412	6.1738	1.7122	10.5709	38.1156
5	360	6.6278	5.8861	1.8913	11.1322	34.6462
6	300	7.4318	5.7038	2.0058	11.4405	32.5331
7	240	8.4748	5.4806	2.1371	11.7127	30.0374
8	180	9.996	5.193	2.3022	11.9551	26.9668
9	120	12.7123	4.7875	2.5426	12.1725	22.9201
10	60	19.5573	4.0943	2.9733	12.1739	16.7637
10	4980	80.6993	58.1555	19.2256	106.4218	346.9435
Ln	(A) =	5.5072	A = 246.4	565 B =	-0.6164	

Fuente: Elaboración propia del autor.

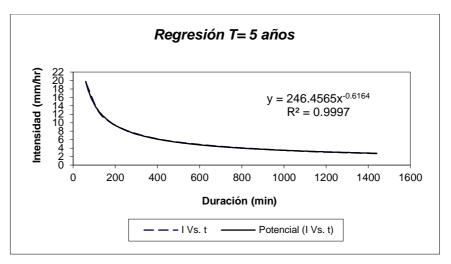
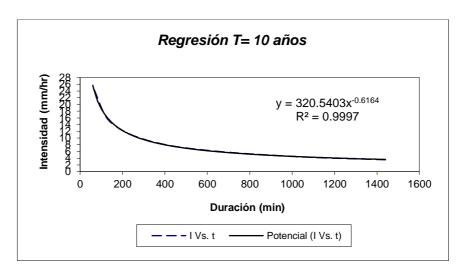



Imagen 9: Intensidad de precipitación para T=5 años

Tabla 10: Periodo de retorno de T=10 años

		Period	o de retorno pai	ra T = 10 años		
N°	Х	у	ln x	ln y	ln x*ln y	(lnx)^2
1	1440	3.5328	7.2724	1.2621	9.1784	52.8878
2	1080	4.2865	6.9847	1.4555	10.1660	48.7863
3	720	5.6525	6.5793	1.7321	11.3959	43.2865
4	480	7.2069	6.1738	1.9750	12.1935	38.1156
5	360	8.6200	5.8861	2.1541	12.6792	34.6462
6	300	9.6657	5.7038	2.2686	12.9395	32.5331
7	240	11.0223	5.4806	2.3999	13.1531	30.0374
8	180	13.0007	5.1930	2.5650	13.3200	26.9668
9	120	16.5335	4.7875	2.8054	13.4308	22.9201
10	60	25.4362	4.0943	3.2362	13.2500	16.7637
10	4980	104.9572	58.1555	21.8539	121.7064	346.9435
Ln (A) =	5.7700	<i>A</i> =	320.5403	B =	-0.6164	

Fuente: Elaboración propia del autor.

Imagen 10: Intensidad de precipitación para T= 10 años

Tabla 11: Periodo de retorno para T=25 años

	Periodo de retorno para T = 25 años										
		r enodo (ие гетопно ра	ia i – 25 and	<i>7</i> 3						
N°	Х	у	ln x	ln y	ln x*ln y	(lnx)^2					
1	1440	4.5645	7.2724	1.5183	11.0417	52.8878					
2	1080	5.5382	6.9847	1.7117	11.9555	48.7863					
3	720	7.3031	6.5793	1.9883	13.0815	43.2865					
4	480	9.3115	6.1738	2.2312	13.7753	38.1156					
5	360	11.1373	5.8861	2.4103	14.1873	34.6462					
6	300	12.4884	5.7038	2.5248	14.4009	32.5331					
7	240	14.2411	5.4806	2.6561	14.5573	30.0374					
8	180	16.7972	5.1930	2.8212	14.6504	26.9668					
9	120	21.3617	4.7875	3.0616	14.6574	22.9201					
10	60	32.8641	4.0943	3.4924	14.2990	16.7637					
10	4980	135.6071	58.1555	24.4159	136.6063	346.9435					

$$Ln$$
 6.0262 $A = 414.1453$ $B = -0.6164$ $(A) =$

Fuente: Elaboración propia del autor.

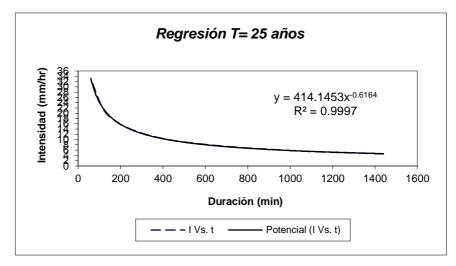
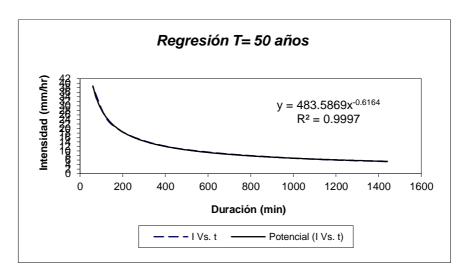



Imagen 11: Intensidad de precipitación para T=25 años

Tabla 12: Periodo de retorno para T=años

		Periodo (de retorno pa	ra T = 50 año	os	
N°	Х	у	ln x	In y	ln x*ln y	(lnx)^2
1	1440	5.3298	7.2724	1.6733	12.1690	52.8878
2	1080	6.4668	6.9847	1.8667	13.0383	48.7863
3	720	8.5277	6.5793	2.1433	14.1014	43.2865
4	480	10.8728	6.1738	2.3863	14.7323	38.1156
5	360	13.0047	5.8861	2.5653	15.0997	34.6462
6	300	14.5823	5.7038	2.6798	15.2851	32.5331
7	240	16.6290	5.4806	2.8111	15.4069	30.0374
8	180	19.6137	5.1930	2.9762	15.4554	26.9668
9	120	24.9435	4.7875	3.2166	15.3995	22.9201
10	60	38.3746	4.0943	3.6474	14.9337	16.7637
10	4980	158.3449	58.1555	25.9661	145.6212	346.9435

$$Ln$$
 6.1812 $A = 483.5869$ $B = -0.6164$ $(A) =$

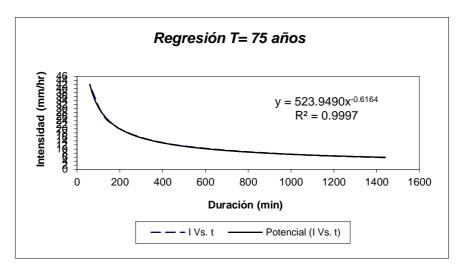


Imagen 12: Intensidad de precipitación para T= 50 años

Tabla 13: Periodo de retorno para T= 75 años

		Periodo d	de retorno pa	ra T = 75 año	os	
N°	Х	У	ln x	In y	ln x*ln y	(lnx)^2
1	1440	5.7746	7.2724	1.7535	12.7520	52.8878
2	1080	7.0066	6.9847	1.9468	13.5982	48.7863
3	720	9.2394	6.5793	2.2235	14.6288	43.2865
4	480	11.7803	6.1738	2.4664	15.2272	38.1156
5	360	14.0901	5.8861	2.6455	15.5715	34.6462
6	300	15.7994	5.7038	2.7600	15.7423	32.5331
7	240	18.0169	5.4806	2.8913	15.8462	30.0374
8	180	21.2507	5.1930	3.0564	15.8717	26.9668
9	120	27.0254	4.7875	3.2968	15.7833	22.9201
10	60	41.5775	4.0943	3.7276	15.2619	16.7637
10	4980	171.5610	58.1555	26.7677	150.2832	346.9435

$$Ln$$
 6.2614 $A = 523.9490$ $B = -0.6164$ $(A) =$

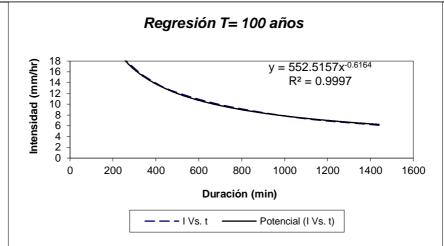


Imagen 13: Intensidad de precipitación para T= 75 años

Tabla 14: Periodo de retorno para T= 100 años

		Periodo d	le retorno par	a T = 100 añ	os	
N°	Х	У	ln x	In y	ln x*ln y	(lnx)^2
1	1440	6.0895	7.2724	1.8066	13.1381	52.8878
2	1080	7.3886	6.9847	1.9999	13.9690	48.7863
3	720	9.7432	6.5793	2.2766	14.9781	43.2865
4	480	12.4226	6.1738	2.5195	15.5549	38.1156
5	360	14.8584	5.8861	2.6986	15.8840	34.6462
6	300	16.6609	5.7038	2.8131	16.0451	32.5331
7	240	18.9992	5.4806	2.9444	16.1372	30.0374
8	180	22.4093	5.1930	3.1095	16.1474	26.9668
9	120	28.4988	4.7875	3.3499	16.0374	22.9201
10	60	43.8444	4.0943	3.7806	15.4793	16.7637
10	4980	180.9148	58.1555	27.2986	153.3705	346.9435

Imagen 14: Intensidad de precipitación para T= 500 años

Tabla 15: Periodo de retorno para T= 500 años

		Periodo d	le retorno par	ra T = 500 añ	os	
N°	Х	У	ln x	In y	ln x*ln y	(lnx)^2
1	1440	7.8450	7.2724	2.0599	14.9803	52.8878
2	1080	9.5186	6.9847	2.2533	15.7383	48.7863
3	720	12.5520	6.5793	2.5299	16.6447	43.2865
4	480	16.0039	6.1738	2.7728	17.1189	38.1156
5	360	19.1419	5.8861	2.9519	17.3751	34.6462
6	300	21.4640	5.7038	3.0664	17.4899	32.5331
7	240	24.4765	5.4806	3.1977	17.5255	30.0374
8	180	28.8697	5.1930	3.3628	17.4628	26.9668
9	120	36.7147	4.7875	3.6032	17.2502	22.9201
10	60	56.4842	4.0943	4.0340	16.5164	16.7637
10	4980	233.0705	58.1555	29.8317	168.1021	346.9435

$$Ln$$
 6.5678 $A = 711.7997$ $B = -0.6164$ $(A) =$

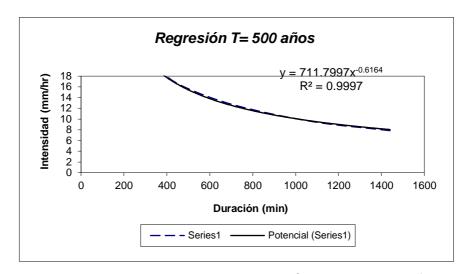


Imagen 15: Intensidad de precipitación para T= 500 años

Resumen de aplicación de regresión potencial

Tabla 16: Regresión potencial para los periodos de retorno

Periodo de	Término ctte. de	Coef. de
Retorno (años)	regresión (d)	regresión [c]
2	134.56214000397	-0.6163860881
5	246.45647303353	-0.6163860881
10	320.54025774627	-0.6163860881
25	414.14531612312	-0.6163860881
50	483.58689568659	-0.6163860881
75	523.94898921722	-0.6163860881
100	552.51572952684	-0.6163860881
500	711.79974200845	-0.6163860881
Promedio =	423.44444291825	-0.6163860881

Fuente: Elaboración propia del autor.

En función del cambio de variable realizado, se realiza otra regresión de potencia entre las columnas del periodo de retorno (T) y el término constante de regresión (d), para obtener valores de la ecuación:

$$d = a \cdot T^b$$

Tabla 17: Regresión potencial IDF

		F	Regresión po	tencial		
N°	Х	у	ln x	In y	ln x*ln y	(lnx)^2
1	2	134.5621	0.6931	4.9020	3.3978	0.4805
2	5	246.4565	1.6094	5.5072	8.8635	2.5903
3	10	320.5403	2.3026	5.7700	13.2859	5.3019
4	25	414.1453	3.2189	6.0262	19.3976	10.3612
5	50	483.5869	3.9120	6.1812	24.1811	15.3039
6	75	523.9490	4.3175	6.2614	27.0335	18.6407
7	100	552.5157	4.6052	6.3145	29.0793	21.2076
8	500	711.7997	6.2146	6.5678	40.8163	38.6214
8	767	3387.5555	26.8733	47.5303	166.0550	112.5074
Ln (A) =	4.9755	A =	144.8253	B=	0.2875	

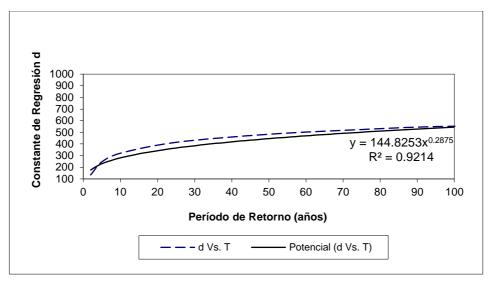


Imagen 16: Regresión potencias IDF

Tabla 18: Termino constante de regresión

144.8253	Termino constante de regresión
144.8253	(a) =
0.287501	Coef. de regresión (b) =

Fuente: Elaboración propia del autor.

Finalmente se tiene la ecuación de intensidad válida para la cuenca:

$$I = \frac{a \cdot T^b}{t^c}$$

Intensidad - Tiempo de duración - Período de retorno.

Tabla 19: Tabla de intensidad IDF

Tabla de intensidad - Tiempo de duración - Periodo de retorno						
Frecuencia			Duración	en minutos		
años	5	10	15	20	25	30

2	65.55	42.76	33.30	27.89	24.31	21.72
5	85.30	55.64	43.34	36.30	31.63	28.27
10	104.11	67.91	52.90	44.30	38.61	34.50
25	135.49	88.38	68.84	57.65	50.24	44.90
				- <u> </u>		
50	165.37	107.87	84.02	70.37	61.32	54.81
75	185.82	121.21	94.41	79.07	68.91	61.58
100	201.84	131.66	102.55	85.88	74.85	66.89
500	320.60	209.13	162.88	136.42	118.89	106.25

Tabla de intensidad - Tiempo de duración - Periodo de retorno (continuación...)

Frecuencia						
años	35	40	45	50	55	60
2	19.75	18.19	16.92	15.86	14.95	14.17
5	25.71	23.68	22.02	20.63	19.46	18.44
10	31.38	28.90	26.87	25.18	23.75	22.51
25	40.83	37.61	34.97	32.77	30.90	29.29
50	49.84	45.90	42.69	40.00	37.72	35.75
75	56.00	51.57	47.96	44.95	42.38	40.17
100	60.83	56.02	52.10	48.82	46.04	43.63
500	96.62	88.98	82.75	77.55	73.13	69.31

Fuente: Elaboración propia del autor.

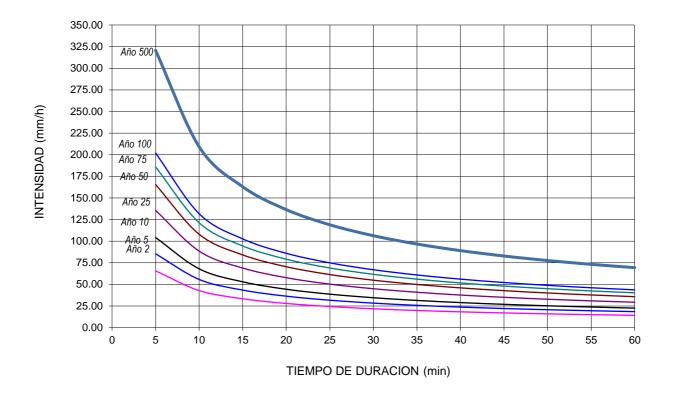


Imagen 17: Regresión potencial para cada periodo de retorno

De los cuales tenemos como la intensidad de la precipitación.

$$Ip = \frac{180 * T^{0.20}}{(Tc + 3)^{0.5}}$$

Remplazando tenemos:

lp:	82.3151674	mm/h
T:	25	periodo de retorno
Tc:	14.3285124	Minutos

Por lo tanto la intensidad de precipitación es de 82.32 mm/h.

Calculamos el caudal de escorrentía del micro-cuenca

Q:	1158.42752
C:	0.86
l:	82.32
A:	5.886

Por lo tanto tenemos un caudal de escorrentía de 1158.43 l/seg para un periodo de retorno de 25 años.

4.1.1.3 Calculo de la precipitación neta con el HEC-HMS

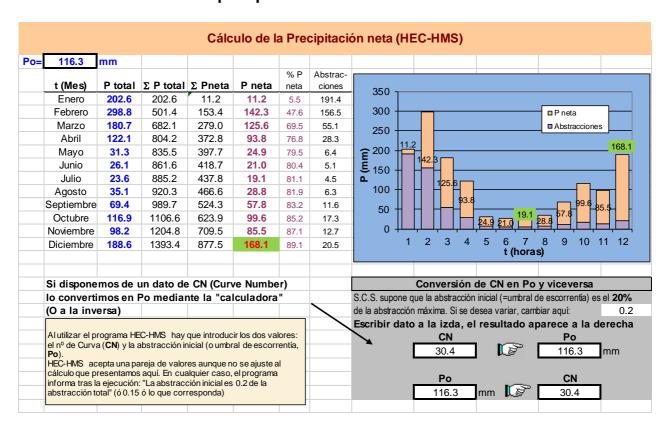


Imagen 18: Determinación del coeficiente de escorrentía HEC-HMS

4.1.2 Consideraciones hidráulicas en sistemas de drenaje urbanismo menor captación de aguas se pluviales en zonas urbanas.

4.1.2.1 Consideraciones del caudal de diseño

Tabla 20: Calculo de caudal de diseño.

Calculo del caudal de diseño Qd				
datos:	lp=	160	mm/hora	
	Ip=	0.000044	m/seg	
	C-asf=	0.95		
	C-concr=	0.875		
	C-Azt=	0.85		
Punto	Area (m2)	С	Q (m3/seg)	Q (I/seg)
1	218.823	0.85	0.0083	8.27
2	141.974	0.85	0.0054	5.36
3	66.04	0.85	0.0025	2.49
4	61.262	0.85	0.0023	2.31
5	65.349	0.85	0.0025	2.47
6	65.944	0.85	0.0025	2.49
7	32.774	0.85	0.0012	1.24
8	13.911	0.85	0.0005	0.53
9	35.536	0.85	0.0013	1.34
10	35.935	0.85	0.0014	1.36
11	150.793	0.85	0.0057	5.70
12	73.113	0.85	0.0028	2.76

13	105.026	0.85	0.0040	3.97
14	106.929	0.85	0.0040	4.04
15	61.674	0.85	0.0023	2.33
16	74.526	0.85	0.0028	2.82
17	101.332	0.85	0.0038	3.83
18	113.107	0.85	0.0043	4.27
19	96.34	0.85	0.0036	3.64
20	90.135	0.85	0.0034	3.41
21	79.047	0.85	0.0030	2.99
22	332.476	0.85	0.0126	12.56
23	359.876	0.85	0.0136	13.60
24	68.5	0.85	0.0026	2.59
25	101.282	0.85	0.0038	3.83
26	60.101	0.85	0.0023	2.27
27	167.036	0.85	0.0063	6.31
28	134.856	0.85	0.0051	5.09
29	132.178	0.85	0.0050	4.99
30	131.925	0.85	0.0050	4.98
31	132.086	0.85	0.0050	4.99
32	128.12	0.85	0.0048	4.84
33	135.03	0.85	0.0051	5.10
34	76.886	0.85	0.0029	2.90
35	198.121	0.85	0.0075	7.48
36	808.503	0.95	0.0341	34.14
37	2553.579	0.95	0.1078	107.82

		Q aprt.Vivienda =		409.08
41	447.61	0.95	0.0189	18.90
40	942.864	0.95	0.0398	39.81
39	550.693	0.95	0.0233	23.25
38	852.94	0.95	0.0360	36.01

Caudal de diseño

Formula y coeficiente de rugosidad.

El cálculo hidráulico de las alcantarillas se deberá hacer en base al criterio de la tensión de arrastre:

$$Fa = \gamma * Rh * S$$

F arrastre = Tensión de arrastre en Pa, se recomienda un valor mínimo de F arrastre = 1 Pa

γ=Peso específico del líquido en N/m3

R=Radio hidráulico a gasto mínimo en m

S= Pendiente mínima en m/m

Y a la fórmula de Manning:

$$Q = \frac{1}{n} A R_H^{2/3} S_o^{1-2}$$

Siguiente se indican valores del coeficiente de rugosidad "n" de Manning, para las tuberías de uso más corriente.

Se pueden usar diferentes clases de tuberías, las cuales se seleccionarán de

acuerdo a las condiciones en que funcionará el sistema y a los costos de inversión y de Operación y Mantenimiento.

Las colectoras mayores que reciben efluentes de redes relativamente extensas, que corresponden a mayor población tributaria, están sujetas a menores variaciones de caudal y por eso pueden ser dimensionadas para funcionar con tirantes de 0.70 a 0.80 del diámetro.

Tabla 21: Coeficiente de Manning para concreto

Material	Coeficiente	Material	Coeficiente
	"n"		"n"
Concreto	0.013	Hierro galvanizado	0.014
		(H°G°)	
Polivinilo (PVC)	0.009	Hierro Fundido	0.012
		(H°F°)	
Polietileno (PE)	0.009	Fibra de vidrio	0.010
Asbesto-Cemento	0.010		
(AC)			

Fuente: Diseño de acueductos y Alcantarillados; Ricardo Alfredo López Cualla; 2 da Edición.

Los valores del coeficiente de rugosidad de Manning de las tuberías de PVC que se utilizarán en las distintas calles del proyecto serán de **0.013** de acuerdo a tablas que se presentan en el RNE.

En el diseño hidráulico de los colectores de agua de lluvia, se podrán utilizar los criterios de diseño de conductos cerrados.

Para el cálculo de los caudales se usará la fórmula de Manning con los coeficientes de rugosidad para cada tipo de material, según el cuadro siguiente:

Tabla 22: Coeficiente de Mannig para PVC

Tubería	Coeficiente de rugosidad "n" de	
Tubella	Manning	
Asbesto Cemento	0.010	
Hierro fundido Dúctil	0.010	
Cloruro de Polivinilo	0.010	
Poliéster Reforzado con fibra		
de vidrio	0.010	
Concreto Armado liso	0.013	
Concreto Armado con		
Revestimiento de PVC	0.010	
Arcilla Vitrificada	0.010	

Fuente: Norma OS-060 drenaje pluvial urbano – RNE.

Calculo del Caudal de diseño

Estas consideraciones nos conduce a conclusiones similares a las determinadas para el flujo en canales abiertos, para efectos de diseño el régimen se considera permanente.

En el diseño conocemos el caudal Q(lps) y nos quedarían indeterminadas la velocidad y el área del conducto requerido. En tales circunstancias la determinación de una velocidad capaz de producir el arrastre del material debe privar en el diseño.

Además, resulta conveniente diseñar los colectores de aguas negras con considerable capacidad de reserva, a fin de absorber las múltiples imprecisiones que la fijación de un gasto de diseño que esta implica.

• Elementos hidráulicos de una sección circular a sección llena.

a) Tirante de agua o profundidad de flujo, será igual al diámetro del colector.

$$H = D$$

b) Perímetro mojado.

$$P = \pi D$$

c) Área de la sección transversal.

$$A = \frac{\pi}{4}D^2$$

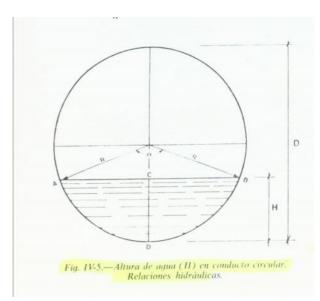


Imagen 19: Altura de agua en conductos circulares

d) Radio hidráulico.

$$R_{H} = \frac{\pi D^{2}}{4} = \frac{D}{4}$$

e) Velocidad.

$$V = \frac{1}{n} R_H^{\frac{2}{3}} S^{\frac{1}{2}}$$

f) Gasto.

$$Q = V A$$

Elementos hidráulicos para un tirante H.

g) Perímetro mojado, arco ADB, el ángulo debe estar en radianes.

$$P = \frac{1}{2}\theta D$$

h) Área de la sección transversal.

$$A = \frac{1}{8}(\theta - sen\theta)D^2$$

i) Radio hidráulico.

$$R_H = \frac{1}{4}(1 - \frac{sen\theta}{\theta})D$$

j) Relación entre el ángulo y el tirante de agua H.

$$\frac{H}{D} = sen^2 \frac{\theta}{4}$$
 o $cos \frac{\theta}{2} = 1 - \frac{2H}{D}$

Por lo tanto, dando valores a H en función del diámetro se obtienen valores del ángulo θ . Calculando luego los elementos hidráulicos para varios ángulos podemos construir graficas que permiten conocer los elementos hidráulicos para cualquier valor.

Con estos datos nos da las curvas de relaciones de caudal, velocidad, radio hidráulico, perímetro de mojado y área. Esta relación consiste en el cociente a sección parcial a sección llena. Para tal efecto se prepara una sola grafica con todas las relaciones de elementos hidráulicos, con lo cual puede hacerse la determinación de todas las características de flujo para una condición dada.

4.1.2.2 Disposiciones de la red de alcantarilla

4.1.2.2.1 Sistemas perpendiculares.

El sistema perpendicular sin interceptor es un sistema adecuado para un alcantarillado pluvial, ya que sus aguas pueden ser vertidas a una corriente superficial en cercanías de la población sin que haya riesgos para la salud humana ni deterioro de la calidad del cuerpo receptor.

4.1.2.2.2 Sistemas perpendiculares con interceptor.

El sistema de alcantarillado perpendicular con interceptor es utilizado para alcantarillados sanitarios. El interceptor recoge el caudal de aguas residuales de la red y lo transporta a una planta de tratamiento de aguas residuales o vierte el caudal a la corriente superficial aguas debajo de la población para evitar riesgos contra la salud humana.

- Sistema perpendicular con interceptor y aliviadero.
- Sistema en abanico.
- Sistema en bayoneta.

-

El sistema de alcantarillado en bayoneta es apropiado para alcantarillados sanitarios en donde existan terrenos muy planos y velocidades muy bajas.

A continuación se muestra trazados de sistemas de alcantarillado:

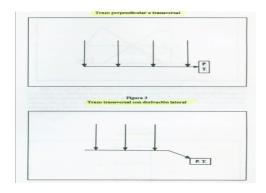
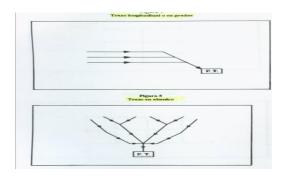



Imagen 20: Trazo perpendicular lateral

Imagen 21: Trazo longitudinal en gradas o abanico

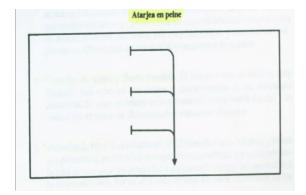


Imagen 22: Trazo en Atarjea

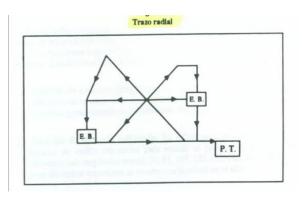


Imagen 223: Trazo radial

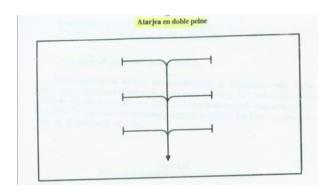


Imagen 23: Trazo alcantarillado con interceptor

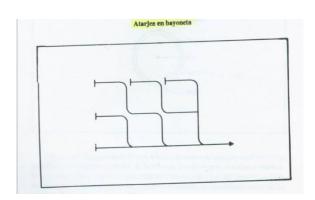


Imagen 245: Trazo en atarjea en bayoneta

4.1.2.3 Evacuación de las aguas transportadas por las cunetas

Para evacuación de las aguas de las cunetas deberá preverse Entradas o Sumideros de acuerdo a la pendiente de las cunetas y condiciones de flujo. La cuneta en estudio será una cuneta de sección triangular basado en la figura N°1 del reglamento nacional de edificaciones.

Para el cálculo del caudal se determinará con la siguiente formula de Manning.

$$Q = 315 \frac{Z}{n} S^{0.5} Y^{\frac{3}{8}} \left(\frac{Z}{1 + \sqrt{1 + Z^2}} \right)^{2/3}$$

Determinaremos las pendientes:

Tabla 23: Determinación de las pendientes

Determinación de la pendiente de terreno				
Área	Cota inicial	Cota final	Lh	S
1	3238	3237	56	0.018
2	3237	3235	98	0.02
3	3235	3234	102	0.01
4	3234	3233	95	0.01
5	3233	3232	102	0.01
6	3233	3232	102	0.01

Fuente: Elaboración propia del autor.

Calculamos la capacidad de evacuación de las cunetas

$$Q = 315 * \frac{Z}{N} * S^{0.5} * Y^{\frac{8}{3}} * \left| \frac{Z}{1 + \sqrt{1 + Z^2}} \right|^{\frac{2}{3}}$$

Formula:

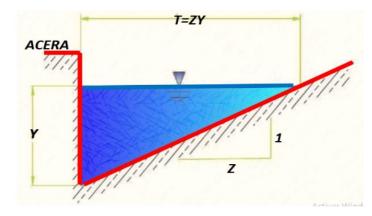


Imagen 25: Cuneta

Nota: Elaboración propia del autor

Área=	0.08
Rh=	0.08273009
Pm=	0.967
n=	0.013

Tabla 24: Capacidad de evacuación de aguas de lluvia de la cuneta.

Punto	V (m/seg)	Q (m3/seg)	Q total	L/seg
1	1.57	0.13	0.25	250.71
2	1.79	0.14	0.29	286.52
3	0.86	0.07	0.14	137.64
4	0.92	0.07	0.15	147.78
5	0.86	0.07	0.14	137.64
6	0.86	0.07	0.14	137.64

Fuente: Elaboración propia del autor.

Tabla 25: Verificaciones de los caudales a aporte Qtotal > Qi

Punto Qi Verificación Q total 1 19.9346 8.27 OK Cumple 2 21.4961 13.63 **OK Cumple** 34.2895 16.12 OK Cumple 3

44.8582

64.2895

94.2895

18.44

20.91

23.40

OK Cumple

OK Cumple

OK Cumple

Realizamos las verificaciones de cumplimiento

Fuente: Elaboración propia del autor.

4

5

6

Utilizamos el programa SewerGEMS para su verificación de los cálculos realizados.

Para el cálculo de la intensidad, duración y frecuencia se utilizó el programa SewerGEMS para un periodo de retorno de 2 y 10 años como nos indica el reglamento nacional de edificaciones OS-060.

 Modificamos las unidades de medida de acuerdo al sistema internacional



Imagen 26: Cambio de unidades al sistema internacional "SewerGEMS"Nota: Elaboración propia del autor

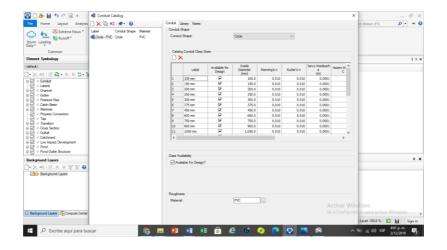


Imagen 27: Diámetros de las tuberías SewerGEMS

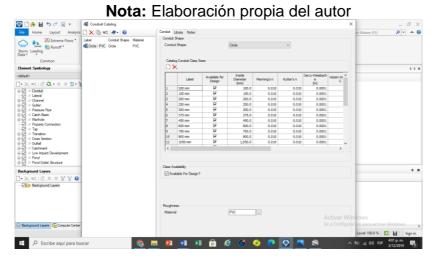
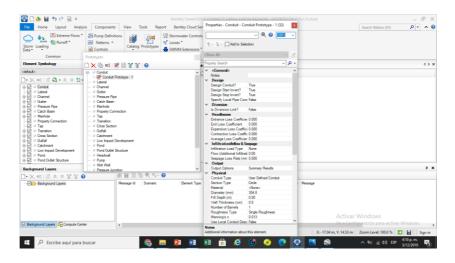



Imagen 28: Parámetros de acuerdo OS-060 RNE SewerGEMS

Nota: Elaboración propia del autor

Modificamos los parámetros de diseño para que el sistema calcule y dimensione las tuberías de nuestro sistema de alcantarillado pluvial.

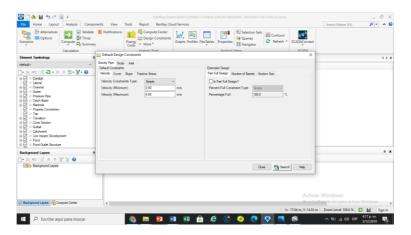


Imagen 29: Insertamos nuestras constantes de diseño – SewerGEMS

Nota: Elaboración propia del autor.

Figura 21: Cuneta sin depresión y/o con depresión al RNE os-060

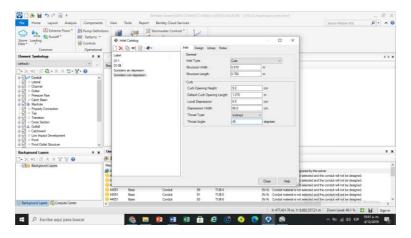


Imagen 30: Cuneta sin depresión y/o con depresión OS-060-RNE SewerGEMS

Nota: Elaboración propia del autor.

Insertamos los tipos de sumideros de fondo tanto como: sumidero de cuneta sin depresión y con depresión.

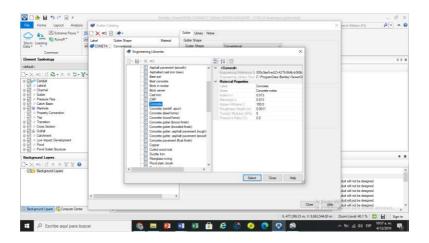


Imagen 31: Coeficientes de diseño para cunetas – SewerGEMSNota: Elaboración propia del autor.

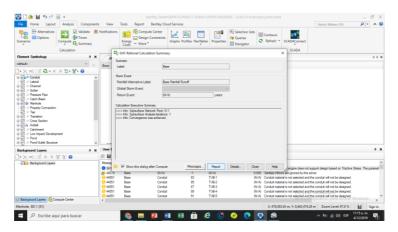


Imagen 32: Validación de los datos insertados al programa – SewerGEMSNota: Elaboración propia del autor.

4.1.1.2 Realizamos las verificaciones respectivas de los dimensionamientos de las tuberías PVC

Esquema importado con sus coordenadas respectivas

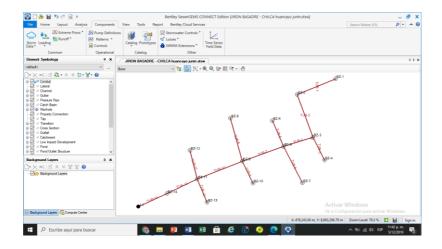


Imagen 33: Esquema del sistema de alcantarillado pluvial – SewerGEMSNota: Elaboración propia del autor.

Diámetro en campo = 250mm Diámetro calculado =250 mm Ok.

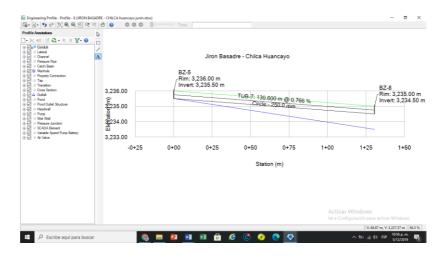


Imagen 34: Diámetros de los conductos BZ5-BZ8

Nota: Elaboración propia del autor.

Diámetro en campo = 250mm Diámetro calculado =250 mm Ok

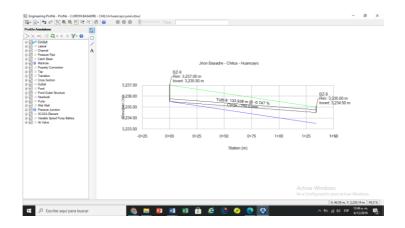


Imagen 35: Diámetro de los conductos BZ9-BZ8

Nota: Elaboración propia del autor.

Diámetro en campo = 250mm Diámetro calculado =250 mm Ok

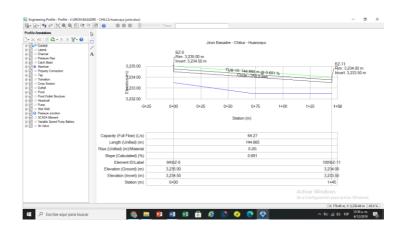


Imagen 36: Diámetros de los conductos BZ9-BZ11.

Nota: Elaboración propia del autor.

Pendientes de cada tramo cumpliendo con el pendiente mínimo de diseño según el RNE OS-060.

Imagen 37: Pendiente de la red de tuberías

Nota: Elaboración propia del autor.

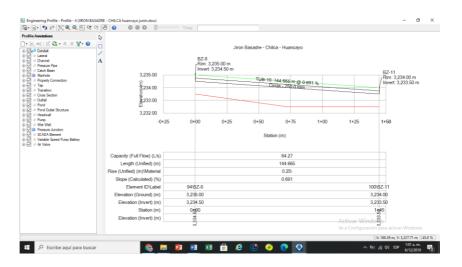


Imagen 38: Pendiente del tramo TUB10=0.7%>0.5% Oky Cumple

Nota: Elaboración propia del autor.

CAPÍTULO V:

DISCUSION DE RESULTADO

Debido a un álgido crecimiento urbano en la que está sujeta el distrito de chilca provincia de Huancayo departamento Junín ello brinda una mejora continua realizando constantemente obras de infraestructura vial considerando en estas obras de alcantarillado pluvial para su evacuación en altas época de lluvia, para precipitaciones pluviales mayores o iguales a los 10mm en 24 horas tal como se menciona en la Norma OS.060 del Reglamento Nacional de Edificaciones.

De la misma manera se verificó que el área de la zona de estudio no se lleva a cabo las actividades de operación y mantenimiento respectivo disminuyendo así su capacidad hidráulica de la cuneta que se evidencia en la figura siguiente.

Imagen 39: Obstrucción del canal a base de Grass Jirón Basadre-Jirón Toledo.

Nota: Elaboración propia del autor.

Imagen 40: Cuneta con presencia de grass en el Jirón Basadre

Nota: Elaboración propia del autor.

Los resultados obtenidos en esta investigación servirán como referencia para futuras investigaciones sobre los sistemas de alcantarillado pluvial que pretenda la determinación de caudales de las áreas de influencia y/o también caudales de aporte a las redes de alcantarillado pluvial.

Para (Eric, 2014) Además los valores obtenidos de Eficiencia de operación nos muestra que las secciones están a más del 100% de su capacidad, es decir, que para todas las secciones no tienen la capacidad para operar con todo el caudal y tiene un exceso del 17% y 43% para la sección del tramo de evacuación para un periodo de retorno de 2 años y 10 años respectivamente, ocasionando esto una inundación o colapso del sistema. De igual manera para la sección A2 que tiene un exceso del 52% y 62% para t = 2 años y T = 10 años (Eric, 2014).

CONCLUSIONES

- Con las verificaciones de la hipótesis nos permitió corroborar que las precipitaciones pluviales influyen directamente en la capacidad hidráulica de la tuberías ya que estas son directamente proporcional teniendo una PTP anual máx.=1122.9mm, PTP mensual máx.=298.8mm y un caudal de diseño de Qmh=51.117mm y un coeficiente de escorrentía de Cesc=0.86 para áreas urbanas.
- En las verificaciones de las pendiente se contrastó de que en tramo de evacuación BZ14-IO – TUB14 la pendiente es de 0.692% cumpliendo así a una pendiente mínima del 0.5% estipulado en la OS.060 del RNE satisfaciendo esta para una velocidad mínima a tubo lleno.
- En el tramo TBU14 con ∅=250mm equivalentes a 10" pulgadas dicha tubería no es adecuado para soportar los caudales que transporta en épocas de alta intensidad de precipitación ya que por ello estas colapsan y se desbordad por las estructuras viales causando inundaciones.
- Se contrasta la política de operación y mantenimiento que no se dan en dicho área de investigación ya que ello perjudica más aun al sistema de alcantarillado pluvial y también a la vida útil de la infraestructura vial.

RECOMENDACIONES

- Se recomienda seguir los estudios en un siguiente nivel que sería experimental, para seguir explorando los criterios de diseño, parámetros de diseño de los sistemas de alcantarillado pluvial análisis, dado que estos parámetros son considerados en el extranjero.
- Se recomienda realizar más trabajos de investigación similares en nuestras área de influencia entorno a nuestra provincia, como es el caso del Jr. Ica, Av ferrocarril, Av. Giráldez; para así diseñar nuevos sistemas de alcantarillados pluviales, puesto que ello solucionaría los problemas de acumulación de aguas de lluvia e las inundaciones en épocas de intensa precipitación pluvial.
- Se recomienda una planificación para realizar el mantenimiento preventivo de los sistemas de alcantarillado pluvial y las cunetas para así evitar a que las aguas de lluvia se desborden por toda la infraestructura vial.
- Se recomienda realizar parámetros matriciales de aguas pluviales en un estudio a nivel de infraestructura y funcionamientos, con los diseños acorde al normatividad.

REFERENCIAS BIBLIOGRAFICAS

- Aguamarket. (06 de febrero de 2017). Capacidad Hidraulica. Obtenido de https://www.aguamarket.com/diccionario/terminos.asp?Id=345&termino=ca pacidad+hidr%E1ulica
- Béjar, M. V. (2002). Hidrología. Lima-Perú: Villón.
- carmona, R. P. (2015). Diseño y construcción de alcantarillados sanitario,
 pluvial y drenaje en carreteras. Chile: MACRO.
- comunicaciones, M. d. (2007). Manual de Hidrologia, Hidraulica y Drenaje.

 Lima Peru: Editorial Macro.
- Eric, Y. P. (2014). Eficiencia del sistema de drenaje pluvial en la av. Angamos
 y Jr. Santa Maria. Tesis de Ingenieria. Universidad Privada del Norte,
 Cajamarca.
- H, G. (1962). Saneamiento de las Aglomeraciones Urbanas. España.
- Hernadez, F. B. (2003). Metodologia de la Investigacion. Mexico:
 International Editions.
- Jose, G. M. (1994). Problemas del drenaje de augas pluviales en zonas urbanas y del estudio hidraulico de las redes de colectores. españa.
- Manual de Drenaje Urbano. (2013 Ministerio de obras publicas). Chile.
- Maximo, V. B. (2002). Hidrologia. Lima Peru: Editorial Macro.
- Reglamento Nacional de Edeficacion . (2017). Lima Peru: Editorial Macro.
- Valderrama, S. (2013). Pasos para elaborar proyectos de investigación científica. 2ª ed. Lima: Editorial San Marcos E. I. R. L. 2013. 495 pp.

ANEXO

Anexo 01: matriz de consistencia

TITULO: "INFLUENCIA DE LAS PRECIPITACIONES PLUVIALES FRENTE A LA CAPACIDAD HIDRAULICA EN LA RED DE TUBERIAS DEL JIRON BASADRE - CHILCA-2019"

PROBLEMA	OBJETIVO	HIPOTESI	VARIABLES	METODOLOGÍA
P. GENERAL	O. GENERAL	S HIPOTESIS GENERAL		Tipo: Aplicada
			Variable	
¿Cómo influyen las precipitaciones pluviales frente a la capacidad hidráulica	Determinar la influencia de las precipitaciones pluviales frente a la capacidad	Las precipitaciones pluviales influyen		Nivel: Descriptivo -
de la red de tuberías del Jirón Basadre -	hidráulica de la red de tuberías del Jirón	directamente proporcional frente a la capacidad hidráulica de la red de tuberías	PRECIPITACION	correlacional
Chilca - 2019?	Basadre - Chilca–2019.	del Jirón Basadre Chilca, – 2019.	PLUVIAL	Diseño: No Experimental Y=f(X)
P. ESPECIFICOS	O. ESPECIFICOS	HIPOTESIS ESPECÍFICOS:	Precipitación Máxima	Donde:
F. ESPECIFICOS	0. 231 2611 1603	HIPOTESIS ESPECIFICOS:		Y = Capacidad
	a) Evaluar cómo influye la pendiente frente a la	a) La determinación de las	Curva intensidad,	hidráulica
a) ¿Cómo influye la pendiente frente a	capacidad hidráulica de la red de tuberías.	pendientes frente a un diseño nos permite	frecuencia y duración	X1 = precipitación pluvial
la capacidad hidráulica de la red de	'	evitar que estos sistemas de drenajes	Coeficiente de	piuviai
tuberías?	b) Determinar cómo influye el volumen de	pluviales colapsen en épocas de lluvia.	escorrentía	Población y muestra
h) . C f man influence also also also and a service	aguas de lluvia frente a la capacidad			,
b) ¿Cómo influye el volumen de aguas de lluvia frente a la capacidad	hidráulica de la red de tuberías.	b) El volumen de aguas de lluvia nos	CAPACIDAD	Población: Sistema de
hidráulica de la red de tuberías?	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	permite verificar la correcta elección del	HIDRAULICA	alcantarillado pluvial Jirón Basadre-
Thataanaa ac la rea ac taberias.	c) Verificar en qué medida favorece la política de mantenimiento frente a la capacidad	diámetro de tubería que fue instalada en		Chilca.
c) ¿En qué medida favorece la política	hidráulica de la red de tuberías.	dicho sistema de alcantarillado pluvial.	Radio hidráulico	
de mantenimiento frente a la capacidad	maradica de la red de tuberias.		n andianta	Muestra: Colector principal del iirón Basadre.
hidráulica de la red de tuberías?		c) La política de mantenimiento de un	pendiente	jiron Basadre.
		sistema de alcantarillado pluvial es	caudal a tubo lleno	Técnicas e instrumentos
		indispensable para evitar el colapso de		
		estas en épocas de lluvia.		Técnicas: Observación directa.
				Instrumento: Ficha de
				observación, registros del
				SENAMHI.
				Técnicas de procesamiento de
				datos
				Se usarán los siguientes Software
				AutoCAD, Sewer GEMS y HEC-HMS,
				Excel.

Anexo 02: Perfil estratigráfico

			L		UNIO DE ENSATO DE MATERIALES UNICA DE SUKLOS Y ASPALTO
				1000	DEPOPMENT OF ORIGINALITY
				R	ASTM 02488 - 69a
-	51	andard P	ractice for	Descripti	Ion and Identification of Soils (Visual-Manual Procedure)
Potito	marin		Ing. Mark		
Proye	eto/Ote	na.	Huancayo		la cuadro Ocho del Jr. Jorge Basadro Chilta -
Atens	ión.				ado - Pro Pavinmontacion cuadra Ocho del Jr. Joegr Basadre Oca - Huancoro - Junio
Ubine	cite		Chilen - 2		
	de ces				tren de 2017
100	de em d Seeti		albedo. 15		Calineta : C-01 Motodo de Eurovacion (Manuel
	landida	_	I No se escentro I 8.00 m.		Muntra : 85
_ 0	Prof. or	A	(Museira)	Stribola	Descripción
H	B.00	0.30		Re	Muterial de relieno de color marros cecuro en esterio humedo.
ď.	0.30	0.50	SHI:	GM	Material de prestamo grava limosa en esaldo compacto, humedo de plasticidad beja de solo marron claro
Ö			11:	CL	Arcite inorganics de planticided medie en extede humado, de culor marron oscura, consistencia firme, con una ditancia muy lente, tenacidad alta.
Ų.	0.60	0.90	*		Archa limosa do pristicadas Frace en estreto numero, se oser reper
g			1	CL	rium, considencia firma, com una silbancia muy lanta, tanasistad arta, de consistencia firma.
4	0.90	1.30	-		
				GL.	Arcilla inorganica con presencia de Tres de mediana plesficidad en e estaco humodo de solor gra, de comisiono de linha dos una di sussoi tento de toracidad modio y bija degregacion,
ш.	1.20	2.00			
e re	EDIO.		75	en en	CHAPTER VICTORIAN CONG. THIS CONT. THOUSEN

Imagen 41: Registro de la calita C1

Anexo 03: Perfil estratigráfico

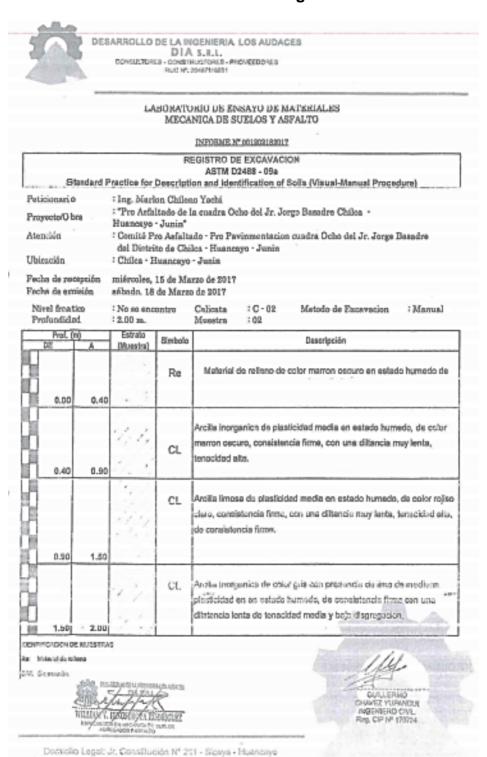


Imagen 42: Registro de la calita C2

Anexo 04: Densidad máxima seca

Imagen 43: Estudio de suelos de CBR.

Anexo 05: Densidad máxima seca

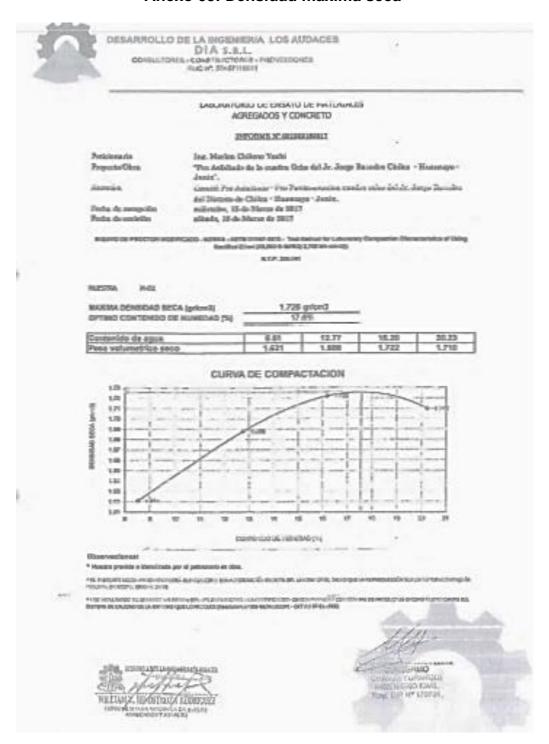


Imagen 44: Densidad máxima seca M01

Anexo 06: Cálculo del IDF de las precipitaciones

Para los periodos de retorno "IDF de 2 y 10 años"

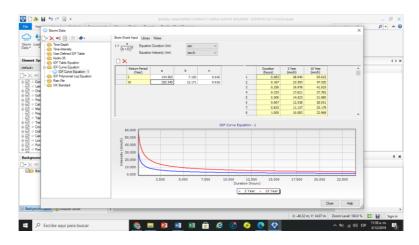


Imagen 45: IDF periodos de retorno para 2 y 10 años.

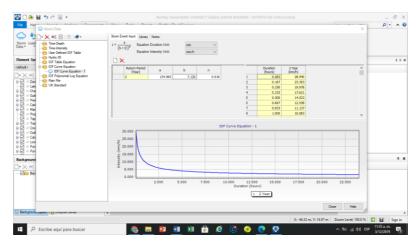


Imagen 46: IDF para periodo de 2 años.

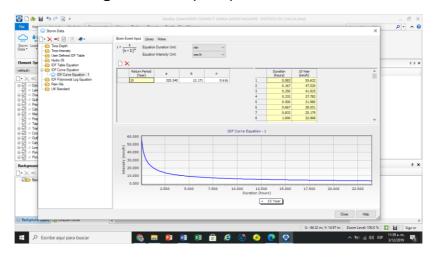


Imagen 47: IDF para periodos de 10 años.

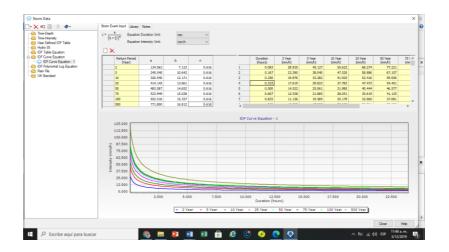
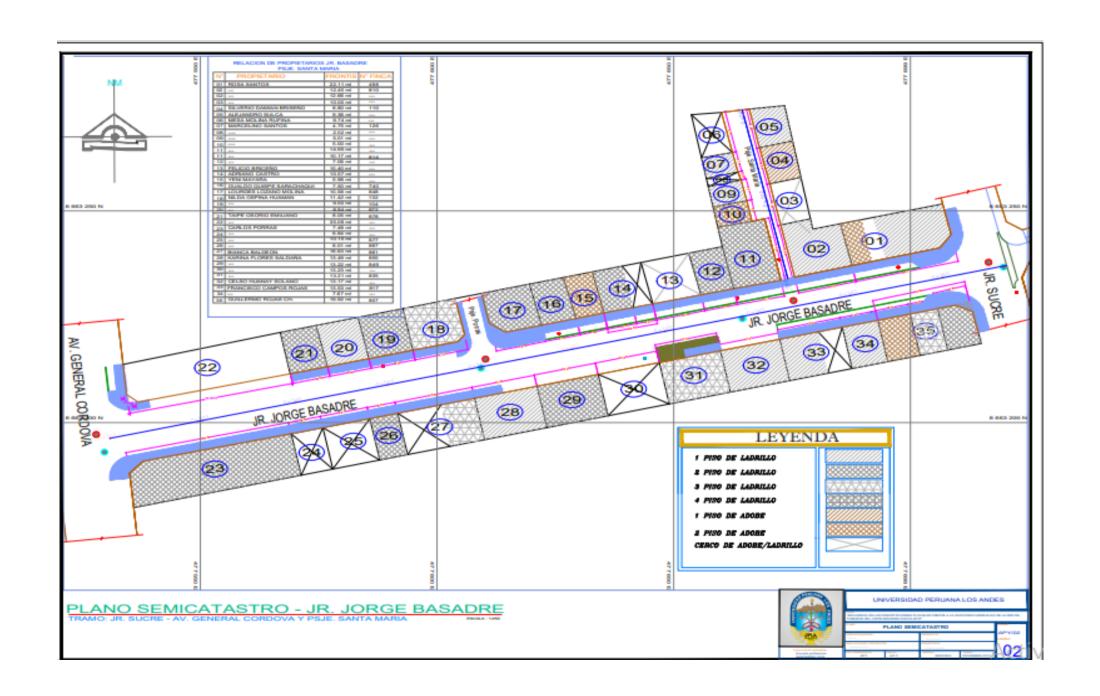


Imagen 48: IDF para periodos de 2 a 500 años.


Anexo 07: Estudio de ingeniería

1. GEOLOGÍA PROVINCIAL

Topografía

Se ha realizado el levantamiento topográfico mediante una poligonal abierta, estacando el Eje cada 20.00 metros en tramos de tangente a cada 10.00 metros en tramos de curva si existe. Se realizó la nivelación de segundo orden en circuitos cerrados hasta el final del estudio, así mismo se han nivelado todas las estacas para hallar el perfil longitudinal de terreno que servirá para él diseño de rasante de la vía; el seccionamiento transversal cada 20.00 m. para hallar el volumen de movimiento de tierras. En los planos topográficos y en el terreno se han referenciado los puntos de la poligonal así mismo los BMs (Bench Mark) colocados en lugares estratégicos.

El equipo utilizado para los trabajos topográficos son: 01 Estación Total TOPCON, modelo GTS-102N, y un nivel automático TOPCON modelo AT-G6, con sus respectivas miras, jalones y Wincha metálicas. El equipo utilizado para los trabajos topográficos son: 01 Estación Total TOPCON, modelo GTS-102N, y un nivel automático TOPCON modelo AT-G6, con sus respectivas miras, jalones y Wincha metálicas.

Trabajo de campo - Recopilación de datos

Se realizó un levantamiento catastral para determinar el área de influencia directa, como también los puntos de buzones.

Imagen 49: Levantamiento topográfico - catastro

- Punto de estación Jirón Basadre y sucre distrito de Chilca.

Imagen 50: Inspección de los buzones in situ.

Se verifico el estado situacional de los buzones y las cunetas del área de investigación:

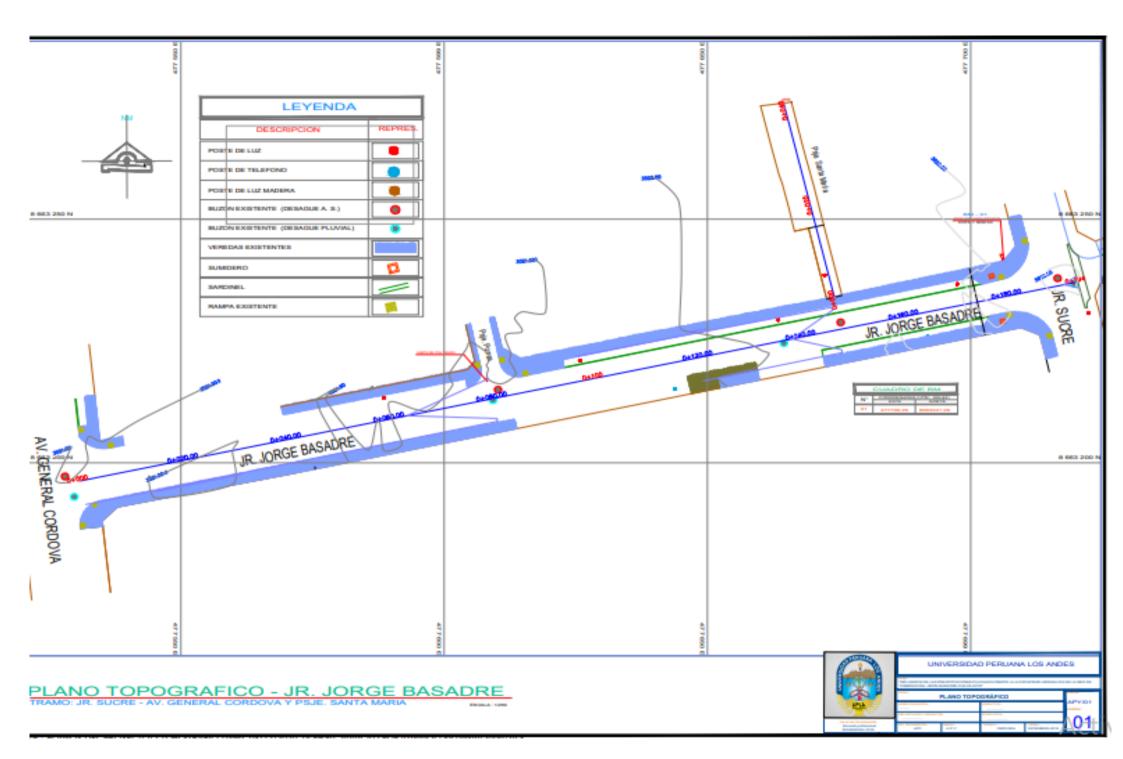
- Buzón – BZ₅ verificación del estado in situ.

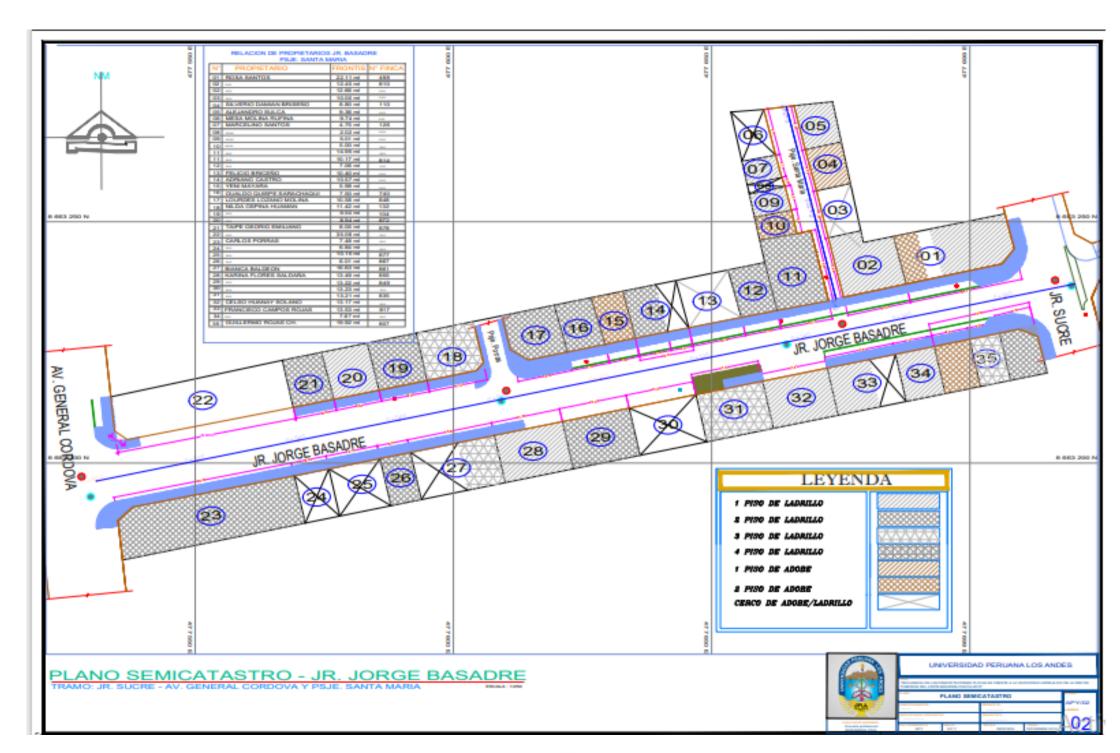
Imagen 51: Buzón BZ5.

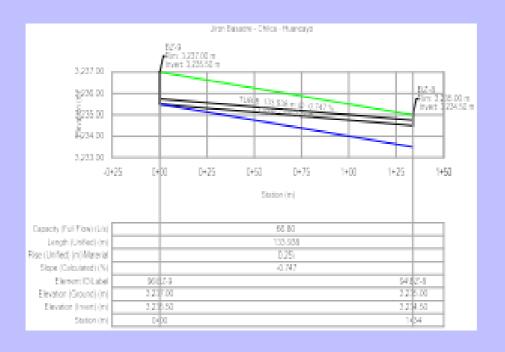
- Buzón – BZ5 verificación del estado in situ.

Imagen 52: Falta de mantenimiento y limpieza

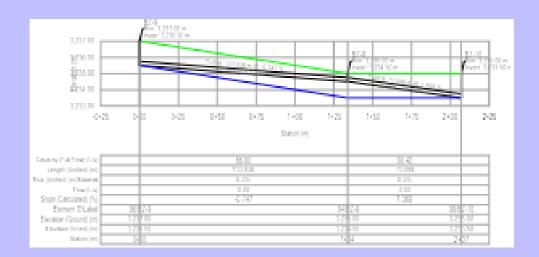
- Cunetas a falta de limpieza.



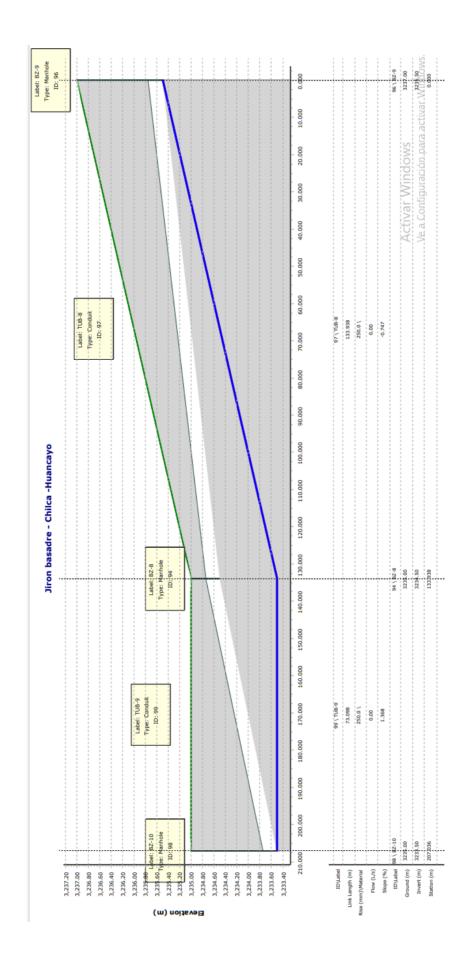

Imagen 53: Presencia de grass que obstruye el paso de aguas de lluvia

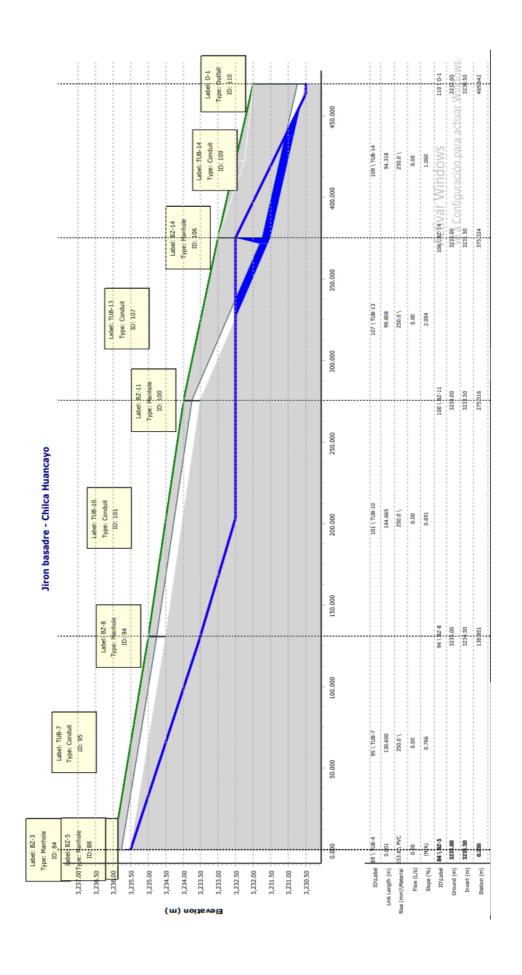

Imagen 54: Presencia de grass en las cámaras de captación

Anexo 08: Planos


Profile Report Engineering Profile - Profile - 3 (JIRON BASADRE - CHILCA huancayo junin.stsw)

JRON BASADRE - CHILCA huancayo junis ataw 6/12/2019


Sentiny Systems, Inc. Haestad Methods Solution Center 27 Siemon-Company Drive Suite 205 W Watertown, CT 06765 USA +1-203-755-1666 Benday SewerGEMS CONNECT Edition [10.00.00.40] Page 1 of 1


Profile Report Engineering Profile - Profile - 4 (JIRON BASADRE - CHILCA huancayo junin.stsw)

JRON BASADRE - CHLCA huancayo junis atsu 8120019

Bentley Systems, Inc. Haward Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06765 USA +1-203-755-1666 Bentley SewerGEMS CONNECT Edition [10.00.00.40] Page 1 of 1

