UNIVERSIDAD PERUANA LOS ANDES FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

TESIS

APLICACIÓN DE POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLOGICO DE MEZCLAS ASFÁLTICAS CALIENTE, HUANCAYO- 2018

PRESENTADO POR:

Bach. PERALTA FLORES, MARISOL

Línea de investigación institucional: Transporte y Urbanismo

PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERA CIVIL

HUANCAYO – PERÚ

2021

ASESOR

Ing. Rando Porras Olarte.

DEDICATORIA

La presente investigación lo dedico en primera instancia a Dios por darme salud hasta el día de hoy, a mis padres, a mi prometido y familiares, por el apoyo desinteresado y continuo que me han dado. Y a mi principal motivo y fortaleza para seguir adelante, mi hija.

AGRADECIMIENTO

A la universidad Peruana los Andes por las lecciones dadas a través de los años de estudio.

A los profesionales que me dieron la oportunidad de laborar con ellos y aprender cada día un poco más.

HOJA DE CONFORMIDAD DE MIEMBROS DEL JURADO

Dr. Rubén Darío Tapia Silguera Presidente
Ing. Julio Fredy Porras Mayta Jurado
Ing. Christian Mallaupoma Reyes Jurado
Ing. Dayana Mary Montalvan Salcedo Jurado
Mg. Leonel Untiveros Peñaloza Secretario Docente

ÍNDICE DE CONTENIDOS

Dedicatoria	
Agradecimiento	
Hoja de conformidad	
Índice de contenidos	
Índice de Tablas	
Índice de Ilustraciones	
Índice de fotografías	
Resumen	
Abstract	
Introducción	
CAPÍTULO I	
PLANTEAMIENTO DEL PROBLEMA	
1.1. Planteamiento del Problema	
1.2. Formulación del problema	
121. Problema general	
122 Problemas específicos	
1.3. Justificación de la investigación	
1.3.1. Justificación social	
1.3.2 Justificación metodológica	
1.3.3. Justificación ambiental	_
1.4. Delimitación	
1.4.1. Delimitación Espacial	
1.4.2 Delimitación Temporal	
1.4.3. Delimitación Económica	
1.5. Limitaciones	
1.5.1.Limitación económica	
1.6. Objetivos de la investigación	
1.6.1. Objetivo general	
1.6.2 Objetivos específicos	
CAPÍTULO II	
MARCO TEÓRICO	
2.1. Antecedentes de la investigación	21
2.1.1. Antecedentes Nacionales	
2.1.2. Antecedentes internacionales	
2.2. Marco Conceptual	26
2.2.1. Constitución y caracterización general de los firmes	
2.2.2. Objetivos y finalidades fundamentales	
2.2.2.1. Rodadura segura y cómoda	
2.2.2.2. Resistencia y transmisión de las cargas	
2.2.3. Parámetros de diseño	
2.2.3.1. Trafico	
2.2.3.2. Cimiento	
2.2.3.3. Materiales disponibles	
2.2.3.4. Clima	
2.2.3.5. Costos	
2.2.3.6. Otros parámetros	34

2.2.4. Tipos de firmes	34
2.2.4.1. Firmes flexibles	35
2.2.4.2. Firmes rígidos	36
2.2.4.3. Otros tipos de firmes	38
2.2.5. Estabilidad de suelos	39
2.2.5.1. Acción de la cal	39
2.2.5.2. Acción del cemento	
2.2.6. Mezclas bituminosas	
2.2.7. Caracterización y clasificación de mezclas	
2.2.8. Materiales de mezclas	
2.2.8.1. Áridos	
2.2.8.2. Betún	
2.2.8.3. Polvo mineral	
2.2.9. Características y propiedades de las mezclas	
2.2.10. Mezclas comúnmente utilizadas en España	
2.2.10.1. Mezclas en capas de rodadura	
2.2.10.2. Mezclas en capas inferiores	
2.2.10.3. Denominación de las mezclas	
2.2.10.4. Betunes utilizados	
2.2.11. Método Marshall	
2.2.12. Obtención de Polvo de concreto reciclado	
2.2.13. Asfaltos modificados	
2.2.13.1. Objetivo de la modificación	
2.2.13.2. Beneficios que buscan con la modificación del asfalto	
2.4. Formulación de Hipótesis	
2.4.1. Hipótesis general	
2.4.2. Hipótesis específicas	
2.5. Variables	
2.5.1. Definición conceptual de las Variables	
2.5.2. Definición Operacional de la Variable	
2.5.3. Definición Operacional de la Variable	
CAPÍTULO III	76
METODOLOGÍA DE LA INVESTIGACIÓN	
3.1. Método de investigación	
3.2. Tipo de investigación	
3.3. Nivel de la investigación	
3.4. Diseño de la investigación	
3.5. Población y muestra	
3.5.1. Población	76
3.5.2. Muestra	
3.6. Técnicas de recolección de datos	77
3.6.1. La técnica de Recolección de Datos	77
3.6.2. Instrumentos recolección de datos	
3.7. Técnicas y análisis de Datos	
3.8. Procedimiento de la investigación	
3.8.1. Fase de planteamiento y organización (pre campo)	
3.8.2. Fase de trabajo de campo o recolección de datos	
3.8.3. Fase de gabinete	79

	Informe de investigación	
	TULO IV	
	ILTADOS	
4. I. DE	escripción y características e identificación de los Ensayos Realizados.	01
	aracterización delos Agregados Análisis Granulométrico del agregado Grueso (MTC E 203 – 2000)	
	Porcentaje de caras fracturadas (MTC E 210- 2000)	
	Peso unitario y porcentaje de vacíos (MTC E 203 - 2000)	
	Ensayo de abrasión de los Ángeles al desgaste (1 1/2") (MTC E 20 2000)	
4.2.5.	2000)	
4.2.6.	Ensayo para determinación Cuantitativa de Sulfatos y Cloruros en suel	los
	(MTC E 219)	85
	Determinación de Partículas Chatas y Alargadas (ASTM 4791)	85
	esultados obtenidos a los ensayos técnicos realizados a los agregados	
pétreo	os finos	87
4.3.1.	Ensayo gravedad específica y absorción de agregados finos (MTC E 2 - 2000).	
4.3.2.	Equivalente de Arena (MTC E 114-2000)	
	Índice de Plasticidad (malla N°40) (MTC E 111 - 2000)	
	Sales Solubles Totales (MTC E 219-2000)	
	Índice de Durabilidad (MTC E 214 - 2000).	
	ombinación de Agregados Pétreos.	
	Ensayo Análisis Granulométrico (MTC E 204 - 2000)	
	esultados obtenidos en los ensayos Técnicos realizados en el diseño de	
la Mez	zcla asfáltica en Caliente	92
	Diseño de Mezcla Asfáltica en Caliente Convencional	
	Diseño de Mezcla Asfáltica en Caliente con incorporación de 1% de pol	
	de Concreto	
	Diseño de Mezcla Asfáltica en Caliente con incorporación de 1.5 %	
		94
4.5.4.	Diseño de Mezcla Asfáltica en Caliente con incorporación de 2.0 %	de
	polvo de Concreto	
	4.5.5. Ensayo Cántabro para un Diseño de Mezcla Asfáltica en Calier	
	nvencional	
	Ensayo Cántabro para un Diseño de Mezcla Asfáltica en Caliente con	
	polvo de concreto al 1%.	97
4.5.7.	Ensayo Cántabro para un Diseño de Mezcla Asfáltica en Caliente con	-
	polvo de concreto al 1.5 %	98
4.5.8.	Ensayo Cántabro para un Diseño de Mezcla Asfáltica en Caliente con	
	polvo de concreto al 2.0 %	98
4.6. Ev	valuación de los resultados obtenidos en los ensayos Técnicos realizado	
	diseño de la Mezcla asfáltica en Caliente	
	Análisis y comparación de los datos obtenidos para un diseño de mezo	
	Convencional1	
4.6.2.	Análisis y comparación de los datos obtenidos para un diseño de mezo	
	con polvo de concreto en un 1%1	

ANEXOS	
REFERENCIAS BIBLIOGRÁFICAS	118
RECOMENDACIONES	117
CONCLUSIONES	116
5.2. Discusión De Resultados	
5.1.2. Prueba de Hipótesis - Especificas	
5.1.1. Prueba de Hipótesis - General	
5.1. Contrastación de Prueba de Hipótesis	
DISCUSIÓN DE RESULTADOS	106
CAPÍTULO V	
con polvo de concreto en un 2.0%	
4.6.4. Análisis y comparación de los datos obtenidos para un dis	
con polvo de concreto en un 1.5%	
 4.6.3. Análisis y comparación de los datos obtenidos para un dis 	seño de mezcla

ÍNDICE DE TABLAS

Tabla 1 Denominación de mezclas actuales	63
Tabla 2 Empleo de los tipos de betún	64
Tabla 3 Cuadro de operacionalización de Variable Independiente	77
Tabla 4 Cuadro de operacionalización de Variable Independiente	78
Tabla 5 Tabla 423-01 del Manual de Carreteras	90
Tabla 6 Comparación de resultados de los agregados gruesos	91
Tabla 7 Tabla 423-02 del Manual de Carreteras	94
Tabla 8 Comparación de resultados de los agregados finos	94
Tabla 9 Gradaciones de las Mezclas asfálticas en caliente	95
Tabla 10 Combinación De Agregados ASTM – D3416	96
Tabla 11Diseño de Mezcla Asfáltica en Caliente Convencional	96
Tabla 12 Mezcla Asfáltica en caliente con Incorporación de Polvo de Cor	creto
En 1%	97
Tabla 13 Mezcla Asfáltica en caliente con incorporación de polvo de cono	creto
en 1.5%	98
Tabla 14 Mezcla Asfáltica en caliente con incorporación de polvo de cond	creto
en 2.0%	99
Tabla 15 Ensayo Cántabro para un Diseño de Mezcla Asfáltica en Calien	te
Convencional	
Tabla 16 Ensayo Cántabro para un Diseño de Mezcla Asfáltica en Calien	te al
1%	
Tabla 17 Ensayo Cántabro para un Diseño de Mezcla Asfáltica en Calien	te al
2.0%	
Tabla 18 Muestras en el ensayo Cántabro	103
Tabla 19 Requisitos Para Mezcla De Concreto Bituminoso	104
Tabla 20 Diseño De Mezcla Asfáltica (Mac-2) Convencional	105
Tabla 21 Diseño De Mezcla Asfáltica (Mac-2) con polvo de concreto al 19	% 106
Tabla 22 Diseño De Mezcla Asfáltica (Mac-2) con polvo de concreto al 1.	5%
	. 106
Tabla 23 Diseño De Mezcla Asfáltica (Mac-2) con polvo de concreto al 2.	
	107
Tabla 24 Resultados obtenidos para el polvo de concreto	109
Tabla 25 Resultados del índice de rigidez	112
Tabla 26 Porcentajes de Polvo de concreto con los flujos obtenidos	114
Tabla 27 Perdida por Desgaste MAC-2	

ÍNDICE DE ILUSTRACIONES

Ilustración 1: Influencia de la cal en el ensayo Proctor	41
Ilustración 2: Ensayo de pista de laboratorio	53
Ilustración 3: Piel de cocodrilo	53
Ilustración 4: Comportamiento reológico de las mezclas	56
Ilustración 5: Asfalto modificado	69
Ilustración 6 Imagen Satelital de la ubicación de la Cantera Rio Seco	85
Ilustración 7 Imagen Satelital de la ubicación del Laboratorio	85
Ilustración 8 Estabilidad vs Porcentaje de Polvo de Concreto Reciclado	.110
Ilustración 9 Flujo vs Porcentaje de Polvo de Concreto Reciclado	.111
Ilustración 10 Índice De Rigidez Vs Porcentaje De Polvo De Concreto	.113
Ilustración 11 Flujo vs Polvo de concreto	.114
Ilustración 12 % Perdida Por Desgaste Vs Porcentaje De Polvo De Concre	eto
	116

ÍNDICE DE FOTOGRAFÍAS

Fotografía 1 Análisis Granulométrico del agregado Grueso	86
Fotografía 2 Porcentaje de caras fracturadas	87
Fotografía 3 Gravedad específica y absorción de agregados gruesos	88
Fotografía 4 Determinación Cuantitativa de Sulfatos y Cloruros	89
Fotografía 5 Partículas Chatas y Alargadas	90
Fotografía 6 Absorción de agregados finos	92
Fotografía 7 Índice de Plasticidad	93
Fotografía 8 Muestras para combinaciones con polvo de concreto	98
Fotografía 9 Mezclado con el Pen 85/100 y el polvo de concreto	99
Fotografía 10 Mezclado con control de temperatura para el diseño de m	ıezcla
	100
Fotografía 11 Ensayo Cántabro para un Diseño de Mezcla	101
Fotografía 12 Ensayo Cántabro para un Diseño de Mezcla Asfáltica en	
Caliente al 1.5%	102
Fotografía 13 Ensayo Cántabro para un Diseño de Mezcla al 1.5%	102
Fotografía 14 Muestras para la caracterización optima del MAC-2	104
Fotografía 15 Muestras a ensayar con el porcentaje convencional de po	olvo de
concreto	105
Fotografía 16 Muestras elaboradas para realizar ensayo	107
Fotografía 17 Ensayo de Baño María para las briquetas elaboradas	108

RESUMEN

La investigación partió del problema general: ¿Cómo influye la aplicación de polvo de concreto reciclado en el comportamiento reológico de mezclas asfálticas caliente, Huancayo - 2018? El objetivo general fue: Evaluar de qué manera influye la aplicación de polvo de concreto reciclado en el comportamiento reológico de mezclas asfálticas caliente; la Hipótesis general la cual se verifico fue: La aplicación del polvo de concreto reciclado influye notablemente en el comportamiento reológico de mezclas asfálticas caliente, Huancayo - 2018.

El método general fue el científico, método especifico fue el cuantitativo, el tipo de investigación fue aplicada a nivel descriptivo y el diseño de investigación fue experimental. La población corresponde a diseño de mezcla asfáltica convencional Método Marshall usado en la provincia de Huancayo.

La conclusión general fue: la aplicación de polvo de concreto en 1% al diseño de mezcla asfáltica en caliente aumenta las propiedades reológicas en un 4.86%.

Palabras clave: Polvo de concreto reciclado, comportamiento reológico y mezclas asfálticas caliente.

ABSTRACT

The research started from the general problem: How does the application of recycled concrete powder influence the rheological behavior of hot asphalt mixtures, Huancayo - 2018? The general objective was: To evaluate how the application of recycled concrete powder influences the rheological behavior of hot asphalt mixtures; The general hypothesis which was verified was: The application of recycled concrete powder notably influences the rheological behavior of hot asphalt mixtures, Huancayo - 2018.

The general method was scientific, the specific method was quantitative, the type of research was applied at a descriptive level and the research design was experimental. The population corresponds to the design of the conventional asphalt mix Marshall Method used in the province of Huancayo.

The overall conclusion was: applying 1% concrete powder to hot mix asphalt design increases rheological properties by 4.86%.

Keywords: Recycled concrete dust, rheological behavior and hot asphalt mixes.

INTRODUCCIÓN

La presente tesis titulada "Aplicación de polvo de concreto reciclado en el comportamiento de mezclas asfálticas caliente, Huancayo - 2018", el presente trabajo de investigación está desarrollada con la finalidad de poder aportar a las construcciones de pavimentos flexibles el empleo de mezclas asfálticas caliente aplicando el polvo de concreto reciclado a fin de conseguir mejores resultados frente a un pavimento de mezclas asfálticas caliente convencional, debido que es un requisito imprescindible para la obtención de título profesional de Ingeniero civil, según las normas vigentes emanadas por la facultad de Ingeniería de la Escuela Profesional de Ingeniería Civil de la Universidad Peruana los Andes.

Las mezclas asfálticas en caliente tienen un óptimo comportamiento en relación al sistema climático de nuestra región debido que están sujetos a factores externos como el tiempo, temperatura de la mezcla, de igual manera los factores internos cantidad, tamaño de partículas del polvo de concreto, el tipo de asfalto, tipo de residuo asfaltico con la finalidad de ver el comportamiento reológico en las mezclas asfálticas caliente a fin de utilizar estas mezclas para la zona de la Región Junín; al desarrollar la presente investigación se garantiza la conservación, flujo, estabilidad, índice de rigidez, durabilidad, calidad de la mezcla asfáltica incorporada el polvo de concreto reciclado.

La investigación para su mayor comprensión consta de cinco capítulos, analizados y distribuidos de la siguiente manera:

EL CAPÍTULO I.- El problema de investigación, trato sobre la descripción de la realidad problemática del tema de la tesis donde se realizó el planteamiento del problema, así mismo se prosiguió con la formulación de problema general y los problemas específicos; la justificación de la investigación dentro de estas se desarrolló la justificación social, metodológica y ambiental, dentro de las delimitaciones se desarrollaron la delimitación espacial, temporal y económica; limitaciones; los objetivos de la investigación son el general y los específicos.

EL CAPÍTULO II.- El marco teórico, los antecedentes de la investigación, las

bases teóricas, las definiciones conceptuales, formulación de Hipótesis general y específica.

EL CAPÍTULO III.- Explica la metodología de la investigación empleada, las variables, el método de investigación, tipo investigación, nivel de investigación, diseño de la investigación, la población y muestra, Operacionalización de variables, técnicas de recolección de datos, técnicas para el procesamiento y el análisis de la información, lugar y periodo de la investigación.

EL CAPÍTULO IV.- Presenta el desarrollo, análisis e interpretación de cada uno de los ensayos y procedimientos de ingeniería realizados en la interpretación de los resultados obtenidos en el laboratorio.

EL CAPÍTULO V.- Explica exclusivamente la discusión de resultados de la investigación, dentro de estas se encuentra la contrastación de prueba de hipótesis, prueba de hipótesis – general, prueba de hipótesis – específicas y discusión de resultados.

Las conclusiones, recomendaciones, referencias bibliográficas y anexos.

Bach. Marisol, Peralta Flores

CAPÍTULO I

PLANTEAMIENTO DEL PROBLEMA

1.1. Planteamiento del Problema

En la actualidad en la provincia de Huancayo, departamento de Junín; se utilizaron mezclas asfálticas en caliente para pavimentar la gran parte del territorio, es así que un tiempo hasta aquí el pavimento convencional de mezcla asfáltica en caliente muchas veces no es capaz de soportar la acción conjunta del tránsito y del clima por ello, se empiezan a modificar las mezclas asfálticas en caliente tratando así de mejorar sus propiedades y el comportamiento reológico de las mismas.

En muchos países de Latinoamérica como Brasil, Colombia, Uruguay, Ecuador y Costa Rica, la investigación y producción de mezclas asfálticas caliente modificadas implica un ahorro en el consumo en costos y ventajas medioambientales ya que se está incorporando a la mezcla asfáltica en caliente el polvo de concreto reciclado. Asimismo, la ventaja que presentan este tipo de mezclas está su versatilidad, pues permite utilizar una gran variedad de agregados.

Por ello es que la investigación propone su estudio para demostrar que, si es favorable para nuestra región Junín y demostrar que cuando se trata de capas de rodamiento, las mezclas asfálticas caliente se utilizan principalmente para tránsitos medios y pesados.

Asimismo, en el marco aplicativo y normativo, la presente tesis de investigación aborda las variables: POLVO DE CONCRETO RECICLADO Y COMPORTAMIENTO REOLÓGICO, que al operacionalizar y correlacionar respectivamente en la unidad de análisis nos darán una nueva representación en las ciencias de la ingeniería Civil, cuáles serán un aporte para la ciudad de Huancayo.

1.2. Formulación del problema

1.2.1. Problema general

¿Cómo influye la aplicación de polvo de concreto reciclado en el comportamiento reológico de mezclas asfálticas caliente en Huancayo 2018?

1.2.2. Problemas específicos

- a) ¿De qué manera la aplicación de polvo de concreto reciclado influye en la resistencia en el comportamiento reológico de mezclas asfálticas caliente?
- b) ¿De qué modo la aplicación de polvo de concreto reciclado influye en la deformación en el comportamiento reológico de mezclas asfálticas caliente?
- c) ¿De qué manera interviene la aplicación de polvo de concreto reciclado en la durabilidad de las mezclas asfálticas en caliente?

1.3. Justificación de la investigación

1.3.1. Justificación social

La presente investigación contribuye a resolver problemas reales de nuestra región, siendo uno de ellos la construcción de pavimentos flexible con mezclas asfálticas en caliente y la defectuosa condición sobre la durabilidad de los pavimentos. Así mismo con la finalidad de mejorar el comportamiento reológico de los pavimentos flexibles se aplica el polvo de concreto reciclado para el diseño de mezclas asfálticas en caliente.

1.3.2. Justificación metodológica

La presente investigación hace uso de metodologías para generar nuevos conocimientos, tal es la utilización de mezclas asfálticas en caliente incorporado el polvo de concreto reciclado con la utilización de PEN 85/100 asfálticas para la construcción de pavimentos flexibles caliente, esto de acuerdo a lo descrito por Bernal (2006).

1.3.3. Justificación ambiental

El reciclado de residuos de construcción y demolición ayuda a reducir los recursos naturales debido que la mayoría de las municipalidades Provinciales y Distritales en nuestro país disponen su basura en rellenos sanitarios, cuerpos de aguas (lagunas, ríos) y a cielo abierto. El polvo de concreto reciclado ha cobrado auge como un modificador del Asfalto. Al respecto el polvo de concreto reciclado proviene de la recuperación de piezas que se encuentran en desuso, como es el caso de los bloques de concreto que resultan de residuos de construcción y demolición. Por lo que se usa un proceso mediante el cual resulta muy óptimo para la construcción y logrando menos incidencia sobre el medio ambiente.

1.4. Delimitación

1.4.1. Delimitación espacial

La delimitación espacial para la presente investigación se realizó en la provincia de Huancayo, departamento de Junín.

1.4.2. Delimitación temporal

La delimitación temporal de la investigación serán datos recogidos comprendidos en el periodo del mes de diciembre del año 2018 hasta marzo del 2019.

1.4.3. Delimitación económica

Para la investigación se usó recursos propios por lo que no se obtuvo financiamiento externo de ninguna institución.

1.5. Limitaciones

1.5.1. Limitación económica

La presente investigación se realizó a nivel de estudios de laboratorio de mecánica de suelos, por falta de solvencia económica no se pudo realizar a mayor escala. Así mismo se realizaron ensayos y procedimientos de ingeniería los cuales son accesibles a nuestra necesidad y realidad, pero cumpliendo la normativa respectiva.

1.6. Objetivos de la investigación

1.6.1. Objetivo general

Evaluar de qué manera influye la aplicación de polvo de concreto reciclado en el comportamiento reológico de mezclas asfálticas caliente, Huancayo - 2018.

1.6.2. Objetivos específicos

- a) Identificar la influencia de la aplicación de polvo de concreto reciclado en la resistencia en el comportamiento reológico de mezclas asfálticas caliente.
- b) Analizar la influencia de la aplicación del polvo de concreto reciclado en la deformación en el comportamiento reológico de mezclas asfálticas caliente.
- c) Interpretar de qué manera interviene la aplicación del polvo de concreto reciclado en la durabilidad de las mezclas asfálticas en caliente.

CAPÍTULO II MARCO TEÓRICO

2.1. Antecedentes de la investigación

2.1.1. Antecedentes Nacionales

Según Mondragón Castillo, Karina Sofía (2016) en la investigación de pregrado "Comparación entre el concreto convencional y el concreto con barita en polvo como sustituyente del agregado fino" en la presente investigación el Tesista llega a la conclusión: que las propiedades del concreto convencional y con barita en estado fresco, rígido y endurecido se diferencian de acuerdo al porcentaje de barita presente en la mezcla de concreto, es así que se diseña mezclas de concreto para resistencias a la compresión especificadas de 210 kg/cm2, 240 kg/cm2 y 280 kg/cm2, de consistencia plástica, que cubren la mayoría de concretos normalmente fabricados en Perú. En el proceso fresco. De los resultados obtenidos se pudo concluir que el peso unitario del concreto aumenta a medida que aumenta el porcentaje de barita, a partir de un concreto con 70% de barita como sustituyente del agregado fino se puede considerar como un concreto pesado. También se pudo apreciar que la presencia de barita aumenta la trabajabilidad en la mezcla en estado fresco, mientras que el contenido de aire y la temperatura no presentan una variación significativa.

Dávalos Murray, Yvette Rocío (2015) en la investigación de pregrado "Obtención de mezclas asfálticas mediante la adición de material reciclado: Poliestireno Expandido" en la presente investigación el Tesista llega a la conclusión: Se concluye que las mezclas asfálticas con adición de perlas de Poliestireno Expandido Reciclado mejoran sus propiedades mecánicas en un 60%. La mezcla asfáltica con Poliestireno Expandido Reciclado tuvo un incremento de su estabilidad en un 60% respecto de una mezcla asfáltica convencional. La mezcla con mejores propiedades mecánicas fue la mezcla asfáltica con adición 40% EPS. Realizar ensayos donde se incremente además del EPS, otros tipos de

polímeros buscando así mejorar las propiedades mecánicas que las presentadas en esta tesis. Implementar en pequeñas áreas de nuestra ciudad pistas con la mezcla asfalta propuesta en esta tesis. La incorporación de EPS en la mezcla asfáltica, es una alternativa viable para la reutilización y la disminución en el ambiente de productos nocivos para la salud humana, ya que este tipo de polímero tiene largos periodos de degradación. Trabajar con centros de acopio de EPS, siendo una actividad sostenible y de bajo costo. Los agregados al utilizar en una mezcla asfáltica deben cumplir con las especificaciones técnicas y con las normas dadas, para lograr una mezcla asfáltica de calidad.

2.1.2. Antecedentes internacionales

Según Maila Paucar, Manuel Elías (2013) en la investigación de pregrado "Comportamiento de una mezcla asfáltica modificada con polímero etileno vinil acetato (EVA)" en la presente investigación el Tesista llega a la conclusión: De acuerdo a los ensayos realizados en pruebas de laboratorio se determinó que se tiene una notable mejora en las propiedades mecánicas tales como módulo dinámico elástico, resistencia a la tensión indirecta, resistencia a la pérdida por desgaste, estabilidad, flujo y susceptibilidad térmica de la mezcla modificada con respecto a la mezcla convencional, por lo que se puede asegurar que los daños viales van a disminuir con la utilización de esta mezcla. La mejora más significativa es en el módulo dinámico elástico ya que este se incrementa hasta en un 40 por ciento con respecto a la mezcla convencional, siendo esta una de las propiedades más importantes en el diseño de pavimentos, generará carpetas asfálticas de menor espesor

con la misma capacidad estructural tal como se demuestra con los ejemplos de diseño de pavimentos flexibles. El módulo dinámico elástico es la propiedad que mide la resistencia a las deformaciones; en la mezcla investigada se tiene que el módulo dinámico es ampliamente superior al de la mezcla convencional por lo que se asegura que este tipo de mezcla va a tener características de mayor durabilidad como de vida útil.

Barra Bizinotto, Marilda & Vásquez Ramonich, Erik (2013) en la investigación de pregrado "Estudio de mezclas de áridos reciclados de Hormigón y asfalto estabilizados con cemento para su aplicación en bases y subbases de carreteras" en la presente investigación el Tesista llega a la conclusión: Las propiedades mecánicas medidas cumplen con los valores exigidos por el PG-3 vigente para un material granular estabilizado con cemento, utilizado como suelocemento SC40. Por lo tanto, la mezcla de hasta 50% ARH+50% ARA podría ser empleada como suelocemento de un firme de carretera. Con ello se alcanza el primer objetivo principal de este estudio experimental. Los resultados obtenidos con el 100% de ARH y todas las mezclas estudiadas de este con ARA, especialmente el CBR, demuestran la posibilidad de utilizarlos sin cemento en capas de firme no ligadas, con lo que se cumple el segundo objetivo principal de este trabajo. Las curvas granulométricas de cada uno de los áridos y las muestras estudiadas, se encuentran dentro de las establecidas por el PG-3 vigente para un material granular tratado con cemento SC40. El ARH presenta una densidad seca de 2.17 Mg/m3 y absorción de 8.20%, mientras que el ARA tiene densidad seca de 2.34 Mg/m3 y absorción de 2.53%; lo que nos proporciona un ARA de calidad superior al ARH. La densidad Proctor más alta la presenta la muestra con el mayor contenido de ARA, alcanzando los 1.84 Mg/m3 para una humedad óptima muy similar a las demás muestras analizadas. Las humedades óptimas de las diferentes muestras eran similares, un tanto elevadas debido a que utilizamos un ARH de baja calidad con un alto por ciento de absorción.

El dimensionamiento de firme utilizando el método AASHTO con los resultados mecánicos de las muestras, cumple con los mínimos espesores exigidos por la norma española para las condiciones de tránsito y explanada consideradas en este estudio.

Mendoza Méndez, Enrique Medrano (2009) en la investigación de pregrado "Incidencia del origen de los materiales calizos y basálticos en el diseño de mezclas de concreto asfaltico método Marshall" en la presente investigación el Tesista llega a la conclusión: En el diseño de mezclas asfálticas en caliente se determinó que el comportamiento de ambos es distinto, pues cuando se integra agregado y cemento asfáltico para conformar mezclas asfálticas en caliente, el agregado de origen calizo y el agregado de origen basáltico se comportan de diferente manera, se pudo observar que el agregado basáltico tiene una alta afinidad con el cemento asfáltico sucediendo esto básicamente por la textura superficial relativamente áspera que posee y su composición mineralógica con alto contenido de sílice que facilita que el cemento asfáltico se adhiera a las partículas y queden perfectamente cubiertas, siendo su afinidad al asfalto un 20 % mayor que la del calizo. Los estudios realizados a los dos tipos de materiales, dan a conocer que ambos son satisfactorios para realizar mezclas de acuerdo a especificaciones, y que las variaciones que se reflejan son fundamentalmente por la afinidad del cemento asfáltico con el material, por ejemplo, como el agregado calizo, su textura superficial es relativamente lisa y su composición mineralógica con alto contenido de carbonato de calcio dificultan la adherencia del cemento asfáltico a las partículas de agregado. Esta diferencia de afinidad incide en los tiempos de producción, ya que el agregado calizo deberá tener más tiempo de mezclado y una temperatura adecuada para que sus partículas queden perfectamente cubiertas, podrá ser necesario en ocasiones incrementar el porcentaje de cemento asfáltico para que el diseño cumpla con las especificaciones

Aldana Salguero, Josué Roberto (2004) en la investigación de pregrado "Mantenimiento de carreteras con concreto asfaltico en caliente" en la presente investigación el Tesista llega a la conclusión: El principal agente destructor de una carretera es el agua, la acumulación de ella no sólo representa un peligro para la estructura de una carretera sino que también para las personas que la utilizan, por esta razón, es necesario mantener en buenas condiciones los elementos auxiliares de una carretera, tales como drenajes, cunetas, taludes, derecho de vía, etc para que el agua que precipita sea drenada rápida y efectivamente. Una carretera en malas condiciones pone en riesgo la seguridad de las personas que la transitan, muchos accidentes son causados por el mal estado en que se encuentran estas vías de comunicación. El mejor mantenimiento que existe es el preventivo, pues advertir posibles daños o fallas en una carretera evita gastos innecesarios de recursos humanos y económicos, además, evita potenciales accidentes, pérdidas de vidas humanas y recursos económicos. Las vías de comunicación más importantes en nuestro país son las carreteras, por ellas se traslada la mayor parte de la población y se realizan la mayoría de los intercambios comerciales, por lo tanto, preservarlas en buenas condiciones representa un enorme beneficio económico y social.

Cruz García, Jorge Arturo y Ramón Velásquez, Yañez (2004) en la investigación de pregrado "Incidencia del origen de los materiales calizos y basálticos en el diseño de mezclas de concreto asfaltico método Marshall" en la presente investigación el Tesista llega a la conclusión: Desde del punto de vista técnico, el escombro de concreto libre de contaminantes es un sustituto satisfactorio como agregado grueso en la elaboración de concreto nuevo. Las propiedades de rigidez, durabilidad y trabajabilidad del concreto de agregado son aceptables. El concreto de agregado reciclado tiene menos resistencia que el concreto de agregado natural de la misma composición; sin embargo, esta se puede manipular por ejemplo mediante el aumento del contenido de

cemento, para producir concreto de agregado reciclado de la misma resistencia que el concreto de agregado natural.

2.2. Marco Conceptual

2.2.1. Constitución y caracterización general de los firmes

El firme de una carretera se sitúa sobre la explanada, culminación del movimiento de tierras. Está constituido por un conjunto de capas de diferentes materiales, general paralelas. Sobre la capa superior circula el tráfico. El firme suministra, por tanto, una superficie de rodadura a los vehículos, objetivo final de la construcción de la carretera. En principio, cabría pensar que la circulación pudiera tener lugar directamente sobre la explanada. Sin embargo, por elevada que fuera su calidad, no podría resistir la acción del tráfico, como no fuera el de muy baja intensidad y cargas por eje muy ligeras. De no ser así, se producirían en ella importantes deformaciones y, asimismo, no podría resistir los esfuerzos tangenciales que se producen necesariamente en la rodadura, como consecuencia de la circulación, frenado y aceleración de los vehículos. Por otra parte, la explanada es muy sensible a la acción de los agentes atmosféricos, fundamentalmente a la lluvia, lo que contribuiría rápidamente a su deterioro (Recuenco Aguado, 2018).

Es necesario, por tanto, disponer sobre la explanada una estructura que evite, de manera duradera, todas estas circunstancias, permitiendo la circulación de los vehículos en condiciones acordes con las exigencias propias del usuario de nuestro tiempo. En este capítulo se especificarán los objetivos o finalidades fundamentales propios de la construcción de los firmes, estudiando los elementos, características y propiedades que garantizan su cumplimiento. Asimismo, se reseñarán los parámetros de diseño fundamentales y se delimitarán y caracterizarán los distintos tipos de firmes. En los apéndices de este capítulo se estudiarán someramente algunos temas de carácter general, cuyo conocimiento puede contribuir a una mejor comprensión de algunas

características de los firmes. En los capítulos restantes del libro se profundizará en el estudio de todos los temas esbozados en esta panorámica general. Cabe identificar la explanada con la coronación de los terraplenes o con el fondo de excavación de los desmontes (Recuenco Aguado, 2018).

2.2.2. Objetivos y finalidades fundamentales

Según (Recuenco Aguado, 2018). Las finalidades fundamentales de la construcción de los firmes se deduce, en parte, de lo expuesto en el apartado anterior. Cabe citar las siguientes:

- Suministrar al usuario una superficie de rodadura segura y cómoda, de manera duradera, a lo largo de un periodo de tiempo que se considere suficiente, sin perjuicio de que durante ese tiempo sea necesario llevar a cabo actividades de mantenimiento y conservación
- Todas las capas deben poder resistir las cargas y acciones del tráfico y transmitirlas de modo que lleguen suficientemente repartidas a la capa inferior y, en particular, a la explanada, para que puedan ser resistidas sin deformaciones excesivas. Tensiones y deformaciones (recuperables y permanentes) no deben superar los límites admisibles en ninguna capa
- Proteger la explanada de la acción de la intemperie, sobre todo de los cambios de humedad y, en su caso, de la helada. La consecución de estos objetivos se materializa en un conjunto de aspectos concretos, a los que se pasa revista

2.2.2.1. Rodadura segura y cómoda

Según (Recuenco, 2018). Una superficie de rodadura segura o, por mejor decir, que posibilite una conducción segura, debe suministrar altos valores del rozamiento neumático, pavimento. Este rozamiento depende fundamentalmente de la textura y regularidad superficial del

pavimento. Dentro de la primera cabe diferenciar dos elementos o componentes:

- La micro textura, que son las irregularidades superficiales de altura inferior a 0,2 mm. Viene determinada por la textura superficial de los áridos (partículas pétreas que forman parte de las capas del firme) y se distinguen dos grados extremos: pulida y áspera, según la menor o mayor altura de las irregularidades, respectivamente. Es la causante, básicamente, de las interacciones moleculares que se producen en el área de contacto entre el pavimento y el neumático y su existencia es necesaria para alcanzar un rozamiento elevado a cualquier velocidad. Su papel es el de penetrar en la goma del neumático, produciendo una presión local de contacto muy elevada, que asegura esas interacciones y la rotura de la película de agua que pudiera existir bajo el neumático (si es de pequeño espesor), permitiendo un contacto "seco" de la goma sobre la superficie de la calzada.
- La macro textura está producida por las irregularidades superficiales de altura comprendida entre 0,2 y 10 mm, determinadas por el relieve de la superficie en su conjunto. Depende, por tanto, de la composición y acabado de la capa superior del firme y se distinguen dos categorías extremas, rugosa y lisa, según sea más o menos acusada, respectivamente. Sus efectos se manifiestan de manera creciente conforme aumenta la velocidad, a través de un doble proceso.
- Por una parte, es causa de un elevado trabajo de deformación elástica del neumático, en repetidos ciclos de histéresis. Este consumo de energía se produce a costa de la única disponible, la cinética del vehículo. Este proceso de reducción de la velocidad es muy

diferente al debido a la micro textura, que coincide en todo con el concepto clásico de rozamiento. Su efecto es importante, aunque limitado, y no contribuye en más de 0,2 coeficiente de rozamiento. Por otra parte, las irregularidades suponen una cierta capacidad de almacenamiento de agua y forman una red de canalículos, más o menos continuos, que, junto con los relieves del neumático, aseguran, hasta un límite, la evacuación del agua de Iluvia.

- En la Figura se representan esquemáticamente los perfiles propios de los cuatro arquetipos de textura y su influencia en el coeficiente de rozamiento sobre superficie mojada, según la velocidad. El análisis de los datos recogidos en la figura permite destacar algunos aspectos.
- La micro textura áspera es siempre necesaria para conseguir valores más altos del rozamiento. La macro textura rugosa es imprescindible a altas velocidades.
- A velocidades inferiores a 50-60 km/h el rozamiento que puede alcanzarse resulta relativamente poco sensible a la macro textura rugosa, siempre costosa de conseguir y productora de un mayor ruido de circulación. Estas son las razones por la que, en el ámbito urbano, se prescinda de ella.
- Nótese la diferencia entre macro textura rugosa positiva y negativa. En la práctica, la diferencia principal reside en la intensidad del ruido de rodadura sensiblemente menor en la segunda.

No basta con que el coeficiente de rozamiento sea elevado. Para que la adherencia entre el neumático y el pavimento quede garantizada ha de producirse el contacto efectivo entre ambos. En presencia de fuertes espesores de lámina de agua, esta entra en presión bajo el neumático. Por encima de una cierta velocidad, el aumento de la presión es insuficiente para producir la evacuación del agua a través de los canalículos antes citados y el neumático, levantado por el agua, entra en hidroplaneo (Recuenco, 2018).

La regularidad superficial del pavimento se refiere a ondulaciones de mayor longitud de onda y será considerada con algún detalle en el capítulo. No solo influye en la seguridad: lo hace también en alto grado, en la comodidad del usuario. Otros aspectos están relacionados con la comodidad, entre ellos destacan (Recuenco, 2018).

El ruido de rodadura, originado por la circulación de los vehículos depende de muchas variables, entre las que destacan el tipo de firme y su textura superficial. Las variaciones pueden ser notables dentro de cada, tipo de firme y mucho mayor aún entre los diversos tipos de firmes. En el Apéndice se incluye un sucinto estudio de este tema, comenzando por una caracterización general del ruido (Recuenco, 2018).

La reflexión luminosa, que ha de permitir una buena percepción de los obstáculos y señales, tanto de día como de noche, con superficie de rodadura seca o mojada. Esta propiedad depende también del tipo de firme y de la textura. El desagüe superficial, que debe garantizarse por los negativos efectos de la presencia de agua en la adherencia neumático-pavimento y en las propiedades ópticas (Recuenco, 2018).

2.2.2.2. Resistencia y transmisión de las cargas

Las características resistentes dependen del tipo de firme, de los materiales empleados y del espesor de las capas. Es obvio que, bajo la acción de las cargas, se producen tensiones, deformaciones y corrimientos en todos los puntos, con variación que puede dejar de ser continua en los planos de separación entre capas. A título de ejemplo, un neumático con anchura de contacto de 10 cm, rodando a 90 km/h sobre una calzada mojada con una película de agua de 1 mm de espesor ha de desplazar 150 litros/minuto de agua (Recuenco, 2018).

El firme es una estructura: consta de unos materiales que, sometidos a la acción de unas cargas, experimentan tensiones y deformaciones, transmitiendo esas cargas a la explanada y a las capas situadas bajo ella, que constituyen el cimiento del firme. Sin embargo, las diferencias con una estructura convencional son notables. Ante un incremento progresivo de las cargas, estas últimas estructuras alcanzan el colapso a través de un proceso bien conocido: la formación de un número creciente de rótulas plásticas' hasta que la estructura, o alguna de sus partes, se convierte en un mecanismo (Recuenco, 2018).

En el caso de un firme, el proceso es distinto. No se produce su colapso. No obstante, el efecto de la repetición de las cargas (inferiores a la que produciría ese colapso) origina un deterioro progresivo del firme, con la aparición de deformaciones y corrimientos excesivos, de modo que deja de satisfacer los objetivos antes enumerados con el nivel de exigencia requerido. Se dice, con más propiedad, que el firme alcanza el fin de su vida útil. Es el conocido fenómeno de fatiga, al que son poco o nada sensibles las estructuras convencionales para las cargas de servicio usuales. Asimismo, se estudia con algún detalle este fenómeno de la

fatiga de los materiales que, como se verá a lo largo de este libro, juega un papel fundamental en el dimensionamiento y comportamiento de los firmes. Cabe terminar señalando que, en un firme bien proyectado y construido, lo más frecuente es que antes de alcanzar el fin de su vida útil por motivos estructurales, pierda las características superficiales que hacen que la rodadura sea segura y cómoda, lo que exige la rehabilitación de esta superficie (Recuenco, 2018).

2.2.3. Parámetros de diseño

El estudio y proyecto de un firme parte siempre de la consideración de algunos parámetros fundamentales, que inciden de manera primordial en su comportamiento y en la consecución de los objetivos perseguidos, todo ello a coste razonable. Los más importantes son los siguientes:

2.2.3.1. Trafico

Es un parámetro fundamental e interviene decisivamente en él dimensionamiento y en el deterioro del firme. Ha de evaluarse el tráfico total que deberá soportar el carril pésimo a lo largo del periodo de proyecto del firme, coincidente con el de vida útil por razones estructurales Como estudiaré en el capítulo, resulta decisivo el efecto de los vehículos pesados, prácticamente los único considerados. También deben ser considerados los esfuerzos y tensiones normales y tangenciales sobre el pavimento y la velocidad, y el tiempo de aplicación de las cargas, puede tener influencia en el comportamiento de algunos materiales constitutivos de los firmes, tal como ocurre con el betún, que forma parte de muchos de ellos (Recuenco, 2018).

2.2.3.2. Cimiento

El segundo parámetro fundamental es el cimiento del firme y, en particular, su capacidad portante, que también determina el dimensionamiento. La necesidad de que las cargas del tráfico lleguen al cimiento lo suficientemente repartidas para que pueda soportarlas sin deformaciones excesivas se traduce en que, para una decreciente capacidad de soporte del cimiento, sea necesario un aumento del espesor o, alternativamente, de la rigidez del firme. Las características del cimiento deben ser estables, permanentes a lo largo del tiempo, sin verse afectadas por los cambios de humedad o por los ciclos de hielo y deshielo (Recuenco, 2018).

2.2.3.3. Materiales disponibles

Los materiales disponibles pueden ser determinantes del tipo y estructura del firme. Ha de garantizarse su existencia en cantidad, homogeneidad y calidad suficientes y a costes razonables. La ubicación de los yacimientos y, por tanto, las distancias de transporte necesarias son fundamental, así como la factibilidad de explotación de esos yacimientos, que puede venir dificultada por las disposiciones y normativas de carácter administrativo y medioambiental vigentes (Recuenco, 2018).

2.2.3.4. Clima

El clima influye en la elección de los materiales que han de componer el firme, en el tipo de capas que pueden disponerse y en el dimensionamiento y disposición de los elementos de drenaje. Así, por ejemplo, la temperatura ambiente y sus variaciones extremas determinan la elección del tipo de betún, del mismo modo que la pluviosidad o altura sobre el nivel del mar condiciona el empleo de algunos tipos de mezclas bituminosas (Recuenco, 2018).

2.2.3.5. Costos

En el proyecto de un firme han de considerarse sus costes, pero no sólo los de construcción sino los que pudieran denominarse costes generalizados, que incluyen. además, los de conservación y rehabilitación, a lo largo del periodo de proyecto, así como los de circulación de los vehículos, no iguales para todos los tipos de firmes y, en cualquier caso, más difíciles de evaluar. Lógicamente, se trata de costes actualizados al momento de realizar el cálculo (Recuenco, 2018).

2.2.3.6. Otros parámetros

Entre ellos pueden citarse la disponibilidad de maquinaria o las políticas y estrategias que puedan seguir las administraciones en un momento dado, en relación con la promoción del empleo o el consumo de determinados materiales (Recuenco, 2018).

2.2.4. Tipos de firmes

Es clásica la clasificación de los firmes en dos grandes grupos:

- Firmes flexibles
- Firmes rígidos

Los primeros están constituidos por una serie de capas que, en general, presentan una resistencia a la deformación decreciente con la profundidad, al igual que las tensiones producidas por las cargas. Salvo los sometidos a muy bajas intensidades de tráfico, tienen, al menos, una capa bituminosa, que constituye la rodadura. Sirva como ejemplo lo ocurrido a raíz de la conocida como crisis del petróleo (1973), caracterizada por un brutal y brusco incremento del precio de este material. El entonces Ministerio de Obras Públicas dictó, por Orden Circular 242/1974, instrucciones que favorecían soluciones en las que se empleara el cemento en detrimento del betún. Los firmes

rígidos están formados por una capa de hormigón de gran rigidez, que asume la función resistente y distribuye mucho las cargas verticales, de modo que lleguen ya muy reducidas a la capa subyacente, de base. A continuación, se realizan con más detalle distintos tipos de firmes (Recuenco, 2018).

2.2.4.1. Firmes flexibles

Según (Recuenco, 2018). La parte superior de estos fumes se denomina pavimento y es la que soporta directamente la acción del tráfico. Está constituido por una o dos capas de mezcla bituminosa (rodadura e intermedia) o, para tráficos de baja intensidad, por un tratamiento superficial. Las funciones del pavimento son, fundamentalmente, según lo siguiente:

- Recibe directamente la acción del tráfico y resiste las solicitaciones que impone.
- Absorbe los esfuerzos tangenciales (rodadura, aceleración, frenado, circulación en rampa o pendiente)
 y parte de los normales.
- Aporta las características funcionales deseadas.

Bajo el pavimento se sitúa la base, capa cuya función fundamental es la *resistencia*, absorbiendo la mayor parte de los esfuerzos verticales. Si el tráfico que ha de soportar el firme es medio o bajo, se disponen bases granulares, en las que no hay conglomerante alguno. Para intensidades más elevadas se utilizan bases tratadas con algún conglomerante, cemento o betún mayoritariamente, de mucha mayor rigidez. Bajo la base puede disponerse otra capa, usualmente denominada subbase. Sus principales funciones son las siguientes:

- Proporciona un apoyo uniforme y de calidad a la base
- Constituyen una transición hasta la explanada,

permitiendo una buena compactación de la base.

En muchos textos se emplea el término pavimento para designar al conjunto del firme. Por ello, también en este libro se empleará así en algún caso, siempre que no dé lugar a confusión.

Suelen emplearse subbases granulares o de suelo cemento. En todo caso, la subbase puede no ser necesaria con explanadas de alta capacidad portante. Aunque englobados bajo la denominación genérica de firmes flexibles, la diferente composición de sus distintas capas ha determinado la aparición de una clasificación más específica, que conviene conocer.

- Firme flexible, propiamente dicho: es el constituido por capas granulares no tratadas y por un pavimento bituminoso de espesor inferior a 15 cm (puede ser un tratamiento superficial).
- Se denomina firme semiflexible al que consta de un espesor total de capas de mezcla bituminosa no inferior a 15 cm, dispuestas sobre capas granulares no tratadas.
- Se conoce como firme semirrígido al constituido por un pavimento bituminoso de cualquier espesor sobre una o más capas tratadas con conglomerantes hidráulicos, con espesor conjunto de éstas igual o superior a 20 cm.

2.2.4.2. Firmes rígidos

El pavimento es aquí de hormigón, diseñado y construido para que alcance una suficiente resistencia al flexo tracción y suministre una superficie regular y antideslizante. Se trata fundamentalmente de pavimentos de hormigón vibrado, diferenciándose varios tipos (Recuenco, 2018).

- Hormigón en masa, con juntas longitudinales y

transversales, que delimitan losas, unidas o no mediante pasadores y barras de acero, según la intensidad de tráfico pesado, con la misión de facilitar la transmisión de las cargas entre losas contiguas.

- Hormigón armado, continuo o con juntas transversales.
 Se emplean barras de acero y se disponen sólo en el caso de tráficos muy pesados o en áreas industriales.
- Hormigón armado con fibras de acero. Su coste es elevado y únicamente se utilizan en casos muy específicos, tales como estacionamientos de vehículos pesados o pavimentos portuarios.

Hormigón pretensado, que permite losas de menor espesor, pocas juntas y una elevada resistencia a las grandes cargas. Se trata de un tipo de pavimento poco frecuente, con utilización prácticamente limitada a las pistas de los algunos aeropuertos. Se han realizados también pavimentos de hormigón compactada, de más fácil ejecución ya que se pone en obra, extiende y compacta con la maquinaria de utilización general en obras de carreteras. Sus características resistentes son similares a las del hormigón vibrado, por la regularidad superficial que se consigue exige disponer encima de una capa de rodadura de mezcla bituminosa. Su empleo ha decaído en carreteras, aunque siguen siendo utilizados en el caso de caminos en el ámbito rural y en pavimentos de puertos y de algunas zonas de aeropuertos. Estos pavimentos descansan sobre una capa de base, que debe apoyo continuo, uniforme y estable en el tiempo. En el caso tráfico de intensidad media o baja, esta capa está constituida por material granular o, incluso puede suprimirse. Para tráficos elevados las propiedades exigidas a esta capa han de- terminado la utilización de bases de hormigón magro, a pesar de solicitaciones relativamente bajas a que están

sometidas. Las características de la explanada pueden recomendar, en algunos casos, extender sobre ella una capa de subbase (Recuenco, 2018).

2.2.4.3. Otros tipos de firmes

Existen otros tipos de firmes. Entre ellos, merecen ser señalados los dos siguientes (Recuenco, 2018).

- Los firmes articulados, fundamentalmente los constituidos por adoquines de hormigón. Su ámbito de aplicación abarca, entre otras, las áreas urbanas y zonas portuarias e industriales. Los adoquines se disponen sobre una cama de arena y una capa de base.
- Los firmes mixtos, muy utilizados en calles y vías urbanas.
 Están constituidos por un pavimento bituminoso sobre una base de hormigón.

Todos estos tipos de firmes serán analizados, con mayor detalle:

- Enumere los objetivos y finalidades fundamentales de la construcción de los firmes.
- Cite los parámetros que intervienen en el proyecto de un firme.
- Caracterice el fenómeno de la fatiga de los materiales.
 Describa el papel que desempeña en el establecimiento del concepto de vida útil de un firme.
- Diferencie micro textura y macro textura, indicando su contribución a la formación del rozamiento neumáticopavimento en función de la velocidad.
- Diga cuál es la función principal de la capa de base de un firme.
- Establezca coincidencias y diferencias entre firmes flexibles, semiflexibles y semirrígidos.
- Explique las características y la utilización del hormigón compactado en capas de firmes.

- Cite las funciones principales de la capa de base de un firme rígido.
- Sean n fuentes de sonido. Cada una de ellas, aisladamente considerada, origina en un punto dado una intensidad de sonido Ij (J = 1, 2...n), expresada en decibelios. Demuestre que la intensidad total I, percibida en ese punto por la actuación simultánea de las n fuentes es: I (decibelios) = 10 log (Sí 10í; /1°)
- Aplique la fórmula anterior y compruebe que duplicar una fuente sonora aumenta en 3 dB la intensidad sonora percibida en un punto, cualquiera que fuere la intensidad de la fuente.

2.2.5. Estabilidad de suelos

2.2.5.1. Acción de la cal

La acción de la cal sobre la arcilla es muy importante y tiene lugar en dos fases. En la primera de ellas, a muy corto plazo, se produce un intercambio iónico, en el que el Ca" liberado por la cal sustituye a los iones Na y K que, en forma de capa difusa, rodean a las partículas laminares de arcilla. Esto produce una floculación, de las partículas de arcilla, con incremento del rozamiento entre ellas, disminución de la superficie específica y cambio de la textura a la de un material friable, de comportamiento relativamente similar al de una arena.

Además, en una segunda fase, que tiene muy larga duración, se produce una reacción puzolánica entre el ion calcio y la sílice y la alúmina liberadas por la arcilla, produciéndose un cemento, principal causante del incremento de las resistencias mecánicas. Estas acciones justifican que,

en sentido figurado, se diga que la cal destruye las arcillas y que sus efectos concretos sean muy notables. A corto plazo (minutos o pocas horas) se produce (Recuenco, 2018).

- Modificación (inmediata) del estado hídrico del suelo, por el simple aporte de materia seca y, si se emplea cal viva, por hidratación de la cal y evaporación de agua, dado que este proceso es fuertemente exotérmico. La adición e un 1% de cal viva en relación con el peso del suelo produce una reducción de un 3-5 % en la humedad, que se reduce a cifras del orden de 0,3% el caso de la cal apagada.
- Un notable incremento del límite plástico, acompañado de una ligera elevación del límite líquido. Por tanto, una notable disminución del índice de plasticidad, con reducción de su eventual expansividad.
- Un aumento de la resistencia a cortante.
- Un decremento de la densidad óptima Procter, con un aumento de la humedad óptima.

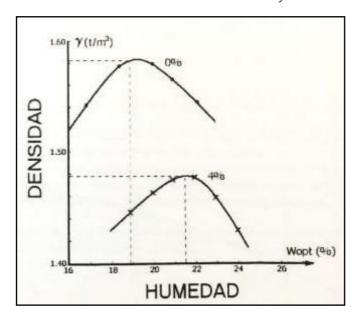


Ilustración 1: Influencia de la cal en el ensayo Proctor

Fuente: (Recuenco, 2018).

Un incremento de la resistencia a la comprensión y del CBR, según se muestra (Recuenco, 2018).

A largo plazo (varios meses o incluso, algunos años) y como consecuencia de la reacción puzolánico y de la cementación producidas, tiene lugar un notable incremento de las resistencias mecánicas, de la cohesión y del ángulo de rozamiento interno, junto con una disminución de la permeabilidad y, por tanto, de la susceptibilidad al agua (Recuenco, 2018).

2.2.5.2. Acción del cemento

La acción del cemento es en parte similar a la de la cal. porque la hidratación del cemento libera cal. Esta acción es, sin embargo, limitada. La principal consiste en a cementación de los granos con aumento de la cohesión y disminución de la plasticidad. En concreto, se producen los siguientes efectos (Recuenco, 2018).

- Fuerte aumento de la cohesión y del ángulo de rozamiento interno. La primera alcanza un máximo en función del contenido de cemento, decreciendo si la dosificación de cemento aumenta.
- Incremento del CBR y de las resistencias a compresión y a flexión. Estas resistencias aumentan con la edad.
- Notable disminución de la plasticidad, por aumento del límite plástico.
- Importante disminución de la permeabilidad. De hecho, los suelos estabilizados con cemento se vuelven casi impermeables.
- En suelos con algún grado de cohesión, reducción de los cambios de volumen. porque la matriz de cemento restringe los movimientos.
- Mayor duración, en relación con modificaciones de volumen, ciclos de hielo y deshielo y cambios de humedad.

2.2.6. Mezclas bituminosas

Las mezclas bituminosas tienen su primer antecedente en la construcción de firmes de carretas en 1830, mediante el empleo del alquitrán en algunos riegos superficiales. También este conglomerante se utilizó en 1850 en algunas vías urbanas y carreteras de Inglaterra, en paralelo con el consumo de gas ciudad para la iluminación, en cuya fabricación se obtenía alquitrán como subproducto. Coetáneo fue empleó de este ligante en la pavimentación de ciertas áreas de la Puerta del Sol de Madrid. A partir de 1870 se emplean en Estados Unidos asfaltos naturales y algo más tarde, betunes de destilación (Recuenco, 2018).

Los fundamentos de la tecnología del empleo de mezclas bituminosas en la pavimentación fueron establecidos por el estadounidense C. Richardson a finales del XIX. La fabricación de mezclas bituminosas en central aparece después de la primera Guerra Mundial y toma un gran auge después de la segunda. En España cabe destacar como primer hito importante su empleo en las realizaciones del denominado Circuito Nacional de Firmes Especiales, plan formulado en 1926. El consumo de estas mezclas fue aumentando con el tiempo, siempre ligado a las inversiones en carreteras, hasta alcanzar, hace pocos años, cifras anuales próximas a los 50 millones de toneladas, muy superiores a las actuales (Recuenco, 2018).

Los pavimentos de mezclas bituminosas son hoy las rodaduras preferidas por los usuarios, que aprecian sus cualidades de seguridad y comodidad. Los avances en la tipología, formulación y propiedades de estas mezclas son notables y continuos y abren campos y posibilidades cada vez más amplios en su utilización, suministrando

una adecuada respuesta a las crecientes exigencias en su proyecto y construcción. En Todo caso, su versatilidad es notable y pueden utilizarse en muy diversos espesores, distintas características climáticas o diferentes superficies. En muchos casos se usan también como capas de base (Recuenco, 2018).

En este capítulo se estudiarán los distintos tipos existentes; las funciones que desempeñan los materiales que las constituyen; las características y propiedades principales de estas mezclas; los tipos de mezclas más utilizados en España; los criterios de dosificación; la fabricación, puesta en obra y el control de calidad, así como su acabado superficial y el proceso de deterioro (Recuenco, 2018).

2.2.7. Caracterización y clasificación de mezclas

Una mezcla bituminosa es una unión íntima de áridos y un ligante bituminoso, de forma que en su estado final presenta, en general, un cierto porcentaje de aire ocluido (huecos en mezcla). Cabe destacar aquí algunas notas fundamentales (Recuenco, 2018).

- Por unión íntima se entiende que el ligante envuelve, en una película fina y continua, todas las partículas minerales.
- El aire (huecos) desempeña un papel fundamental.
- El ligante confiere a la mezcla un comportamiento complejo, derivado de su propia complejidad.
- Entre los áridos figura el polvo mineral, con funciones relevantes y específicas, en buena parte distintas de las del resto de los áridos.
- El porcentaje de ligante suele estar comprendido en el intervalo 3-10 % en masa (8-25 % en volumen).

Existen diversas formas de clasificar las mezclas bituminosas, según el criterio al que se atienda y es necesario conocer la denominación y las características generales que determinan los distintos tipos (Recuenco, 2018).

Atendiendo a las fracciones de áridos empleados, se distinguen:

- Masilla (mástico) bituminoso: polvo mineral + ligante.
- Mortero bituminoso: árido fino + masilla bituminosa.
- Hormigón bituminoso: árido grueso + mortero bituminoso.
- Macadam bituminoso: árido grueso + ligante.

Si se considera la temperatura de puesta en obra, cabe distinguir:

- Mezclas en frío: no se calientan los áridos previamente y la mezcla se extiende y compacta a temperatura ambiente.
 Principalmente se emplean emulsiones.
- Mezclas en caliente, previamente los áridos y el ligante que favorece la envuelta de los primeros por el segundo. La mezcla se extiende y compacta, también a temperatura muy superior al ambiente. So, hoy las más usadas y son del tipo hormigón bituminoso.
- Mezclas bituminosas templadas y semicalientes. se fabrican a temperatura intermedia entre las dos anteriores, por debajo o por encima de los 100 °C, respectivamente.

Todas estas mezclas serán estudiadas. En lo que respecta a los huecos en mezcla pueden establecerse cuatro grandes grupos (Recuenco, 2018).

- Mezclas cerradas o densas, con porcentaje de huecos inferior al 5 o emplean mucho en capas de rodadura y su impermeabilidad es muy alta. Son las conocidas como "densas y semidensas"
- Semicerradas, con huecos comprendidos en el intervalo 5-12 %. Se utiliza en capas intermedias y de base, pero no en rodadura, por poco permeables y menor contenido de betún, lo que las hace más susceptible al envejecimiento. Son las tradicionalmente denominadas "gruesas".
- Abiertas. El porcentaje de huecos supera el 10-12 %. Tienen sólo árido grueso y betún y resisten básicamente por

rozamiento interno, al contrario de las anteriores, a las que el mástico da cohesión. Son muy flexibles y se emplean en rodaduras para carretas de tráfico ligero, con pequeño espesor (del orden de 5 cm) y áridos de elevada calidad. Para protegerlas del envejecimiento se sellan con lechada. Con mayor espesor se pueden usar en capas de base.

- Drenantes o porosas. Tienen un muy alto porcentaje de huecos, superior al 20 %. No son impermeables y, como se estudiará más adelante, se emplean en capas de rodadura.
- Según (Recuenco, 2018) En cuanto a lo granulometría de los áridos, se diferencia dos tipos:
- De granulometría continua, en las que los áridos forman un verdadero esqueleto mineral, con partículas finas que rellenan los huecos que dejan entre si las gruesas y una película de ligante que envuelve a todas y cada una de ellas. Es fundamental conseguir un mínimo de huecos para permitir los cambios volumétricos del ligante con la temperatura y otros procesos más complejos. Estas mezclas son algo críticas respecto al contenido de betún, aunque se cuenta hoy con criterios probados para efectuar su correcta dosificación.
- Discontinuas. La curva granulométrica presenta discontinuidades en el sentido en que faltan fracciones de árido en determinados intervalos de tamaño. Algunas de las mezclas utilizadas en España en capas de rodadura son discontinuas. Por el tamaño máximo del árido.
- Mezclas gruesas. Son las utilizadas en España comúnmente, de tamaño máximo del árido comprendido entre 8 mm y 32 mm. Proporcionan macrotextura y el espesor de capa es del orden de tres-cuatro veces este tamaño máximo.
- Mezclas finas. Aparte el ligante, sólo cuentan con árido fino, incluyendo, en su caso, el polvo mineral. Son las lechadas o micro aglomerados estudiados en el capítulo anterior. No tienen papel resistente ni suministran macrotextura y se extienden en capas de muy pequeño espesor.

- Por la estructura del árido se establecen dos tipos de extremos:
- Mezclas con esqueleto mineral, que resisten por rozamiento interno y cohesión. Son las normalizadas en España y comprenden, básicamente, los hormigones bituminosos y las mezclas abiertas. Esta estructura requiere menos contenido de betún.
 - Mezclas sin esqueleto mineral. Se trata de las masillas bituminosas y de los denominados asfaltos fundidos. Contienen elevadas proporciones de betún y de polvo mineral y, eventualmente, árido grueso disperso en el mástico, sin contacto entre las partículas minerales y, por tanto, sin formación de esqueleto. La resistencia es debida exclusivamente a la cohesión proporcionada por la viscosidad de ese mastico. Se emplean betunes muy duros, para disminuir la susceptibilidad térmica. No existen huecos en la mezcla y se extienden sin necesidad de compactación posterior. Son mezclas de calidad, absolutamente impermeable y muy caras y de poca utiliza, limitada a tableros de puentes y pavimentos de vías y aceras en climas fríos y húmedos. Es obvio que una mezcla puede ser tipificada atendiendo a cada uno de estos criterios, aunque, como se ha visto, no todas las combinaciones de tipos son posibles.

2.2.8. Materiales de mezclas

En este apartado se pasa revista a las características y propiedades que deben satisfacer los tres materiales fundamentales que constituyen una mezcla bituminosa, áridos, betún y polvo mineral (Recuenco, 2018).

2.2.8.1. Áridos

Los áridos de las mezclas bituminosas responden, en líneas generales, a las exigencias y características estudiadas en los Capítulos 2 y Además de las habituales de limpieza, limitación del contenido en materia orgánica y no ser susceptibles de meteorización ni alteración física o química, los áridos deben satisfacer otras, relativas a granulometría y plasticidad, dureza y porcentaje de partículas trituradas, algunas de las cuales se recogen en el Apéndice 8.1 de este capítulo, en el caso de las mezclas en caliente tipo hormigón bituminoso y capas de rodadura definidas por el Ministerio de Fomento. Lógicamente, las exigencias aumentan en el caso de estas últimas. Los requisitos exigidos se han visto endurecidos en las últimas modificaciones efectuadas, consecuencia, en parte, de la necesaria armonización con la normativa europea. Así, y en el caso de capas de rodadura pueden destacarse algunos de ellos (Recuenco, 2018).

- Para las categorías de tráfico pesado TOO y TO, no se admite fabricar ningún tamaño de árido grueso (superior a 2 mm) por trituración de gravas procedentes de yacimientos granulares ni de canteras de naturaleza caliza.
- Para otras categorías de tráfico, si se emplea árido grueso procedente de la trituración de grava natural, el tamaño de las partículas ha de ser seis veces el tamaño máximo del árido final.
- También se han endurecido las exigencias en lo que respecta a la proporción de partículas total y parcialmente trituradas, totalmente redondeadas (prescripción anteriormente inexistente), desgaste de los Ángeles, índice de lajas y resistencia al pulimento acelerado, en el caso de capas de rodadura.

2.2.8.2. Betún

Los betunes utilizados en la fabricación de mezclas bituminosas son de los estudiados en el Capítulo 3. Los tipos

utilizados en cada caso dependen de la capa y mezcla bituminosa de que se trate, de la categoría de tráfico y de las características climáticas de la zona en que se sitúe la carretera, respondiendo a las propiedades y criterios de utilización allí expuestos. Se utilizan betunes de penetración, modificados con polímeros y modificados con caucho. En el Apéndice 8.2 se recogen los tipos especificados por el Ministerio de Fomento para las mezclas bituminosas en caliente (Recuenco, 2018).

2.2.8.3. Polvo mineral

Betún y polvo mineral son los componentes de una mezcla bituminosa que más influyen en su calidad. Por polvo mineral se entiende la fracción mineral que pasa por el tamiz de 0,063 mm. Son los elementos más finos del esqueleto mineral y, además, forman un mastico con el betún. Estos dos hechos determinan sus funciones principales. Como constituyente del esqueleto mineral, el polvo mineral juega un papel importante (Recuenco, 2018).

- Rellena parte de los huecos que dejan el resto de los áridos, gruesos y finos, disminuyendo el contenido de huecos y haciendo más denso el esqueleto.
- Suministra puntos de contacto entre áridos de mayor tamaño, aumentando la estabilidad del esqueleto en su conjunto.
- Facilita la compactación, al actuar, ante ésta, como rodamientos entre partículas más gruesas de árido.

Por otra parte, betún y polvo mineral forman un sistema coloidal, un mastico bituminoso, con propiedades diferentes a las del betún original, pues se comporta como un ligante más duro y con una menor susceptibilidad térmica; esto es, más rígido lo que se hace que aumente la resistencia de las

mezclas bituminosas a la formación de roderas u otras deformaciones plásticas. En relación con este efecto de incremento de la rigidez de las mezclas precisas señalar que aumenta, hasta un punto, cuando crece la cantidad de polvo mineral, al disminuir el porcentaje de huecos y, por tanto, el betún necesario polvo mineral obtener un determinado porcentaje de éstos. Si se excede un cierto contenido de polvo mineral el betún libre resulta escaso y la mezcla deviene frágil y de rápido envejecimiento. Por el contrario, reducidos contenidos de polvo mineral conducen a mezclas con exceso de betún libre y riesgo de exudaciones. De aquí que muchas normativas, entre ellas la española, acoten en un determinado intervalo la relación polvo mineral/betún, variable según el tipo de mezcla (Recuenco, 2018).

El polvo mineral influye también en la susceptibilidad al agua de una mezcla bituminosa. Así, por ejemplo, si el árido contuviera arcilla formaría parte, por el tamaño de sus partículas, del polvo mineral, impidiendo el contacto áridobetún, Asimismo, tiene algunos efectos sobre el envejecimiento del betún, al que puede acelerar por su capacidad de absorber los componentes más ligeros del betún si bien otros efectos, menos conocidos, podrían ser de sentido contrario (Recuenco, 2018).

Característica importante del polvo mineral es su finura. Si es excesiva, la superficie específica es muy alta y exige mucho betún para recubrirla1. Por el contrario, si los tamaños son relativamente gruesos, la actividad del polvo mineral se ve disminuida. Esta característica se mide mediante determinación de la densidad aparente, que las normas acotan también, superior e inferiormente (Recuenco, 2018).

El polvo mineral puede proceder de los áridos, separándose de ellos en el proceso de fabricación de las mezclas, o aportarse por separado como un producto comercial o especialmente preparado. La posibilidad, relativamente poco probable, de falta de homogeneidad o de contaminación del polvo mineral en el primer caso determina que las normas fijen un porcentaje mínimo del polvo mineral de aportación, que llega al 100 % para determinadas categorías de tráfico y capas de firme (Recuenco, 2018).

2.2.9. Características y propiedades de las mezclas

Las mezclas bituminosas pueden presentar propiedades y características muy diferentes. En esto estriba su versatilidad y sus posibilidades de empleo en circunstancias y con requerimientos muy diversos. En este apartado se estudiarán sus propiedades fundamentales y, en su caso, los ensayos utilizados para su análisis y cuantificación (Recuenco, 2018).

La primera característica que debe tener una mezcla bituminosa es la estabilidad, entendida como la aptitud para resistir cargas y soportar las tensiones por ellas producidas sin deformaciones excesivas. La estabilidad es consecuencia de las dos componentes de la resistencia: ángulo de rozamiento interno del esqueleto mineral y cohesión suministrada por el conglomerante. La cuantificación de esta propiedad se lleva a cabo mediante el ensayo Marshall, posteriormente considerado (Recuenco, 2018).

Una propiedad importante es la resistencia a las deformaciones plásticas que, durante años, constituyeron uno de los mayores inconvenientes de estas mezclas utilización para su determinadas circunstancias. Se trata de deformaciones permanentes y no recuperables y se producen con tráfico pesado, a alta temperatura o baja velocidad de circulación. Variables que influyen en su formación, aparte tráfico y temperatura, son el tipo y cantidad de ligante, su susceptibilidad térmica, la rigidez de la masilla polvo mineral-betún y las características (fundamentalmente la granulometría) del esqueleto mineral de la mezcla, así como la angulosidad del árido (Recuenco, 2018).

Las deformaciones plásticas más frecuentes son las roderas, que aparecen longitudinalmente, marcando las rodadas de los vehículos pesados y las deformaciones en tela ondulada, en zonas de esfuerzos horizontales intensos y frecuentes. El problema se resuelve, y hoy mediante el empleo de está resuelto. meiores materiales. más adecuadas ligantes más granulometrías V duros. susceptibilidad de una mezcla a las deformaciones plásticas se evalúa mediante el denominado ensayo de pista de laboratorio, una rueda goma de maciza lastrada actúa con un movimiento de vaivén sobre probeta de mezcla, midiéndose la huella producida. En la figura se recogen las curvas que se obtienen en el ensayo para distintas compactaciones de la probeta (Recuenco, 2018).

La flexibilidad permite a una mezcla admitir fisuración las deformaciones impuestas. Guarda una relación directa con la fatiga y tiene importancia cuando la mezcla se extiende sobre un medio deformable, tal como una capa granular o un tablero de un puente (Recuenco, 2018).

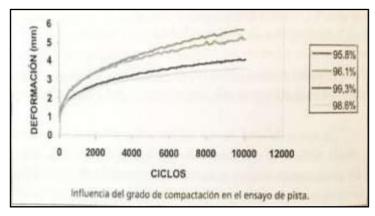


Ilustración 2: Ensayo de pista de laboratorio

Fuente: (Recuenco, 2018).

La resistencia a la fatiga toma valor con comportamientos elásticos, a bajas temperaturas y elevada velocidad de paso de las

cargas. Se admite que la ley de resistencia a la fatiga puede aproximarse por una recta, en escala doblemente logarítmica en la figura, se presenta la adoptada en la Norma de Firmes de Andalucía (Recuenco, 2018).

Una resistencia insuficiente produce un aumento de las deflexiones y la fisuración en piel de cocodrilo (Recuenco, 2018).

Ilustración 3: Piel de cocodrilo

Fuente: (Recuenco, 2018).

La resistencia al envejecimiento o durabilidad hace referencia a la resistencia de las capas de rodadura a los agentes externos. Es un fenómeno complejo, ligado al envejecimiento del betún y en el que interviene la luz solar, la oxidación por el aire y el agua, las heladas, la acción de los carburantes y aceites provenientes del tráfico, el efecto de las sales fundentes y de la propia helada y otros (Recuenco, 2018).

Algunos componentes de este proceso son irreversibles. El envejecimiento da lugar a la aparición de peladuras, descascarillados, fisuras, perdidas de material y un largo etcétera. Sin embargo, cabe afirmar que, si la rodadura está bien proyectada y construida, será la perdida de sus cualidades funcionales, y no el envejecimiento, lo que determinará e fin de su vida útil La resistencia al deslizamiento, solo necesaria en capas de rodadura, ha de ser suficiente para garantizar una

conducción segura y ha de mantenerse en el tiempo. Para eso ha de exigirse altos valores del coeficiente de pulimento acelerado del árido grueso, microtextura áspera y macrotextura rugosa (Recuenco, 2018).

La impermeabilidad es una de las exigencias que deben imponerse a las mezclas bituminosas, a fin de proteger a las capas inferiores y, en general, a la infraestructura, de los efectos del agua. Esto no significa que necesariamente esta misión deba confiarse a la capa de rodadura y así, el empleo de rodaduras constituidas por mezclas drenantes o algún tipo de mezclas discontinuas, en ambos casos permeables, exige disponer una mezcla bituminosa impermeable como capa inmediatamente inferior (Recuenco, 2018).

Por sensibilidad al agua se entiende la pérdida de cohesión que se produce por la saturación y acción del agua en una mezcla bituminosa. Esta característica se evalúa mediante la relación entre la resistencia a tracción indirecta4 de probetas de mezcla sometidas a un proceso de inmersión en agua y la de probetas mantenidas al aire. Se habla de *resistencia conservada* y este parámetro es uno de los utilizados para establecer la dosificación de betún de una mezcla, según se expondrá posteriormente (Recuenco, 2018).

La reología de las mezclas bituminosas es ciertamente compleja y se deriva del comportamiento de sus componentes, los áridos y la masilla constituida por el betún y el polvo mineral. En general, el comportamiento de la mezcla viene caracterizado por las notas siguientes (Recuenco, 2018).

- Solo a bajas temperaturas o rápida aplicación de las cargas las mezclas tienen un comportamiento típico de la elasticidad lineal.
- En caso contrario, la mezcla se comporta como un material viscoelástico o, incluso, para altas temperaturas y cargas estáticas o aplicadas a muy baja velocidad, el comportamiento se asemeja al de un líquido viscoso.
- A estos efectos, la temperatura de la mezcla y el tiempo en que

- insiste la carga son equivalentes.
- En las mezclas tipo hormigón bituminoso, las más utilizadas en España, el módulo de rigidez (o deformación) de una mezcla puede variar de verano a invierno entre valores del orden de los 1.000 Mpa-2.500 MPa a superar claramente los 10.000 MPa, respectivamente.
- En general, predomina el comportamiento del betún y en la Figura 8.5 se han representado algunas curvas rigidez- temperatura (o tiempo de aplicación de la carga) de mezclas bituminosas. Su comparación con la Figura 3.3, relativa al betún, es reveladora de este hecho (Recuenco, 2018).

T₁ < ½ < ½ < ¼ log t

Ilustración 4: Comportamiento reológico de las mezclas

Fuente: (Recuenco, 2018).

2.2.10. Mezclas comúnmente utilizadas en España

Se trata, en general, de mezclas tipo hormigón bituminoso, que presentan las siguientes características principales:

- Granulometrías continuas, formando un esqueleto mineral.
- Estructura interna bastante cerrada, con huecos en mezcla comprendidos entre el 3 % y el 9 % (más estrictamente 4-6 %) y betún entre el 3 % y el 6 %.
- Desarrollan un elevado rozamiento interno y alta cohesión, ofreciendo buenas cualidades mecánicas.
- Suficiente impermeabilidad y durabilidad.
- Aceptable textura superficial, que mejora al aumentar la proporción de árido grueso.
- La dosificación de betún puede resultar relativamente crítica para

su comportamiento.

Sin embargo, no todas las mezclas habitualmente utilizadas en España responden a todas y cada una de estas características. Esto ocurre con las drenantes o con las discontinuas utilizadas en capas de rodadura (Recuenco, 2018).

2.2.10.1. Mezclas en capas de rodadura

Según (Recuenco, 2018). Son ya conocidas por el lector las características y funciones que deben satisfacer estas capas. Entre otras, se enumeran las más importantes:

- Macrotextura y microtextura que suministren un alto coeficiente de rozamiento y una elevada resistencia al pulimento de manera duradera.
- Regularidad superficial
- Producción de poco ruido de rodadura
- Resistencia al envejecimiento, a la fatiga a la desintegración y a las deformaciones plásticas.
- En muchos casos, impermeabilidad suficiente.

Según (Recuenco, 2018). La categoría del tráfico y otras variables, la normativa del Ministerio de fomento especifica la utilización de tres tipos de mezclas bituminosas en capas de rodadura:

- Mezclas tipo hormigón bituminoso, de granulometría continua. Son las tradicionalmente conocidas como densas (D) y semidensas (S).
- Mezclas drenantes o porosas, identificadas como PA.
- Mezclas discontinuas.

Según (Recuenco, 2018). Las mezclas densas y semidensas se emplean sólo con las categorías de tráfico T2 e inferiores, sobre todo por un cierto riesgo de producción de deformaciones plásticas y porque presentan otras características inferiores a las de las mezclas utilizadas para

las categorías de tráfico más altas. Entre las características principales de estas mezclas cabe citar las siguientes:

- Granulometría continua con fuerte esqueleto mineral de árido grueso.
- Son mezclas cerradas, con porcentaje de huecos no superior al 6 % y, en todo caso, al valor que se desee conseguir.
- El árido fino se sitúa en el intervalo 25-45 %. El porcentaje de betún oscila entre el 4,5 % y el 5,2 %.
- El espesor de la capa suele situarse en el intervalo 2,5-4 veces el tamaño máximo del árido, cuyos valores nominales normalizados son 16 y 22 mm.

Según (Recuenco, 2018) la comparación ente las mezclas D y S permite afirmar de las primeras.

- La proporción de finos es mayor, por lo que también lo es su superficie específica y, por tanto, exigen más betún.
- Presentan un menor esqueleto mineral de áridos gruesos, lo que las hace menos estables y con mayor riesgo de sufrir deformaciones plásticas. La dosificación de betún resulta más crítica y las precauciones han de ser mayores en zonas cálidas.
- Ofrecen menor macrotextura, lo que las hace menos adecuadas para carretas de alta velocidad
- Al tener betún son más flexibles.
- Pese al mayor contenido de betún de las mezclas densas, con las semidensas puede lograrse el mismo grado de impermeabilidad.

La conclusión general es que resultan preferibles las mezclas S, pudiendo reservarse las densas para arcenes o vías de poco tráfico, en pequeños espesores y firmes muy flexibles. Según (Recuenco, 2018). Las mezclas drenantes (o porosas) tienen como nota definitoria principal el gran número de huecos, lo que permite la percolación del agua. Estas mezclas tuvieron su origen en Gran Bretaña y se usan en España a partir de finales de los 70 Sus características fundamentales son, entre otras, las siguientes:

- La granulometría es continua, con huecos en el intervalo 20-28-30 %. El árido fino se mantiene en el 10-17 %. Por tanto, se trata de mezclas con muy poco mortero y muy permeables.
- Han sido normalizadas granulometrías con tamaño máximo de árido de 11 mm y 16 mm y espesores de capa de 4 cm y 5 cm, respectivamente.
- Al ser muy permeables, la impermeabilidad que debe suministrar el firme ha de confiarse a la capa inferior.
- El reducido porcentaje de finos disminuye las necesidades de betún para conseguir una envuelta suficiente. Sin embargo, el porcentaje de betún es del 4,5 - 5 %, poco o nada inferior al de otras mezclas, lo que explica el relativamente notable espesor de película, que favorece la resistencia al envejecimiento y la duración.
- Suelen emplearse betunes modificados para disminuir el riesgo de desprendimientos, pudiendo emplearse betunes convencionales para tráficos ligeros o medios
- No presentan riesgo de formación de roderas u otras deformaciones plásticas, aunque sí de pérdida de gravillas.
- La seguridad que ofrece la rodadura se ve sensiblemente aumentada, por mejora del contacto rueda-pavimento, menor proyección de agua5 y mayor comodidad. El ruido de rodadura es menor (disminuye entre 2 dB y 6 dB) y menor también la dispersión de la

luz respecto de otras mezclas.

- El desagüe del agua de lluvia exige disponer arcenes y márgenes de la carretera de manera que pueda producirse efectivamente.
- La colmatación de los huecos supone un importante problema. Tiene lugar en un periodo de tiempo de 3-7 años y es más lenta en zonas húmedas por el efecto de bombeo que realiza el tráfico. Después de producida la colmatación la mezcla todavía conserva alguna capacidad de drenaje. Los equipos diseñados para la limpieza sólo resultan medianamente eficaces.

Su utilización en el ámbito urbano no es satisfactoria, por la rápida colmatación que tiene lugar y la disgregación que sufren en áreas de giros, dada su mala resistencia a los esfuerzos tangenciales (Recuenco, 2018).

Estas mezclas se utilizan preferentemente en capas de rodadura en zonas lluviosas o con problemas de mido de circulación, pero sin problemas de hielo o nieve. También se recomiendan en autopistas y autovías en zonas urbanas y periurbanas con tráficos elevados, con valores de la IMD superiores a los 10.000 vh/día6. Al margen de estos criterios, la norma del Ministerio reserva su utilización para las categorías de tráfico pesado TOO a T31 (Recuenco, 2018).

Las mezclas discontinuas para capas de rodadura tuvieron su origen en Alemania y Francia y se emplean en España desde 1985. Se denominan así porque de su esqueleto mineral no forman parte los tamaños comprendidos entre 2 mm y 4mm, con lo cual hay una brusca separación entre el árido grueso y el fino, separados por el tamaño 2 mm. Estas mezclas presentan un acusado esqueleto mineral de áridos gruesos que suponen del orden del 75 % del total. El contenido de mortero es suficiente y presentan buena resistencia a las deformaciones plásticas, no obstante admitir elevados

contenidos de betún lo que, a su vez, aumenta su duración y facilita a su compactación con pequeño espesor (Recuenco, 2018).

Las normas españolas han establecido dos tipos, A y B, con mayor y menor A. porcentaje de árido fino, tamaño máximo del árido grueso de 8 mm y 11 mm y 11mm espesores de capa de 2 cm y 3 cm, respectivamente. Las mezclas B no son impermeables y requieren la disposición de una capa inferior de mezcla cerrada, tipo S. Todas ellas precisan riegos de adherencia espesos (Recuenco, 2018).

Aunque más caras y de menor resistencia estructural que las mezclas de tipo hormigón bituminoso, son muy empleadas en capas de rodadura, al ofrecer buena macrotextura y permitir reducidos espesores y elevadas dotaciones de betún, sin riesgo de formación de roderas.

Se emplean con elevadas categorías de tráfico pesado y su utilización ha ido aumentando en detrimento de las mezclas drenantes, a las que han alcanzado e incluso superado (Recuenco, 2018).

2.2.10.2. Mezclas en capas inferiores

Según (Recuenco, 2018). Estas capas no requieren las mismas propiedades funcionales que las empleadas en capas de rodadura, pero deben absorber y resistir las tensiones que en ellas produce el tráfico, sin deformaciones excesivas ni permanentes, ni fisuración por fatiga. Todas estas mezclas son de tipo hormigón asfáltico. En capas intermedias, inmediatamente debajo de la capa de rodadura, se utilizan mezclas densas y semidensas, con espesores de 5 cm-10 cm, de mayor tamaño máximo de árido y menor contenido de betún (4-4,5 %) que las empleadas en rodaduras. Si esta rodadura no es impermeable la mezcla de la capa intermedia debe ser cerrada. En capas de base se emplean dos tipos de mezclas:

- Mezclas gruesas, con proporción de árido fino en el intervalo 18-32 % y todavía más baja dotación de betún que las anteriores (3,6-4 %), por lo que tienden a la fisuración por fatiga. Estas bases se disponen con espesores comprendidos entre 7 cm y 15 cm.
- Mezclas de alto módulo, denominadas así porque el valor mínimo del módulo dinámico es superior a 11.000 MPa. Se utilizan para tráficos TOO a T2 y son mezclas cerradas de granulometría continua. Se emplean betunes duros, con altas dosificaciones (5,5-6%) y, pese a ello, presentan una estabilidad suficiente. En determinadas condiciones el empleo de estas mezclas permite reducir el espesor de la base bituminosa hasta en un 20%.

2.2.10.3. Denominación de las mezclas

Como consecuencia de la necesaria amortización con la normativa europea, en 2008 las mezclas bituminosas vieron modificada su denominación respecto a la que tradicionalmente habían tenido. Las distintas mezclas concretas especificadas en las formas fueron también modificadas, si bien ligeramente. La mezcla tipo hormigón bituminoso se denominan mediante la siguiente especificación (Recuenco, 2018).

	С	Α	Surf	Ligante	Granulometría
Don	de:				

- AC: mezcla tipo hormigón bituminoso.
 - D: tamaño máximo nominal del árido, en milímetros.
 - Surf...: surf/bin/base, capa de rodadura, intermedia o base, respectivamente.
 - Ligante: designación del tipo de ligante
 - Granulometría: D (densa)/S(semidensa)/G(gruesa), /añadiendo, en su caso, MAM (mezcla de alto modulo).

Se añadirá, en su caso, la palabra semicaliente si la mezcla lo es la nomenclatura de las mezclas drenantes en la siguiente (Recuenco, 2018).

- PA: designa mezcla porosa, y
- D: tamaño nominal del árido, en milímetros.
- Ligante: designación del tipo de ligante.

Por último, las mezclas discontinúas en capa de rodadura se identifican como sigue:

ввтм D	Clase	Ligante
--------	-------	---------

- BBTM: hormigón asfaltico en capa muy fina
- D: tamaño máximo nominal del árido, en milímetros
- Clase: A (25-35% de árido fino). B (15-25% de árido fino).

En la tabla se recoge la denominación de las mezclas actualmente definidas en las normas y de las anteriores a las que han sustituido. Se omite la especificación de los tipos de capa y betún. Denominación de mezclas bituminosas tipo hormigón bituminoso.

Tabla 1.- Denominación de mezclas actuales

Actual	Antigua
AC 16 D	D-12
AC 22 D	D-20
AC 16 S	S-12
AC 22 S	S-20

AC 32 S	S-25
AC 22 S MAM	MAM
AC 22 G	G-20
AC 32 G	G-25
BBTM 8 A	F8
BBTM 8 B	F10

Fuente: (Recuenco, 2018).

2.2.10.4. Betunes utilizados

En la tabla se recogen unas indicaciones generales, más amplias que las prescritas en la normativa ministerial, sobre los tipos de betún habitualmente empleados y su campo más específico de aplicación (Recuenco, 2018).

Tabla 2.- Empleo de los tipos de betún

Tipo	de betún	Empleo	
De	B 13/22	Bases de alto modulo	
penetración	B 40/50	MBC en zonas cálidas y tráficos pesados	
	B 60/70	MBC en general, salvo excepciones de clima y trafico	
	B 80/100	MBC en zonas frías y trafico ligero fabricación de emulsiones y BMP	
	B 150/200	Fabricación de emulsiones y BMP riegos con gravilla	
	B 200/300	Regeneradores en frio o en caliente	
Modificación con polímetros	BM-1 Y BM-2	Bases especiales para grandes cargas	
	BM-3a	Mezclas porosas	
	BM-3b y 3c	Microaglomerados discontinuos	
	BM-4	Antirremonte de fisuras	
Con caucho	BMC	Mezclas para tráficos T00 a T2	
	BC 35/50 Y 50/70	Rodaduras T1 a T4 Intermedias y bases para cualquier trafico	
	BMAVC	Mezclas resistentes a la fisuración por reflexión de grietas.	

Fuente: (Recuenco, 2018).

2.2.11. Método Marshall

Según (Cárdenas y Fuentes, 2014). El propósito del método Marshall es determinar el contenido óptimo para combinación específica de agregados. El método también provee información sobre propiedades de mezcla asfáltica en caliente, y establece densidades y contenidos óptimos de vacíos que deben ser cumplidos durante la construcción del pavimento. El método original únicamente es aplicable para mezclas asfálticas en caliente para pavimentación, que contenga agregado con tamaño máximo de 25 mm (1") o menor. El método Marshall modificado se desarrolló para tamaños máximos de 38 mm (1 ½"). Este puede ser usado para diseño en laboratorio, como para el control de campo de mezclas asfálticas en caliente, con graduación densa.

Según (Cárdenas y Fuentes, 2014). Los datos más importantes del diseño de mezclas del método Marshall son: un análisis de la relación de vacíos-densidad y una prueba de estabilidad-flujo de las muestras compactadas.

- Procedimiento del ensayo Marshall: El método de ensayo Marshall consta de tres procedimientos. Estos son: determinación de la gravedad específica, medición de la estabilidad y flujo, análisis de la densidad y el contenido de vacíos de las probetas.
- Determinación de la gravedad específica: La prueba de gravedad específica puede desarrollarse tan pronto como el espécimen se haya enfriado a la temperatura ambiente. La medición de gravedad específica es esencial para un análisis preciso de densidad-vacíos. Esta prueba se hace de acuerdo con la Norma ASTM D1188, gravedad específica de mezclas asfálticas compactadas utilizando parafina; o la ASTM D2726, gravedad específica de mezclas asfálticas compactadas mediante superficies saturadas de especímenes secos. Para determinar cuál norma se debe utilizar, se realizan pruebas de absorción a la mezcla asfáltica

- compactada; si la absorción es mayor al 2%, se recurre a la norma ASTM D1188; en caso contrario, se emplea la norma ASTM D2726.
- Ensayos de estabilidad y flujo: El ensayo de estabilidad está dirigido a medir la resistencia a la deformación de la mezcla.
 El flujo la deformación, bajo carga, que ocurre en la mezcla. El procedimiento de ensayo es el siguiente:
 - ✓ Las probetas son calentadas en un baño de agua a 60°C (140°F). Esta temperatura representa, normalmente, la temperatura más caliente que un pavimento en servicio va a experimentar.
 - ✓ La probeta es extraída del baño, secada y colocada en el aparato Marshall, este aparato consiste de un dispositivo que aplica carga sobre la probeta, y de unos medidores de carga y deformación.
 - ✓ La carga aplicada a las probetas tiene una velocidad constante de 50.8 mm (2") por minuto hasta que la muestra falle. La falla es definida como la carga máxima que la probeta puede resistir.
 - ✓ La carga de falla se registra como el valor de estabilidad Marshall y la lectura del medidor de deformación se registra como el flujo.
- Valor de estabilidad Marshall El valor de estabilidad es una medida de la carga bajo la cual cede o falla totalmente.

Durante el ensayo, la carga máxima indicada por el medidor es el valor de estabilidad Marshall. Debido a que esta indica la resistencia de una mezcla a la deformación, existe una tendencia a pensar que, si un valor de estabilidad es bueno, entonces un valor mucho más alto será mejor. Para muchos materiales utilizados en ingeniería, la resistencia del material es, frecuentemente, una medida de su calidad; sin embargo, en el caso de las mezclas asfálticas en caliente, las estabilidades extremadamente altas se obtienen a costa de la durabilidad.

- Valor de flujo Marshall: El flujo representa la deformación de la probeta; la deformación está indicada por la disminución en el diámetro vertical de la muestra. Las mezclas que tienen valores bajos de flujo y valores muy altos de estabilidad son consideradas como demasiado frágiles y rígidas para un pavimento en servicio. Aquellas que tienen valores altos de flujo son consideradas demasiado plásticas y tienen tendencia a deformarse fácilmente bajo las cargas del tránsito.
- Análisis de densidad y vacíos: Una vez que se completan los ensayos de estabilidad y flujo, se procede a efectuar un análisis de densidad y vacíos para cada serie de especímenes de prueba. El propósito del análisis es el de determinar el porcentaje de vacíos en la mezcla compactada. Se debe determinar la gravedad específica teórica máxima (ASTM D2041) para al menos dos contenidos de asfalto, preferentemente los que estén cerca del contenido óptimo de asfalto. Un valor promedio de la gravedad específica efectiva del total del agregado, se calcula de estos valores.

2.2.12. Obtención de Polvo de concreto reciclado

EL polvo de concreto reciclado es un método que cada vez se vuelve más común para reutilizar los escombros resultantes en la demolición o acondicionamiento de estructuras hechas de este material; anteriormente la eliminación de los bloques de concretos de demoliciones eran eliminados en zonas que no eran adecuados, pero el reciclaje tiene un numero de beneficios que lo ha hecho una opción más atractiva en esta época de conciencia medioambiental reutilizar a traes de ser triturado y tamizado el bloque de concreto y al final tener el polvo de concreto reciclado.

2.2.13. Asfaltos modificados

Hasta ahora el ligante asfáltico tradicional resistía bien la acción del clima y del tránsito. Pero, el constante aumento de las

solicitaciones debidas al mayor número de cargas por eje, a la mayor presión de inflado, a las mayores cargas por eje, a las mayores velocidades, etc. Hace que se requiera para la elaboración de las mezclas asfálticas, un ligante con mejores propiedades Teológicas y mecánicas. La modificación del asfalto con la incorporación de polímeros da por resultado ligantes con extraordinarias características de elasticidad, adherencia y cohesión a un costo competitivo. Por tal razón, se ha dedicado este capítulo a la presentación de las características principales de los modificadores de ligantes de común uso en la actualidad (Montejo, 2010).

2.2.13.1. Objetivo de la modificación

Los modificadores le permiten al diseñador intervenir sobre las características mecánicas del asfalto. Entre otras se puede mencionar la reducción de la susceptibilidad térmica, en la búsqueda de unas características reológicas constantes, especialmente a elevadas temperaturas de servicio. En ello implica modificar consecuencia, las propiedades deformación plástica a alta temperatura, como la rigidez a baja temperatura, ofreciendo un mejor comportamiento en servicio ante la acción de las cargas circulantes más pesadas del tránsito, independientemente de las condiciones climáticas imperantes. Un asfalto real, común, presenta un cambio continuo de sus características en todo el rango de temperaturas de operación. El asfalto ideal es aquel que muestra una característica más o menos constante en un amplio rango de temperaturas de servicio, convirtiéndose en un fluido viscoso a las temperaturas de mezcla y compactación. La adición de un polímero adecuado modifica la susceptibilidad térmica del asfalto, tal como se muestra en figura obteniéndose debido a una mejora en comportamiento visco-elástico a las temperaturas de servicio a las deseadas en un asfalto ideal (Montejo, 2010).

Totalmente
viscoso

20°C 0°C 20°C 40°C 60°C 80°C

Ilustración 5: Asfalto modificado

Fuente: (Recuenco, 2018).

2.2.13.2. Beneficios que buscan con la modificación del asfalto

Los principales beneficios que se persiguen con la modificación del asfalto:

- Aumentar la rigidez a altas temperaturas de servicio mejorando la resistencia de las mezclas a la deformación permanente.
- Reducir la rigidez a bajas temperaturas, previniendo la fisuración térmica.
- Aumentar la resistencia a fatiga de las mezclas.
- Mejorar la adhesión con los agregados pétreos.
- Mejorar la cohesión, brindando mejor retención de los agregados en la vida inicial de los tratamientos superficiales.
- Reducir el endurecimiento en servicio, brindando una vida superior a la mezcla, debido a la retención de sus ventajas iniciales.
- Disminuir la susceptibilidad térmica en el rango de temperatura de servicio
- Aumentar la viscosidad a bajas velocidades de corte, permitiendo mejores espesores de película en el agregado de las mezclas abiertas y reduciendo la exudación en tratamientos superficiales.

Existe una variedad de aditivos que pueden ser exitosos en la mejora de cuando menos una de las propiedades del asfalto, pero, es necesario tener en cuenta que no existe un aditivo que mejore todas las propiedades antes descritas (Montejo, 2010).

2.3. Definición de términos

Las bases conceptuales que a continuación se detallan son recopiladas del "Glosario De Términos De Uso Frecuente En Proyectos De Infraestructura Vías del Ministerio de Transportes y Comunicaciones" (agosto 2008), a continuación, se detalla:

2.3.1. Afirmado

Capa compactada de material granular natural o procesado con gradación especifica que soporta directamente las cargas y esfuerzos del tránsito. Debe poseer la cantidad apropiada de material fino cohesivo que permita mantener aglutinadas las partículas. Funciona como superficie de rodadura en carreteras y trochas carrozables.

2.3.2. Agregado

Material granular de composición mineralógica como arena, grava, escoria, o roca triturada, usado para ser mezclado en diferentes tamaños.

2.3.3. Agregado bien graduado

Agregado cuya gradación va desde el tamaño máximo hasta el de un relleno mineral y que se encuentra centrado a una curva granulométrica "huso" especificada.

2.3.4. Agregado fino

Material proveniente de la desintegración natural o artificial de partículas cuya granulometría es determinada por las especificaciones técnicas correspondientes. Por lo general pasa la malla N° 4 (4,75 mm) y contiene finos.

2.3.5. Agregado grueso

Material proveniente de la desintegración natural o artificial de partículas cuya granulometría es determinada por las especificaciones técnicas correspondientes. Por lo general es retenida en la malla N°4 (4,75 mm).

2.3.6. Análisis granulométrico o mecánico

Procedimiento para determinar la granulometría de un material ó la determinación cuantitativa de la distribución de tamaños.

2.3.7. Asfalto

Material cementante, de color marrón oscuro a negro, constituido principalmente por betunes de origen natural u obtenidos por refinación del petróleo. El asfalto se encuentra en proporciones variables en la mayoría del crudo de petróleo.

2.3.8. Asfalto de imprimación

Asfalto fluido de baja viscosidad (muy líquido) que por aplicación penetra en una superficie no bituminosa.

2.3.9. Base

Capa de material selecto y procesado que se coloca entre la parte superior de una subbase o de la subrasante y la capa de rodadura. Esta capa puede ser también de mezcla asfáltica o con tratamientos según diseños. La base es parte de la estructura de un pavimento.

2.3.10. Bitumen

Un tipo de sustancia cementante de color negro u oscuro (sólida, semisólida, o viscosa), natural o fabricada, compuesta principalmente de hidrocarburos de alto peso molecular, siendo típicos los asfaltos, las breas (o alquitranes), los betunes y las asfálticas.

2.3.11. Cantera

Deposito natural de material apropiado para ser utilizado en la

construcción, rehabilitación, mejoramiento y/o mantenimiento de las carreteras.

2.3.12. Cemento Asfaltico

Un asfalto con flujo o sin flujo, especialmente preparado en cuanto a calidad o consistencia para ser usado directamente en la construcción de pavimentos asfálticos.

2.3.13. Certificado de control de calidad

Documento que permite conocer los resultados de ensayos de laboratorio o de campo, durante el proceso constructivo de una carretera.

2.3.14. Control de calidad

Pruebas técnicas para comprobar la correcta ejecución de las diferentes etapas o fases de un trabajo con relación a las especificaciones técnicas o requisitos específicos establecidos.

2.3.15. Ensayo Marshall

Procedimiento para obtener el contenido de asfalto y diferentes parámetros de calidad de una mezcla bituminosa.

2.3.16. Estabilidad

Propiedad de una mezcla asfáltica de pavimentación de resistir deformación bajo las cargas impuestas. La estabilidad es una función de la cohesión y la fricción interna del material.

2.3.17. Filler

Material proveniente por lo general de la caliza pulverizada, polvos de roca, cal hidratada, cemento Pórtland, y ciertos depósitos naturales de material fino, empleado en la fabricación de mezclas asfálticas en caliente como relleno de vacíos, espesante de la mezcla o como mejorador de adherencia.

2.3.18. Grado de penetración

Sistema de Clasificación de los cementos asfálticos basado en la penetración a una temperatura de 25°C. Existen grados patrones de clasificación tales: 40-50, 60-70, 85-100, 120-150 y 200-300.

2.3.19. Grado de viscosidad

Sistema de clasificación de cementos asfálticos basado en rangos de viscosidad a una temperatura de 60°C (140°F). Usualmente también se especifica una viscosidad mínima a 135°C (275°F). El propósito es de establecer valores límites de consistencia a estas dos temperaturas. Los 60°C (140°F) se aproximan a la máxima temperatura de servicio de la superficie del pavimento asfáltico. Los 135°C (275°F) se aproximan a la temperatura de mezclado y colocación de pavimentos de mezclas en caliente. Existen cinco grados de cemento asfáltico basado en la viscosidad del asfalto original a 60°C (140°F).

2.3.20. Granulometría

Representa la distribución de los tamaños que posee el agregado mediante el tamizado según especificaciones técnicas.

2.3.21. Impermeabilidad

Capacidad de un pavimento asfáltico de resistir el paso de aire y aqua dentro o a través del mismo.

2.3.22. Imprimación

Aplicación de un material bituminoso, de baja viscosidad, para recubrir y aglutinar las partículas minerales, previamente a la colocación de una capa de mezcla asfáltica.

2.3.23. Viscosidad

Medida de la resistencia al flujo. Es un método usado para medir la consistencia del asfalto.

2.4. Formulación de Hipótesis

2.4.1. Hipótesis general

La aplicación del polvo de concreto reciclado influye significativamente en el comportamiento reológico de mezclas asfálticas caliente, Huancayo - 2018.

2.4.2. Hipótesis específicas

- a) Al identificar la aplicación del polvo de concreto reciclado influye positivamente en la resistencia en el comportamiento reológico de mezclas asfálticas caliente.
- b) Se analizo que la aplicación del polvo de concreto reciclado influye de gran manera en la deformación en el comportamiento reológico de mezclas asfálticas caliente.
- c) Se interpreta la aplicación del polvo de concreto reciclado interviene aumentando la durabilidad de las mezclas asfálticas caliente.

2.5. Variables

2.5.1. Definición conceptual de las Variables Polvo de concreto reciclado

El polvo de concreto reciclado es un método que cada vez se vuelve más común para reutilizar los escombros resultantes en la demolición o acondicionamiento de estructuras hechas de este material; anteriormente la eliminación de los bloques de concretos de demoliciones eran eliminados en zonas que no eran adecuados, pero el reciclaje tiene un numero de beneficios que lo ha hecho una opción más atractiva en esta época de conciencia medioambiental reutilizar a traes de ser triturado y tamizado el bloque de concreto y al final tener el polvo de concreto reciclado.

Comportamiento reológico

La reología de las mezclas asfálticas es la ciencia que estudia la deformación y el flujo de los materiales bajo la aplicación de una carga, asimismo la reología es parte de la física que estudia la relación entre el esfuerzo y la deformación de los materiales que son

capaces de fluir siendo una parte de la mecánica de medios continuos, es así que mide la deformación de los cuerpos intermedios entre solido elástico y liquido viscoso.

2.5.2. Definición Operacional de la Variable

Variable Independiente

Polvo de concreto reciclado.

El polvo de concreto reciclado se obtiene al ser triturado y tamizado el bloque de concreto que son escombros y al final tener el polvo de concreto reciclado siendo.

Variable dependiente Comportamiento reológico

El comportamiento reológico estudia la deformación y flujo de los materiales aplicando una carga.

2.5.3. Definición Operacional de la Variable

VARIABLE INDEPENDIENTE (X): POLVO DE CONCRETO RECICLADO.

(CUADRO DE OPERACIONALIZACIÓN DE VARIABLE)

Tabla 3.- Cuadro de operacionalización de Variable Independiente

VARIABLE	DEFINICION	DIMENSIONES	INDICADORES	UNIDAD	INSTRUMENTO
	El polvo de concreto reciclado se obtiene a través de ser triturado	GRANULOMETRIA	Gradación por tamizado y peso	Gr/kg	RESISTENCIA DE
POLVO DE CONCRETO RECICLADO	y tamizado el bloque de concreto que son escombros y al final	PROPORCIÓN Y CANTIDAD	Porcentaje de proporción de polvo de concreto reciclado	%	MEZCLAS BITUMINOSAS EMPLEANDO EL APARATO
	tener el polvo de concreto reciclado siendo.	TIPO DE CONCRETO RECICLADO	Clasificación y concentración de polvo de concreto	Tipo y porcentaje de concentración	MARSHALL (ASTM D-1559)/(MTC-E 504)

Fuente: Propia

VARIABLE DEPENDIENTE (Y): COMPORTAMIENTO REOLÓGICO. (CUADRO DE OPERACIONALIZACIÓN DE VARIABLE)

Tabla 4.- Cuadro de operacionalización de Variable Independiente

VARIABLE	DEFINICION	DIMENSIONES	INDICADORES	UNIDAD	INSTRUMENTO
	El comportamiento reológico estudia	ESTABILIDAD	Estabilidad Seca	%	MTC E 504
COMPORTAMIENTO	la deformación y flujo de los materiales	FLUIDEZ	Flujo Seco	%	MTC E 504
REOLÓGICO.	aplicando una carga.	DURABILIDAD	Desgaste	%	ASTM C 131

Fuente: Propia

CAPÍTULO III METODOLOGÍA DE LA INVESTIGACIÓN

3.1. Método de investigación

La investigación se guía por el método científico y el método especifico es cuantitativo, puesto que se ha considerado de manera ordenada tanto el planteamiento del problema, construcción del modelo teórico, deducciones de consecuencias particulares, aplicación de la prueba y la introducción de conclusiones, esto fundamentado con lo descrito por Bernal (2006).

3.2. Tipo de investigación

Corresponde a una investigación aplicada pues se pretende resolver problemas prácticos con el propósito de cambio y asimismo será instrumento para la toma de decisiones (Del Cid, Sandoval y Sandoval, 2007).

3.3. Nivel de la investigación

El nivel de la investigación es explicativo puesto que, se ofrece un grado de correlación entre los elementos dando una vista preliminar a un estudio más equitativo en las mismas condiciones. (Hernández, Fernández y Baptista, 2010).

3.4. Diseño de la investigación

El diseño de la investigación por el que se guía esta tesis es experimental de tipo experimental "puro" puesto que se ha manipulado intencionalmente la variable dependiente, se ha realizado mediciones de la variable dependiente y se ha contado con grupos de comparación (Hernández, Fernández y Baptista, 2010).

3.5. Población y muestra

3.5.1. Población

La población para la investigación estuvo definida por el diseño de mezcla asfáltica convencional Método Marshall que se usa en todos los pavimentos asfalticos en la provincia de Huancayo. Donde se consideró 60

especímenes con los diferentes contenidos asfálticos (5%, 5.5%, 6.0%, 6.5% y 7.0%).

3.5.2. Muestra

La muestra es de acuerdo al método no probabilístico premeditado, en este caso corresponde a los especímenes elaborados en laboratorio, cuyo detalle es el siguiente:

√ 04 Diseños de Asfalto Método Marshall de 75 golpes (60 briquetas).

3.6. Técnicas de recolección de datos

De acuerdo a Bernal (2006) las técnicas de investigación dependen del método y el tipo de investigación, situación por la cual se ha considerado los siguientes:

3.6.1. La técnica de Recolección de Datos

La técnica de recolección de datos es de observación, mediante la observación del proyecto de estudio, se analizará sus características y ventajas del análisis de las mezclas asfálticas en caliente incorporado el polvo de concreto reciclado; cuyos instrumentos será registrado mediante fichas de observación, formatos de campo y el uso de la técnica de fichaje fotográfico.

3.6.2. Instrumentos recolección de datos

Los instrumentos que se aplicó en la unidad de análisis fueron los datos obtenidos de los ensayos realizados en el laboratorio:

- ✓ Ficha de observación, toma en cuenta la condición de los materiales a utilizar.
- ✓ Hoja de cálculo Excel para el análisis de diseño, toma en cuenta los parámetros del estudio de mecánica de suelos para su posterior análisis.
- ✓ Ficha de evaluación del tiempo, toma en cuenta el periodo que demandó la construcción del área investigada.

3.7. Técnicas y análisis de Datos

En esta etapa se determina como analizar los datos obtenidos de la recolección, los cuales fueron mediante los siguientes softwares:

Microsoft Excel: Permitió generar hojas de cálculos, tablas, gráficos estadísticos, cuadros comparativos, con los datos importados de campo, obteniendo resultados específicos para cada método investigado.

Microsoft Word: Permitió la elaboración de la parte descriptiva de los datos procesados, sistematización e interpretación de los resultados obtenidos de campo para posterior comparativo para cada método investigado.

3.8. Procedimiento de la investigación

3.8.1. Fase de planteamiento y organización (pre campo)

√ Obtención de información básica

Antes de realizar el trabajo de campo, se obtuvo la información básica del Proyecto donde se realizó las labores de análisis del comportamiento de las mezclas asfálticas en caliente incorporando el polvo de concreto reciclado en cada diseño en porcentajes 1%, 1.5%, 2% evaluadas en el laboratorio.

✓ Selección de la zona de trabajo a analizar

La investigación se desarrolló en el laboratorio a condiciones climáticas de nuestro medio.

✓ Elaboración y validación de fichas de observación

Se elaboró las fichas de observaciones para la toma de datos en campo, considerando las carteristas de los agregados, procedencia, comportamiento de la emulsión con el polvo de concreto reciclado en cada diseño en porcentajes 1%, 1.5%, 2%. Asimismo, las fichas elaboradas y analizadas por el investigador.

✓ Información sobre el tema de investigación

Se recopiló la información mediante referencias bibliografías, normas técnicas, nacionales e internaciones, manual de ensayos de materiales y diseño geométrico de carreteras, etc.

3.8.2. Fase de trabajo de campo o recolección de datos

√ Toma de datos

La inspección nos permitió obtener los diversos datos de campo para nuestro respectivo análisis del proyecto a investigar:

✓ Análisis de las técnicas de estabilización de taludes.

La recolección de estos datos se inició con el análisis climatológico de nuestra zona evaluada dicho estudio se determina el rango elástico y el rango inelástico del pavimento flexible.

✓ Para el análisis de tiempo y costo

La recolección de estos datos se inició con los análisis de la densidad vehicular de las principales vías para la zona para luego ser procesadas en el Excel para su análisis pertinente.

3.8.3. Fase de gabinete

√ Procesamiento de datos

Con los resultados obtenidos en la fase de pre campo y campo se procedió a realizar el análisis de los datos obtenidos según los objetivos planteados.

✓ Para análisis de las características morfológicas

Se determina que el terreno de estudio presenta una densidad vehicular muy alta es por ello el análisis de mejorar las propiedades de los pavimentos flexibles de origen constructivo con la adición del polvo de concreto reciclado en cada diseño en porcentajes 1%, 1.5%, 2%.

3.8.4. Informe de investigación

Una vez culminado las visitas de campo y los trabajos en gabinete, se procedió analizar, evaluar y obtener resultados de las características de los agregados, la mezcla asfáltica con el polvo de concreto reciclado en cada diseño en porcentajes 1%, 1.5%, 2%, todas estas evidenciadas con fotos, y otros incorporados en el Informe Final.

CAPÍTULO IV

RESULTADOS

4.1. Descripción y características e identificación de los Ensayos Realizados

Para la descripción de los ensayos realizados en la elaboración de la presente tesis de investigación fue realizada en el laboratorio: "CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES SANTA CRUZ SCRL" –Control de Calidad en Mecánica de Suelos, la dirección del laboratorio está Ubicada en la Avenida. Oriente N° 772 – Concepción.

Los ensayos realizados en el laboratorio ya mencionando anteriormente donde se trasladaron las muestras de los agregados pétreos de la cantera de rio Seco – San Lorenzo. Con la participación en su totalidad de la Bachiller Marisol Peralta Flores y teniendo como técnico responsable al Tec. Lab. Javier Santa Cruz Veliz, teniendo más de 10 años de especialización en el trabajo con mezclas asfálticas y responsable del Laboratorio "CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES SANTA CRUZ SCRL" y el Ing. José Manuel Pereyra Araujo, como profesional responsable de la veracidad de los trabajos realizados y dando como profesional responsable de los resultados obtenidos en los ensayos realizados en los agregados pétreos y la mezcla asfáltica en caliente con incorporación de polvo de concreto.

Ubicación de la cantera Rio Seco – San Lorenzo lugar de donde se extrajo los agregados pétreos (piedra chancada y polvillo de roca) y la ubicación del laboratorio "CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES SANTA CRUZ SCRL".

Ilustración 6.- Imagen Satelital de la ubicación de la Cantera Rio Seco

Fuente: Fotografía digital- Google Earth.

A continuación, se presenta la ubicación del laboratorio donde se realizaron los trabajos experimentales:

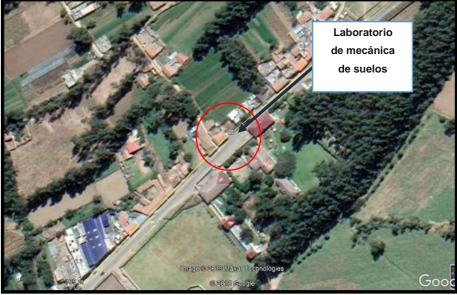


Ilustración 7.- Imagen Satelital de la ubicación del Laboratorio

Fuente: Fotografía digital- Google Earth.

4.2. Caracterización de los Agregados

Para la caracterización de los agregados se ha planteado realizar un diseño de mezclas que pueda tener un mejor comportamiento ya sea por su origen (Geometría, forma, procedencia, etc.) o a través de las propiedades físico

mecánicas que presentan (dureza, adherencia y la trabajabilidad de los agregados logrando identificar sus mejores características y las deficiencias extraídas de los agregados de la cantera de Rio Seco – San Lorenzo.

4.2.1. Análisis Granulométrico del agregado Grueso (MTC E 203 – 2000)

Se realizo en ensayo granulométrica para la piedra chancada con el fin de podamos analizar la gradación del material como también los porcentajes de material retenido y pasante para la caracterización de nuestra mezcla asfáltica en caliente y poder identificar las mejores características del nuestro material.

Se analizo una muestra representativa del agregado grueso extraído de la cantera de Rio Seco, lo cual se tamizo por las gradaciones de los tamices ¾" (19.05 mm), 1/2" (12.70 mm), 3/8" (9.52 mm) y la N°4 (4.75 mm), logrando obtener valores numéricos representantes a las retenciones de las gradaciones del material generando así una curva denominada curva granulométrica, para el agregado grueso en encontrándose por los parámetros establecidos.

Grueso

Fotografía 1.- Análisis Granulométrico del agregado

4.2.2. Porcentaje de caras fracturadas (MTC E 210-2000)

Para la realización de este ensayo se extrajo una muestra representativa de la muestra total extraída haciendo un cuarteo general, y sacando así un grupo de piedra chancada que fue analizada partícula por partícula el porcentaje de fracturación que presenta, dicha

fracturación nos permitirá poder determinar si la cantidad de fracturación de la piedra chancada cumplía con los estándares establecidos en el Manual de Carreteras (Especificaciones Técnicas Generales para Construcción EG-2013).

La fracturación de las partículas de la piedra chancada tiene que presentar que el 75% de la partícula de encuentre fractura o con caras alargadas chatas, obteniendo así el porcentaje de cara fracturada. Logrando obtener un valor de **96.9% de partículas con una cara fracturada** y un 89.6 con dos o más caras fracturadas.

Fotografía 2.- Porcentaje de caras fracturadas

4.2.3. Peso unitario y porcentaje de vacíos (MTC E 203 - 2000)

Para el cálculo del porcentaje de vacíos y el peso unitario se realizó en un molde de Proctor el cual presenta un volumen estandarizado, logrando colocar la muestra en 3 capas con una compactación con una varilla lisa a 25 golpes en forma vertical y en sentido antihorario para poder lograr un reordenamiento de las partículas, para luego proceder a enrasar la superficie final y luego pesar el molde más la muestra compactada, el procedimiento se tiene que realizarse por 3 ocasiones y luego realizar un promedio aritmético para el cálculo del peso promedio de la muestra y dividirlo entre el volumen del molde ya conocido.

4.2.4. Ensayo de abrasión de los Ángeles al desgaste (1 1/2") (MTC E 207- 2000)

Para realizar este ensayo se pesó una muestra total de 2096.58 gramos obteniendo así que los valores de la gradación original luego para proceder a realizar y someter esta muestra a 500 revoluciones por un periodo de tiempo de 15 minutos y luego realizamos las gradaciones obtenido así una perdida por la durabilidad de la muestra en una perdida media promedio de la piedra chancada de 4.13 % en relación al valor inicial.

4.2.5. Gravedad específica y absorción de agregados gruesos (MTC E 206-2000)

Para el proceso de cálculo de la gravedad específica y la absorción de los agregados se sumergió la piedra chancada por un periodo de 24 horas para ser secada superficialmente con una franela logrando obtener la diferencia de pesos iniciales y finales después de haber sido saturada, se realizó dos ensayos para la obtención de este ensayo logrando obtener un Peso específico de 2.644 kg/cm2 y un porcentaje de absorción de 0.731%, para la piedra chancada de la cantera de Rio Seco – San Lorenzo.

y absorcion de agregados gruesos

Fotografía 3.- Gravedad específica y absorción de agregados gruesos

4.2.6. Ensayo para determinación Cuantitativa de Sulfatos y Cloruros en suelos (MTC E 219)

Se realizó en ensayo para poder determinar de manera cuantitativa la presencia de Sulfatos y cloruros en el agregado grueso (piedra chancada) obteniendo un valor para Cloruros de 0.0079% y para Sulfatos (SO4) de 0.0240% haciendo un total de sales de 0.0319 % y un PH con un valor de 6.57.

Fotografía 4.- Determinación

4.2.7. Determinación de Partículas Chatas y Alargadas (ASTM 4791)

Para la determinación de las partículas chatas y alargadas se realizó el ensayo de la granulometría para un total de muestra de 3000 gramos, determinando mediante este ensayo que la incidencia en partículas chatas representa un 1.9%, partículas alargadas en un 3.2 % y ni chatas ni alargadas con un 94.9% de la totalidad de la muestra analizada, haciendo un total de chatas y alargadas un total de 5.1%.

Fotografia 5.- Partículas Chatas y Alargadas

De los resultados obtenidos en el laboratorio se realizó un análisis comparativo con la tabla 423-01 del Manual de Carreteras (Especificaciones Técnicas Generales para Construcción de Carreteras EG-2013) donde estipula los parámetros o requerimientos mínimos que debe cumplir los agregados pétreos gruesos para una mezcla bituminosa para una mezcla asfáltica en caliente, por el diseño empleado.

Tabla 5.- Tabla 423-01 del Manual de Carreteras

		Requer	rimiento		
ENSAYOS	NORMA	Altitud	(msnm)		
	NONIIA	< 3000	m.s.n.m. m.s.n.m 18 % máx. 15 % máx. 40 % máx. 35 % máx. +95 +95 35 % min 35 % min 10 % máx. 10 % máx. 85/50 90/70 0.5 % máx. 0.5 % máx.		
		m.s.n.m.	m.s.n.m		
Durabilidad (al Sulfato de Magnesio)	MTC E 209	18 % máx.	15 % máx.		
Abrasión de los Ángeles	MTC E 207	40 % máx.	35 % máx.		
Adherencia	MTC E 517	+95	+95		
Índice de Durabilidad	MTC E 214	35 % min	35 % min		
Partículas Chatas y Aligeradas	MTC E 4791	10 % máx.	10 % máx.		
Caras Fracturadas (E 210)	MTC E 210	85/50	90/70		
Sales Solubles Totales	MTC E 219	0.5 % máx.	0.5 % máx.		
Absorción	MTC E 206	1.0 % máx.	1.0 % máx.		

Tabla 6.- Comparación de resultados de los agregados gruesos

Comparación de resul	lados de los agrega	duos gruesos		T	
		Requer	imiento		
ENSAYOS	NORMA	Altitud ((msnm)	Resultados	Condición
	NORIVIA	< 3000	> 3000		
		m.s.n.m.	m.s.n.m		
Durabilidad (al Sulfato de Magnesio)	MTC E 209	18 % máx.	15 % máx.	6.57 %	SI
Abrasión de los Ángeles	MTC E 207	40 % máx.	35 % máx.	4.13 %	SI
Adherencia	MTC E 517	+95	+95	98	SI
Índice de Durabilidad	MTC E 214	35 % min	35 % min	2.13 %	SI
Partículas Chatas y Aligeradas	MTC E 4791	10 % máx.	10 % máx.	5.1%	SI
Caras Fracturadas (E 210)	MTC E 210	85/50	90/70	97/90	SI
Sales Solubles Totales	MTC E 219	0.5 % máx.	0.5 % máx.	0.032 %	SI
Absorción	MTC E 206	1.0 % máx.	1.0 % máx.	0.73 %	SI

4.3. Resultados obtenidos a los ensayos técnicos realizados a los agregados pétreos finos

Para los agregados finos se ha planteado realizar una caracterización de las propiedades del agregado fino logrando así poder determinar sus propiedades físico mecánicas del polvillo (agregado fino) para poder obtener una mejor caracterización en relación a los parámetros estipulados en el Manual de Carreteras.

El agregado fino también fue extraído de la cantera de Rio Seco ubicada en el distrito de San Lorenzo.

4.3.1. Ensayo gravedad específica y absorción de agregados finos (MTC E 205 - 2000).

Para la realización se utilizó el polvillo de la cantera de Rio seco y se empezó a saturar el agregado fino hasta poder obtener una mezcla no tan seca ni tan húmeda realizando un ensayo de optimo contenido de humedad en los agregados finos y determinando así el óptimo contenido de agua para el agregado fino, obteniendo un valor de 2.567 gr/cm3 y con un grado de absorción de 1.358% para el agregado fino.

Fotografía 6.- Absorción de agregados finos

4.3.2. Equivalente de Arena (MTC E 114-2000)

Nos permitió calcular el porcentaje de polvo fino que presenta el agregado fino para lo cual se tomó una muestra representativa y se colocó en una probeta para poder determinar con los movimientos horizontales por un tiempo de 10 a 20 minutos y con lo cual es sometido a un análisis visual del agregado fino.

4.3.3. Índice de Plasticidad (malla N°40) (MTC E 111 - 2000)

Este ensayo consiste en poder determinar el índice de plasticidad de agregado fino lo cual nos permite determinar el límite líquido que

presenta y el límite plástico que también presenta a diferencia de estos valores obtenidos se denomina índice de plasticidad, en nuestro caso para el cálculo del polvillo (agregado fino) no presenta estas características.

Fotografia 7.- Índice de Plasticidad

4.3.4. Sales Solubles Totales (MTC E 219-2000)

Se realizó en ensayo para poder determinar de manera cuantitativa la presencia de Sulfatos y cloruros en el agregado fino (polvillo) obteniendo un valor para Cloruros de 0.0052 % y para Sulfatos (SO4) de 0.0190 % haciendo un total de sales de 0.0242 % y un PH con un valor de 6.98.

4.3.5. Índice de Durabilidad (MTC E 214 - 2000).

Para realizar este ensayo se pesó una muestra total de 1104.00 gramos obteniendo así que los valores de la gradación original luego para proceder a realizar y someter esta muestra a 500 revoluciones por un periodo de tiempo de 15 minutos y luego realizamos las gradaciones obtenido así una perdida por la durabilidad de la muestra en una perdida media promedio del agregado fino de 7.43 % en relación al valor inicial.

De los resultados obtenidos en el laboratorio se realizó un análisis comparativo con la tabla 423-02 del Manual de Carreteras (Especificaciones Técnicas Generales para Construcción de Carreteras EG-2013) donde estipula los

parámetros o requerimientos mínimos que debe cumplir los agregados pétreos finos esos para una mezcla bituminosa para una mezcla asfáltica en caliente, por el diseño empleado.

Tabla 7.- Tabla 423-02 del Manual de Carreteras

		Requei	rimiento		
ENSAYOS	NORMA	Altitud	nsnm) > 3000 m.s.n.m 70 40 8 máx. NP 18 % máx.		
	NONWA	< 3000 m.s.n.m.			
Equivalente de Arena	MTC E 114	60	70		
Angularidad del agregado fino	MTC E 222	30	40		
Azul de metileno	AASTHO TP 57	8 máx.	8 máx.		
Índice de Plasticidad (malla N°40)	MTC E 111	NP	NP		
Durabilidad (al sulfato de Magnesio)	MTC E 209	-	18 % máx.		
Índice de Durabilidad	MTC E 214	35 min.	35 min.		
Índice de Plasticidad (malla N°200)	MTC E 111	4 máx.	NP		
Sales solubles Totales	MTC E 219	0.5% máx.	0.5% máx.		
Absorción	MTC E 205	0.5% máx.	0.5%		

Tabla 8.- Comparación de resultados de los agregados finos

		Requer	imiento		
ENSAYOS	NORMA	Altitud (msnm)		Resultados	Condición
	NORMA	< 3000 m.s.n.m.	> 3000 m.s.n.m		
Equivalente de Arena	MTC E 114	60	70	70.15	SI
Índice de Plasticidad (malla N°40)	MTC E 111	NP	NP	NP	SI
Índice de Durabilidad	MTC E 214	35 min.	35 min.	92.57	SI
Índice de Plasticidad (malla N°200)	MTC E 111	4 máx.	NP	NP	SI

Sales Totales	solubles	MTC E 219	0.5% máx.	0.5% máx.	0.0242%	SI
Absorción		MTC E 205	0.5% máx.	0.5%	1.358	SI

4.4. Combinación de Agregados Pétreos.

4.4.1. Ensayo Análisis Granulométrico (MTC E 204 - 2000).

Para la combinación de agregados gruesos con finos poder conseguir una curva granulométrica que se encuentre en los parámetros establecidos se utilizó una proporción de 35 % de Grava Chancada y en un 65 % de arena chancada, logrando obtener una curva granulométrica que se encuentra en los parámetros establecidos logrando determinar una curva que representa la mejor combinación granulométrica.

El cuadro donde se traslada las gradaciones con los porcentajes donde se determina la curva se presenta para una gradación de una mezcla asfáltica en caliente tipo 2.

Tabla 9.- Gradaciones de las Mezclas asfaltcias en caliente

TA	MIZ	PORCE	NTAJE Q	JE PASA
NORMAL	ORMAL ALTERNO		MAC-2	MAC-3
25,0 mm	1"	100		
19,0 mm	3/4"	80-100	100	
12,5 mm	1/2"	67-85	80-100	
9,5 mm	3/8"	60-77	70-88	100
4,75 mm	N° 4	43-54	51-68	65-87
2,00 mm	N° 10	29-45	38-52	43-61
425 ym	N° 40	14-25	17-28	16-29
180 ym	N° 80	8-17	8-17	9-19
75 ym	N° 200	4-8	4-8	5-10

Tabla 10.- Combinación De Agregados ASTM – D3416

	COMBINACION DE AGREGADOS ASTM – D3416									
N° MALLA	GRAVA CHANCADA	ARENA CHANCADA	TOTAL	MODF-3						
	35	65	100	LIM INF	LIM SUP					
3/4"	100.00	100.00	100.00	100.00	100.00					
1/2"	54.81	100.00	84.18	80.00	100.00					
3/8"	28.25	100.00	74.89	70.00	88.00					
N° 4	0.00	100.00	65.00	51.00	68.00					
N° 10	0.00	72.48	47.11	38.00	52.00					
N° 50	0.00	32.96	21.42	17.00	28.00					
N° 80	0.00	14.11	9.17	8.00	17.00					
N° 200	0.00	5.86	3.81	4.00	8.00					

Donde se observa que se obtuvo los parámetros de la combinación de agregados para una MAC-2 (Mezcla Asfáltica en Caliente tipo N°2), para una combinación de agregados de 35% para la grava Chancada y un 65% para una arena chancada.

4.5. Resultados obtenidos en los ensayos Técnicos realizados en el diseño de la Mezcla asfáltica en Caliente.

4.5.1. Diseño de Mezcla Asfáltica en Caliente Convencional

Para poder lograr el mejor comportamiento de una mezcla asfáltica en caliente se realizó diseños de mezcla con diferentes porcentajes de cemento asfaltico para poder obtener el mejor comportamiento para luego proceder a un análisis comparativo de resultados obtenidos y poder a optimizar las propiedades reológicas de la mezcla asfáltica convencional.

Tabla 11.-Diseño de Mezcla Asfáltica en Caliente Convencional

	MEZCLA ASFÁLTICA EN CALIENTE CONVENCIONAL										
RES	RESISTENCIA DE MEZCLAS BITUMINOSAS EMPLEANDO EL APARATO MARSHALL (MTC-E 504)										
	NORMA: ASTM D 6927										
_	0.0	N	0.0	so	CIOS ADO (VMA)	CÍOS S CON ITO	ESTABILIDAD CORREGIDA	FLUJO	- INDICE DE		
N° DE MUESTRA	CEMENTO ASFÁLTICO	GRADACIÓN	% DE CEMENTO ASFÁLTICO	% DE VACÍOS	% DE VACIO DEL AGREGADO MINERAL (VM.	% DE VACÍO LLENADOS CO CEMENTO ASFÁLTICO	(Kg)	(mm)	RIGIDEZ (kg/cm)		
1	PEN 85/100	MAC 2	5.00	11.40	21.20	46.20	1,132.00	3.00	3,714.00		
2	PEN 85/100	MAC 2	5.50	6.90	18.30	62.30	940.00	3.40	2,782.00		
3	PEN 85/100	MAC 2	6.00	4.10	17.30	76.50	943.00	4.00	2,371.00		
4	PEN 85/100	MAC 2	6.50	1.10	16.30	93.00	848.00	3.40	1,966.00		
5	PEN 85/100	MAC 2	7.00	0.40	17.60	97.50	801.00	5.20	1,535.00		

4.5.2. Diseño de Mezcla Asfáltica en Caliente con incorporación de 1% de polvo de Concreto.

Se realizo un diseño de mezcla con incorporación de polvo de concreto en un 1% en relación al total de los agregados pétreos, para el diseño de mezcla asfáltica en caliente se ha tomado como proporciones de agregado grueso con un porcentaje de 35 %, con 64 % de agregado fino y un 1 % de incorporación de polvo de concreto en el diseño de mezcla asfáltica en caliente obteniendo los resultados con diferentes porcentajes de cemento asfáltico.

Tabla 12.- Mezcla Asfáltica en caliente con Incorporación de Polvo de Concreto En 1%

MEZ	MEZCLA ASFÁLTICA EN CALIENTE CON INCORPORACION DE POLVO DE CONCRETO EN 1%										
RESI	RESISTENCIA DE MEZCLAS BITUMINOSAS EMPLEANDO EL APARATO MARSHALL (MTC-E 504)										
	NORMA: ASTM D 6927										
4	28	IÓN	01 03	íos	DO LL	ACÍOS DOS MENTO TICO	ESTABILIDAD CORREGIDA	FLUJO	WD105 D5		
N° DE MUESTR	CEMENTO ASFÁLTICO	GRADACIÓN	% DE CEMENTO ASFÁLTICO	% DE VACÍOS	% DE VACIOS DEL AGREGADO MINERAL	% DE VACÍO LLENADOS CON CEMENT ASFÁLTICC	(Kg)	(mm)	RIGIDEZ (kg/cm)		
1	PEN 85/100	MAC 2	5.00	7.20	16.60	56.60	1,136.00	3.00	3,726.00		
2	PEN 85/100	MAC 2	5.50	5.30	16.10	66.80	1,008.00	3.50	2,909.00		
3	PEN 85/100	MAC 2	6.00	3.30	15.80	79.20	970.00	4.00	2,440.00		
4	PEN 85/100	MAC 2	6.50	2.40	16.50	85.20	870.00	4.30	2,015.00		
5	PEN 85/100	MAC 2	7.00	1.80	17.20	89.60	801.00	4.80	1,660.00		

Fotografía 8.- Muestras para combinaciones con polvo de concreto

4.5.3. Diseño de Mezcla Asfáltica en Caliente con incorporación de 1.5% de polvo de Concreto.

Se realizo un diseño de mezcla con incorporación de polvo de concreto en un 1.5 % en relación al total de los agregados pétreos, para el diseño de mezcla asfáltica en caliente se ha tomado como proporciones de agregado grueso con un porcentaje de 35 %, con 63.5

% de agregado fino y un 1.5 % de incorporación de polvo de concreto en el diseño de mezcla asfáltica en caliente obteniendo los resultados con diferentes porcentajes de cemento asfáltico.

Tabla 13.- Mezcla Asfáltica en caliente con incorporación de polvo de concreto en 1.5%

ME	MEZCLA ASFÁLTICA EN CALIENTE CON INCORPORACION DE POLVO DE CONCRETO EN 1.5%											
RES	RESISTENCIA DE MEZCLAS BITUMINOSAS EMPLEANDO EL APARATO MARSHALL (MTC-E 504)											
	NORMA: ASTM D 6927											
IA.	70 30	IÓN	0 00	ios	DO \L	VACÍOS NADOS EMENTO ÁLTICO	ESTABILIDAD CORREGIDA	FLUJO	INDIOE DE			
N° DE MUESTRA	CEMENTO ASFÁLTICO	GRADACIÓN	% DE CEMENTO ASFÁLTICO	% DE VACÍOS	DEL AGREGADO MINERAL	% DE VACÍO; LLENADOS CON CEMENT ASFÁLTICO	(Kg)	(mm)	INDICE DE RIGIDEZ (kg/cm)			
1	PEN 85/100	MAC 2	5.00	8.70	17.50	50.60	991.00	4.10	2,440.00			
2	PEN 85/100	MAC 2	5.50	6.50	16.70	61.20	861.00	4.30	1,994.00			
3	PEN 85/100	MAC 2	6.00	4.20	16.20	73.90	840.00	4.60	1,838.00			
4	PEN 85/100	MAC 2	6.50	3.40	17.00	79.90	785.00	4.80	1,627.00			
5	PEN 85/100	MAC 2	7.00	2.90	17.70	83.60	717.00	5.20	1,368.00			

Fotografía 9.- Mezclado con el Pen 85/100 y el polvo de concreto

4.5.4. Diseño de Mezcla Asfáltica en Caliente con incorporación de 2.0% de polvo de Concreto.

Se realizo un diseño de mezcla con incorporación de polvo de concreto en un 2% en relación al total de los agregados pétreos, para el diseño de mezcla asfáltica en caliente se ha tomado como proporciones de agregado grueso con un porcentaje de 35 %, con 63 % de agregado fino y un 2 % de incorporación de polvo de concreto en el diseño de mezcla asfáltica en caliente obteniendo los resultados con diferentes porcentajes de cemento asfáltico.

Tabla 14.- Mezcla Asfáltica en caliente con incorporación de polvo de concreto en 2.0%

ME	MEZCLA ASFÁLTICA EN CALIENTE CON INCORPORACION DE POLVO DE CONCRETO EN 2%								
	RESISTENCIA DE MEZCLAS BITUMINOSAS EMPLEANDO EL APARATO MARSHALL (MTC-E 504)								
					NORMA	: ASTM D 692	7		•
4	OO						FLUJO		
N° DE MUESTRA	CEMENTO ASFÁLTICO	GRADACIÓN	% DE CEMENTO ASFÁLTICO	% DE VACÍOS	DEL AGREGADO MINERAL	% DE VACÍOS LLENADOS CON CEMENTO ASFÁLTICO	(Kg)	(mm)	INDICE DE RIGIDEZ (kg/cm)
1	PEN 85/100	MAC 2	5.00	8.70	17.10	49.40	792.00	5.10	1,559.00
2	PEN 85/100	MAC 2	5.50	7.10	16.80	57.90	613.00	5.30	1,150.00
3	PEN 85/100	MAC 2	6.00	4.70	16.20	70.80	547.00	5.60	979.00
4	PEN 85/100	MAC 2	6.50	2.80	16.00	82.80	499.00	5.80	855.00
5	PEN 85/100	MAC 2	7.00	2.70	17.10	84.40	539.00	6.10	884.00

Fotografía 10.- Mezclado con control de temperatura para el diseño de mezcla

4.5.5. Ensayo Cántabro para un Diseño de Mezcla Asfáltica en Caliente Convencional.

Se realizó en ensayo cántabro a todas las briquetas obtenidos con los diferentes contenidos asfálticos (5%, 5.5%, 6.0%, 6.5% y 7.0%) para luego ser sometidas a la máquina de los Ángeles y poder determinar los porcentajes de % de perdida por desgaste para nuestra mezcla asfáltica en caliente convencional.

Tabla 15.- Ensayo Cántabro para un Diseño de Mezcla Asfáltica en Caliente Convencional

	MEZCLA ASFÁLTICA (MAC- 2) CONVENCIONAL						
N° DE MUESTRA	САРА	CEMENTO ASFÁLTICO	% DE CEMENTO ASFÁLTICO	% DE PÉRDIDA POR DESGASTE			
1	CARP. ASFALT.	PEN 85/100	5.00	10.54			
2	CARP. ASFALT.	PEN 85/100	5.50	8.35			
3	CARP. ASFALT.	PEN 85/100	6.00	7.15			
4	CARP. ASFALT.	PEN 85/100	6.50	5.45			
5	CARP. ASFALT.	PEN 85/100	7.00	4.26			

4.5.6. Ensayo Cántabro para un Diseño de Mezcla Asfáltica en Caliente con polvo de concreto al 1%.

Se realizó en ensayo cántabro a todas las briquetas obtenidos con los diferentes contenidos asfálticos (5%, 5.5%, 6.0%, 6.5% y 7.0%) para luego ser sometidas a la máquina de los Ángeles y poder determinar los porcentajes de % de perdida por desgaste para nuestra mezcla asfáltica en caliente con incorporación de polvo de concreto en un 1%.

Tabla 16.- Ensayo Cántabro para un Diseño de Mezcla Asfáltica en Caliente al 1%

MEZO	MEZCLA ASFÁLTICA (MAC- 2) CON POLVO DE CONCRETO AL 1%						
N° DE MUESTRA	САРА	CEMENTO ASFÁLTICO	% DE CEMENTO ASFÁLTICO	% DE PÉRDIDA POR DESGASTE			
1	CARP. ASFALT.	PEN 85/100	5.00	9.72			
2	CARP. ASFALT.	PEN 85/100	5.50	8.68			
3	CARP. ASFALT.	PEN 85/100	6.00	7.20			
4	CARP. ASFALT.	PEN 85/100	6.50	5.14			
5	CARP. ASFALT.	PEN 85/100	7.00	4.03			

4.5.7. Ensayo Cántabro para un Diseño de Mezcla Asfáltica en Caliente con polvo de concreto al 1.5 %.

Se realizó en ensayo cántabro a todas las briquetas obtenidos con los diferentes contenidos asfálticos (5%, 5.5%, 6.0%, 6.5% y 7.0%) para

luego ser sometidas a la máquina de los Ángeles y poder determinar los porcentajes de % de perdida por desgaste para nuestra mezcla asfáltica en caliente con incorporación de polvo de concreto en un 1.5%.

Fotografía 12.- Ensayo Cántabro para un Diseño de Mezcla Asfáltica en Caliente al 1.5%

MEZCLA ASFÁLTICA (MAC- 2) CON POLVO DE CONCRETO AL 1.5%						
N° DE MUESTRA	САРА	CEMENTO ASFÁLTICO	% DE CEMENTO ASFÁLTICO	% DE PÉRDIDA POR DESGASTE		
1	CARP. ASFALT.	PEN 85/100	5.00	9.79		
2	CARP. ASFALT.	PEN 85/100	5.50	8.39		
3	CARP. ASFALT.	PEN 85/100	6.00	6.61		
4	CARP. ASFALT.	PEN 85/100	6.50	4.89		
5	CARP. ASFALT.	PEN 85/100	7.00	4.01		

4.5.8. Ensayo Cántabro para un Diseño de Mezcla Asfáltica en Caliente con polvo de concreto al 2.0 %.

Se realizó en ensayo cántabro a todas las briquetas obtenidos con los diferentes contenidos asfálticos (5%, 5.5%, 6.0%, 6.5% y 7.0%) para luego ser sometidas a la máquina de los Ángeles y poder determinar los porcentajes de % de perdida por desgaste para nuestra mezcla asfáltica en caliente con incorporación de polvo de concreto en un 2.0%.

Tabla 17.- Ensayo Cántabro para un Diseño de Mezcla Asfáltica en Caliente al 2.0%

MEZCL	MEZCLA ASFÁLTICA (MAC- 2) CON POLVO DE CONCRETO AL 2.0%						
N° DE MUESTRA	САРА	CEMENTO ASFÁLTICO	% DE CEMENTO ASFÁLTICO	% DE PÉRDIDA POR DESGASTE			
1	CARP. ASFALT.	PEN 85/100	5.00	13.97			
2	CARP. ASFALT.	PEN 85/100	5.50	11.33			
3	CARP. ASFALT.	PEN 85/100	6.00	11.00			
4	CARP. ASFALT.	PEN 85/100	6.50	8.39			
5	CARP. ASFALT.	PEN 85/100	7.00	7.07			

Tabla 18.- Muestras en el ensayo Cantabro

4.6. Evaluación de los resultados obtenidos en los ensayos Técnicos realizados en el diseño de la Mezcla asfáltica en Caliente.

De los resultados obtenidos en los ensayos realizados y la determinación de las propiedades reológicas de la mezcla asfáltica en caliente convencional y con la incorporación de polvo de concreto en 1%, 1.5% y 2% respectivamente, analizando sus diferentes propiedades como (% vacíos, % de agregado mineral, flujo (mm), estabilidad (kg) y índice de rigidez, con la cual estos datos obtenidos serán contrastados con las especificaciones técnicas del Manual de Carreteras – Especificaciones técnicas para la construcción EG 2013, para lo cual en la tabla 423 – 06 (Requisitos para mezcla de concreto Bituminoso).

Determinando así los cuadros comparativos en función al Manual y la tabla 423-06 donde se estipula los parámetros mínimos para el ensayo Marshall y el grado de compactación de la mezcla asfáltica.

Tabla 19.- Requisitos Para Mezcla De Concreto Bituminoso

REQUISITOS PARA MEZCLA DE CONCRETO BITUMINOSO				
PARAMETROS DE DISEÑO	CLASE DE MEZCLA			
TAKAMETROS DE DISERO	Α	В	С	
Marshall MTC E 504				
1 Compactación, numero de golpes por cada lado	75	50	35	
2 Estabilidad (min)	8,15 KN	5,44 KN	4,53 KN	
3 Flujo 0,01" (0,25 mm)	8-14	8-16	8-20	
4 Porcentaje de Vacíos con aire (1) (MTC E 505)	3-5	3-5	3-5	
5 Vacíos en el agregado mineral	V	er tabla 423	-10	
INMERSION - COMPRESION (MTC E 518)				
1 Resistencia a la compresión Mpa mín.	2,1	2,1	1,4	
2 Resistencia retenida % (min)	75	75	75	
Relación Polvo Asfalto	0,6-1,3	0,6-1,3	0,6-1,3	
Relación estabilidad/flujo (Kg/cm)	1.700 - 4.000			
Resistencia conservada en la prueba de tracción indirecta AASHTO T 283	80 min.			

Totograna 11. Misosirae para la ocirationización optima del misos

Fotografía 14.- Muestras para la caracterización optima del MAC-2

4.6.1. Análisis y comparación de los datos obtenidos para un diseño de mezcla Convencional.

En el Manual de Carreteras EG-2013 en la tabla 423-06 para un diseño Marshall en el diseño convencional podemos observar que cumple en su totalidad con los parámetros estipulados en dicho manual.

Tabla 20.- Diseño De Mezcla Asfáltica (Mac-2) Convencional

DISEÑO DE MEZCLA ASFALTICA (MAC-2) CONVENCIONAL						
DESCRIPCIÓN	RESULTADO	ESPEF. (EG 2013)	VERIFICACIÓN			
Óptimo contenido de Cemento Asfáltico (%)	6.00	± 0.2				
Peso unitario (gr/c3)	2.294					
% de Vacíos	3.7	3 a 5 %	SI CUMPLE			
% de VMA	16.9	min 14 %	SI CUMPLE			
% de Vacíos llenados con C.A.	77.9					
Flujo (mm)	3.9	2 a 4 mm	SI CUMPLE			
Estabilidad (KN)	905	min 8.15 KN	SI CUMPLE			
Índice de Rigidez (Kg/cm)	2484	1700 - 4000 kg/cm	SI CUMPLE			

Fotografía 15.- Muestras a ensayar con el porcentaje convencional de polvo de concreto

4.6.2. Análisis y comparación de los datos obtenidos para un diseño de mezcla con polvo de concreto en un 1%.

En el Manual de Carreteras EG-2013 en la tabla 423-06 para un diseño Marshall con incorporación de polvo de concreto (1%) podemos observar que cumple en su totalidad con los parámetros estipulados en dicho manual.

Tabla 21.- Diseño De Mezcla Asfáltica (Mac-2) con polvo de concreto al 1%

DISEÑO DE MEZCLA ASFALTICA (MAC-2) CON POLVO DE CONCRETO 1%						
DESCRIPCIÓN	RESULTADO	ESPEF. (EG 2013)	VERIFICACIÓN			
Óptimo contenido de Cemento Asfáltico (%)	6.00	± 0.2				
Peso unitario (gr/c3)	2.297					
% de Vacíos	3.5	3 a 5 %	SI CUMPLE			
% de VMA	16.0	min 14 %	SI CUMPLE			
% de Vacíos llenados con C.A.	78.1					
Flujo (mm)	3.9	2 a 4 mm	SI CUMPLE			
Estabilidad (KN)	949	min 8.15 KN	SI CUMPLE			
Índice de Rigidez (Kg/cm)	2550	1700 - 4000 kg/cm	SI CUMPLE			

4.6.3. Análisis y comparación de los datos obtenidos para un diseño de mezcla con polvo de concreto en un 1.5%.

En el Manual de Carreteras EG-2013 en la tabla 423-06 para un diseño Marshall con incorporación de polvo de concreto (1.5 %) podemos observar que no cumple en el flujo puesto que sobrepasa los valores estandarizados por el Manual.

Tabla 22.- Diseño De Mezcla Asfáltica (Mac-2) con polvo de concreto al 1.5%

DISEÑO DE MEZCLA ASFALTICA (MAC-2) CON POLVO DE CONCRETO 1.5 %					
DESCRIPCIÓN	RESULTADO	ESPEF. (EG	VERIFICACIÓN		
		2013)			
Óptimo contenido de Cemento Asfáltico (%)	6.00	± 0.2			
Peso unitario (gr/c3)	2.274				
% de Vacios	4.5	3 a 5 %	SI CUMPLE		
% de VMA	16.4	min 14 %	SI CUMPLE		
% de Vaciós llenados con C.A.	72.8				
Flujo (mm)	4.6	2 a 4 mm	NO CUMPLE		
Estabilidad (KN)	826	min 8.15 KN	SI CUMPLE		
Índice de Rigidez (Kg/cm)	1853	1700 - 4000 kg/cm	SI CUMPLE		

Fotografía 16.- Muestras elaboradas para realizar ensayo

4.6.4. Análisis y comparación de los datos obtenidos para un diseño de mezcla con polvo de concreto en un 2.0%.

En el Manual de Carreteras EG-2013 en la tabla 423-06 para un diseño Marshall con incorporación de polvo de concreto (2.0 %) podemos observar que no cumple en el flujo, la estabilidad y el índice de rigidez por volverse una mezcla asfáltica inestable puesto que sobrepasa los valores estandarizados por el Manual.

Tabla 23.- Diseño De Mezcla Asfáltica (Mac-2) con polvo de concreto al 2.0%

DISEÑO DE MEZCLA ASFALTICA (MAC-2) CON POLVO DE CONCRETO 2.0 %

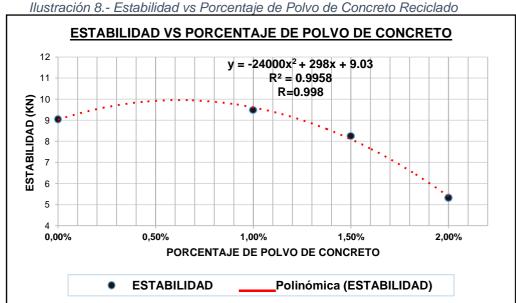
DESCRIPCIÓN	RESULTADO	ESPEF. (EG 2013)	VERIFICACIÓN
Óptimo contenido de Cemento Asfáltico (%)	6.00	± 0.2	
Peso unitario (gr/c3)	2.27		
% de Vacios	4.7	3 a 5 %	SI CUMPLE
% de VMA	16.2	min 14 %	SI CUMPLE
% de Vaciós llenados con C.A.	71.2		
Flujo (mm)	5.6	2 a 4 mm	NO CUMPLE
Estabilidad (KN)	533	min 8.15 KN	NO CUMPLE
Índice de Rigidez (Kg/cm)	1085	1700 - 4000 kg/cm	NO CUMPLE

Fotografía 17.- Ensayo de Baño María para las briquetas elaboradas

CAPÍTULO V

DISCUCIÓN DE RESULTADOS

5.1. Contratación de Prueba de Hipótesis.


5.1.1. Prueba de Hipótesis - General.

Con la problemática planteada: ¿Cómo influye la aplicación de polvo de concreto reciclado en el comportamiento reológico de las mezclas asfálticas en caliente, Huancayo - 2018?, se realizo cuadros con datos de los ensayos realizados que a través del método de regresión simple se pudo realizar un análisis más enfático para el comportamiento de las propiedades reológicas de la mezcla asfáltica en caliente con la incorporación de polvo de concreto para un mejor comportamiento al 1% en relación al agregado Fino, como se muestra en el siguiente cuadro.

Tabla 24.- Resultados obtenidos para el polvo de concreto

	PORCENTAJE	RESULTADOS		
DISEÑO	DE POLVO DE CONCRETO RECICLADO	Estabilidad (KN)	Flujo (mm)	Índice de Rigidez (Kg/cm)
MAC-2 CONVENCIONAL	0.00%	9.05	3.9	2484
MAC -2 INCORPORANDO POLVO DE CONCRETO RECICLADO AL 1.0%	1.00%	9.49	3.9	2550
MAC -2 INCORPORANDO POLVO DE CONCRETO RECICLADO AL 1.5%	1.50%	8.26	4.6	1853
MAC -2 INCORPORANDO POLVO DE CONCRETO RECICLADO AL 2.0%	2.00%	5.33	5.6	1085

En el siguiente grafico donde se presenta los datos de la estabilidad vs el porcentaje de polvo de concreto reciclado con lo cual se puede determinar que el polvo del concreto influye en relación a las propiedades reológicas como es el esfuerzo y la deformación (Estabilidad y Flujo) respectivamente. Presentando así un grado de correlación de 0.998, no obstante que al ser mayor que el R=0.5 (coeficiente de correlación) se puede afirmar que los datos evaluados presentan un alto grado de correlación.

En el siguiente grafico donde se presenta los datos del flujo vs el porcentaje de polvo de concreto reciclado con lo cual se puede determinar que el polvo del concreto influye en relación a las propiedades reológicas como es el esfuerzo y la deformación (Estabilidad y Flujo) respectivamente. Presentando así un grado de correlación de 0.850, no obstante que al ser mayor que el R=0.5

(coeficiente de correlación) se puede afirmar que los datos evaluados presentan un alto grado de correlación.

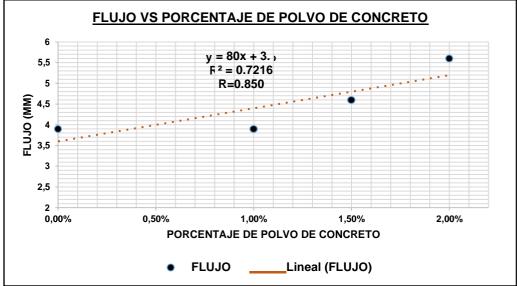


Ilustración 9.- Flujo vs Porcentaje de Polvo de Concreto Reciclado

De las gráficas analizadas anteriormente se puede determinar que el sustento técnico y estadístico la siguiente Hipótesis:

Hipótesis General: La incorporación de polvo de concreto reciclado influye significativamente en las propiedades reológicas de la mezcla asfáltica en caliente, Huancayo – 2018, al evidenciar que al incorporar el polvo del concreto reciclado se obtiene un grado de correlación de 99.8% en relación a la estabilidad y un 85% en relación al flujo, siendo las principales propiedades reológicas de la mezcla asfáltica en caliente.

Entonces se afirma que existe una evidencia técnica y estadística capaz de poder afirmar que con la incorporación de polvo de concreto reciclado al 1% mejora las propiedades reológicas de la mezcla asfáltica en caliente, Huancayo 2018. Al poder demostrar que con la incorporación de polvo de concreto influye en un 99.8% en relación a la estabilidad y en un 85% en relación al flujo.

5.1.2. Prueba de Hipótesis - Especificas.

HIPOTESIS ESPECIFICA (A)

Con la problemática planteada: ¿De qué manera la aplicación de polvo de concreto reciclado influye en la resistencia en el comportamiento reológico de mezclas asfálticas caliente?, se realiza el cuadro donde se puede determinar la influencia del polvo de concreto reciclado en la resistencia del comportamiento reológico de la mezcla asfáltica en caliente.

Tabla 25.- Resultados del índice de rigidez

	PORCENTAJE	RESULTADOS			
DISEÑO	DE POLVO DE CONCRETO RECICLADO	Estabilidad (KN)	Flujo (mm)	Índice de Rigidez (Kg/cm)	
MAC-2 CONVENCIONAL	0.00%	9.05	3.9	2484	
MAC -2 INCORPORANDO POLVO DE CONCRETO RECICLADO AL 1.0%	1.00%	9.49	3.9	2550	
MAC -2 INCORPORANDO POLVO DE CONCRETO RECICLADO AL 1.5%	1.50%	8.26	4.6	1853	
MAC -2 INCORPORANDO POLVO DE CONCRETO RECICLADO AL 2.0%	2.00%	5.33	5.6	1085	

En el siguiente grafico donde se presenta los datos de la Índice de Rigidez vs el porcentaje de polvo de concreto reciclado con lo cual se puede determinar que el polvo del concreto influye positivamente en la resistencia para el comportamiento reológico de la mezcla asfáltica en caliente. Presentando así un grado de correlación de 0.84, no obstante que al ser mayor que el R=0.5 (coeficiente de correlación) se puede afirmar que los datos evaluados presentan un alto grado de correlación.

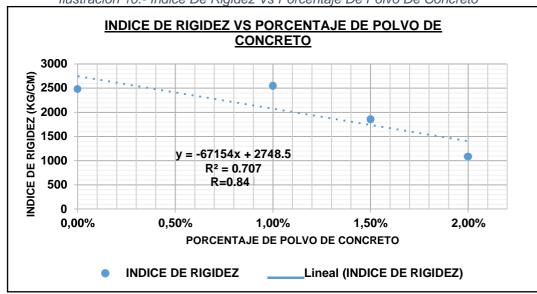


Ilustración 10.- Índice De Rigidez Vs Porcentaje De Polvo De Concreto

De las gráficas analizadas anteriormente se puede determinar que el sustento técnico y estadístico la siguiente Hipótesis Especifica A:

Hipótesis Especifica "A": La incorporación de polvo de concreto reciclado influye positivamente en la resistencia para el comportamiento reológico de la mezcla asfáltica en caliente, al poder evidenciar que al incorporar el polvo del concreto reciclado se obtiene un grado de correlación de 84% en relación al índice de rigidez que representa la resistencia de la mezcla asfáltica.

Entonces se afirma que existe una evidencia técnica y estadística capaz de poder afirmar que con la incorporación de polvo de concreto reciclado al 1% mejora la resistencia para el comportamiento reológico de la mezcla asfáltica en caliente. Al poder demostrar que con la incorporación de polvo de concreto reciclado influye en un 84% en relación al índice de rigidez y la resistencia de la mezcla

HIPOTESIS ESPECIFICA (B)

Con la problemática planteada: ¿De qué manera la aplicación de polvo de concreto reciclado influye en la deformación en el comportamiento reológico de mezclas asfálticas caliente?, se realiza el cuadro donde se puede determinar la influencia del polvo de concreto reciclado en relación a la deformación en el comportamiento

reológico de la mezcla asfáltica en caliente.

Tabla 26.- Porcentajes de Polvo de concreto con los flujos obtenidos

DISEÑO	PORCENTAJE	RESULTADOS
DISENO	DE POLVO DE CONCRETO	Flujo (mm)
MAC-2 CONVENCIONAL	0.00%	3.9
MAC -2 INCORPORANDO POLVO DE CONCRETO RECICLADO AL 1.0%	1.00%	3.9
MAC -2 INCORPORANDO POLVO DE CONCRETO RECICLADO AL 1.5%	1.50%	4.6
MAC -2 INCORPORANDO POLVO DE CONCRETO RECICLADO AL 2.0%	2.00%	5.6

En el siguiente grafico donde se presenta los datos del Flujo vs el porcentaje de polvo de concreto reciclado con lo cual se puede determinar que el polvo del concreto influye de gran manera en la deformación para el comportamiento reológico de la mezcla asfáltica en caliente. Presentando así un grado de correlación de 0.850, no obstante que al ser mayor que el R=0.5 (coeficiente de correlación) se puede afirmar que los datos evaluados presentan un alto grado de correlación.

Ilustración 11.- Flujo vs Polvo de concreto FLUJO VS PORCENTAJE DE POLVO DE CONCRETO 6 y = 80x + 3.5,5 $F^2 = 0.7216$ 5 R=0.850 FF030 (MM) 4 3,5 3 2,5 0,00% 0,50% 1,00% 1,50% 2,00% PORCENTAJE DE POLVO DE CONCRETO Lineal (FLUJO) **FLUJO**

De las gráficas analizadas anteriormente se puede determinar que el sustento técnico y estadístico la siguiente Hipótesis Especifica B:

Hipótesis Especifica "B": La incorporación de polvo de concreto reciclado influye de gran manera en la deformación para el comportamiento reológico de la mezcla asfáltica en caliente, Huancayo – 2018, al poder evidenciar que al incorporar el polvo del concreto reciclado se obtiene un grado de correlación de 85.00% en relación al flujo la cual representa la deformación de la mezcla asfáltica.

Entonces se afirma que existe una evidencia técnica y estadística capaz de poder afirmar que con la incorporación de polvo de concreto reciclado al 1% reduce la deformación para el comportamiento reológico de la mezcla asfáltica en caliente. Al poder demostrar que con la incorporación de polvo de concreto reciclado influye en un 85.0% en relación al flujo de la mezcla asfáltica.

HIPOTESIS ESPECIFICA (C)

Con la problemática planteada: ¿De qué manera interviene la aplicación de polvo de concreto reciclado en la durabilidad de las mezclas asfálticas en caliente?, se realizó un cuadro donde se puede evidenciar la influencia del polvo de concreto reciclado en relación a la durabilidad en el comportamiento reológico de la mezcla asfáltica en caliente.

Tabla 27.- Perdida por Desgaste MAC-2

PERDIDA POR DESGASTE MAC-2						
N° DE MUESTRA	CEMENTO ASFÁLTICO	POLVO DE CONCRETO	GRADACIÓN	% DE CEMENTO ASFÁLTICO	% DE PÉRDIDA POR DESGASTE	
1	PEN 85/100	0.00%	MAC 2	6.00	7.15	

2	PEN 85/100	1.00%	MAC 2	6.00	7.20
3	PEN 85/100	1.50%	MAC 2	6.00	6.61
4	PEN 85/100	2.00%	MAC 2	6.00	11.00

En el siguiente grafico donde se presenta los datos del % Perdida por Desgaste vs el porcentaje de polvo de concreto reciclado con lo cual se puede determinar que el polvo del concreto reciclado interviene en la durabilidad de la mezcla asfáltica en caliente. Presentando así un grado de correlación de 0.609, no obstante que al ser mayor que el R=0.5 (coeficiente de correlación) se puede afirmar que los datos evaluados presentan un alto grado de correlación.

% PERDIDA POR DESGASTE VS PORCENTAJE DE POLVO DE CONCRETO 12.00 y = 144.46x + 6.3649**DE PERDIDA POR DESGASTE** 11,00 $R^2 = 0.3713$ 10,00 R=0.6099,00 8,00 7,00 6,00 5,00 4,00 0,00% 0,50% 1,00% 1,50% 2,00% PORCENTAJE DE PCR PERDIDA POR DESGASTE MAC-2 Lineal (PERDIDA POR DESGASTE MAC-2)

Ilustración 12.- % Perdida Por Desgaste Vs Porcentaje De Polvo De Concreto

De las gráficas analizadas anteriormente se puede determinar que el sustento técnico y estadístico la siguiente Hipótesis Especifica C:

Hipótesis Especifica "C": La incorporación de polvo de concreto reciclado aumenta la durabilidad de la mezcla asfáltica en caliente, al poder evidenciar que al incorporar el polvo del concreto reciclado en 1% se obtiene un grado de correlación de 60.90% en relación al flujo la cual representa a la durabilidad de la mezcla asfáltica.

Entonces se afirma que existe una evidencia técnica y estadística capaz de poder afirmar que con la incorporación de polvo de concreto reciclado al 1% aumenta la durabilidad de la mezcla asfáltica en caliente. Al poder demostrar que con la incorporación de polvo de concreto reciclado influye en un 60.9% en relación a la durabilidad de la mezcla asfáltica.

5.2. Discusión De Resultados

En el tema de tesis planteada sobre "Aplicación de polvo de concreto reciclado en el comportamiento reológico de mezclas asfálticas caliente, Huancayo 2018", está basada en un análisis técnico para poder mejorar las propiedades reológicas de las mezclas asfálticas en caliente con incorporación de polvo de concreto en con lo cual el esfuerzo y deformación encontraron un equilibrio mejorando sus propiedades iniciales.

- Existe evidencia técnica que a la aplicación de polvo de concreto reciclado frente al comportamiento reológico de la mezcla asfáltica en caliente influye en un 99.8% en relación a la estabilidad y un 85% en relación al flujo de la mezcla asfáltica en caliente, con la aplicación de polvo de concreto en 1% de la mezcla total. Es por ello que ante estos valores estadísticamente demostrado se afirma que existe una correlación entre los indicadores.
- La aplicación de polvo de concreto reciclado mejora la resistencia para una aplicación de 1% en relación a su muestra total teniendo como una comprobación estadística el grado de correlación al 84% al comprobar que la aplicación de polvo de concreto reciclado mejora la resistencia. Es por ello que ante estos valores estadísticamente demostrado se afirma que existe una correlación entre los indicadores.
- La aplicación de polvo de concreto influye del mismo modo que la mezcla convencional en relación al flujo puesto que se mantiene en los límites superiores de los parámetros de la norma encontrando que mantiene sus propiedades reológicas, encontrando un grado de correlación de 85.0%. Es por ello que ante estos valores

- estadísticamente demostrado se afirma que existe una correlación entre los indicadores.
- Con la aplicación de polvo de concreto reciclado en las mezclas asfálticas en caliente se logra evidenciar que a la aplicación del polvo de concreto en un 1% se determina que no mejora su comportamiento en relación a la durabilidad obteniendo así un valor menor en 0.7% de lo obtenido convencionalmente, presentando un grado de correlación de 84%. Es por ello que ante estos valores estadísticamente demostrado se afirma que existe una correlación entre los indicadores.

CONCLUSIONES

- 1. Se determinó que la aplicación de polvo de concreto reciclado en 1% MEJORA LAS PROPIEDADES REOLÓGICAS de las mezclas asfálticas en caliente, logrando determinar que la ESTABILIDAD aumenta en 4.86% en relación a su valor convencional logrando mejorar la RESISTENCIA. En el FLUJO se mantiene su valor lo cual nos indica que la elasticidad de la mezcla asfáltica se mantiene en los parámetros establecidos, y el Índice de rigidez aumenta en un 2.66%, con lo cual se determina que el polvo de concreto influye significativamente en sus propiedades reológicas de la mezcla asfáltica en caliente.
- 2. Se determinó que la aplicación del polvo de concreto reciclado para 1%, MEJORA LA RESISTENCIA en un porcentaje de 4.86% manteniéndose así dentro de los parámetros establecidos en el Manual de Carreteras, es por ello que a la incorporación de 1.5% y 2.0% la mezcla asfáltica se vuelve inestable.
- 3. La aplicación de polvo de concreto reciclado nos presenta que mantiene su valor en la ELASTICIDAD (FLUJO) de la mezcla asfáltica en caliente puesto a que a la incorporación de 1% de polvo de concreto no altera el porcentaje de su valor inicial encontrándose dentro de los parámetros.
- 4. Se realizo el ensayo de % de desgaste, para lo cual se colocó las muestras con polvo de concreto reciclado logrando determinar que para la muestra con 1 % de aplicación de polvo de concreto la muestra presenta una RESISTENCIA AL DESGASTE según los parámetros establecidos por la norma. Pero esta disminuye en un 0.70% en relación a su valor inicial convencional.

RECOMENDACIONES

- Se recomienda emplear la reutilización de mezclas de concreto con el fin de que podamos reutilizar los agregados pétreos y el polvillo de concreto para la construcción de diferentes estructuras (vías, edificaciones, etc.)
- 2. Se recomienda tener un análisis más sistematizado del comportamiento a nivel estructural puesto que la incorporación cualquier elemento a una mezcla asfáltica presenta alteración a cambios de temperatura.
- Se recomienda aplicar esta reutilización del concreto reciclado en la aplicación de mezclas asfálticas en caliente donde se mejora notablemente las propiedades reológicas de la mezcla asfáltica.
- 4. Se recomienda realizar ensayos iniciales si se cambia el lugar de procedencia de los agregados pétreos para tener una mejor caracterización de los agregados y poder determinar sus características para el diseño de mezcla del pavimento flexible.

REFERENCIAS BIBLIOGRÁFICAS

- Aldana salguero, Josué Roberto (2004) en la tesis para optar el título de ingeniero civil "Mantenimiento de carreteras con concreto asfaltico en caliente".
- Bernal, C. (2006). Metodología de la investigación. Para administración, economía, humanidades y ciencias sociales. (L. Gaona, Ed.) (Segunda). México: Pearson Educación.
- Cruz, Jorge Arturo (2004) en la tesis para optar el título de ingeniero civil "Concreto reciclados".
- Del Cid, A., Sandoval, R., y Sandoval, F. (2007). Investigación.
 Fundamentos y metodología. (H. Rivera, Ed.) (Primera). México: Pearson
 Educación
- Dávalos Murray, Ivette Roció (2015) en la tesis para optar el título de ingeniero civil "Obtención de mezclas asfálticas mediante la adición de material reciclado: poliestireno reciclado".
- Glosario Términos de Uso Frecuente en Proyectos de Infraestructura
 Vial, (2008). Lima, Perú. Ministerio de Transportes y Comunicaciones.
- Hernández, R., Fernández, C., y Baptista, M. del P. (2010). Metodología de la investigación. (J. Mares, Ed.) (Quinta). México: McGRAW- HILL
- Mondragón castillo, Karina Sofía (2016) en la tesis para optar el título de ingeniero civil "Comparación entre el concreto convencional y el concreto con barita en polvo como sustituyente del agregado fino".
- MTC. (2013). Manual de carreteras Especificaciones técnicas generales para construcción (EG-2013) (Tomo I). Lima Perú: Ministerio de Transportes y Comunicaciones. Recuperado a partir de https://www.mtc.gob.pe/transportes/caminos/normas_carrete ras/documentos/manuales/Manual de Carreteras Especificaciones Técnicas Generales para Construcción EG-2013 (Versión Revisada JULIO 2013).pdf

- MTC. (2016). Manual de ensayo de materiales (Primera). Lima Perú:
 Ministerio de Transportes y Comunicaciones.
- Mendoza, Marco Antonio (2009) en la tesis para optar el título de ingeniero civil "Incidencia del origen de los materiales calizos y basálticos en el diseño de mesclas de concreto asfaltico método Marshall".
- Montejo Fonseca, A. (2014). Ingeniería de Pavimentos "Tomo I". Bogotá:
 Universidad Católica de Colombia.
- Montejo Fonseca, A. (2014). Ingeniería de Pavimentos "Tomo II". Bogotá: Universidad Católica de Colombia.
- Paucar Maila (2013) en la tesis para optar el título de ingeniero civil
 "Comportamiento de una mezcla asfáltica modificada con polímero etileno vinil acetato (EVA)".
- Recuenco Aguado E. (2018). Firmes y pavimentos de carreteras y otras infraestructuras. España: Universidad Politécnica de Madrid.

ANEXOS

Anexo N° 1: Matriz de consistencia.

APLICACIÓN DEL POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLOGICO DE

Problema	Objetivos	Marco teórico	Hipótesis	Variables y dimensiones	Metodología
Problema general: ¿Cómo influye la aplicación del polvo de concreto reciclado en el comportamiento reológico de mezclas asfálticas calientes, Huancayo - 2018?	Objetivo general: Evaluar de qué manera influye la aplicación del polvo de concreto reciclado en el comportamiento reológico de mezclas asfálticas calientes, Huancayo - 2018.	A nivel Nacional. - Mondragón castillo, Karina Sofía (2016) en la tesis para optar el título de ingeniero civil "Comparación entre el concreto convencional y el concreto con barita en polvo como sustituyente del agregado fino". - Dávalos Murray, Ivette Roció (2015) en la tesis para optar el título de ingeniero civil "Obtención de mezclas asfálticas mediante la adición de material reciclado: poliestireno reciclado".	Hipótesis general: La aplicación del polvo de concreto reciclado mejora el comportamiento reológico de mezclas asfálticas calientes, Huancayo - 2018.	Variable Independiente: Polvo de concreto reciclado Dimensiones: - Comportamiento reológico	Método de investigación: Cuantitativo. Tipo de investigación: Aplicado. Nivel de investigación: Descriptivo Diseño de investigación: Experimental Cuando: 2018. Población y muestra: Población. La población para la investigación estuvo definida por el diseño de mezcla asfáltica convencional Método Marshall que se usa en todos los pavimentos asfalticos en la provincia de Huancayo.

Problemas	Objetivos	A nivel internacional.	Hipótesis especificas	Variable	Donde se consideró 60 especímenes con
específicos: - ¿De qué manera la aplicación del polvo de concreto reciclado influye en la resistencia del comportamiento reológico de mezclas asfálticas	específicos: - Identificar de qué manera influye la aplicación del polvo de concreto reciclado en la resistencia del comportamiento reológico de	 Paucar Maila (2013) en la tesis para optar el título de ingeniero civil "Comportamiento de una mezcla asfáltica modificada con polímero etileno vinil acetato (EVA)". Mendoza, Marco Antonio (2009) en la tesis para optar el título de ingeniero civil "Incidencia del origen de los materiales calizos y basálticos en el diseño de mesclas de concreto asfaltico 	La aplicación del polvo de concreto reciclado influye significativamente en la resistencia del comportamiento reológico de mezclas asfálticas calientes. La aplicación del polvo de concreto reciclado influye significativamente en la	Variable dependiente: Reología de Mezcla asfáltica en calientes Dimensiones: - Resistencia - Durabilidad - Deformación	Donde se consideró 60 especímenes con los diferentes contenidos asfálticos (5%, 5.5%, 6.0%, 6.5% y 7.0%). Muestra: La muestra es de acuerdo al método no probabilístico intencional, en este caso corresponde a los especímenes elaborados en laboratorio, cuyo detalle es el siguiente: - 04 diseños de Asfalto Método Marshal de 75 golpes (60 briquetas).
calientes? - ¿De qué manera la aplicación del polvo de concreto reciclado influye en la deformación del comportamiento reológico de mezclas asfálticas calientes? - ¿De qué manera interviene la aplicación del polvo de concreto reciclado en la durabilidad de la mezcla asfáltica en caliente?	mezclas asfálticas calientes - Analizar de qué manera influye la aplicación del polvo de concreto reciclado en la deformación del comportamiento reológico de mezclas asfálticas calientes. - Interpretar de qué manera interviene la aplicación del polvo de concreto reciclado en la durabilidad de la mezcla asfáltica en caliente.	 método Marshall". Aldana salguero, Josué Roberto (2004) en la tesis para optar el título de ingeniero civil "Mantenimiento de carreteras con concreto asfaltico en caliente". Cruz, Jorge Arturo (2004) en la tesis para optar el título de ingeniero civil "Concreto reciclados". 	deformación del comportamiento reológico de mezclas asfálticas calientes. - La aplicación del polvo de concreto reciclado interviene aumentando la durabilidad de la mezcla asfáltica en caliente.		Técnicas e instrumentos: Recolección de datos Técnicas de procesamiento de datos: Análisis estadístico de resultados obtenidos en el laboratorio. Ficha de organización, sistematización e interpretación de los datos obtenidos en los ensayos.

Anexo N° 2: Certificados de ensayos.

CONSTRUCTORA INGENIEROS & ARQUITECTOS ASESORES SANTA CRUZ SCRL

ELABORACION DE PROYECTOS - EJECUCION DE OBRAS - CONTROL DE CALIDAD EN MECANICA DE SUELOS

GRAVEDAD ESPECIFICA Y ABSORCION DE LOS AGREGADOS

SOLICITA / PETICIONARIO : BACH, PERALTA FLORES MARISOL

PROYECTO / OBRA

: APLICACIÓN DE POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLOGICO DE MEZCLAS

ASFALTICAS CALIENTE, HUANCAYO - 2018

CANTERA Nº / UBICACIÓN : SAN LORENZO

UBICACIÓN DE OBRA

Distrito HUANCAYO

Provincia HUANCAYO

TECNICO : FECHA

J.S.C.V 25/07/2019

Region

JUNIN

	MU	ESTRA 1	10-11				
AGREGADO GRUESO MTC - 206							
No	IDENTIFICACION	M-1	M-2	PROMEDIO			
A	Peso de Material satu. Sup. Seca (en aire)	980	950				
В	Peso de Material satu. Sup. Seca (en agua)	610	590				
С	Vol. Masa /Vol. Vacios = A - B	370	360				
D	Peso de Mat seca en estufa (105° c)	973	943				
E	Vol. masa = C-(A-D)	363	353				
	P.Esp. Bulk (Base seca) = D/C	2.630	2.619				
	P. Esp. Bulk (Base saturado) = A/C	2.649	2.639				
3772	P.Esp. Aparente(Base seca) = D/E	2.680	2.671				
	% de Absorcion = `((A-D) /D)x 100	0.719	0.742	0.731			
		Peso Especifico Adop	tado	2.644			

AGREGADO FINO MTC - 205							
No	IDENTIFICACION	M1	M-2	PROMEDIO			
Α	Peso de Mat. Satu.Sup. Seca (en aire)	250	250	- Wilson			
В	Peso del frasco + H2O	206.2	205.6				
С	Peso del frasco + H2O + Arena = A+B	456.2	455.6				
D	Peso del mat. + H2O en el frasco	358	359				
E	Vol. de masa + Vol. de vacios = C-D	98.2	96.6				
F	Peso del material seco en estufa (105° c)	246.8	246.5				
G	Volumen de masa = E-(A-F)	95	93.1				
	P. Esp. Bulk (Base seca) = F/E	2.513	2.552				
	P. Esp. Bulk (Base saturada) = A/E	2.546	2.588				
	P.Esp. Aparente (Base seca) = F/G	2.598	2.648				
TOWN TO A	% de Absorcion = ((A-F) /F) x100	1.297	1.420	1.358			
		Peso Especifico Adop	otado	2.567			

LABORATORIO DE SUELOS

CRUZ VELIZ

Percyra Araujo INGENIEROS Nº 16800

CONSTRUCTORA INGENIEROS & ARQUITECTOS ASESORES

SANTA CRUZ SCRL

ELABORACION DE PROYECTOS - EJECUCION DE OBRAS - CONTROL DE CALIDAD EN MECANICA DE SUELOS

EQUIVALENTE DE ARENA

MTC E-114

PROYECTO / OBRA

: BACH. PERALTA FLORES MARISOL

SOLICITA / PETICIONARIO: APLICACIÓN DE POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLOGICO DE MEZCLA:

SECTOR

ASFALTICAS CALIENTE, HUANCAYO - 2018

CANTERA Nº / UBICACIÓN : SAN LORENZO

UBICACIÓN DE OBRA

Distrito

HUANCAYO

Provincia

HUANCAYO

TECNICO

J.S.C.V

Region

JUNIN

FECHA

No	DESCRIPCION	EQUIVALENTE DE ARENA				
		M-1	M-2	M-1		
	TAMAÑO MAXIMO	4.75 mm.	4.75 mm	4.75 mm.		
Α	HORA ENTRADA A SATURACION	10.1	10.12	10.14		
2	SALIDA DE SATURACION	10.2	10.22	10.24		
В	HORA ENTRADA A DECANTACION	10.22	10.24	10.24		
4	SALIDA DECANTACION	10,42	10.44	10.46		
5	ALTURA MATERIAL FINO (pulg)	5.20	5.00	5.20		
6	ALTURA ARENA (pulg.)	3.60	3.60	3.60		
7	EQUIV. ARENA	69.23	72.00	69.23		
	PROMEDIO DE EQUIV. ARENA (%)	/ ~ ·	70.15			

CRUZ VELIZ

REG. COLEGIO D INGENIEROS Nº 16800

CONSTRUCTORA INGENIEROS & ARQUITECTOS ASESORES SANTA CRUZ SCRL

ELABORACION DE PROYECTOS - EJECUCION DE OBRAS - CONTROL DE CALIDAD EN MECANICA DE SUELOS

DETERMINACION DE CARAS FRACTURADAS

(NORMA ASTM D-5821)

PROYECTO / OBRA

APLICACIÓN DE POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLOGICO DE MEZCLAS

ASFALTICAS CALIENTE, HUANCAYO - 2018 SOLICITA / PETICIONARIO : BACH PERALTA FLORES MARISOL

SECTOR

CANTERA Nº / UBICACIÓN : SAN LORENZO

UBICACIÓN DE OBRA

Distrito

HUANCAYO

HUANCAYO

TECNICO :

J.S.C.V.

Provincia

FECHA:

25/07/2019

DETERMINACION DE CARAS FRACTURADAS

(NORMA ASTM D-5821)

A.- CON UNA CARA FRACTURADA

TAMAÑO DEL AGREGADO		A	В	c	D	E
PASA TAMIZ	RETENIDO EN TAMIZ	(9)	(g)	((B/A)*100)		C'D
2"	1 1/2"					
1 1/2"	1"		S Karen			
1"	3/4"	250.0	238.0	95.2	22.0	2094.4
3/4"	1/2"	1200.0	1185,0	98.8	13.2	1303.5
1/2"	3/8"	300.0	292.0	97.3	36.8	3581.9
TOTAL		1750.0			72.0	6979.8
POCENTAJE CON UN	NA CARA FRACTURADA =	TOTAL = TOTAL	. D	96.9 %		

B.- CON DOS O MAS CARAS FRACTURADAS

TAMANO DE	L AGREGADO	A	8	, e	0	E
PABA TAMIZ	RETENHOO EN TAMEZ	(9)	(8)	((B/A)*100)		C*D
2°	1 1/2"					
1 1/2"	1"					
1"	3/4"	250.0	212.0	84.8	22.0	1865.6
3/4"	1/2"	1200.0	1057.0	88.1	13.2	1162.7
1/2"	3/8"	300.0	279.0	93.0	36.8	3422.4
TOTAL	1	1750.0			72.0	6450.7
ABOR NE SU	A CARA FRACTURADA = ATORIO DE MECANICA ELOSW PAVIMENTOS LISANTA CRUZ VELI C-49 EN GEOTECNIA			José Manua Pe ing mana Reg. colegie o Jis		

CONSTRUCTORA INGENIEROS & ARQUITECTOS ASESORES SANTA CRUZ SCRL

ELABORACION DE PROYECTOS - EJECUCION DE OBRAS - CONTROL DE CALIDAD EN MECANICA DE SUELOS

DETERMINACION DE PARTICULAS CHATAS Y ALARGADAS

(NORMA ASTM D-4791)

PROYECTO / OBRA

: APLICACIÓN DE POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLOGICO DE MEZCLAS

ASFALTICAS CALIENTE, HUANCAYO - 2018

SOLICITA / PETICIONARIO: BACH. PERALTA FLORES MARISOL SECTOR

CANTERA Nº / UBICACIÓN : SAN LORENZO UBICACIÓN DE OBRA

Distrito

: HUANCAYO

Provincia Region

: HUANCAYO JUNIN

TECNICO: FECHA :

J.Santa Cruz V.

25/07/2019

	to the first the second court of the court o		(NORMA ASTM D-4791)
遺跡(2018) 会す **** 10 日 **** * * * * * * * * * * * * * * * *	TERLING	I THE EV. II NAME YOUR VERY WAS A PROPERTY OF A STREET	プラアムサーエリーター 田田田と 女 しか ロフ 海 二日日 レフ・ビリ 田田
Company of the contract of the	I A TORNE I AND AND THE TAX OF SELECTION AND ADDRESS OF THE SECOND ADDRESS O	* NE D * No. 1000 AND A \$ ADD 4 5 . A 5 . T A 5 . D J A 50. THE	3 17 4 19 17 17 17 18 18 19 19 19 19 19 19

MAT	ERIAL	AGRE	GADO GE	RUESO		CHA	TAS		ALARG	GADAS	NI CHA	TA, NI A	LARGADA
TAMIZ	abertura	PESO RET.	% RET.	% PASA	PESO	(°9)	(%) Corregido	PESO	(%)	(%) Corregido	PESO	(°6)	(%) Corregida
(pulg)	(mm)						7.0						
3"	76.200						Page 7						
2"	50.800			No.									
1 1/2"	38.100					fac:			- Villa				
1"	25.400					Alle		- 18					
3/4"	19.050	1500.0	50.0	50.0	15.0	1.0	0.5	40.0	2.7	1.3	1445.0	96.3	48.2
1/2"	12.700	1200.0	40.0	10.0	24.0	2.0	0.8	40.0	3.3	1.3	1136.0	94.7	37.9
3/8"	8.750	300.0	10.0	0.0	18.0	6.0	0.6	16.0	5.3	0.5	266.0	88.7	8.9
	TOTAL	3000.0	100.0		67.0	Will I	1.9	96.0		3.2	2847.0		94.9

PESO TOTAL DE LA MUESTRA	(g)	3000.0	
PARTICULAS CHATAS Y ALARGADAS	(%)	6.1	

DE MECANICA ABORATORIO VIMENTOS DE SUELO

CRUZ VELIZ JAVIER J 42 FN GEOTECNIA

seyra Araujo NGENIEROS Nº 18800

CONSTRUCTORA INGENIEROS & ARQUITECTOS ASESORES

SANTA CRUZ SCRL

ELABORACION DE PROYECTOS - EJECUCION DE OBRAS - CONTROL DE CALIDAD EN MECANICA DE SUELOS

ENSAYO DE DURABILIDAD

MTC E 209 EM 2000

PROYECTO / OBRA

: BACH. PERALTA FLORES MARISOL

SOLICITA / PETICIONARIO: APLICACIÓN DE POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLOGICO DE MEZCLAS

SECTOR

ASFALTICAS CALIENTE , HUANCAYO - 2018

CANTERA Nº / UBICACIÓN : SAN LORENZO UBICACIÓN DE OBRA

Distrito

HUANCAYO

Provincia

HUANCAYO

Region

JUNIN

TECNICO

J. Santa Cruz V.

FECHA

25/07/2019

TAMAÑO DE	GRANULOMETRIA	PESO DE LA FRACO	CION ENSAYADA	% PERDIDA	PERDIDA
PARTICULA	ORIGINAL	ANTES	DESPUES	TOTAL	MEDIA
3/4"	0.00	0.00	0.00	0.00	0.00
1/2"	33.96	712.00	685.00	3.79	1.29
3/8"	29.33	615.00	589.00	4.23	1.24
PIEDRA CHANCADA	35.44	743.00	710.00	4.44	1.57
Table 1	1.27	26.60	26.00	2.26	0.03
TOTAL	100.00	2096.60			4.13

TAMAÑO DE	GRANULOMETRIA	PESO DE LA FRACO	ION ENSAYADA	% PERDIDA	PERDIDA
PARTICULA	ORIGINAL	ANTES	DESPUES	TOTAL	MEDIA
N°8	21.11	233.00	215.00	7.73	1.63
N°16	17.93	198.00	185.00	6.57	1.18
N°30	19.02	210.00	192.00	8.57	1.63
N°50	16.12	178.00	165.00	7.30	1.18
AGREGADO FINO	25.82	285.00	265.00	7.02	1.81
TOTAL	100.00	1104.00		-	7.43

MECANICA ABORATOR VIMENTOS ANTA CRUZ VELIZ LAVIER TEC THE FN GEOTECNIA

Pereyra Araujo ERO CIVIL INGEREROS Nº 16800

CONSTRUCTORA INGENIEROS & ARQUITECTOS ASESORES SANTA CRUZ SCRL

ELABORACION DE PROYECTOS - EJECUCION DE OBRAS - CONTROL DE CALIDAD EN MECANICA DE SUELOS

METODO DE ENSAYO PARA DETERMINACION CUANTITATIVA DE SULFATOS Y CLORUROS EN SUELOS - NTP 339.178 (2002)

PROYECTO / OBRA

BACH. PERALTA FLORES MARISOL

SOLICITA / PETICIONARIO:

APLICACIÓN DE POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLOGICO DE MEZCLA

SECTOR

ASFALTICAS CALIENTE, HUANCAYO - 2018

CANTERA Nº / UBICACIÓN :

SAN LORENZO

CALICATA

C-01

MUESTRA

M-01

UBICACIÓN DE OBRA

Distrito

HUANCAYO

HUANCAYO

TECNICO

J.Santa Cruz V

Provincia Region

JUNIN

FECHA

25/07/2019

PIEDRA	CLORUROS CL ASTM D-3370;1999 NTP 339.177;2002 %	SULFATOS (SO4) ASTM E-225;2001 NTP 339.178,2002 %	SALES TOTALES %	PH MTC E - 129 ASTM - 479
GRAVA	0.0079	0.02400	0.0319	6.57
ARENA	0.0052	0.0190	0.0242	6.98

ABORATORIO DE MECANICA DE SUELOS PAVIMENTOS

Jose Manuo Pereyra Araujo INGA JERO CIVIL REG. COLEGIO DI NIGENIEROS Nº 16500

CONSTRUCTORA INGENIEROS & ARQUITECTOS ASESORES

SANTA CRUZ SCRL

ELABORACION DE PROYECTOS - EJECUCION DE OBRAS - CONTROL DE CALIDAD EN MECANICA DE SUELOS

SOLICITADO / PETICIONARIO : BACH. PERALTA FLORES MARISOL

PROYECTO / OBRA : APLICACIÓN DE POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLOGICO DE MEZCLAS

: ASFALTICAS CALIENTE , HUANCAYO - 2018

UBICACIÓN / DE OBRA

Dist.

HUANCAYO

HUANCAYO

TECNICO : J. Santa Cruz Veliz

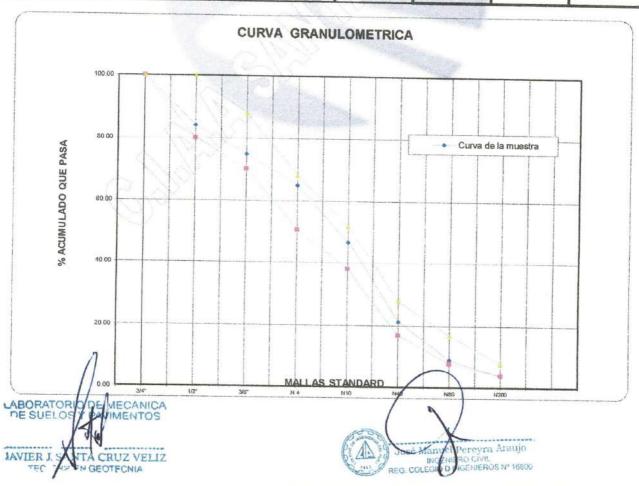
Prov. Dpto.

JUNIN

FECHA

: 25/07/2019

DOSIFICACION AGREGADOS


PIEDRA CHANCADA 3/4"-

ARENA CHANCADA Y ZARANDEADA 1/4"-

CEM. ASFALTICO : PEN - 85/100

COMBINACION PARA DISEÑO CONVENSIONAL

Nº MALLA	GRAVA CHANCADA	ARENA ch	POLVO DE CONCRETO	TOTAL		CACIONES
0.148	35	65	0	100	LIMINF	LIM SUP
3/4"	100.00	100.00	100.00	100.00	100.00	100.00
1/2"	54.81	100.00	100.00	84.18	80.00	100.00
3/8"	28.25	100.00	100.00	74.89	70.00	88.00
N4	0.00	100.00	100.00	65.00	51.00	68.00
N10	0.00	72.48	100.00	47.11	38.00	52.00
N40	0.00	32.96	99.40	21.42	17.00	
N80	0.00	14.11	99.31	9.17	The second secon	28.00
N200	0.00	5.86	67.43	THE RESERVE OF THE PERSON NAMED IN	8.00	17.00
	8.92.2580	3.00	07.43	3.81	4.00	8.00

CONSTRUCTORA INGENIEROS & ARQUITECTOS ASESORES SANTA CRUZ SCRL

ELABORACION DE PROYECTOS - EJECUCION DE OBRAS - CONTROL DE CALIDAD EN MECANICA DE SUELOS

ENSAYO DE MARSHALL ASTM D - (1559) PORCENTAJES DE ASFALTO EN LA MUESTRA

SOLICITADO / PETICIONARIO :

BACH. PERALTA FLORES MARISOL

PROYECTO / OBRA

APLICACIÓN DE POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLOGICO DE MEZCLAS

ASFALTICAS CALIENTE, HUANCAYO - 2018

UBICACIÓN / DE OBRA

HUANCAYO HUANCAYO

Dpto. JUNIN

TECNICO : J SANTA CRUZ VELIZ

FECHA : 25/07/2019

ITEM	PASO	1	2	3	4	PROMEDIO
1	% de cemento asfaltico en peso de la mezcla	5.00	5.00	5.00	42	5.00
2	% de agregado grueso en peso de la mezcla	33.25	33.25	33.25	/	
3	% de agregado fino en peso de la mezcla % de agregado filler - concreto reciciado en peso de la	81.75	61.75	61.75		
4	mezcla		201			
5	Peso especifico del cemento asfaltico - aparente	1.018	1.018	1.018		1
6	Peso especifico agregado grueso - bulk	2.674	2.674	2.674		
7	Peso especifico agregado fino - bulk	2,554	2.554	2.554	-110	
8	Peso especifico filler concreto reciclado - aparente		7 7 7 8 8			1
9	Peso de la briqueta en el aire (gr)	1184.20	1184.80	1185.60		1,185
10	Peso de la briqueta en el agua (gr)	634.20	635.20	634.20		635
11	Volumen de la briqueta por desplazamiento	550.00	549.60	551.40		000
12	Peso especifico bulk de la briqueta	2.153	2.156	2.150		2.153
13	Peso específico maximo ASTM D-2041	2 430	2.430	2.430		2.100
14	% de vacios	11.4	11.3	11.5		11.4
15	Peso especifico bulk del agregado total	2.595	2.595	2.595		
16	VMA	21.18	21.08	21.29		21.2
17	% de vacios llenados con C.A.	46.19	46.46	45.90		46.2
18	Peso especifico del agregado total	2.621	2.621	2.621		10.2
19	Asfalto absorvido por el agregado total	0.39	0.39	0.39		
20	% de asfatto efectivo	4.63	4.63	4.63		
21	Flujo (mm)	3 05	3.05	3.05		3.0
2	Lectura del Dial Anillo Marshall					250.3
23	Estabilidad sin corregir (Kg)	1081	1100	1085		200.0
24	Factor de estabilidad	1.04	1.04	1.04		
25	Estabilidad corregida: (23°24) (Kg)	1124	1144	1128		1132
6	Indice de rigidez: (10 * 25/21) (kg/cm.)	3688	3753	3700		3714

OBSERVACIONES

ABORATORIO DE MECANICA DE SUELOS Y PANIMENTOS

THE THE SANTA CRUZ VI A CRUZ VELIZ Iosé Mario Pereyra Araujo INGRINERO CIVIL REG. COLEGIO NGENIEROS Nº 16800

CONSTRUCTORA INGENIEROS & ARQUITECTOS ASESORES

SANTA CRUZ SCRL

ELABORACION DE PROYECTOS - EJECUCION DE OBRAS - CONTROL DE CALIDAD EN MECANICA DE SUELOS

ENSAYO DE MARSHALL ASTM D - (1659) PORCENTAJES DE ASFALTO

SOLICITADO / PETICIONARIO :

BACH. PERALTA FLORES MARISOL

PROYECTO / OBRA

APLICACIÓN DE POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLOGICO DE MEZCLAS

ASFALTICAS CALIENTE , HUANCAYO - 2018

UBICACIÓN / DE OBRA

Dist. HUANCAYO

Prov. HUANCAYO Dpto. JUNIN

TECNICO : J SANTA CRUZ VELIZ

FECHA : 25/07/2019

ITEM	PASO	1	2	3	4	PROMEDIC
1	% de cemento asfaltico en peso de la mezcla	5.50	5.50	5.50		5.50
2	% de agregado grueso en peso de la mezcla	33.08	33.08	33.08		
3	% de agregado fino en peso de la mezcla % de agregado filler - concreto reciclado en peso de	61.43	61.43	61.43		
4	la mezcla					
5	Peso especifico del cemento asfaltico - aparente	1.018	1.018	1.018		
6	Peso especifico agregado grueso - bulk	2:674	2.674	2.674		
7	Peso especifico agregado fino - bulk	2.554	2.554	2.554	*****	
8	Peso especifico filler concreto reciclado - aparente					
9	Peso de la briqueta en el aire (gr)	1171.60	1180.20	1181.80		
10	Peso de la briqueta en el agua (gr)	650.00	654.00	655.00		
11	Volumen de la briqueta por desplazamiento	521.60	526.20	526.80		
12	Peso especifico bulk de la briqueta	2.246	2.243	2.243		2.244
13	Peso especifico maximo ASTM D-2041	2.410	2.410	2.410		
14	% de vacios	6.8	6.9	6.9		6.9
15	Peso especifico bulk del agregado total	2.595	2.595	2.595		
16	VMA	18.20	18.32	18.31		18.3
17	% de vacios llenados con C.A.	62.66	62.15	62.23		62.3
18	Peso específico del agregado total	2.618	2.618	2.618		**************************************
19	Asfalto absorvido por el agregado total	0.35	0.35	0.35		317 1
20	% de asfalto efectivo	5.17	5.17	5.17		
21	Flujo (mm)	3.30	3.56	3.30		3.4
22	Lectura del Dial Anillo Marshall					226.0
23	Estabilidad sin corregir (Kg)	950	885	925		
24	Factor de estabilidad	1.04	1.01	1.01		
25	Estabilidad corregida: (23*24) (Kg)	988	897	934		940
26	Indice de rigidez: (10 * 25/21) (kg/cm.)	2994	2521	2831		2782

OBSERVACIONES

ABORATORIO DE MECANICA NE SUELO Y PAVIMENTOS

LAVIER I SENTA CRUZ VELIZ TAP FN GEOTFCNIA

Jose Many Pereyra Araujo INVENTERIO CIVIL REG. COLEGO D INGENIEROS Nº 16800

Av oriente N° 772-Concepcion Telef -581405 - Cel. Mov. 975151126 - *413854 - 964512425 - *165302 - 954431184 - claro 964328911 Email CIAA SANTACRUZ@hotmail.com

CONSTRUCTORA INGENIEROS & ARQUITECTOS ASESORES SANTA CRUZ SCRL

ELABORACION DE PROYECENSAYO DE MARSHALL ASTM. D. (1650)

PORCENTAJES DE ASFALTO

SOLICITADO / PETICIONARIO :

BACH, PERALTA FLORES MARISOL

PROYECTO / OBRA

APLICACIÓN DE POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLOGICO DE MEZCLAS

ASFALTICAS CALIENTE , HUANCAYO - 2018

UBICACIÓN / DE OBRA

Dist. HUANCAYO Prov.

HUANCAYO Dpto. JUNIN

TECNICO : J SANTA CRUZ VELIZ

FECHA : 25/07/2019

ENSAYO MARSHALL ASTM D-1559

ITEM	PASO	1	2	3	4	PROMEDIO
1	% de cemento asfaltico en peso de la mezcla	6.00	6.00	6.00	\mathcal{A}	6.00
2	% de agregado grueso en peso de la mezcla	32.90	32.90	32.90	/	0.00
3	% de agregado fino en peso de la mezcla % de agregado filler - concreto reciclado en peso de	61.10	61.10	61.10		
4	la mezcla	in the	1	O'T		
5	Peso especifico del cemento asfaltico - aparente	1.017	1.017	1.017		
6	Peso específico agregado grueso - bulk	2.674	2.674	2.674		
7	Peso especifico agregado fino - bulk	2.554	2.554	2.554		
8	Peso especifico filler concreto reciclado - aparente	100		2.004		
9	Peso de la briqueta en el aire (gr)	1188.20	1180.80	1184.80		
10	Peso de la briqueta en el agua (gr)	665.20	666.80	685.10		
11	Volumen de la briqueta por desplazamiento	523.00	514.00	519.70		
12	Peso especifico bulk de la briqueta	2.272	2.297	2.280		2.283
13	Peso especifico maximo ASTM D-2041	2.380	2.380	2.380		2.263
4	% de vacios	4.5	3.5	4.2		4.1
5	Peso especifico bulk del agregado total	2.595	2.595	2.595		4,1
6	VMA	17.70	16.79	17.42		17.3
7	% de vacios llenados con C.A.	74.34	79.29	75.83		76.5
8	Peso especifico del agregado total	2.603	2.603	2.603		70.0
9	Asfalto absorvido por el agregado total	0.11	0.11	0.11		
0	% de asfalto efectivo	5.89	5.89	5.89		
1	Flujo (mm)	4.06	4.06	3.81		4.0
2	Lecture del Dial Anillo Marshall					7.0
3	Estabilidad sin corregir (Kg)	920	885	888		
4	Factor de estabilidad	1.04	1.07	1.04		THE STATE OF STREET
5	Estabilidad corregida: (23*24) (Kg)	957	948	924		943
6	Indice de rigidez: (10 * 25/21) (kg/cm.)	2357	2332	2424		2371

OBSERVACIONES

ABORATORIO DE VIECANICA DE SUELOS YIPAVIMENTOS

ANTA CRUZ VELIZ JAVIER J AP EN GEOTECNIA

ereyra Araujo REG. COLEGIO SENIEROS Nº 18600

CONSTRUCTORA INGENIEROS & ARQUITECTOS ASESORES

SANTA CRUZ SCRL

ELABORACION DE PROYECTOS - EJECUCION DE OBRAS - CONTROL DE CALIDAD EN MECANICA DE SUELOS

ENSAYO DE MARSHALL ASTM D - (1559) PORCENTAJES DE ASFALTO

SOLICITADO / PETICIONARIO :

BACH. PERALTA FLORES MARISOL

PROYECTO / OBRA

APLICACIÓN DE POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLOGICO DE MEZCLAS

ASFALTICAS CALIENTE , HUANCAYO - 2018

UBICACIÓN / DE OBRA

Dist. HUANCAYO Prov.

HUANCAYO Dpto. JUNIN

TECNICO : J SANTA CRUZ VELIZ

FECHA : 25/07/2019

ITEM	PASO	1	2	3	0.	PROMED
1	% de cemento asfaltico en peso de la mezcla	6.50	6.50	6.50		6.50
2	% de agregado grueso en peso de la mezcla	32.73	32.73	32.73		0.50
3	% de agregado fino en peso de la mezcla % de agregado filler - concreto reciclado en peso de la	60.78	60.78	60.78		-
4	mezcla		TIVE	30.70		-
5	Peso especifico del cemento asfaltico - aparente	1.017	1,017	1.017		
6	Peso especifico agregado grueso - bulk	2.674	2.674	2.674		
7	Peso especifico agregado fino - bulk	2.554	2.554	2.554		
8	Peso especifico filler concreto reciclado - aparente				* >	
9	Peso de la briqueta en el aire (gr)	1181.40	1187.20	1179.40		
10	Peso de la briqueta en el agua (gr)	672.90	675,50	672.50	1/1111111111111111111111111111111111111	
11	Volumen de la briqueta por desplazamiento	508.50	511.70	506.90		
12	Peso especifico bulk de la briqueta	2.323	2.320	2.327		2.323
13	Peso especifico maximo ASTM D-2041	2.350	2.350	2.350	100100	2.02.0
14	% de vacios	1.1	1.3	1.0		1.1
15	Peso especifico bulk del agregado total	2.595	2.595	2.595		-
16	VMA	16.29	16.41	16.17		16,3
17	% de vacios llenados con C.A.	93 03	92.25	93.87		93.0
18	Peso especifico del agregado total	2.586	2.586	2.586		
19	Asfalto absorvido por el agregado total	-0.14	-0.14	-0.14		
20	% de asfalto efectivo	6.63	6.63	6.63		
21	Flujo (mm)	4.30	4.32	4.32		4.3
22	Lectura del Dial Anillo Marshall					
23	Estabilidad sin corregir (Kg)	750	800	850		
24	Factor de estabilidad	1.10	1.04	1.04		
25	Estabilidad corregida: (23*24) (Kg)	827	832	884		848
26	Indice de rigid e z: (10 * 25/21) (kg/cm.)	1924	1927	2047		1966

OBSERVACIONES

LABORATOR DE MECANICA DE SUELOS VIMENTOS

TA CRUZ VELIZ

ra Araujo REG. COLEGIO DI NGENIEROS Nº 15800

CONSTRUCTORA INGENIEROS & ARQUITECTOS ASESORES

SANTA CRUZ SCRL

ELABORACION DE PROYECTOS - EJECUCION DE OBRAS - CONTROL DE CALIDAD EN MECANICA DE SUELOS

ENSAYO DE MARSHALL ASTM D - (1559) PORCENTAJES DE ASFALTO

SOLICITADO / PETICIONARIO :

BACH, PERALTA FLORES MARISOL

PROYECTO / OBRA

APLICACIÓN DE POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLOGICO DE MEZCLAS

ASFALTICAS CALIENTE , HUANCAYO - 2018

UBICACIÓN / DE OBRA

HUANCAYO

Prov. HUANCAYO

Dpto. JUNIN

TECNICO : J SANTA CRUZ VELIZ

FECHA : 25/07/2019

ITEM	PASO	1	2	3	4	PROMEDIC
1	% de cemento asfaltico en peso de la mezcla	7.00	7.00	7.00		7.00
2	% de agregado grueso en peso de la mezcla	32.55	32.55	32.55		7,00
3	% de agregado fino en peso de la mezcia % de agregado filler - concreto reciclado en peso de la	60.45	60,45	60.45		
4	mezcla		8 M.			
5	Peso especifico del cemento asfaltico - aparente	1.017	1,017	1.017		
6	Peso especifico agregado grueso - bulk	2.674	2.674	2.674		
7	Peso especifico agregado fino - bulk	2.554	2.554	2.554		
8	Peso especifico filler concreto reciclado - aparente	Sale Park		2.001		
9	Peso de la briqueta en el aire (gr)	1179.00	1176.80	1182.40		
10	Peso de la briqueta en el agua (gr)	665.30	663 90	670 50		
11	Volumen de la briqueta por desplazamiento	513.70	512.90	511.90		-
12	Peso especifico bulk de la briqueta	2.295	2.294	2.310		2.300
13	Peso especifico maximo ASTM D-2041	2.310	2.310	2.310		2.300
14	% de vacios	0.6	0.7	0.0		0.4
15	Peso especifico bulk del agregado total	2.595	2.595	2.595		0.4
16	VMA	17.75	17.77	17.22		17.6
17	% de vacios llenados con C.A.	96.37	96.20	99.96		97.5
18	Peso especifico del agregado total	2.554	2.554	2.554		07.5
19	Asfalto absorvido por el agregado total	-0.62	-0.62	-0.62		
20	% de asfalto efectivo	7.58	7.58	7.58		
21	Flujo (mm)	5.59	5.08	5.08		5.2
22	Lectura del Dial Anillo Marshall					
23	Estabilidad sin corregir (Kg)	650	750	825		****
24	Factor de estabilidad	1.10	1.07	1.07		
25	Estabilidad corregida: (23*24) (Kg)	717	803	884		801
26	Indice de rigide (10 * 25/21) (kg/cm.)	1283	1581	1739		1535

OBSERVACIONES

E VECANICA LABORATOR TE SUF AVIMENTOS

IER J. ANTIA CRUZ VELIZ TEC JANEN GEOTECNIA JAVIER J.

Percyra Araujo REG. COLEGIO INGENIEROS Nº 16800

CONSTRUCTORA INGENIEROS & ARQUITECTOS ASESORES

SANTA CRUZ SCRL

ELABORACION DE PROYECTOS - EJECUCION DE OBRAS - CONTROL DE CALIDAD EN MECANICA DE SUELOS

ENSAYO DE MARSHALL ASTM D - (1559) CAPA DE RODADURA

SOLICITADO / PETICIONARIO :

PROYECTO / OBRA

BACH, PERALTA FLORES MARISOL

APLICACIÓN DE POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLOGICO DE MEZCLAS

ASFALTICAS CALIENTE , HUANCAYO - 2018

TIPO DE DISEÑO UBICACION / DE OBRA

DISEÑO CONVENSIONAL HUANCAYO

Prov.

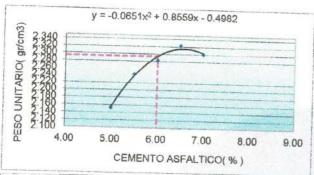
HUANCAYO

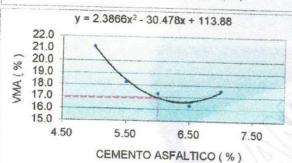
Dpto. JUNIN TECNICO : **FECHA**

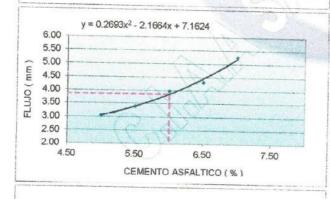
J. SANTA CRUZ V.

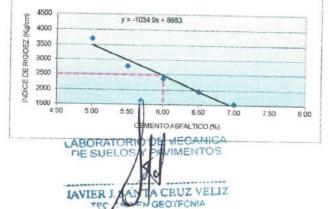
3590

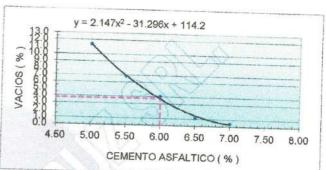
25/07/2019

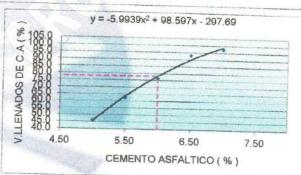

DOSIFICACION AGREGADOS

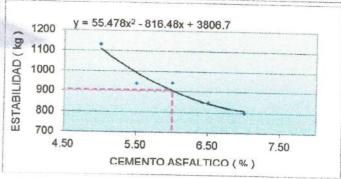

PIEDRA CHANCADA 3/4" -ARENA CHANCADA


65%


CEM ASFALTICO


PEN - 85 /100





RESULTADOS:

OPTIMO CONTENIDO C.A (%)	0.2- 6.0+0.2	MIN
PESO UNITARIO (gr/ cin3)	2.294	
VACIOS (%)	3.7	2 - 4
V.M.A (%)	16.9	MIN 14
V. LLENADOS C.A (%)	77.9	
FLUJO (mm)	3.9	2-4
ESTABILIDAD (kg)	905	MIN 780
NDICE DE RIGIDEZ (kg/cm)	2,484	1700 - 3000

CONSTRUCTORA INGENIEROS & ARQUITECTOS ASESORES SANTA CRUZ SCRL

ELABORACION DE PROYECTOS - EJECUCION DE OBRAS - CONTROL DE CALIDAD EN MECANICA DE SUELOS

SOLICITADO / PETICIONARIO : BACH. PERALTA FLORES MARISOL

PROYECTO / OBRA

: APLICACIÓN DE POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLOGICO DE MEZCLAS

ASFALTICAS CALIENTE , HUANCAYO - 2018

UBICACIÓN / DE OBRA

Dist.

HUANCAYO

Prov.

HUANCAYO

TECNICO : J. Santa Cruz Veliz

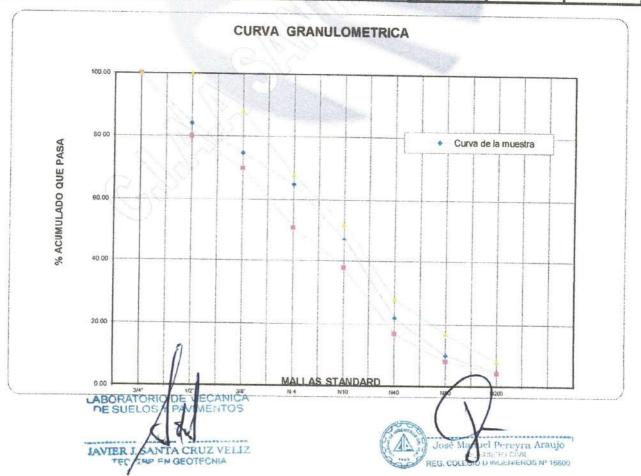
Dpto.

JUNIN

FECHA

: 25/07/2019

DOSIFICACION AGREGADOS


PIEDRA CHANCADA 3/4" -

ARENA CHANCADA Y ZARANDEADA 1/4"-

CEM. ASFALTICO : PEN - 85/100

COMBINACION PARA DISEÑO AL 1.0 % DE POLVO DE CONCRETO RECICLADO

Nº MALLA	GRAVA CHANCADA	ARENA ch	POLVO DE CONCRETO	TOTAL		CACIONES
0.411	35	64	1	100	LIM INF	LIM SUF
3/4"	100.00	100.00	100.00	100.00	100.00	100.00
1/2"	54.81	100.00	100.00	84.18	80.00	100.00
3/8"	28.25	100.00	100.00	74.89	70.00	88.00
N 4	0.00	100.00	100.00	65.00	51.00	68.00
N10	0.00	72.48	100.00	47.39	38.00	-
N40	0.00	32.96	99.40	22.09	17.00	52.00
N80	0.00	14.11	99.31	10.02		28.00
N200	0.00	5.86	67.43	THE PERSON NAMED IN COLUMN 2 IS NOT THE OWNER.	8.00	17.00
		0.00	07.43	4.43	4.00	8,00

CONSTRUCTORA INGENIEROS & ARQUITECTOS ASESORES

SANTA CRUZ SCRL

ELABORACION DE PROYECTOS - EJECUCION DE OBRAS - CONTROL DE CALIDAD EN MECANICA DE SUELOS

ENSAYO DE MARSHALL ASTM D - (1559) PORCENTAJES DE ASFALTO EN LA MUESTRA

SOLICITADO / PETICIONARIO :

BACH. PERALTA FLORES MARISOL

PROYECTO / OBRA

APLICACIÓN DE POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLOGICO DE MEZCLAS

ASFALTICAS CALIENTE, HUANCAYO - 2018

UBICACIÓN / DE OBRA

HUANCAYO Dist. HUANCAYO

Dpto. JUNIN

TECNICO : J SANTA CRUZ VELIZ

FECHA: 25/07/2019

ITEM	PASO	1	2	3	4	PROMEDIC
1	% de cemento asfaltico en peso de la mezcla	5 00	5.00	5.00	\otimes	5.00
2	% de agregado grueso en peso de la mezcla	33.25	33.25	33.25	/	
3	% de agregado fino en peso de la mezcla % de agregado filler - concreto reciclado en peso de la	61 75	61.75	61.75		
4	mezcla	0.95	0.95	0.95		
5	Peso especifico del cemento asfaltico - aparente	1.018	1.018	1.018		
6	Peso especifico agregado grueso - bulk	2.674	2.674	2.674		
7	Peso especifico agregado fino - bulk	2.554	2,554	2.554		
8	Peso especifico filler concreto reciclado - aparente	2.210	2.210	2.210		
9	Peso de la briqueta en el aire (gr)	1191.00	1183 60	1187.20		1,187
10	Peso de la briqueta en el agua (gr)	663.00	659.00	659.80		661
11	Volumen de la briqueta por desplazamiento	528.00	524.60	527.40		
12	Peso especifico bulk de la briqueta	2.256	2.256	2.251		2.254
13	Peso especifico maximo ASTM D-2041	2.430	2.430	2.430	THE RESERVE THE PERSON NAMED IN	
14	% de vacios	7.2	7.2	7.4		7.2
15	Peso especifico bulk del agregado total	2.595	2.595	2.595		
16	VMA	16.60	16.58	16.77	*******	16.6
17	% de vacios llenados con C.A.	56.78	56.86	56.08		56.6
18	Peso especifico del agregado total	2.648	2.648	2.648		
19	Asfalto absorvido por el agregado total	0.78	0.78	0.78		
20	% de asfalto efectivo	4.25	4.25	4.25		
21	Flujo (mm)	3.05	3.05	3.05		3.0
22	Lectura del Dial Anilio Marshall				**************************************	250.3
23	Estabilidad sin corregir (Kg)	1170	1052	1055		
24	Factor de estabilidad	1.04	1.04	1.04		
25	Estabilidad corregida: (23*24) (Kg)	1217	1094	1097		1136
26	Indice de rigidez: (10 * 25/21) (kg/cm.)	3992	3590	3597		3726

OBSERVACIONES

ABORATORIO DE PECANICA DE SUELOS PROMENTOS MENTOS

LAVIER I SANTA CRUZ VELIZ TEC AND EN GEOTECNIA

iel Perevra Araujo D INGENEROS Nº 16800

CONSTRUCTORA INGENIEROS & ARQUITECTOS ASESORES SANTA CRUZ SCRL

ELABORACION DE PROYECTOS - EJECUCION DE OBRAS - CONTROL DE CALIDAD EN MECANICA DE SUELOS

ENSAYO DE MARSHALL ASTM D - (1559) PORCENTAJES DE ASFALTO

SOLICITADO / PETICIONARIO :

BACH. PERALTA FLORES MARISOL

PROYECTO / OBRA

APLICACIÓN DE POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLOGICO DE MEZCLAS

ASFALTICAS CALIENTE , HUANCAYO - 2018

UBICACIÓN / DE OBRA

Dist. HUANCAYO

Prov. HUANCAYO

Dpto. JUNIN

TECNICO : J SANTA CRUZ VELIZ

FECHA : 25/07/2019

ITEM	PASO	1	2	3	4	PROMEDIO
1	% de cemento asfaltico en peso de la mezcla	5.50	5.50	5.50		5.50
2	% de agregado grueso en peso de la mezcla	33.08	33.08	33.08		3.30
3	% de agregado fino en peso de la mezcla	61,43	61.43	61.43		
4	% de agregado filler - concreto reciclado en peso de la mezcia	0.95	0.95	0.95		
5	Peso especifico del cemento asfaltico - aparente	1.018	1.018	1.018		
6	Peso especifico agregado grueso - bulk	2.674	2.674	2.674		
7	Peso especifico agregado fino - bulk	2 554	2.554	2.554		
8	Peso especifico filler concreto reciclado - aparente	2.210	2.210	2.210		
9	Peso de la briqueta en el aire (gr)	1186.60	1181.60	1187.00		
10	Peso de la briqueta en el agua (gr)	665.80	662.10	668.80		
11	Volumen de la briqueta por desplazamiento	520.80	519.50	518.20		
12	Peso especifico bulk de la briqueta	2.278	2.274	2.291		2.281
13	Peso especifico maximo ASTM D-2041	2.410	2.410	2.410		2.201
14	% de vacios	5.5	5.6	5.0		5.3
15	Peso especifico bulk del agregado total	2.595	2.595	2,595		5.3
16	VMA	16.20	16.34	15.75		40.4
17	% de vacios llenados con C.A.	66.30	65.60	68.55		16.1
18	Peso especifico del agregado total	2.645	2.645	2.645		8.60
19	Asfalto absorvido por el agregado total	0.73	0.73	0.73		
20	% de asfalto efectivo	4.80	4.80	4.80		
1	Flujo (mm)	3.56	3.56	3.30		3.5
2	Lectura del Dial Anillo Marshall			5.00		226.0
3	Estabilidad sin corregir (Kg)	995	980	988		220.0
4	Factor de estabilidad	1.04	1.01	1.01		
5	Estabilidad corregida: (23°24) (Kg)	1035	993	998		1008
	Indice de rigidez: (/10 * 25/21) (kg/cm.)	2910	2792	3024		1008

OBSERVACIONES ABORATORIO DE VIEDANIO

MANTA CRUZ VELIZ

ro el Pereyra Araujo REG. COLECIO D INGENIEROS Nº 16600

CONSTRUCTORA INGENIEROS & ARQUITECTOS ASESORES

SANTA CRUZ SCRL

ELABORACION DE PROYECTOS, EJECUCION DE OBRAS CONTROL DE CALIDAD EN MECANICA DE SUELOS ENSAYO DE MARSHALL ASTM D (1859)

PORCENTAJES DE ASFALTO

SOLICITADO / PETICIONARIO: PROYECTO / OBRA

BACH. PERALTA FLORES MARISOL

APLICACIÓN DE POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLOGICO DE MEZCLAS

ASFALTICAS CALIENTE , HUANCAYO - 2018 UBICACIÓN / DE OBRA

HUANCAYO

Prov. HUANCAYO

Dpto. JUNIN

TECNICO : J SANTA CRUZ VELIZ

FECHA : 25/07/2019

ENSAYO MARSHALL ASTM D-1559

ITEM	PASO	1	2	3	4	PROMEDIO
1	% de cemento asfaltico en peso de la mezcla	6.00	6.00	6.00	Ø-	6.00
2	% de agregado grueso en peso de la mezcla	32.90	32.90	32.90	<i>y</i>	0.00
3	% de agregado fino en peso de la mezcla % de agregado filler - concreto reciclado en peso de	61.10	61.10	61.10		
4	la mezcia	0.94	0.94	0.94		
5	Peso específico del cemento asfaltico - aparente	1.017	1.017	1.017		
6	Peso especifico agregado grueso - bulk	2 674	2.674	2.674		***************************************
7	Peso especifico agregado fino - bulk	2.554	2.554	2.554		
8	Peso especifico filler concreto reciclado - aparente	2.210	2.210	2.210		
9	Peso de la briqueta en el aire (gr)	1188.40	1178,80	1169.60		
10	Peso de la briqueta en el agua (gr)	671.50	666.80	661 90		
11	Volumen de la briqueta por desplazamiento	516.90	512.00	507.70		
12	Peso especifico bulk de la briqueta	2.299	2.302	2.304		2.302
13	Peso específico maximo ASTM D-2041	2.380	2,380	2.380		2.302
4	% de vacios	3.4	3.3	3.2		3.3
5	Peso especifico bulk del agregado total	2.595	2.595	2.595		3.3
6	VMA	15.89	15.77	15.72		15.8
7	% de vacios llenados con C.A.	78.60	79.31	79.61		79.2
8	Peso especifico del agregado total	2.629	2.629	2.629		
9	Asfalto absorvido por el agregado total	0.50	0.50	0.50		
0	% de asfaito efectivo	5.52	5.52	5.52		
1	Flujo (mm)	4.06	4.06	3.81		4.0
2	Lectura del Dial Anillo Marshall					4.0
3	Estabilidad sin corregir (Kg)	920	915	935		
4	Factor de estabilidad	1.04	1.07	1.04		
5	Estabilidad corregida: (23*24) (Kg)	957	980	972		970
6	Indice de rigidez: (10 * 25/21) (kg/cm.)	2357	2411	2552		2440

OBSERVACIONES

LABORATORI DE SUELOS VIMENTOS

TA CRUZ VELIZ LAVIER I SAL THE FH GEOTECNIA

d Pereyra Araujo REG. COLLEGE DIMONIBLENOS Nº 16800

CONSTRUCTORA INGENIEROS & ARQUITECTOS ASESORES SANTA CRUZ SCRL

ELABORACION DE PROYECTOS - EJECUCION DE OBRAS - CONTROL DE CALIDAD EN MECANICA DE SUELOS

ENSAYO DE MARSHALL ASTM D - (1559) PORCENTAJES DE ASFALTO

SOLICITADO / PETICIONARIO :

BACH, PERALTA FLORES MARISOL

PROYECTO / OBRA

APLICACIÓN DE POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLOGICO DE MEZCLAS ASFALTICAS CALIENTE , HUANCAYO - 2018

UBICACIÓN / DE OBRA Dist.

Prov.

HUANCAYO HUANCAYO

Dpto. JUNIN

TECNICO : J SANTA CRUZ VELIZ

FECHA : 25/07/2019

ITEM	PASO	1	2	3	0,	PROME
1	% de cemento asfaltico en peso de la mezcla	6.50	6.50	6.50		6.50
2	% de agregado grueso en peso de la mezcla	32.73	32.73	32.73		0.80
3	% de agregado fino en peso de la mezcia % de agregado filler - concreto reciclado en peso de la	60.78	60.78	60.78		
4	mezcla mezcla	0.94	0.94	0.94		
5	Peso especifico del cemento asfaltico - aparente	1.017	1,017	1.017		<u> </u>
6	Peso especifico agregado grueso - bulk	2.674	2.674	2.674		
7	Peso especifico agregado fino - bulk	2.554	2,554			
88	Peso especifico filler concreto reciclado - aparente	2.210	2.210	2.554		**
9	Peso de la briqueta en el aire (gr)	1184.20		2.210		
10	Peso de la briqueta en el agua (gr)	665.90	1185.60	1182.60		
11	Volumen de la briqueta por desplazamiento	518.30	668 90	668.50		
12	Peso especifico bulk de la briqueta	2.285	516.70	514.10		
13	Peso especifico maximo ASTM D-2041	2.350	2.295	2.300		2.293
14	% de vacios		2.350	2.350		
15	Peso especifico bulk del agregado total	2.8	2.4	2.1		2.4
16	VMA	2.595	2.595	2.595		
7	% de vacios llenados con C.A.	16.86	16.50	16.29		16.5
8	Peso específico del agregado total	83.53	85.70	87.02		85.4
9		2.611	2.611	2.611		
0	Asfalto absorvido por el agregado total % de asfalto efectivo	0.25	0.25	0.25		
1		6.27	6.27	6.27		
2	Flujo (mm)	4 32	4.32	4.32		4.3
	Lectura del Dial Anillo Marshall					-
3	Estabilidad sin corregir (Kg)	820	815	825		
4	Factor de estabilidad	1.10	1.04	1.04		
5	Estabilidad corregida: (23*24) (Kg)	904	848	858		870
3	Indice de rigidez: (10 * 25/21) (kg/cm.)	2095	1963	1987		2015

OBSERVACIONES

POP MECANICA **LABORATORI** DE SUELOS

VTX CRUZ VELIZ LAVIER J.SA THE FN GEOTECNIA

Pereyra Araujo REG. COLECTO D INGENIEROS Nº 16800

CONSTRUCTORA INGENIEROS & ARQUITECTOS ASESORES

SANTA CRUZ SCRL

ELABORACION DE PROYECTOS - EJECUCION DE OBRAS - CONTROL DE CALIDAD EN MECANICA DE SUELOS

ENSAYO DE MARSHALL ASTM D - (1559) PORCENTAJES DE ASFALTO

SOLICITADO / PETICIONARIO :

BACH. PERALTA FLORES MARISOL

PROYECTO / OBRA

APLICACIÓN DE POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLOGICO DE MEZCLAS

ASFALTICAS CALIENTE, HUANCAYO - 2018

UBICACIÓN / DE OBRA

HUANCAYO

Prov. HUANCAYO Dpto. JUNIN

TECNICO : J SANTA CRUZ VELIZ

FECHA : 25/07/2019

ITEM	PASO	1	2	3	4	PROMED
1	% de cemento asfaltico en peso de la mezcla	7.00	7.00	7.00		7.00
2	% de agregado grueso en peso de la mezcla	32.55	32.55	32.55		7.00
3	% de agregado fino en peso de la mezcla % de agregado filler - concreto reciclado en peso de la	60.45	60.45	60.45		ļ
4	mezcla	0.93	0.93	0.93	***************************************	1
5	Peso especifico del cemento asfaltico - aparente	1.017	1.017	1.017		
6	Peso especifico agregado grueso - bulk	2.674	2.674	2.674		
7	Peso especifico agregado fino - bulk	2.554	2.554	2.554		
8	Peso especifico filler concreto reciclado - aparente	2.210	2.210	2.210		
9	Peso de la briqueta en el aire (gr)	1187.00	1182.40	1174.00		
10	Peso de la briqueta en el agua (gr)	668.90	665.60	660.50		
11	Volumen de la briqueta por desplazamiento	518.10	516.80	513.50		
12	Peso especifico bulk de la briqueta	2.291	2.288	2.286		2.288
13	Peso especifico maximo ASTM D-2041	2.330	2.330	2.330		2.200
14	% de vacios	1.7	1.8	1.9		1.8
15	Peso especifico bulk del agregado total	2.595	2.595	2.595		1.0
16	VMA	17.07	17.19	17.25		17.2
17	% de vacios llenados con C.A.	90.21	89.49	89.12		89.6
18	Peso especifico del agregado total	2.607	2.607	2.607		00.0
19	Asfalto absorvido por el agregado total	0.17	0.17	0.17		
20	% de asfalto efectivo	6.84	6.84	6.84		
21	Flujo (mm)	4.83	4.83	4.83		4.8
22	Lectura del Dial Anillo Marshall					4.0
23	Estabilidad sin corregir (Kg)	650	750	825		
24	Factor de estabilidad	1.10	1.07	1.07		1000000
25	Estabilidad corregida: (23*24) (Kg)	717	803	884		801
26	Indice de rigidez. (10 * 25/21) (kg/cm.)	1486	1664	1831		1660

OBSERVACIONES

E VECANICA ABORATORIO NE SUELOS

IAVIER I SANTA CRUZ VELIZ TEC THE EN GEOTECNIA

HEG. COLECTO D INGENIEROS Nº 16800

CONSTRUCTORA INGENIEROS & ARQUITECTOS ASESORES SANTA CRUZ SCRI

ELABORACION DE PROYECTOS - EJECUCION DE OBRAS - CONTROL DE CALIDAD EN MECANICA DE SUELOS.

ENSAYO DE MARSHALL ASTM D - (1559) CAPA DE RODADURA

SOLICITADO / PETICIONARIO:

PROYECTO / OBRA

BACH. PERALTA FLORES MARISOL

APLICACIÓN DE POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLOGICO DE MEZCLAS

ASFALTICAS CALIENTE , HUANCAYO - 2018

UBICACION / DE OBRA

DOSIFICACION AGREGADOS

Dist.

HUANCAYO

Prov. Dpto.

HUANCAYO

JUNIN

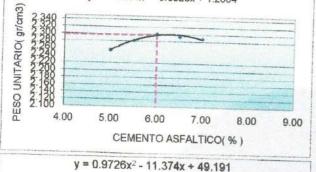
TECNICO :

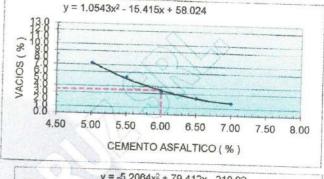
J. SANTA CRUZ V.

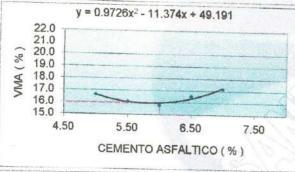
FECHA

25/07/2019

PIEDRA CHANCADA 3/4*-ARENA CHANCADA

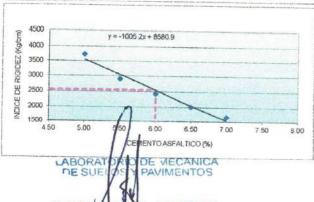

POLVO DE CONCRETO RECICLADO


34% 65% 1%


CEM ASFALTICO

PEN - 85 /100





ANTA CRUZ VELIZ EN GEOTECNIA

LAVIER

RESULTADOS:

OPTIMO CONTENIDO C.A (%)	The second second	ESPECIFIC.
	0.2- 6.0+0.2	MIN
PESO UNITARIO (gr/ cm3)	2.297	
VACIOS (%)	3.5	2-4
V.M.A (%)	16.0	MIN 14
V. LLENADOS C.A (%)	78.1	
FLUJO (mm)	3.9	2-4
ESTABILIDAD (kg)	949	MIN 780
NDICE DE RIGIDEZ (Ng/cm)	2,550	1700 - 3000

Av oriente Nº 772-Concepcion Telef.-581405 - Cel. Mov. 975151126 - *413854 - 964512425 - *165302 - 954431184 - claro 964328911 Email CIAA SANTACRUZ@hotmail.com

CONSTRUCTORA INGENIEROS & ARQUITECTOS ASESORES

SANTA CRUZ SCRL

ELABORACION DE PROYECTOS - EJECUCION DE OBRAS - CONTROL DE CALIDAD EN MECANICA DE SUELOS

SOLICITADO / PETICIONARIO : BACH. PERALTA FLORES MARISOL

PROYECTO / OBRA

APLICACIÓN DE POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLOGICO DE MEZCLAS

ASFALTICAS CALIENTE, HUANCAYO - 2018

UBICACIÓN / DE OBRA

Dist

HUANCAYO

Prov.

HUANCAYO

TECNICO : J. Santa Cruz Veliz

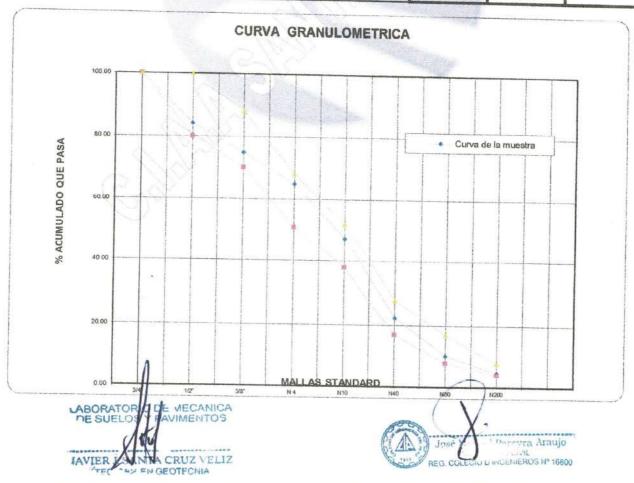
Dpto.

JUNIN

FECHA

: 25/07/2019

DOSIFICACION AGREGADOS


PIEDRA CHANCADA 3/4" -

CEM ASFALTICO : PEN - 85/100

ARENA CHANCADA Y ZARANDEADA 1/4"-

COMBINACION PARA DISEÑO AL 1.5 % DE POLVO DE CONCRETO RE

Nº MALLA	CHANCADA		35 CONCRETO			CACIONES AC 2
3/4"	100.00	THE RESERVE THE PERSON NAMED IN	1.5	100	LIMINE	LIMSUP
1/2"		100.00	100.00	100.00	100.00	100.00
-	54.81	100.00	100.00	84.18	80.00	100.00
3/8"	28.25	100.00	100.00	74.89	70.00	Control of the local division in the local d
N 4	0.00	100.00	100.00	65.00	51.00	88.00
N10	0.00	72.48	100.00	47.53	The state of the s	68.00
N40	0.00	32.96	99.40	The second name of the last of	38.00	52.00
N80	0.00	14.11	-	22.42	17.00	28.00
N200	0.00	THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	99.31	10.45	8.00	17.00
	3.00	5.86	67.43	4.74	4.00	8.00

CONSTRUCTORA INGENIEROS & ARQUITECTOS ASESORES

SANTA CRUZ SCRL

ELABORACION DE PROYECTOS - EJECUCION DE OBRAS - CONTROL DE CALIDAD EN MECANICA DE SUELOS

ENSAYO DE MARSHALL ASTM D - (1559) PORCENTAJES DE ASFALTO EN LA MUESTRA

SOLICITADO / PETICIONARIO :

BACH. PERALTA FLORES MARISOL

PROYECTO / OBRA

APLICACIÓN DE POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLOGICO DE MEZCLAS

ASFALTICAS CALIENTE , HUANCAYO - 2018

UBICACIÓN / DE OBRA

HUANCAYO Prov. HUANCAYO

Dpto. JUNIN

TECNICO : J SANTA CRUZ VELIZ

FECHA : 25/07/2019

ITEM	PASO	1	2	3	4	PROMEDIA
1	% de cemento asfaltico en peso de la mezcla	5.00	5.00	5.00	10	5.00
2	% de agregado grueso en peso de la mezcla	33.25	33.25	33.25	/	5.00
3	% de agregado fino en peso de la mezcla % de agregado filler - concreto reciclado en peso de la	61.75	61.75	61.75		·
4	mezcla	1.43	1.43	1.43		
5	Peso especifico del cemento asfaltico - aparente	1.018	1.018	1.018		-
6	Peso especifico agregado grueso - bulk	2.674	2.674	2.674		
7	Peso especifico agregado fino - bulk	2.554	2.554	2.554		
8	Peso especifico filler concreto reciclado - aparente	2.210	2.210	-		
9	Peso de la briqueta en el aire (gr)	1180.60	1159 00	2.210		ļ
10	Peso de la briqueta en el agua (gr)	648.00	635.00	1177.00		1,172
11	Volumen de la briqueta por desplazamiento	532.60	524.00	649.00	Period and the second	644
12	Peso especifico bulk de la briqueta	2.217	2.212	528.00		
13	Peso específico maximo ASTM D-2041	2.430	2.430	2.229		2.219
14	% de vacios	8.8	9.0	2.430		ļ
15	Peso especifico bulk del agregado total	2.595	2.595	8.3		8.7
16	VMA	17.63	17.81	2.595		
17	% de vacios llenados con C.A.	50.22	49.60	17.17		17.5
18	Peso especifico del agregado total	2.661	2.661	51.86		50.6
19	Asfalto absorvido por el agregado total	0.97		2.661		
20	% de asfalto efectivo	4.07	0.97 4.07	0.97		
21	Flujo (mm)	4.06		4.07	TT-1-2	
2	Lectura del Dial Anillo Marshall	4.00	4.06	4.06		4.1
3	Estabilidad sin corregir (Kg)	950	925	005		250.3
4	Factor de estabilidad	1.04		985		
5	Estabilidad corregida: (23*24) (Kg)	988	1.04	1.04		
6	Indice de rigidez: (10 * 25/21) (kg/cm.)	2431	962	1024 2521		991

OBSERVACIONES

IAVIER

O DE VIECANICA VIEAVIMENTOS LABORATOR TE SUF

> NTA CRUZ VELIZ EN GEOTECNIA

José Manuel Percyra Araujo Nijeniero civil REG. COLICO D INGENIEROS Nº 18800

Av oriente Nº 77 -Concepcion Telef -581405 - Cel. Mov. 975151126 - *413854 - 964512425 - *165302 - 954431184 - claro 964328911 Email CIAA SANTACRUZ@hotmail.com

CONSTRUCTORA INGENIEROS & ARQUITECTOS ASESORES SANTA CRUZ SCRL

ELABORACION DE PROYECTOS - EJECUCION DE OBRAS - CONTROL DE CALIDAD EN MECANICA DE SUELOS

ENSAYO DE MARSHALL ASTM D - (1559) PORCENTAJES DE ASFALTO

SOLICITADO / PETICIONARIO :

BACH, PERALTA FLORES MARISOL

PROYECTO / OBRA

APLICACIÓN DE POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLOGICO DE MEZCLAS

ASFALTICAS CALIENTE , HUANCAYO - 2018

UBICACIÓN / DE OBRA

Dist. HUANCAYO

Prov. HUANCAYO Dpto. JUNIN

TECNICO : J SANTA CRUZ VELIZ

FECHA : 25/07/2019

ITEM	PASO	1	2	3	4	PROMEDI
1	% de cemento asfaltico en peso de la mezcla	5.50	5.50	5.50		5.50
2	% de agregado grueso en peso de la mezcla	33.08	33.08	33.08		3.50
3	% de agregado fino en peso de la mezcla % de agregado filler - concreto reciclado en peso de	81.43	61.43	61.43		
4	la mezcla	1.42	1.42	1.42		
5	Peso específico del cemento asfaltico - aparente	1.018	1.018	1.018		
в	Peso especifico agregado grueso - bulk	2.674	2.674	2.674		
7	Peso especifico agregado fino - bulk	2.554	2.554	2.554		
8	Peso especifico filler concreto reciclado - aparente	2.210	2.210	2.210		
9	Peso de la briqueta en el aire (gr)	1186.80	1176.80	1188.80		
10	Peso de la briqueta en el agua (gr)	659.00	659.00	658.00		
11	Volumen de la briqueta por desplazamiento	527.80	517.80	530.80		
12	Peso especifico bulk de la briqueta	2.249	2.273	2.240		2.254
13	Peso especifico maximo ASTM D-2041	2 410	2.410	2.410		2.204
14	% de vacios	6.7	5.7	7.1		6.5
15	Peso especifico bulk del agregado total	2.595	2.595	2.595		
16	VMA	16.89	16.00	17.22		16,7
17	% de vacios llenados con C.A.	60.34	64.38	58.95		61.2
18	Peso especifico del agregado total	2.658	2.658	2.658		
19	Asfalto absorvido por el agregado total	0.92	0.92	0.92		
20	% de asfalto efectivo	4.61	4.61	4.61		
21	Flujo (mm)	4.32	4.32	4.32		4.3
22	Lectura del Dial Anillo Marshall					226.0
23	Estabilidad sin corregir (Kg)	850	885	795		120.0
24	Factor de estabilidad	1,04	1.01	1.01		***********
.5	Estabilidad corregida: (23*24) (Kg)	884	897	803		861
26	Indice de rigidez: (10 * 25/21) (kg/cm.)	2047	2076	1860		1994

OBSERVACIONES

Av oriente Nº 772-Concepcion Telef.-581405 - Cel. Mov. 975151126 - *413854 - 9645/2425 - *165302 - 954431184 - claro 964328911 Email CIAA_SANTACRUZ@hotmail.com

LABORATORIO DE VECANICA DE SUELOS Y AVIMENTOS

JAVIER J. SANTA CRUZ VELIZ

Jos Manuel Pereyra Araujo INGENIERO CIVIL REG. COLEGIO D INGENIEROS Nº 18000

CONSTRUCTORA INGENIEROS & ARQUITECTOS ASESORES SANTA CRUZ SCRL

ELABORACION DE PROYECTOS, EJECUCION DE OBRAS. CONTROL DE CALIDAD EN MECANICA DE SUELOS ENSAYO DE MARSHALL ASTM D - (1859)

PORCENTAJES DE ASFALTO

SOLICITADO / PETICIONARIO :

BACH. PERALTA FLORES MARISOL

PROYECTO / OBRA

APLICACIÓN DE POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLOGICO DE MEZCLAS

ASFALTICAS CALIENTE , HUANCAYO - 2018

UBICACIÓN / DE OBRA

HUANCAYO Prov. HUANCAYO

Dpto. JUNIN

TECNICO : J SANTA CRUZ VELIZ

FECHA : 25/07/2019

ENSAYO MARSHALL ASTM D-1559

ITEM	PASO	1	2	3	4	PROMEDIO
1	% de cemento asfaltico en peso de la mezcla	6.00	6.00	6.00	4>	6.00
2	% de agregado grueso en peso de la mezcia	32.90	32.90	32.90	7	0.00
3	% de agregado fino en peso de la mezcla % de agregado filler - concreto reciclado en peso de	61.10	61.10	61.10		
4	la mezcla	1.41	1.41	1,41		
5	Peso específico del cemento asfaltico - aparente	1.017	1.017	1.017	***************************************	
6	Peso específico agregado grueso - bulk	2674	2.674	2.674		
7	Peso especifico agregado fino - bulk	2.564	2.554	2.554		
8	Peso especifico filler concreto reciclado - aparente	2.210	2.210	2.210		1
9	Peso de la briqueta en el aire (gr)	1172.80	1181.20	1184.60		
10	Peso de la briqueta en el agua (gr)	662.20	658.80	664.80		
11	Volumen de la briqueta por desplazamiento	510.60	522.40	519.80		
12	Peso especifico bulk de la briqueta	2.297	2.261	2.279		2,279
13	Peso específico maximo ASTM D-2041	2.380	2.380	2.380		and o
14	% de vacios	3.5	5.0	4.2		4.2
15	Peso especifico bulk del agregado total	2.595	2.595	2.595		
16	VMA	15.55	16.87	16.21		16.2
17	% de vacios llenados con C.A.	77.55	70.38	73.81		73.9
18	Peso especifico del agregado total	2.642	2.642	2.642		
19	Asfalto absorvido por el agregado total	0.69	0.69	0.69		
20	% de asfalto efectivo	5.34	5.34	5.34		
21	Flujo (mm)	4.57	4.57	4.57		4.6
22	Lectura del Dial Anillo Marshall					
23	Estabilidad sin corregir (Kg)	785	795	820		
24	Factor de estabilidad	1.04	1.07	1.04		
25	Estabilidad corregida: (23*24) (Kg)	816	851	853		840
26	Indice de rigidez: (10 * 25/21) (kg/cm.)	1786	1862	1865		1838

OBSERVACIONES

DE VECANICA LABORATORIO DE SUELOS

IAVIER I SANTA CRUZ VELIZ 450 EN GEOTECNIA

José Maguel Percyra Araujo REG. COLEGIO DINGENIEROS Nº 16800

CONSTRUCTORA INGENIEROS & ARQUITECTOS ASESORES SANTA CRUZ SCRL

ELABORACION DE PROYECTOS - EJECUCION DE OBRAS - CONTROL DE CALIDAD EN MECANICA DE SUELOS

ENSAYO DE MARSHALL ASTM D - (1559) PORCENTAJES DE ASFALTO

SOLICITADO / PETICIONARIO :

BACH. PERALTA FLORES MARISOL

PROYECTO / OBRA

APLICACIÓN DE POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLOGICO DE MEZCLAS

ASFALTICAS CALIENTE , HUANCAYO - 2018

UBICACIÓN / DE OBRA

Dpto.

HUANCAYO Prov. HUANCAYO

JUNIN

TECNICO : J SANTA CRUZ VELIZ

FECHA : 25/07/2019

ITEM	PASO	1	2	3	0.	Ph cases
1	% de cemento asfaltico en peso de la mezcia	6.50	6.50	6.50		PROME
2	% de agregado grueso en peso de la mezcia	32.73	32.73	32.73		6.50
3	% de agregado filo en peso de la mezcla % de agregado filler - concreto reciciado en peso de la	60.78	60.78	60.78	TO APPEAL OF THE PARTY OF THE P	
4	mezcla	1.40	1.40	1.40		
5	Peso especifico del cemento asfaltico - aparente	1.017	1.017	1.017		
6	Peso especifico agregado grueso - bulk	2.674	2.674	2.674		
7	Peso especifico agregado fino - bulk	2 554	2.554	2.554	-	
8	Peso especifico filler concreto reciclado - aparente	2.210	2.210	2.210		
9	Peso de la briqueta en el aire (gr)	1183.80	1184.20	1173.40		
10	Peso de la briqueta en el agua (gr)	660.00	662.20	658.90		
11	Volumen de la briqueta por desplazamiento	523.80	522.00	514.50		
12	Peso específico bulk de la briqueta	2.260	2.269	2.281		
13	Peso específico maximo ASTM D-2041	2.350	2.350	2.350		2.270
14	% de vacios	3.8	3.5	3.0	****	
15	Peso específico bulk del agregado total	2.595	2.595	2.595		3.4
16	VMA	17.35	17.04	16.59		47.0
7	% de vacios llenados con C.A.	77.93	79.66	82.22		17.0
8	Peso especifico del agregado total	2.624	2.624	2.624		79.9
9	Asfalto absorvido por el agregado total	0.44	0.44	0.44		
0	% de asfalto efectivo	6.08	6.08	6.08		
1	Flujo (mm)	4.83	4.83	4 83		4.8
2	Lectura del Dial Anillo Marshall					4.0
3	Estabilidad sin corregir (Kg)	755	725	739		
4	Factor de estabilidad	1.10	1.04	1.04		
5	Estabilidad corregida: (23*24) (Kg)	833	754	769		785
6	Indice de rigidez: (10 * 25/21) (kg/cm.)	1726	1562	1593		1627

OBSERVACIONES

ABORATORIO DE MECANICA NE SUELOS Y PAVIMENTOS

LAVIER I SANTA CRUZ VALIZ

José Maruel Pereyra Araujo IMBENIERO GIVIL EG. COLECO D INGENIEROS Nº 18800

Av oriente Nº 772-Concepcion Telef -581405 - Cel. Mov. 975151126 - *413854 - 964512425 - *165302 - 954431184 - claro 964328911 Email CIAA SANTACRUZ@hotmail.com

CONSTRUCTORA INGENIEROS & ARQUITECTOS ASESORES

SANTA CRUZ SCRL

ELABORACION DE PROYECTOS - EJECUCION DE OBRAS - CONTROL DE CALIDAD EN MECANICA DE SUELOS

ENSAYO DE MARSHALL ASTM D - (1559) PORCENTAJES DE ASFALTO

SOLICITADO / PETICIONARIO : BACH. PERALTA FLORES MARISOL

PROYECTO / OBRA

: APLICACIÓN DE POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLOGICO DE MEZCLAS

ASFALTICAS CALIENTE, HUANCAYO - 2018

UBICACIÓN / DE OBRA

Dist. HUANCAYO

Prov. HUANCAYO Dpto. JUNIN

TECNICO : J SANTA CRUZ VELIZ

FECHA : 25/07/2019

ITEM	PASO	1	2		4	PROMEDI
	% de cemento asfaltico en peso de la mezcla	7.00	7.00	7.00		7.00
2	% de agregado grueso en peso de la mezcla	32.55	32.55	32.55		7.00
3	% de agregado fino en peso de la mezcla % de agregado filler - concreto reciclado en peso de la	60.45	60.45	60.45		
4	mezcla	1.40	1.40	1.40		
5	Peso especifico del cemento asfaltico - aparente	1.017	1.017	1.017		
6	Peso especifico agregado grueso - bulk	2.674	2.674	2.674		1
7	Peso especifico agregado fino - bulk	2.554	2.554	2.554		
8	Peso especifico filler concreto reciclado - aparente	2.210	2.210	2.210		
9	Peso de la briqueta en el aire (gr)	1166.10	1187,30	1185.00		
10	Peso de la briqueta en el agua (gr)	650.20	654.90	658.60		
11	Volumen de la briqueta por desplazamiento	515.90	512.70	527.00	Million and a second	
12	Peso especifico bulk de la briqueta	2.260	2 277	2.250	10.7	2.262
13	Peso especifico maximo ASTM D-2041	2.330	2.330	2.330		2.202
14	% de vacios	3.0	2.3	3.4		2.9
15	Peso especifico bulk del agregado total	2.595	2.595	2.595		2.5
16	VMA	17.78	17.18	18.17		17.7
17	% de vacios ilenados con C.A.	83.18	86.70	81.03		
18	Peso específico del agregado total	2.620	2.620	2.620	* 1110.00	83.6
19	Asfalto absorvido por el agregado total	0.37	0.37	0.37		
20	% de asfalto efectivo	6.65	6.65	6.65		-
21	Flujo (mm)	5.33	5.08	5.33		
22	Lectura del Dial Anillo Marshall			0.30		5.2
23	Estabilidad sin corregir (Kg)	650	685	655		
24	Factor de estabilidad	1.10	1.07	1.07		
25	Estabilidad corregida: (23*24) (Kg)	717	734	702		
26	Indice de rigidez: (40 * 25/21) (kg/cm.)	1344	1444	1315		717

OBSERVACIONES

LABORATOR MECANICA VIMENTOS

IAVIER I SUITA CRUZ VELIZ TEC SAP EN GEOTECNIA

José MAjuel Pereyra Araujo
NSENIERO CIVIL
REG. COLEGIO D INGENIERUO Nº 16800

CONSTRUCTORA INGENIEROS & ARQUITECTOS ASESORES SANTA CRUZ SCRL

ELABORACION DE PROYECTOS - EJECUCION DE OBRAS - CONTROL DE CALIDAD EN MECANICA DE SUELOS

ENSAYO DE MARSHALL ASTM D - (1559) CAPA DE RODADURA

SOLICITADO / PETICIONARIO :

BACH, PERALTA FLORES MARISOL

PROYECTO / OBRA

APLICACIÓN DE POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLOGICO DE MEZCLAS

ASFALTICAS CALIENTE , HUANCAYO - 2018

UBICACION / DE OBRA

Dist.

HUANCAYO

Prov.

HUANCAYO JUNIN

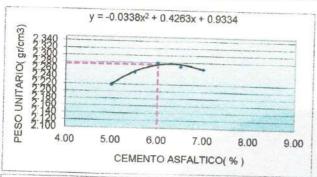
TECNICO **FECHA**

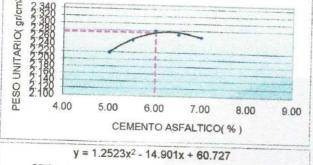
J. SANTA CRUZ V.

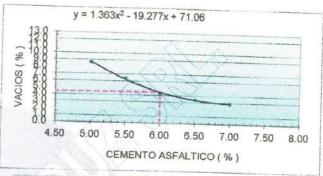
Doto.

35% 63.5% 25/07/2019

PEN - 85 /100

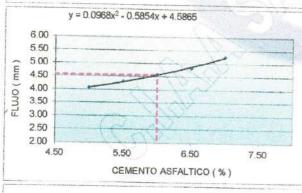

DOSIFICACION AGREGADOS

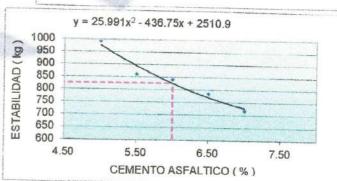

PIEDRA CHANCADA 3/4" -ARENA CHANCADA

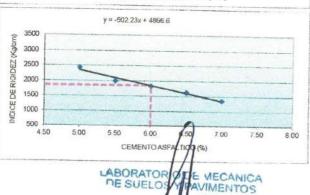

POLVO DE CONMCRETO RECICLADO

1.5%

CEM ASFALTICO







IAVIER SANTA CRUZ VELIZ

	ESPECIFIC.
0.2- 6.0+0.2	MIN
2.274	and the second s
4.5	2-4
16.4	MIN 14
72.8	
4.6	2-4
826	MIN 780
1,853	1700 - 3000
	2.274 4.5 16.4 72.8 4.8 826

uel Pereyra Araujo ENIERO CIVIL O D INGENIEROS Nº 15800

RESULTADOS:

THE EN GEOTFONIA Av oriente Nº 772-Concepcion Telef -581405 - Cel Mov. 975151126 - *413854 - 964512425 - *165302 - 954431184 - claro 964328911 Email CIAA SANTACRUZ@hotmail.com

CONSTRUCTORA INGENIEROS & ARQUITECTOS ASESORES

SANTA CRUZ SCRL

ELABORACION DE PROYECTOS - EJECUCION DE OBRAS - CONTROL DE CALIDAD EN MECANICA DE SUELOS

SOLICITADO / PETICIONARIO : BACH. PERALTA FLORES MARISOL

PROYECTO / OBRA

: APLICACIÓN DE POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLOGICO DE MEZCLAS

ASFALTICAS CALIENTE , HUANCAYO - 2018

UBICACIÓN / DE OBRA

Dist. Prov. HUANCAYO

HUANCAYO

TECNICO : J. Santa Cruz Veliz

Doto.

JUNIN

FECHA

: 25/07/2019

DOSIFICACION AGREGADOS

PIEDRA CHANCADA 3/4" -

ARENA CHANCADA Y ZARANDEADA 1/4"-

CEM. ASFALTICO : PEN - 85/100

COMBINACION PARA DISEÑO AL 2.0 % DE POLVO DE CONCRETO RECICLADO

Nº MALLA	ALLA CHANCADA 35	ARENA	POLVO DE CONCRETO	TOTAL		CACIONES AC 2
3/4"	100.00	63	2	100	LIM INF	LIM SUF
1/2"	54.81	100.00	100.00	100.00	100.00	100.00
3/8"		100.00	100.00	84,18	80.00	100.00
N 4	28.25	100.00	100.00	74.89	70.00	88.00
N10	0.00	100.00	100.00	65.00	51.00	68.00
THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED I	0.00	72.48	100.00	47.66	38.00	-
N40	0.00	32.96	99.40	22.75	17.00	52.00
N80	0.00	14.11	99.31	10.87	8.00	28.00
N200	0.00	5.86	67.43	5.04	4.00	17.00 8.00

CONSTRUCTORA INGENIEROS & ARQUITECTOS ASESORES

SANTA CRUZ SCRL

ELABORACION DE PROYECTOS - EJECUCION DE OBRAS - CONTROL DE CALIDAD EN MECANICA DE SUELOS

ENSAYO DE MARSHALL ASTM D - (1559) PORCENTAJES DE ASFALTO EN LA MUESTRA

SOLICITADO / PETICIONARIO :

BACH. PERALTA FLORES MARISOL

PROYECTO / OBRA

APLICACIÓN DE POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLOGICO DE MEZCLAS

ASFALTICAS CALIENTE , HUANCAYO - 2018

UBICACIÓN / DE OBRA

Dist. HUANCAYO Prov. HUANCAYO

Dpto. JUNIN

TECNICO : J SANTA CRUZ VELIZ

FECHA : 25/07/2019

ITEM	PASO	1	2	3	4	PROMEDIO
1	% de cemento asfaltico en peso de la mezcla	5.00	5.00	5.00	A	5.00
2	% de agregado grueso en peso de la mezcla	33.25	33.25	33.25		5.00
3	% de agregado fino en peso de la mezcia % de agregado filler - concreto reciclado en peso de la	61.75	61.75	61.75		1
4	mezcla mezcla	1.90	1.90	1.90	** ****	1
5	Peso especifico del cemento asfaltico - aparente	1.018	1.018	1.018		-
6	Peso especifico agregado grueso - bulk	2.674	2.674	2.674		-
7	Peso específico agregado fino - bulk	2.554	2.554	2.554		
8	Peso especifico filler concreto reciclado - aparente	2.210	2.210	2.210		
9	Peso de la briqueta en el aire (gr)	1178.80	1196.40	1186.60		
10	Peso de la briqueta en el agua (gr)	650.00	652.20			1,187
11	Volumen de la briqueta por desplazamiento	528.80	544.20	654.40		652
12	Peso especifico bulk de la briqueta	2.229	2.198	532.20		
13	Peso especifico maximo ASTM D-2041	2 430	2.430	2.230		2.219
14	% de vacios	8.3	9.5	2.430		
15	Peso especifico bulk del agregado total	2.595	2.595			8.7
16	VMA	16.76	17.91	2.595		
17	% de vacios llenados con C.A.	50.70		16.74		17.1
18	Peso específico del agregado total	2.674	46.79	50.75		49.4
19	Asfalto absorvido por el agregado total	1.16	2.674	2.674		
20	% de asfalto efectivo	3.88	1.16	1.16		
21	Flujo (mm)		3.88	3.88		
22	Lectura del Dial Anillo Marshall	5.08	5.08	5.08		5.1
23	Estabilidad sin corregir (Kg)				-	250.3
24	Factor de estabilidad	750	800	735		
25	Estabilidad corregida; (23*24) (Kg)	1.04	1.04	1.04		
6	Indice de rigidez. (10 * 25/21) (kg/cm.)	780	832	764		792
	20121) (Kurciii.)	1535	1638	1505	- 1	1559

OBSERVACIONES

ABORATORI DE MECANICA DE SUELOS Y PAVIMENTOS

IAVIER I ANTA CRUZ VELIZ

José Manuel ereyra Araujo INGENTURO CIVIL
REG. COLEGIO D'INGENIEROS Nº 18800

CONSTRUCTORA INGENIEROS & ARQUITECTOS ASESORES SANTA CRUZ SCRL

ELABORACION DE PROYECTOS - EJECUCION DE OBRAS - CONTROL DE CALIDAD EN MECANICA DE SUELOS

ENSAYO DE MARSHALL ASTM D - (1559) PORCENTAJES DE ASFALTO

SOLICITADO / PETICIONARIO :

BACH. PERALTA FLORES MARISOL

PROYECTO / OBRA

APLICACIÓN DE POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLOGICO DE MEZCLAS

ASFALTICAS CALIENTE, HUANCAYO - 2018

UBICACIÓN / DE OBRA

HUANCAYO

Prov. HUANCAYO

Dpto. JUNIN

TECNICO : J SANTA CRUZ VELIZ

FECHA : 25/07/2019

ITEM	PASO	1	2	3	4	PROME
1	% de cemento asfaltico en peso de la mezcla	5.50	5.50	5.50		5,50
2	% de agregado grueso en peso de la mezcla	33.08	33.08	33.08		0.00
3	% de agregado fino en peso de la mezcla % de agregado filler - concreto reciclado en peso de	61.43	61.43	61.43		
4	la mezcla	1.89	1.89	1.89		
5	Peso especifico del cemento asfaltico - aparente	1.018	1.018	1.018		
6	Peso especifico agregado grueso - bulk	2.674	2.674	2.674		
7	Peso específico agregado fino - bulk	2.554	2.554	2.554		
8	Peso especifico filler concreto reciclado - aparente	2.210	2.210	2.210		Herran
9	Peso de la briqueta en el aire (gr)	1176.00	1172.50	1176.50		
10	Peso de la briqueta en el agua (gr)	650.50	650.60	649.90		
11	Volumen de la briqueta por desplazamiento	525.50	521.90	526.60		
2	Peso especifico bulk de la briqueta	2.238	2.247	2.234		2.240
3	Peso especifico maximo ASTM D-2041	2.410	2.410	2.410		2.2.4
4	% de vacios	7.1	6.8	7.3		7.1
5	Peso especifico bulk del agregado total	2.595	2.595	2.595		
6	VMA	16.88	16.55	17.01		16.8
7	% de vacios llenados con C.A.	57.68	59.04	57.11		57.9
8	Peso especifico del agregado total	2.671	2.671	2.671		07.9
9	Asfalto absorvido por el agregado total	1.11	1.11	1.11		
0	% de asfalto efectivo	4.43	4.43	4.43		************
1	Flujo (mm)	5.33	5.33	5.33		5.3
2	Lectura del Dial Anillo Marshall					226.0
3	Estabilidad sin corregir (Kg)	560	653	590		220.0
1	Factor de estabilidad	1.04	1.01	1.01		
j	Estabilidad corregida: (23*24) (Kg)	582	661	596		613
5	Indice de rigidez: (10 * 25/2/) kg/cm.)	1092	1240	1117		1150

OBSERVACIONES

LABORATORIO DE MECANICA NE SUEL PAVIMENTOS

EN SANTA CRUZ VELIZ

José Manuel Pereyra Araujo INGENIERO CIVIL REG. COLEDIO D INGENIEROS Nº 18800

Av oriente Nº 772-Concepcion Telef -581405 - Cel Mov. 975151126 - *413854 - 964512425 - *165302 - 954431184 - claro 964328911

Email CIAA_SANTACRUZ@hotmail.com

CONSTRUCTORA INGENIEROS & ARQUITECTOS ASESORES

SANTA CRUZ SCRL

ELABORACION DE PROYECTOS EJECUCION DE OBRAS - CONTROL DE CALIDAD EN MECANICA DE SUELOS ENSAYO DE MARSHALL ASTM D - (1859)

PORCENTAJES DE ASPALTO

SOLICITADO / PETICIONARIO :

BACH. PERALTA FLORES MARISOL

PROYECTO / OBRA

APLICACIÓN DE POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLOGICO DE MEZCLAS

ASFALTICAS CALIENTE, HUANCAYO - 2018

UBICACIÓN / DE OBRA

Dist. HUANCAYO

Prov. HUANCAYO Opto. JUNIN

TECNICO : J SANTA CRUZ VELIZ

FECHA : 25/07/2019

ENSAYO MARSHALL ASTM D-1559

ITEM	PASO	1	2	3	4	PROME
1	% de cemento asfaltico en peso de la mezcla	6.00	6.00	6.00	1	6.00
2	% de agregado grueso en peso de la mezcla	32.90	32.90	32.90	7	0.00
3	% de agregado fino en peso de la mezcla % de agregado filler - concreto reciclado en peso de	61.10	61.10	61.10		
4	la mezcla	1.88	1.88	1.88		
5	Peso especifico del cemento asfaltico - aparente	1.017	1.017	1.017		
6	Peso específico agregado grueso - bulk	2.674	2.674	2.674		
7	Peso especifico agregado fino - bulk	2.564	2.554	2.554		
8	Peso especifico filler concreto reciclado - aparente	2.210	2.210	2.210		
9	Peso de la briqueta en el aire (gr)	1189.00	1183.00	1184.40		
10	Peso de la briqueta en el agua (gr)	664.80	660.90	661.90		
11	Volumen de la briqueta por desplazamiento	524.20	522.10	522.50		
12	Peso especifico bulk de la briqueta	2.268	2.266	2.267		2.267
13	Peso especifico maximo ASTM D-2041	2.380	2.380	2.380	************	2.261
14	% de vacios	4.7	4.8	4.8		
15	Peso especifico bulk del agregado total	2.595	2.595	2.595		4.7
16	VMA	16.19	16.28	16.25		
7	% de vacios llenados con C.A.	71.00	70.54	70.72		16.2
8	Peso especifico del agregado total	2.655	2.655	2.655		70.8
9	Asfalto absorvido por el agregado total	0.88	0.88	0.88		
0	% de asfalto efectivo	5.16	5.16	5.16		·
1	Flujo (mm)	5 59	5.59			500 m
2	Lectura del Dial Anillo Marshall		3.55	5.59		5.6
3	Estabilidad sin corregir (Kg)	520	532	E40		
4	Factor de estabilidad	1.04	1.07	510		
5	Estabilidad corregida: (23*24) (Kg)	541	570	1.04		
6	Indice de rigidez: (10 * 25/21) (kg/cm.)	968	1020	530		547

OBSERVACIONES

LABORATORIO DE MECANICA DE SUELAS PAVIMENTOS

TA CRUZ VILIZ SP EN GEOTECNIA

José Manuel Pereyra Araujo NJEMERO CIVIL REG. COLEGIO D INGENIEROS Nº 16800

Av oriente Nº 772-Concepcion Telef. -581405 - Cel. Mov. 975151126 - *413854 - 964512425 - *165302 - 954431184 - claro 964328911 Email CIAA_SANTACRUZ@hotmail.com

CONSTRUCTORA INGENIEROS & ARQUITECTOS ASESORES

SANTA CRUZ SCRL

ELABORACION DE PROYECTOS - EJECUCION DE OBRAS - CONTROL DE CALIDAD EN MECANICA DE SUELOS

ENSAYO DE MARSHALL ASTM D - (1559) PORCENTAJES DE ASFALTO

SOLICITADO / PETICIONARIO :

BACH. PERALTA FLORES MARISOL

PROYECTO / OBRA

APLICACIÓN DE POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLOGICO DE MEZCLAS

ASFALTICAS CALIENTE , HUANCAYO - 2018

UBICACIÓN / DE OBRA

HUANCAYO Prov. HUANCAYO

Dpto. JUNIN

TECNICO : J SANTA CRUZ VELIZ

: 25/07/2019 FECHA

ITEM	PASO	1	2	3	1	PROMEDIC
_1	% de cemento asfaltico en peso de la mezcla	6.50	6.50	6.50		6.50
2	% de agregado grueso en peso de la mezcla	32.73	32.73	32.73		0.30
3	% de agregado fino en peso de la mezcia % de agregado filler - concreto reciciado en peso de la	60.78	60.78	60.78		İ
4	mezcia mes de la	1.87	1.87	1.87	-	
5	Peso especifico del cemento asfaltico - aparente	1 017	1.017	1.017		
6	Peso especifico agregado grueso - bulk	2.674	2.674	2.674		
7	Peso especifico agregado fino - bulk	2 554	2.554	2.554		
8	Peso especifico filler concreto reciclado - aparente	2.210	2.210	2.210		
9	Peso de la briqueta en el aire (gr)	1178.20	1173.30			
10	Peso de la briqueta en el agua (gr)	661 80	860 60	1182.20		
11	Volumen de la briqueta por desplazamiento	516.40	512.70	665.00		
12	Peso específico bulk de la briqueta	2.282		517.20		
13	Peso específico maximo ASTM D-2041	2.350	2.288	2.286		2.285
14	% de vacios	2.9	***************************************	2.350		
15	Peso específico bulk del agregado total	2.595	2.6	2.7		2.8
16	VMA	16.15	2.595	2.595		
17	% de vacios llenados con C.A.		15.90	16.00		16.0
18	Peso especifico del agregado total	81.97	83.53	82.91		82.8
19	Asfalto absorvido por el agregado total	2.637	2.637	2.637		
20	% de asfalto efectivo	0.63	0.63	0.63		
1	Flujo (mm)	5.90	5.90	5.90		
2	Lectura del Dial Anillo Marshall	5.84	5.84	5.84		5.8
3	Estabilidad sin corregir (Kg)					
4	Factor de estabilidad	420	500	495		
5	Estabilidad corregida: (23*24) (Kg)	1.10	1.04	1.04		
6		463	520	515		499
	Indice de rigidez: (10 * 25/21) (kg/cm.)	793	890	881		855

OBSERVACIONES

LABORATOR MECANICA DE SUELOS AVIMENTOS

IAVIER J TA CRUZ VELIZ EN GEOTECNIA

uel Pereyra Araujo José Man REG. COLUGED D INGENIEROS Nº 16800

Av oriente Nº 772-Concepcion Telef.-581405 - Cel. Mov. 975151126 - *413854 - 964512425 - *165302 - 954431184 - claro 964328911 Email CIAA_SANTACRUZ@hotmail.com

CONSTRUCTORA INGENIEROS & ARQUITECTOS ASESORES SANTA CRUZ SCRL

ELABORACION DE PROYECTOS - EJECUCION DE OBRAS - CONTROL DE CALIDAD EN MECANICA DE SUELOS

ENSAYO DE MARSHALL ASTM D - (1559) PORCENTAJES DE ASFALTO

SOLICITADO / PETICIONARIO :

BACH. PERALTA FLORES MARISOL

PROYECTO / OBRA

APLICACIÓN DE POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLOGICO DE MEZCLAS

ASFALTICAS CALIENTE , HUANCAYO - 2018

UBICACIÓN / DE OBRA

Dist. HUANCAYO

Prov. HUANCAYO

Dpto. JUNIN

TECNICO : J SANTA CRUZ VELIZ

FECHA : 25/07/2019

ITEM	PASO	1	2	3	7.	PROMED
1	% de cemento asfaltico en peso de la mezcla	7.00	7.00	7,00		7.00
2	% de agregado grueso en peso de la mezcla	32.55	32.55	32.55		7.00
3	% de agregado fino en peso de la mezcia % de agregado filler - concreto reciclado en peso de la	60.45	60.45	60.45		
4	mezcla	1.86	1.86	1.86		
5	Peso especifico del cemento asfaltico - aparente	1.017	1.017	1.017		
6	Peso especifico agregado grueso - bulk	2.674	2.674	2.674		
7	Peso especifico agregado fino - bulk	2.554	2.554	2.554		
8	Peso especifico filler concreto reciclado - aparente	2.210	2.210	2.210		
9	Peso de la briqueta en el aire (gr)	1179.40	1184.20	1176.20		
10	Peso de la briqueta en el agua (gr)	665.00	655.00	657.90		
11	Volumen de la briqueta por desplazamiento	514.40	529.20	518.30	***************************************	
2	Peso especifico bulk de la briqueta	2.293	2.238	2.269		2,267
13	Peso especifico maximo ASTM D-2041	2.330	2.330	2.330		2.201
4	% de vacios	1.6	4.0	2.6	**************************************	2.7
15	Peso especifico bulk del agregado total	2.595	2.595	2.595		2.1
6	VMA	16.19	18.20	17.05		17.1
7	% de vacios llenados con C.A.	90.13	78.24	84.73		84.4
8	Peso especifico del agregado total	2.632	2.632	2.632		04.4
9	Asfalto absorvido por el agregado total	0.56	0.56	0.56		
0	% de asfalto efectivo	6.47	6.47	6.47		
1	Flujo (mm)	0.10	6.10	6.10		6.1
2	Lectura del Dial Anillo Marshall					0.1
3	Estabilidad sin corregir (Kg)	485	490	520		
4	Factor de estabilidad	1.10	1.07	1.07		
5	Estabilidad corregida: (23*24) (Kg)	535	525	557		FOC
3	Indice de rigidez: (10 * 25/21) (kg/cm.)	878	860	913		539 884

OBSERVACIONES

LABORATORIO DE MECANICA DE SUELOS DE MIMENTOS

TAVIER MANTA CRUZ VELIZ

José Manuel ereyra Araujo SENIEROS Nº 16809

Av oriente Nº 772-Concepcion Telef. -581405 - Cel. Mov. 975151126 - *413854 - 964512425 - *165302 - 954431184 - claro 964328911 Email CIAA_SANTACRUZ@hotmail.com

CONSTRUCTORA INGENIEROS & ARQUITECTOS ASESORES SANTA CRUZ SCRL

ELABORACION DE PROYECTOS - EJECUCION DE OBRAS - CONTROL DE CALIDAD EN MECANICA DE SUELOS

ENSAYO DE MARSHALL ASTM D - (1559) CAPA DE RODADURA

SOLICITADO / PETICIONARIO :

PROYECTO / OBRA

BACH. PERALTA FLORES MARISOL

APLICACIÓN DE POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLOGICO DE MEZCLAS

ASFALTICAS CALIENTE , HUANCAYO - 2018

UBICACION / DE OBRA

DOSIFICACION AGREGADOS

Dist.

HUANCAYO HUANCAYO

Prov. Dpto.

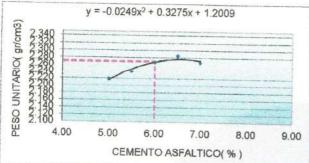
JUNIN

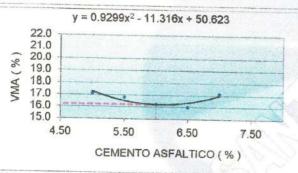
TECNICO **FECHA**

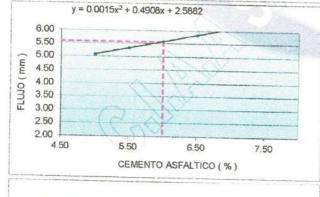
J. SANTA CRUZ V.

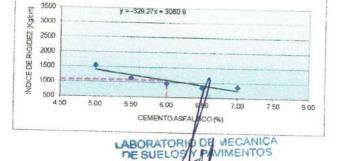
25/07/2019

PIEDRA CHANCADA 3/4" -

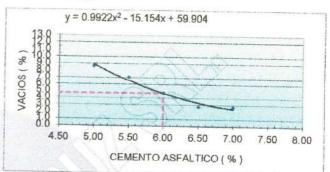

ARENA CHANCADA

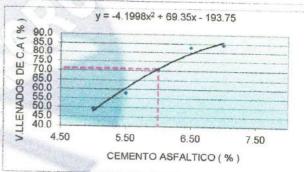

35% SAN LORENZO 63% SAN LORENZO

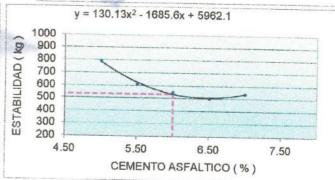

CEM ASFALTICO


PEN - 85 /100

POLVO DE CONCRETO RECICLADO







CRUZ VELIZ IAVIER

RESULTADOS:

OPTIMO CONTENIDO C.A (%)	0.2- 6.0+0.2	MIN
PESO UNITARIO (gr/ cm3)	2.270	IVIII
VACIOS (%)	4.7	2-4
V.M.A (%)	16.2	MIN 14
V. LLENADOS C.A (%)	71.2	161114 1-4
FLUJO (mm)	5.6	2 - 4
ESTABILIDAD (kg)	533	MIN 780
INDICE DE RIGIDEZ (kg/cm)	1,085	1700 - 3000

José Manuel Pereyra Araujo REG. COLEGICA INGENIEROS Nº 16600

CONSTRUCTORA INGENIEROS & ARQUITECTOS ASESORES SANTA CRUZ SCRL

ELABORACION DE PROYECTOS - EJECUCION DE OBRAS - CONTROL DE CALIDAD EN MECANICA DE SUELOS

ENSAYO CANTABRO

Metodo Máquina de los Angeles MTC E 515

SOLICITA / PETICIONARIO: BACH. PERALTA FLORES MARISOL

PROYECTO / OBRA

: APLICACIÓN DE POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLOGICO DE MEZCLAS

ASFALTICAS CALIENTE, HUANCAYO - 2018

CANTERA Nº / UBICACIÓN : 1- TRES DE DICIEMBRE CHUPACA

MUESTRA

M-01

UBICACIÓN DE OBRA

: Distrito

HUANCAYO

Provincia HUANCAYO

Departamento JUNIN

TECNICO: J.Santa Cruz V.

FECHA :

25/07/2019

MEZCLA ASFALTICA CONVENSIONAL

	5%	5.50%	6.00%	6.50%	7.00%	T
PESO INICIAL	1185.5	1189.2	1182.5	1190.5	1185.5	
PESO FINAL	1060.5	1089.9	1098	1125.6	1135	
PERDINA	125	99.3	84.5	64.9	50.5	
DESGASTE	10.54407423	8.350151362	7.145877378		4.259806	
	ENGINEER CONTRACT					

ABORATORIO DE MECANICA

AVIER ASANTA CRUZ VELIZ

José Manuel Percyra Araujo Nochicro civil REG. COLÉGIO D INGENIEROS Nº 16800

CONSTRUCTORA INGENIEROS & ARQUITECTOS ASESORES SANTA CRUZ SCRL

ELABORACION DE PROYECTOS - EJECUCION DE OBRAS - CONTROL DE CALIDAD EN MECANICA DE SUELOS

ENSAYO CANTABRO

Metodo Máquina de los Angeles MTC E 515

SOLICITA / PETICIONARIO: BACH. PERALTA FLORES MARISOL

PROYECTO / OBRA

: APLICACIÓN DE POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLOGICO DE MEZCLAS

ASFALTICAS CALIENTE, HUANCAYO - 2018

CANTERA Nº / UBICACIÓN : 1- TRES DE DICIEMBRE CHUPACA

MUESTRA

M-01

UBICACIÓN DE OBRA

: Distrito

HUANCAYO

Provincia HUANCAYO

TECNICO: J.Santa Cruz V.

Departamento JUNIN

FECHA

25/07/2019

MEZCLA ASFALTICA AL 1.0 % DE POLVO DE CONCRETO RECICI ADO

THE RESERVE TO SHARE THE PARTY OF THE PARTY	- COMONE IO HE	JULADU			
5%	5.50%	6.00%	6.50%	7.00%	
1185.2	1183.6	1185.4	The second livery with the second	plant and the same of the same	
1070	1080.9	The same of the sa	The second secon	The second secon	
115.2	102.7	85.4	61	CHARLES IN COLUMN 1 IN COLUMN	
9.719878502	8.676917878			4.0250296	
The second		A. 1 / 1 mg			
	1185.2 1070 115.2	1185.2 1183.6 1070 1080.9 115.2 102.7	1185.2 1183.6 1185.4 1070 1080.9 1100 115.2 102.7 85.4	5% 5.50% 6.00% 6.50% 1185.2 1183.6 1185.4 1186.9 1070 1080.9 1100 1125.9 115.2 102.7 85.4 61	1185.2 1183.6 1185.4 1186.9 1182.6 1070 1080.9 1100 1125.9 1135

ABORATORI

ANTA CRUZ VELIZ

EN GEOTECHIA

ereyra Araujo COLEGO D INGENIEROS Nº 16800

CONSTRUCTORA INGENIEROS & ARQUITECTOS ASESORES SANTA CRUZ SCRL

ELABORACION DE PROYECTOS - EJECUCION DE OBRAS - CONTROL DE CALIDAD EN MECANICA DE SUELOS

ENSAYO CANTABRO

Metodo Máquina de los Angeles MTC E 515

SOLICITA / PETICIONARIO: BACH, PERALTA FLORES MARISOL

PROYECTO / OBRA

: APLICACIÓN DE POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLOGICO DE MEZCLAS

ASFALTICAS CALIENTE , HUANCAYO - 2018

CANTERA Nº / UBICACIÓN : 1- TRES DE DICIEMBRE CHUPACA

MUESTRA

M-01

UBICACIÓN DE OBRA

: Distrito

HUANCAYO

Provincia

Departamento JUNIN

HUANCAYO

TECNICO: J.Santa Cruz V.

FECHA

25/07/2019

MEZCLA ASFALTICA AL 1.5 % DE POLVO DE CONCRETO RECICI ADO

FA/I	The state of the s	THE RESERVE THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLU	THE RESERVE OF THE PARTY OF THE	Name and Address of the Owner, when the Owner, which the Owner, whi	CICLADO
5%	5.50%	6.00%	6.50%	7.00%	
1181.1	1185.3	1180.9	1182.9	AND DESCRIPTION OF THE PARTY OF	
1065.5	1085.9	The same of the sa	THE RESERVE AND ADDRESS OF THE PARTY OF THE	THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAME	
115.6	99.4	-		A STATE OF THE PARTY OF THE PAR	
9.787486242	8.3860626	The second secon		A CONTRACTOR OF THE PARTY OF TH	
	× 5			- Auto-	
	1065.5 115.6	1181.1 1185.3 1065.5 1085.9 115.6 99.4	5% 5.50% 6.00% 1181.1 1185.3 1180.9 1065.5 1085.9 1102.8 115.6 99.4 78.1	5% 5.50% 6.00% 6.50% 1181.1 1185.3 1180.9 1182.9 1065.5 1085.9 1102.8 1125 115.6 99.4 78.1 57.9	1181.1 1185.3 1180.9 1182.9 1192.9 1065.5 1085.9 1102.8 1125 1145 115.6 99.4 78.1 57.9 47.9

LABORATOR VIMENTOS

JAVIERA SANTA CRUZ VELIZ FN GEOTFCNIA

CONSTRUCTORA INGENIEROS & ARQUITECTOS ASESORES

SANTA CRUZ SCRL

ELABORACION DE PROYECTOS - EJECUCION DE OBRAS - CONTROL DE CALIDAD EN MECANICA DE SUELOS

ENSAYO CANTABRO

Metodo Máquina de los Angeles MTC E 515

SOLICITA / PETICIONARIO: BACH. PERALTA FLORES MARISOL

PROYECTO / OBRA

: APLICACIÓN DE POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLOGICO DE MEZCLAS

ASFALTICAS CALIENTE , HUANCAYO - 2018

CANTERA Nº / UBICACIÓN : 1- TRES DE DICIEMBRE CHUPACA

MUESTRA

M-01

UBICACIÓN DE OBRA

: Distrito

HUANCAYO

Provincia Departamento JUNIN

HUANCAYO

TECNICO: J.Santa Cruz V.

FECHA

25/07/2019

MEZCLA ASFALTICA AL 2.0 % DE POLVO DE CONCRETO RECICLADO

	5%	5.50%	6.00%	6.50%	7.00%	CICLADO
PESO INICIAL	1185.6	1190.8	1185.9	1185.3	1178.9	
PESO FINAL	1020	1055.9	1055.5	1085.9	-	
PERDINA	165.6	134.9	130.4	99.4	1095.6 83.3	
DESGASTE	13.96761134	11.32851864	10.99586812	8.3860626	William Co.	
			1 64 V 2			
	The second					

CRUZ VELIZ

l Pereyra Araujo ERO CIVIL OLEGIO D'INGENIEROS Nº 16800 Anexo N° 3: Certificados de calibración de equipos

KAIZACORP S.A.C.

LABORATORIO DE METROLOGÍA

patrones

Unidades (SI).

recalibración.

laboratorio emisor.

CERTIFICADO DE CALIBRACIÓN

LF-039-2019

Laboratorio de Fuerza

Pág. 1 de 2

Este certificado de calibración

documenta la trazabilidad a los

internacionales, que realizan las

unidades de la medición de acuerdo con el Sistema Internacional de

Los resultados son validos en el

momento de la calibración. Al

solicitante le corresponde disponer

en su momento la ejecución de una

Este certificado de calibración no

podrá ser reproducido parcialmente

sin la aprobación por escrito del

Los certificados de calibración sin

firma y sello no son válidos.

nacionales

Expediente

Solicitante

1818

CONSTRUCTORA INGENIEROS Y ARQUITECTOS

ASESORES SANTA CRUZ SOCIEDAD COMERCIAL

DE RESPONSABILIDAD LIMI

Dirección

AV. ORIENTE NRO. 772 (FRENTE A FABRICA DE EMBUTIDOS HUAYCHULO) JUNIN - CONCEPCION -

CONCEPCION

Instrumento de Medición

Máquinas para Ensayos Uniaxiales Estáticos Máquinas de Ensayo de Tensión / Compresión

Equipo Calibrado

PRENSA MARSHALL(DIGITAL)

Marca (o Fabricante)

A&A INSTRUMENT

Modelo

STM-1 130802

Número de Serie Identificación

NO INDICA

Procedencia Indicador de Lectura CHINO INDICADOR DIGITAL

Alcance de Indicación

5000 Kgf

Resolución Marca (o Fabricante)

0.1 Kgf HIWEIGH

0 Kgf

Modelo

NO INDICA

Número de Serie Identificación

Transductor de Fuerza

CELDA TIPO S

Marca (o Fabricante)

ZEMIC

Modelo

H3-C3-5.Ot-6B

Número de Serie

5.0 T P2C 032509

Ubic. Del Equipo

INSTALACION DEL SOLICITANTE

Lugar de Calibración

INSTALACION DEL SOLICITANTE

Fecha de Calibración

2019-07-18

Sello

Fecha de emisión

alibración

2019-07-18

KAIZACORP S.A.C. - RUC: 20600820959 Jr. Pasco Nº 3312 San Martín de Porres, Lima - Perú Telf.: (01) 397 8754 Cel.: 949 985 016 / 987 325 869 E-mail: metrologia@kaizacorp.com ventas@kaizacorp.com Web: www.kaizacorp.com

KAIZACORP S.A.C.

LABORATORIO DE METROLOGÍA

Servicios de Calibración y Mantenimiento de Equipos e instrumentos de Medición Industriales y de Laborator

CERTIFICADO DE CALIBRACIÓN

LF-039-2019

Laboratorio de Fuerza

Pág. 2 de 2

Método de Calibración

La calibración se realizó tomando como referencia el método descrito en la norma ISO 7500-1 / ISO 376, Verificación de Máquinas para Ensayos Uniaxiales Estáticos, Máquinas de Ensayo de Tensión / Compresión Verificación y Calibración del Sistema de Medición de Fuerza.

Trazabilidad

Se utilizó patrón calibrado con trazabilidad al SI, calibrado por la Pontificia Universidad Católica del Perú Con Certificado N° INF - LE 213-18

Resultados de medición

	tura de la	Le	ctura del patr	ón	Promedio	Cálculo d	P. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	
ma	quina (Fi)	Primera	Segunda	Tercera	Promedio	Exactitud	Repetibilidad	Incertidumbre
%	kgf	kgf	kgf	kgf	kgf	q(%)	b(%)	U(%)
10	500	505	505	505	505	2,8	0,0	
20	1000	1005	1005	1005	1005	1,3	0,0	0,2
30	1500	1010	1010	1010	1010	0,8	0,0	0,2
40	2000	2010	2010	2010	2010	0,7	0,0	0,2
50	2500	2510	2510	2510	2510	0,9	0,0	0,2
60	3000	3010	3010	3010	3010	0,8	0,0	0,2
70	3500	35150	35150	35150	35150	0,6	0,0	0,2
80	4000	4020	4020	4020	4020	0,4	0,0	
90	4500	4525	4525	4525	4525	0,5	0,0	0,2
100	5000	5030	5030	5030	5030	0,3		0,2
Lectura	máquina en	A STATE OF S	100 T T 100	3000		0,3	0,0	0,2
	cero	0	0	0		0	0	Error máx. de cero(0)=0,00

Temperatura promedio durante los ensayos 20.8 °C; Varación de temperatura en cada ensayo < 2 °C.

Evaluación de los resultados

Los errores encontrados entre el 20% y el 100% del rango nominal considerado no superan los valores máximos permitidos establecidos en la norma ISO 7500-1.

Observaciones

- Se colocó una etiqueta autoadhesiva con la indicación de "CALIBRADO"
- · La incertidumbre de medición se ha obtenido multiplicando la incertidumbre estandar de la medición por

el factor de cobertura k=2 para una distribución normal de aproximadamente 95 %.

Fin del documento

KAIZACORP S.A.C. - RUC: 20600820959 Jr. Pasco N° 3312 San Martín de Porres, Lima - Perú Telf.: (01) 397 8754 Cel.: 949 985 016 / 987 325 869

E-mail; metrologia@kaizacorp.com ventas@kaizacorp.com Web: www.kaizacorp.com

CERTIFICADO DE CALIBRACIÓN Nº LL - 188 - 2018

Página : 1 de 1

Expediente Fecha de Emisión

: T 107-2018 : 2018-03-03

recha de Emisio

: 2018-03-03

Solicitante

: CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES

SANTA CRUZ S.R.L.

Dirección

: AV. ORIENTE NRO. 772 - CONCEPCION - JUNIN

2. Instrumento de Mediciór

: TAMIZ

Tamiz N°

: 3 pulg

Diametro de Tamiz

: 8 pulg.

Marca

: STANDARD TESTING SIEVE

Serie

: 3"BS8F852612

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

Los resultados son vátidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

3. Lugar y fecha de Calibración

LABORATORIO DE CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES SANTA CRUZ S.R.L. 03 - MARZO - 2018

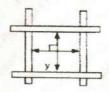
4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

5. Trazabilidad

INSTRUMENTO T	MARCA	CERTIFICADO I	TRAZABILIDAD
PIE DE REY	INSIZE	L - 0756 - 2017	INACAL - DM

6. Condiciones Ambientales


	INICIAL	FINAL
Temperatura °C	21,9	21,8
Humedad %	60	60

7. Observaciones

- Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.

8. Resultados

-	-										(*)	
			М		S TOMAC	DAS		PROMEDIO	ESTÁNDAR	ERROR	DESVIACIÓN ESTANDAR MÁXIMA	DESVIACIÓN ESTANDAR
		-		_	mm		 Julie I	mm	mm	mm	mm	mm
75,15	75,21	75,26	75,24		1000			75,22	75,00	0,22	-	0,048

Vefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP Nº 152631

CERTIFICADO DE CALIBRACIÓN Nº LL - 189 - 2018

Página : 1 de 1

Expediente Fecha de Emisión : T 107-2018

recha de Emisio

: 2018-03-03

1. Solicitante

: CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES

SANTA CRUZ S.R.L.

Dirección

: AV. ORIENTE NRO. 772 - CONCEPCION - JUNIN

2. Instrumento de Mediciór

: TAMIZ

Tamiz N°

: 2 ½ pulg

Diametro de Tamiz

: 8 pula.

Marca

: STANDARD TESTING SIEVE

Serie

: 2.5"BS8F652579

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

Lugar y fecha de Calibración

LABORATORIO DE CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES SANTA CRUZ S.R.L. 03 - MARZO - 2018

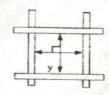
4. Método de Calibración

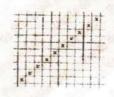
Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

5. Trazabilidad

INSTRUMENTO	MARCA	CERTIFICADO	TRAZABILIDAD
PIE DE REY	INSIZE	L - 0756 - 2017	INACAL - DM
Calling the state of the state		2011	MACAL - DIVI

6. Condiciones Ambientales


	INICIAL	FINAL
Temperatura °C	21,4	21,4
Humedad %	60	60


7. Observaciones

- Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.

8. Resultados

MEDIDAS TOMADAS mm					PROMEDIO	ESTÁNDAR	ERROR	DESVIACIÓN ESTANDAR MÁXIMA	DESVIACIÓN ESTANDAR				
					_				mm	mm	mm	mm	mm
62,33	62,54	63,27	62,58	62,46	62,36	62,46	62,37		62,54	63,00	-0,46	_	0,305

Vete de Laboratorio Ing. Luis Loayza Capcha Reg. CIP Nº 152631

FIN DELIDOCUMENTO

Av. Los Ángeles 653 - LIMA 42 Telf. 292-5106 292-2095

CERTIFICADO DE CALIBRACIÓN Nº LL - 190 - 2018

Página : 1 de 1

Expediente

: T 107-2018

Fecha de Emisión

: 2018-03-03

1. Solicitante

: CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES

SANTA CRUZ S R I

Dirección

: AV. ORIENTE NRO. 772 - CONCEPCION - JUNIN

2. Instrumento de Mediciór : TAMIZ

Tamiz N°

: 2 pulg

Diametro de Tamiz

: 8 pulg.

Marca

: STANDARD TESTING SIEVE

Serie

: 2"BS8F743538

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

3. Lugar y fecha de Calibración

LABORATORIO DE CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES SANTA CRUZ S.R.L. 03 - MARZO - 2018

4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

5. Trazabilidad

PIE DE REY	MARCA	CERTIFICADO	TRAZABILIDAD	
	INSIZE	L - 0756 - 2017	INACAL - DM	

6. Condiciones Ambientales

	INICIAL	FINAL
Temperatura °C	21,4	21,4
Humedad %	60	60

7. Observaciones

- Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.

8. Resultados

	1200				100	-					_		(*)	
			М	EDIDAS	TOMAD	AS				PROMEDIO	ESTÁNDAR	ERROR	DESVIACIÓN ESTANDAR MÁXIMA	DESVIACIÓN ESTANDAR
					m			1	- 1	mm	mm	mm	mm	mm
49,85	50,23	50,14	49,96	49,79	50,23	50,24	50,11	50,12	49,95	50,06	50,00	0,06		0,164

Vefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP Nº 152631

CERTIFICADO DE CALIBRACIÓN Nº LL - 191 - 2018

Página : 1 de 1

Expediente Fecha de Emisión : T 107-2018 : 2018-03-03

1. Solicitante

: CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES

SANTA CRUZ S.R.L.

Dirección

: AV. ORIENTE NRO. 772 - CONCEPCION - JUNIN

2. Instrumento de Mediciór : TAMIZ

Tamiz N°

: 1 1/2 pulg

Diametro de Tamiz

: 8 pula.

: STANDARD TESTING SIEVE

Serie

: 1.5"BS8F728538

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración. la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

3. Lugar y fecha de Calibración

LABORATORIO DE CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES SANTA CRUZ S.R.L. 03 - MARZO - 2018

4. Método de Calibración

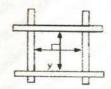
Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

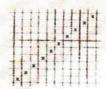
5. Trazabilidad

INSTRUMENTO	MARCA	CERTIFICADO	TRAZABILIDAD		
PIE DE REY	INSIZE	L - 0756 - 2017	INACAL - DM		

6. Condiciones Ambientales

	INICIAL	FINAL
Temperatura °C	21,4	21,4
Humedad %	60	60


7. Observaciones


- Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.

8. Resultados

MEDIDAS TOMADAS mm						PROMEDIO	ESTÁNDAR mm	ERROR	DESVIACIÓN ESTANDAR MÁXIMA	DESVIACIÓN ESTANDAR						
38,65	36,56	37,43	36,45	35,27	36,56	37,85	37,42	37,62	36,95					- time		
35,26	37,65									36,97	37,50	-0,53		11 - L	48	-

FIN DEL DOCUMENT

leie de Laboratorio Ing. Luis Loayza Capcha Reg. CIP Nº 152631

CERTIFICADO DE CALIBRACIÓN Nº LL - 192 - 2018

Página : 1 de 1

Expediente Fecha de Emisión

: T 107-2018 : 2018-03-03

1. Solicitante

: CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES

SANTA CRUZ S.R.L.

Dirección

: AV. ORIENTE NRO. 772 - CONCEPCION - JUNIN

2. Instrumento de Mediciór

: TAMIZ

: 1 pulg

Diametro de Tamiz

: 8 pula.

Marca

: STANDARD TESTING SIEVE

Serie

: 1"BS8F728093

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

3. Lugar y fecha de Calibración

LABORATORIO DE CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES SANTA CRUZ S.R.L. 03 - MARZO - 2018

4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

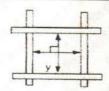
5. Trazabilidad

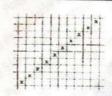
ARCA	CERTIFICADO	TRAZABILIDAD
NSIZE	L - 0756 - 2017	INACAL - DM
	NSIZE	101 The

6. Condiciones Ambientales

	INICIAL	FINAL
Temperatura °C	21,4	21,4
Humedad %	60	60

7. Observaciones


- Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.


8. Resultados

			М	EDIDAS	TOMAD	AS	er ser			PROMEDIO	ESTÁNDAR mm	ERROR	DESVIACIÓN ESTANDAR MÁXIMA	DESVIACIÓN ESTANDAR mm
24,96	25,01	24,86	26,56	24,86	24,85	24,86	24,76	24,58	26,95	6 - 4		l o		
25,62	25,42	25,32	25,06	24,71	24,82	24,61	24,59	24,71	25,06	The state of		17	0.00	-distance
24,98	25,45	24,76	25,32	25,12	24,86	24,62	24,63	24,85	24,61	25,04	25,00	0,04	100	0,550
24,76	25,33	24,65	24,96	24,86	25,03	25,12	24,86	24,75	26,51					
24,85	26,53	24,75	24,56	24,53	24,62	24,86	25,13		E 65				Carlotte.	

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP Nº 152631

CERTIFICADO DE CALIBRACIÓN Nº LL - 193 - 2018

Página : 1 de 1

Expediente Fecha de Emisión

: T 107-2018 : 2018-03-03

1. Solicitante

: CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES

SANTA CRUZ S.R.L.

Dirección

: AV. ORIENTE NRO. 772 - CONCEPCION - JUNIN

2. Instrumento de Mediciór : TAMIZ

Tamiz N°

: 3/4 pulg

Diametro de Tamiz

: 8 pulg.

Marca

: STANDARD TESTING SIEVE

Serie

: 3/4"BS8F714662

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

3. Lugar y fecha de Calibración

LABORATORIO DE CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES SANTA CRUZ S.R.L. 03 - MARZO - 2018

4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

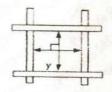
5. Trazabilidad

PIE DE REY	MARCA	CERTIFICADO	TRAZABILIDAD		
	INSIZE	L - 0756 - 2017	INACAL - DM		

6. Condiciones Ambienta

	INICIAL	FINAL		
Temperatura °C	21,3	21,4		
Humedad %	60	60		

7. Observaciones


- Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.

8. Resultados

	MEDIDAS TOMADAS						PROMEDIO	ESTÁNDAR mm	ERROR	MÁXIMA	DESVIACIÓN ESTANDAR			
19,03	19,13	19,04	19,06	18,86	18,95	19,07	18,95	19,06	19,13			111611	mm	mm
18,76	19,02	19,03	18,75	18,98	18,75	19,11	18,95	19,12	18,62	18,97	19,00	-0.03	0,446	0.158
19,26	18,75	19,10	18,69	19,06	18,75	19,03	19,11	19,02	19,03			18		

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP Nº 152631

CERTIFICADO DE CALIBRACIÓN Nº LL - 194 - 2018

Página : 1 de 1

Expediente Fecha de Emisión : T 107-2018 : 2018-03-03

1. Solicitante

: CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES

SANTA CRUZ S.R.L.

Dirección

: AV. ORIENTE NRO. 772 - CONCEPCION - JUNIN

2. Instrumento de Medición : TAMIZ

Tamiz N°

: 1/2 pulg

Diametro de Tamiz

: 8 pulg.

Marca

: STANDARD TESTING SIEVE

Serie

: 1/2"BS8F694226

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

3. Lugar y fecha de Calibración

LABORATORIO DE CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES SANTA CRUZ S.R.L. 03 - MARZO - 2018

4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

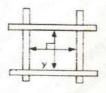
5. Trazabilidad

INSTRUMENTO	MARCA	CERTIFICADO	TRAZABILIDAD
PIE DE REY	INSIZE	L - 0756 - 2017	INACAL - DM

6. Condiciones Ambientales

	INICIAL	FINAL
Temperatura °C	21,3	21,3
Humedad %	60	60

7. Observaciones


- Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.

8. Resultados

MEDIDAS TOMADAS						PROMEDIO	ESTÁNDAR mm	ERROR	MÁXIMA	DESVIACION ESTANDAR				
12,49	12,48	12,51	12,62	12,51	12,50	12,51	12,62	12,48	12,47		11111		mm	mm
12,62	12,47	12,53	12,51	12,62	12,45	12,51	12,61	12,41	12,43	12,50	12,50	0,00	0.302	0,062
12,47	12,53	12,44	12,43	12,41	12,48	12,47	12,46	12,51	12,47	8				2,502

Jele de Laboratorio Ing. Luis Loayza Capcha Reg. CIP Nº 152631

CERTIFICADO DE CALIBRACIÓN Nº LL - 195 - 2018

Página : 1 de 1

Expediente

: T 107-2018

Fecha de Emisión

: 2018-03-03

1. Solicitante

: CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES

SANTA CRUZ S.R.L.

Dirección

: AV. ORIENTE NRO. 772 - CONCEPCION - JUNIN

2. Instrumento de Medición : TAMIZ

Tamiz Nº

: 3/8 pulg

Diametro de Tamiz

: 8 pulg.

Marca

: STANDARD TESTING SIEVE

Serie

: 3/8"BS8F725811

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aqui declarados.

3. Lugar y fecha de Calibración

LABORATORIO DE CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES SANTA CRUZ S.R.L. 03 - MARZO - 2018

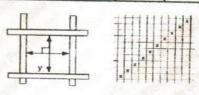
4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tornando como referencia la norma ASTM E 11-09.

5. Trazabilidad

INSTRUMENTO	MARCA	CERTIFICADO	TRAZABILIDAD	
PIE DE REY	INSIZE	L - 0756 - 2017	INACAL - DM	

6. Condiciones Ambientales


	INICIAL	FINAL	
Temperatura °C	21,3	21,3	
Humedad %	60	60	

7. Observaciones

Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.

(*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.

MEDIDAS TOMADAS mm							PROMEDIO	ESTÁNDAR mm	ERROR	MÁXIMA	DESVIACIÓN ESTANDAR			
9,51	9,49	9,51	9,52	9,51	9,53	9,48	9,51	9,52	9,48		atiliti	1000	mm mm	mm
9,52	9,54	9,53	9,51	9,48	9,49	9,46	9,42	9,43	9,42	9,50	9,50	0,00	0,237	0,036
9,51	9,52	9,53	9,51	9,48	9,47	9,52	9,53	9,41	9,52	750				

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP Nº 152631

CERTIFICADO DE CALIBRACIÓN Nº LL - 196 - 2018

Expediente

: T 107-2018

Fecha de Emisión

: 2018-03-03

1. Solicitante

: CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES SANTA

CRUZ S.R.L

Dirección

: AV. ORIENTE NRO. 772 - CONCEPCION - JUNIN

2. Instrumento de Medición

: TAMIZ

Tamiz Nº

: 1/4 pulg

Diametro de Tamiz

: 8 pula.

Marca

: STANDARD TESTING SIEVE

Sario

: 1/4'BS8F852296

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

3. Lugar y fecha de Calibración

LABORATORIO DE CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES SANTA CRUZ S.R.L. 03 - MARZO - 2018

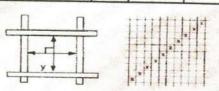
4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tornando como referencia la norma ASTM E 11-09.

5. Trazabilidad

NSTRUMENTO	MARCA	CERTIFICADO	TRAZABILIDAD
PIE DE REY	INSIZE	L - 0756 - 2017	INACAL - DM
		1 0,00 2011	INVOAL - DIM

6. Condiciones Ambientales


	INICIAL	FINAL	
Temperatura °C	21,3	21,3	
Hurnedad %	60	60	

7. Observaciones

- Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (*) Las variaciones no exceden a la variación máxima permisible según la norma ASTM E11-09.

8. Resultados

MEDIDAS TOMADAS									PROMEDIO	ESTÁNDAR mm	ERROR	DESVIACIÓN ESTANDAR MÁXIMA	DESVIACIÓN ESTANDAR	
6,29	6,27	6,32	6,28	6,31	6,25	6,31	6,35	6,21	6,23	7.0		-0.01	mm	mm
6,35	6,24	6,25	6,26	6,36	6,25	6,38	6,24	6,29	6,25	6,29	6,30		0,167	0,052
6,32	6,27	6,21	6,32	6,25	6,38	6,24	6,39	6,24	6,25	187				5,002

Jefe de Laboratorio Ing. Luís Loayza Capcha Reg. CIP Nº 152631

CERTIFICADO DE CALIBRACIÓN Nº LL - 197 - 2018

Página : 1 de 1

Expediente Fecha de Emisión : T 107-2018 : 2018-03-03

1. Solicitante

: CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES

SANTA CRUZ S.R.L.

Dirección

: AV. ORIENTE NRO. 772 - CONCEPCION - JUNIN

2. Instrumento de Medición : TAMIZ

Tamiz N°

. 4

Diametro de Tamiz

: 8 pulg.

Marca

: STANDARD TESTING SIEVE

Serie

: 4BS8F741435

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

3. Lugar y fecha de Calibración

LABORATORIO DE CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES SANTA CRUZ S.R.L.
03 - MARZO - 2018

03 - MARZO - 2018

4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

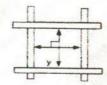
5. Trazabilidad

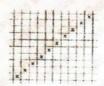
NSTRUMENTO	MARCA	CERTIFICADO	TRAZABILIDAD
PIE DE REY	INSIZE	L - 0756 - 2017	INACAL - DM

6. Condiciones Ambientales

	INICIAL	FINAL
Temperatura °C	21,3	21,3
Humedad %	60	60

7. Observaciones


- Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.


8. Resultados

	MEDIDAS TOMADAS mm 1,73 4,72 4,69 4,71 4,78 4,76 4,79 4,75 4,72 4,61									PROMEDIO	ESTÁNDAR mm	ERROR	DESVIACIÓN ESTANDAR MÁXIMA	ESTANDAR
4,73	4,72	4,69	4,71	4,78	4,76	4,79	4,75	4,72	4,68	jer gr		1,,,,,	0,131	0,035
4,72	4,76	4,75	4,78	4,72	4,65	4,71	4,69	4,72	4,75	4,73	4,75	-0.02		
4,69	4,75	4,68	4,72	4,73	4,68	4,71	4,72	4,78	4,72	100	20.30			

Jefe de Laboratorio Ing. Luís Loayza Capcha Reg. CIP Nº 152631

CERTIFICADO DE CALIBRACIÓN Nº LL - 198 - 2018

Página : 1 de 1

Expediente Fecha de Emisión : T 107-2018 : 2018-03-03

1. Solicitante

: CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES

.....

SANTA CRUZ S.R.L.

Dirección

: AV. ORIENTE NRO. 772 - CONCEPCION - JUNIN

2. Instrumento de Mediciór

: TAMIZ

Tamiz N°

: 8

Diametro de Tamiz

: 8 pula.

Marca

: STANDARD TESTING SIEVE

Serie

: 8BS8F712465

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

3. Lugar y fecha de Calibración

LABORATORIO DE CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES SANTA CRUZ S.R.L. 03 - MARZO - 2018

00 - MARZO - 2010

4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

5. Trazabilidad

INSTRUMENTO	MARCA	CERTIFICADO	TRAZABILIDAD
RETICULA DE MEDICION	INSIZE	LLA - 017 - 2017	INACAL - DM
		1	INACAL - DIVI

6. Condiciones Ambientales

	INICIAL	FINAL
Temperatura °C	21,4	21,4
Humedad %	60	60

7. Observaciones


- Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.


8. Resultados

MEDIDAS TOMADAS mm								AL.	PROMEDIO	ESTÁNDAR mm	ERROR	MÁXIMA	DESVIACIÓN ESTANDAR	
2,362	2,365	2,362	2,361	2,365	2,369	2,364	2,361	2,359	2,368			mm	mm	
2,356	2,359	2,360	2,365	2,365	2,360	2,364	2,365	2,361	2,362	Mary .				0,005
2,385	2,375	2,361	2,361	2,365	2,361	2,365	2,361	2,368	2,364	2,364	2,360	0,004	0,077	
2,365	2,369	2,358	2,361	2,368	2,365	2,363	2,362	2,368	2,361				Sign Sign	

refe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP Nº 152631

CERTIFICADO DE CALIBRACIÓN Nº LL - 199 - 2018

Página: 1 de 1

Expediente Fecha de Emisión

: T 107-2018 : ########

1. Solicitante

: CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES

SANTA CRUZ S.R.L.

Dirección

: AV. ORIENTE NRO. 772 - CONCEPCION - JUNIN

2. Instrumento de Mediciói : TAMIZ

Tamiz N°

Diametro de Tamiz

: 8 pula.

Marca

: STANDARD TESTING SIEVE

Serie

: NO INDICA

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aqui declarados.

3. Lugar y fecha de Calibración

LABORATORIO DE CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES SANTA CRUZ S.R.L. 03 - MARZO - 2018

4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

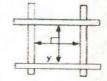
5. Trazabilidad

INSTRUMENTO	MARCA	CERTIFICADO	TRAZABILIDAD
RETICULA DE MEDICION	INSIZE	LLA - 017 - 2017	INACAL - DM
			ILO IOLIC - DISI

6. Condiciones Ambientales

	INICIAL	FINAL
Temperatura °C	21,4	21,3
Humedad %	60	60

7. Observaciones


- Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.


8. Resultados

	MEDIDAS TOMADAS mm 2,005 2,006 2,003 2,000 2,005 2,008 2,003 2,002 2,001 2,003									PROMEDIO	ESTÁNDAR mm	ERROR	DESVIACIÓN ESTANDAR MÁXIMA MM	DESVIACIÓN ESTANDAR MM
2,005	2,006	2,003	2,000	2,005	2,008	2,003	2,002	2,001	2,003					0,003
2,006	2,008	2,005	2,006	2,005	2,001	2,010	2,015	2,006	2,003	ALC: UN	2,000			
2,006	2,001	2,010	2,009	2,005	2,001	2,003	2,002	2,005	2,004	2,005		0,005	0.072	
2,008	2,006	2,004	2,003	2,007	2,006	2,003	2,004	2,005	2,006	4300			915	99 49
2,010	2,005	2,008	2,002	2,003	2,007	2,006	2,004	2,003	2,009				1111	A STATE OF THE PARTY OF THE PAR

Jefe/de Laboratorio Ing. Luis Loayza Capcha Reg. CIP Nº 152631

CERTIFICADO DE CALIBRACIÓN Nº LL - 200 - 2018

Expediente Fecha de Emisión

: T 107-2018 : 2018-03-03

1. Solicitante

: CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES

SANTA CRUZ S.R.L.

Dirección

: AV. ORIENTE NRO. 772 - CONCEPCION - JUNIN

2. Instrumento de Medició: : TAMIZ

Tamiz Nº

: 12

Diametro de Tamiz

: 8 pulg.

Marca

: STANDARD TESTING SIEVE

Serie

: 12BS8F634145

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este ni de una incorrecta instrumento, interpretación de los resultados de la calibración aqui declarados.

3. Lugar y fecha de Calibración

LABORATORIO DE CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES SANTA CRUZ S.R.L. 03 - MARZO - 2018

4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

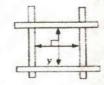
5. Trazabilidad

INSTRUMENTO	MARCA	CERTIFICADO	TRAZABILIDAD
RETICULA DE MEDICION	INSIZE	LLA - 017 - 2017	INACAL - DM

6. Condiciones Ambientales

	INICIAL	FINAL
Temperatura °C	21,3	21,3
Humedad %	60	60

7. Observaciones


- On fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.

8. Resultados

DESVIACIÓN DESVIACIÓN ESTÁNDAR **MEDIDAS TOMADAS** PROMEDIO ERROR ESTANDAR ESTANDAR MÁXIMA mm mm mm mm mm mm 1,701 1.699 1,702 1,698 1,704 1,702 1,702 1,701 1,701 1,702 1,701 1,704 1,704 1,705 1,695 1,708 1,703 1,702 1,702 1,703 1,695 1,695 1,701 1,701 1,699 1,697 1,698 1,699 1,701 1,700 0,001 0,062 0,003 1,701 1,702 1,701 1,695 1,699 1,700 1,700 1,701 1,702 1,701 1,702 1,702 1,698 1,702 1,701 1,702 1,701 1,706 1,698 1,702 1,703 1,705

Jefé de Laboratorio Ing. Luis Løayza Capcha Reg. CIP Nº 152631

CERTIFICADO DE CALIBRACIÓN Nº LL - 201 - 2018

Página: 1 de 2

Expediente Fecha de Emisión

: T 107-2018 : 2018-03-03

: CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES

SANTA CRUZ S.R.L.

Dirección

1. Solicitante

: AV. ORIENTE NRO. 772 - CONCEPCION - JUNIN

2. Instrumento de Mediciór

: TAMIZ

Tamiz N°

: 16

Diametro de Tamiz

: 8 pulg.

Marca

: STANDARD TESTING SIEVE

Serie

: 16BS8F736359

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

3. Lugar y fecha de Calibración

LABORATORIO DE CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES SANTA CRUZ S.R.L.

03 - MARZO - 2018

4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

5. Trazabilidad

INSTRUMENTO	MARCA	CERTIFICADO	TRAZABILIDAD
RETICULA DE MEDICION	INSIZE	LLA - 017 - 2017	INACAL - DM

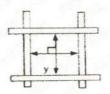
6. Condiciones Ambientales

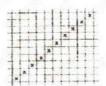
	INICIAL	FINAL
Temperatura °C	21,3	21,5
Humedad %	60	60

- Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.

STORIO DE MA PUNTO DE PRECISION

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP Nº 152631




CERTIFICADO DE CALIBRACIÓN Nº LL - 201 - 2018

Página: 2 de 2

8. Resultados

			ME	DIDAS	TOMADA	AS				PROMEDIO	ESTÁNDAR		DESVIACIÓN ESTANDAR MÁXIMA	DESVIACIÓN ESTANDAR
No.				m	m					mm	mm	mm	mm	mm
1,182	1,179	1,186	1,172	1,173	1,172	1,192	1,185	1,191	1,184			3		0,008
1,183	1,182	1,184	1,185	1,189	1,178	1,172	1,174	1,194	1,184	1	* *	100	- 12	
1,182	1,162	1,152	1,174	1,182	1,179	1,175	1,177	1,185	1,194				0,051	
1,181	1,175	1,174	1,182	1,176	1,183	1,174	1,192	1,173	1,186	1,181	1,180	0,001		
1,174	1,183	1,192	1,174	1,185	1,196	1,182	1,172	1,182	1,176	1,101	1,180	0,001	0,001	
1,182	1,184	1,183	1,185	1,189	1,192	1,175	1,196	1,182	1,172	200		A PARTY	100	
1,174	1,182	1,193	1,185	1,172	1,184	1,185	1,196	1,174	1,185	387		ALC: A		
1,179	1,182	1,176	1,196	1,174	1,182	1,196	1,185	1,174	1,176	7		- 82	No. of	

FIN DEL DOCUMENTO

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP Nº 152631

CERTIFICADO DE CALIBRACIÓN Nº LL - 202 - 2018

Página: 1 de 2

Expediente Fecha de Emisión

: T 107-2018 : 2018-03-03

1. Solicitante

: CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES

SANTA CRUZ S.R.L.

Dirección

: AV. ORIENTE NRO. 772 - CONCEPCION - JUNIN

2. Instrumento de Mediciór : TAMIZ

Tamiz Nº

: 20

Diametro de Tamiz

: 8 pulg.

Marca

: STANDARD TESTING SIEVE

Serie

: NO INDICA

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

3. Lugar y fecha de Calibración

LABORATORIO DE CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES SANTA CRUZ S.R.L.

03 - MARZO - 2018

4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

5. Trazabilidad

INSTRUMENTO	MARCA	CERTIFICADO	TRAZABILIDAD
RETICULA DE MEDICION	INSIZE	LLA - 017 - 2017	INACAL - DM

6. Condiciones Ambientales

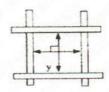
F	INICIAL	FINAL
Temperatura °C	21,5	21,5
Humedad %	60	60

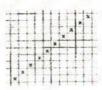
7. Observaciones

- Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.

ON ORIO DE MA PUNTO DE SAC

Jefe de Laboratorio Ing. Lors Loayza Capcha Reg. CIP Nº 152631




CERTIFICADO DE CALIBRACIÓN Nº LL - 202 - 2018

Página : 2 de 2

8. Resultados

	MEDIDAS TOMADAS										ESTÁNDAR		MÁXIMA	DESVIACIÓN ESTANDAR		
-				hi	n					μm	μm	μm	μm	μm		
851,265	852,265	852,458	851,650	853,265	851,475	851,265	852,365	854,245	851,265		850,000				100	
852,625	853,265	850,265	853,265	851,245	853,625	851,468	852,654	853,265	851,425			1,867	39,36	1,22		
852,360	851,240	852,650	850,260	851,265	851,245	851,265	856,265	849,620	851,240							
852,265	853,625	849,850	851,265	853,265	851,245	851,265	853,625	851,245	852,265	P. A.						
851,265	853,265	849,568	851,260	852,425	853,625	851,458	852,625	849,560	851,265	851,867						
848,720	851,260	852,320	853,264	851,420	853,260	851,420	852,650	853,240	851,450	Committee Additional						
852,360	853,260	851,420	851,260	853,650	851,450	849,520	851,420	852,360	853,260				- C			
851,420	853,260	852,240	851,200	850,680	851,240	853,260	851,240	851,456	852,260				198			
852,120	849,260	851,230	852,360	853,265	851,420	852,650	851,240	849,710	851,200							
850,650	851,420	850,360	852,650	851,420	851,650	852,350	851,425	853,625	851,250							
			_					Assessment of the last of the								

FIN DEL DOCUMENTO

lefe de Laboratorio Ing: Luis Loayza Capcha Reg. CIP Nº 152631

CERTIFICADO DE CALIBRACIÓN Nº LL - 203 - 2018

Página: 1 de 2

Expediente

: T 107-2018

Fecha de Emisión

: 2018-03-03

1. Solicitante

: CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES

SANTA CRUZ S.R.L.

Dirección

: AV. ORIENTE NRO. 772 - CONCEPCION - JUNIN

2. Instrumento de Mediciór : TAMIZ

Tamiz Nº

: 30

Diametro de Tamiz

: 8 pulg.

Marca

: STANDARD TESTING SIEVE

Serie

: 30BS8F695010

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

3. Lugar y fecha de Calibración

LABORATORIO DE CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES SANTA CRUZ S.R.L. 03 - MARZO - 2018

4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

5. Trazabilidad

INSTRUMENTO	MARCA	CERTIFICADO	TRAZABILIDAD
RETICULA DE MEDICION	INSIZE	LLA - 017 - 2017	INACAL - DM

6. Condiciones Ambientales

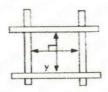
	INICIAL	FINAL
Temperatura °C	21,5	21,6
Humedad %	60	59

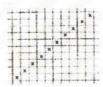
7. Observaciones

- Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.

ONTORIO DE ME INDI PUNTO DE RECISION S.A.C.

Veie de Laboratorio Ing. Luis Loayza Capcha Reg. CIP Nº 152631




CERTIFICADO DE CALIBRACIÓN Nº LL - 203 - 2018

Página : 2 de 2

8. Resultados

	MEDIDAS TOMADAS									PROMEDIO	ESTÁNDAR µm	ERROR	DESVIACIÓN ESTANDAR MÁXIMA µm	DESVIACIÓN ESTANDAR µm								
601,250	602,526	601,250	601,220			600,120	601,350	601,256	601,523							patt	pin		(Log ()	-		
601,256	602,352	601,523	601,256	602,356	601,425	601,256	601,253	602,235	601,210		.841 600,000	-1,159	31,32	1								
603,265	601,254	602,352	602,352	603,363	601,584	600,562	601,244	602,565	603,265					29,55								
602,514	602,352	603,265	600,265	601,325	602,325	601,230	600,482	601,582	602,325	F												
600,256	603,221	601,425	601,625	601,268	602,622	600,358	602,560	602,145	601,256													
602,532	601,250	601,233	602,521	602,864	601,524	602,562	601,425	601,325	601,256	598,841												
602,526	601,325	602,425	603,265	601,526	600,325	601,426	602,531	602,325	601,578													
602,325	602,251	603,265	602,156	601,265	602,325	601,256	602,440	601,588	601,925				150									
602,155	600,265	602,325	601,265	602,362	602,125	602,325	601,252	602,325	601,244	F.												
601,352	306,425	602,352	601,425	602,353	602,352	601,325	603,265	601,254	602,352	7												

FIN DEL DOCUMENTO

Uefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP Nº 152631

CERTIFICADO DE CALIBRACIÓN Nº LL - 204 - 2018

Página: 1 de 2

Expediente Fecha de Emisión

: T 107-2018 : 2018-03-03

1. Solicitante

: CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES

SANTA CRUZ S.R.L.

Dirección

: AV. ORIENTE NRO. 772 - CONCEPCION - JUNIN

2. Instrumento de Mediciór : TAMIZ

Tamiz N°

: 60

Diametro de Tamiz

: 8 pula.

Marca

: STANDARD TESTING SIEVE

Serie

: 60BS8F637859

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

3. Lugar y fecha de Calibración

LABORATORIO DE CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES SANTA CRUZ S.R.L. 03 - MARZO - 2018

4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

5. Trazabilidad

INSTRUMENTO	MARCA	CERTIFICADO	TRAZABILIDAD
RETICULA DE MEDICION	INSIZE	LLA - 017 - 2017	INACAL - DM

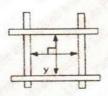
6. Condiciones Ambientales

	INICIAL	FINAL
Temperatura °C	21,7	21,7
Humedad %	59	59

- Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.

PUNTO DE PRECISION SAC

lefe/de Laboratorio Ing. Luis Loayza Capcha Reg. CIP Nº 152631




CERTIFICADO DE CALIBRACIÓN Nº LL - 204 - 2018

Página: 2 de 2

8. Resultados

												and the same of	(*)	
	MEDIDAS TOMADAS									PROMEDIO	ESTÁNDAR	ERROR	DESVIACIÓN ESTANDAR MÁXIMA	DESVIACIÓN ESTANDAR
2			7.	рі	n					μm	μm	μm	μm	μm
251,265	251,255	251,325	251,032	250,322	251,252	250,320	251,325	251,325	252,325	13/4		7		
252,325	250,125	251,255	250,325	250,222	250,325	250,314	250,320	250,325	251,232	er effor			-77	
251,425	251,252	250,125	250,412	250,325	252,320	250,314	250,325	250,325	250,421	19			17,99	9
251,252	250,252	252,232	250,365	253,230	250,125	250,425	250,322	250,145	251,242					0,74
251,254	250,325	251,425	251,525	251,250	250,142	250,310	250,142	250,255	250,125					
252,325	251,254	250,125	251,325	250,325	251,325	250,315	251,325	251,265	251,252			1.00		
252,252	252,325	251,245	251,325	250,325	251,252	250,222	252,362	250,265	250,125					
252,032	251,252	252,252	251,225	252,325	250,325	251,232	251,124	251,265	252,421	250,911	250,000	0,911		
251,033	250,325	250,125	250,124	250,325	251,325	250,325	250,325	251,826	251,425	1	230,000	,,,,,		
250,125	251,425	252,124	251,325	251,325	250,325	251,255	251,325	250,053	251,252					
250,325	250,325	251,325	250,325	250,325	251,425	250,325	250,325	252,322	251,425					
250,125	251,325	250,252	250,325	250,325	250,325	250,142	250,125	250,236	251,325				P Life	
250,125	250,325	251,250	251,325	252,325	252,362	250,150	251,325	251,425	251,252					100 m
250,325	251,325	251,254	251,225	250,325	251,232	250,232	252,325	250,253	250,325				1	497
251,255	250,125	252,325	250,325	250,235	250,325	251,232	250,325	251,232	251,232	2			Same of the	30
250,125	250,142	250,252	250,325	251,014	251,325	249,235	251,325	251,625	250,322	2	and the	100		No. of Lot

FIN DEL DOCUMENTO

Vefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP Nº 152631

CERTIFICADO DE CALIBRACIÓN Nº LL - 205 - 2018

Página : 1 de 2

Expediente

: T 107-2018

Fecha de Emisión

: 2018-03-03

1. Solicitante

: CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES SANTA

CRUZ S.R.L.

Dirección

: AV. ORIENTE NRO. 772 - CONCEPCION - JUNIN

2. Instrumento de Medición

: TAMIZ

Tamiz N°

: 80

Diametro de Tamiz

: 8 pulg.

Marca

: STANDARD TESTING SIEVE

Serie

: 80BS8F622954

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

3. Lugar y fecha de Calibración

LABORATORIO DE CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES SANTA CRUZ S.R.L. 03 - MARZO - 2018

4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

5. Trazabilidad

ISTRUMENTO	MARCA	CERTIFICADO	TRAZABILIDAD
ICROSCOPIO	INSIZE	LLA - 017 - 2017	INACAL - DM

6. Condiciones Ambientales

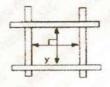
	INICIAL	FINAL
Temperatura °C	21,9	21,9
Humedad %	59	59

7. Observaciones

- Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
 - (*) Las variaciones no exceden a la variación máxima permisible según la norma ASTM E11-09.

PUNTO DE MERO DE PRECISIÓN SAC.

lefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP Nº 152631



CERTIFICADO DE CALIBRACIÓN Nº LL - 205 - 2018

Página : 2 de 2

8. Resultados

												A COLUMN	(*)			
			M	EDIDAS		ıs				PROMEDIO	ESTÁNDAR	ERROR	DESVIACIÓN ESTANDAR MÁXIMA	DESVIACIÓN ESTANDAR µm		
104 507	400 500	100 504	100.510	400 COO		400 500				μm	μm	μm	μm	μm		
181,527	182,532	183,524	182,512	183,526	182,514	182,530	182,636	181,514	180,265					199		
182,536	181,265	181,254	182,532	182,652	183,246	182,595	182,465	181,265	181,235							
182,654	182,359	182,650	182,456	183,251	180,256	182,545	181,265	181,247	182,653					1,12		
181,425	182,625	181,254	182,352	182,652	183,265	181,457	182,562	182,526	181,325							
182,562	183,265	181,245	181,256	182,565	182,451	181,425	181,236	181,520	184,165							
181,452	179,866	178,825	181,450	182,625	179,282	181,523	181,625	182,596	181,244							
179,526	181,425	181,520	182,562	182,365	180,425	181,254	181,652	182,352	182,325							
182,532	183,265	182,425	182,562	181,456	182,350	182,365	183,256	181,245	181,250							
182,326	183,256	181,425	182,325	183,425	181,265	182,326	181,265	182,235	181,425							
181,425	181,620	182,520	180,352	182,425	182,598	182,421	182,360	182,478	179,560							
181,425	179,825	180,460	180,253	180,256	180,453	180,885	181,526	181,250	181,525	181,507	180,000	1,507	14,65			
180,244	181,250	181,425	181,654	181,455	179,265	181,250	182,655	181,245	181,265							
179,820	179,256	179,425	181,425	180,232	180,265	180,425	182,653	179,624	181,524							
181,526	182,532	180,424	180,265	181,256	180,455	180,265	181,245	181,625	182,655	4		19				
178,624	182,532	181,425	179,625	179,485	182,435	182,650	182,451	181,425	181,365				of the last			
181,425	181,635	182,532	179,468	181,425	181,622	180,352	179,625	181,251	180,362							
181,425	181,254	182,356	182,150	181,425	181,620	182,520	181,520	182,365	183,256					W S		
181,562	182,350	179,568	181,256	180,265	178,426	182,352	181,427	181,526	180,243	1			2	Marie Co		
182,758	181,524	179,625	181,425	180,326	181,524	179,625	181,245	181,256	182,352	1000	100	September 1		Cate Car		
179,625	180,256	181,245	179,825	178,258	180,256	181,556	182,326	181,244	181,869	100		98		70		

FIN DEL DOCUMENTO

lefe de Laboratorio Ing. Luis Ldayza Capcha Reg. CIP Nº 152631

CERTIFICADO DE CALIBRACIÓN Nº LL - 206 - 2018

Página: 1 de 2

Expediente Fecha de Emisión : T 107-2018 : 2018-03-03

recha de Emisic

. 2010-00-00

1. Solicitante

: CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES

SANTA CRUZ S.R.L

Dirección

: AV. ORIENTE NRO. 772 - CONCEPCION - JUNIN

2. Instrumento de Mediciór

: TAMIZ

Tamiz N°

: 140

Diametro de Tamiz

: 8 pulg.

Marca

: STANDARD TESTING SIEVE

Serie

: 140BS8F687896

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

3. Lugar y fecha de Calibración

LABORATORIO DE CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES SANTA CRUZ S.R.L. 03 - MARZO - 2018

00 11170000 2210

4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

5. Trazabilidad

INSTRUMENTO	MARCA	CERTIFICADO	TRAZABILIDAD
RETICULA DE MEDICION	INSIZE	LLA - 017 - 2017	INACAL - DM

6. Condiciones Ambientales

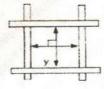
	INICIAL	FINAL
Temperatura °C	21,7	21,9
Humedad %	59	59

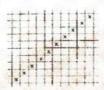
7. Observaciones

- Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.

PUNTO DE PRECISIÓN SAC.

Jeie de Laboratorio Ing. Luis Loayza Capcha Reg. CIP Nº 152631




CERTIFICADO DE CALIBRACIÓN Nº LL - 206 - 2018

Página: 2 de 2

8. Resultados

-		usees this											(*)	
MEDIDAS TOMADAS								PROMEDIO			MÁXIMA	DESVIACIÓN ESTANDAR		
				hi	n					μm	μm	μm	μm	μm
106,256	106,215	106,325	106,125	106,325	106,145	106,125	106,125	105,986	105,879	1000		91		0,16
106,322	106,245	106,125	106,421	106,125	106,056	106,069	106,036	105,955	106,045					
106,526	106,033	106,045	106,125	106,032	106,520	106,012	106,032	106,095	106,042					
106,083	106,097	106,085	106,045	106,036	106,033	106,032	106,069	106,458	106,235	Y				
106,420	106,521	106,125	106,325	106,425	106,023	106,325	106,235	105,986	105,865					
106,632	105,421	105,869	105,867	105,926	105,988	105,969	105,988	105,698	105,925					
106,235	105,988	106,013	106,305	106,035	106,023	106,040	106,032	106,032	105,865					
106,232	105,988	105,976	106,032	106,043	105,968	105,925	105,626	106,724	106,245					
106,254	106,035	106,085	106,002	105,986	105,969	105,979	106,265	106,125	106,325					
106,235	106,125	106,325	106,325	106,014	105,925	105,963	106,025	106,035	106,014		100			
106,025	106,035	106,045	106,069	106,056	106,005	105,925	105,988	105,926	106,032	106,051	106,000	0,051	10,77	
106,042	106,032	106,000	106,052	105,986	105,926	105,942	105,987	105,923	105,926					
105,986	105,850	105,926	105,924	106,032	106,004	106,059	106,073	106,040	105,999					
106,036	106,004	105,928	105,869	105,988	106,025	106,032	106,001	106,005	106,045				1977	1
105,956	105,928	105,658	106,033	106,045	106,025	106,036	106,052	105,998	105,927				T	
106,032	106,042	106,082	106,036	106,235	106,001	106,005	106,007	106,008	106,009			1,355		19 COS
105,987	105,928	105,926	105,826	105,982	105,926	105,982	105,924	105,927	106,032			S AS	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1900
106,043	106,032	106,006	106,083	105,927	105,982	105,923	105,926	105,988	106,032	THE STATE OF		- 01	100	150
106,052	105,980	105,989	105,988	105,987	105,658	106,032	106,033	106,000	106,125	as Page		1000	A STATE OF	
106,025	105,999	105,898	105,947	106,025	106,047	106,256	106,325	106,124	106,036	100			15 00	1

FIN DEL DOCUMENTO

lete de Laboratorio Ing. Luis Loayza Capcha Reg. CIP Nº 152631

CERTIFICADO DE CALIBRACIÓN Nº LL - 207 - 2018

Página: 1 de 2

Expediente Fecha de Emisión : T 107-2018 : 2018-03-03

1. Solicitante

: CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES

SANTA CRUZ S.R.L.

Dirección

: AV. ORIENTE NRO. 772 - CONCEPCION - JUNIN

2. Instrumento de Mediciór

: TAMIZ

Tamiz Nº

: 200

Diametro de Tamiz

: 8 pulg.

Marca

: STANDARD SIEVE SERIES

Serie

: NO INDICA

El Equipo de medición con el modelo y número de serie abajo. Indicados ha sido calibrado probado y verificado usando patrones certificados con trazabilidad a la Dirección de Metrología del INACAL y otros.

Los resultados son válidos en el momento y en las condiciones de la calibración. Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

Punto de Precisión S.A.C no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

3. Lugar y fecha de Calibración

LABORATORIO DE CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES SANTA CRUZ S.R.L.

4. Método de Calibración

Calibración efectuada por comparación directa con patrones de longitud calibrados, tomando como referencia la norma ASTM E 11-09.

5. Trazabilidad

INSTRUMENTO	MARCA	CERTIFICADO	TRAZABILIDAD		
RETICULA DE MEDICION	INSIZE	LLA - 017 - 2017	INACAL - DM		

6. Condiciones Ambientales

	INICIAL	FINAL
Temperatura °C	21,7	21,7
Humedad %	59	59

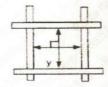
7. Observaciones

- Con fines de identificación se ha colocado una etiqueta autoadhesiva de color verde con el número de certificado y fecha de calibración de la empresa PUNTO DE PRECISIÓN S.A.C.
- (*) La desviación estandar encontrada no excede a la desviación estandar máxima de la tabla 1 según la norma ASTM E11-09.

PUNTO DE PRECISIÓN SAC.

Vefe de Laboratorio Ing. Luis Lpayza Capcha Reg. CIP Nº 152631

CERTIFICADO DE CALIBRACIÓN Nº LL - 207 - 2018


Página: 2 de 2

8. Resultados

			М	EDIDAS		AS				PROMEDIO µm	ESTÁNDAR µm	ERROR	(*) DESVIACIÓN ESTANDAR MÁXIMA µm	DESVIACIÓN ESTANDAR
74.658	76,265	74,655	76,265	74,825	76,268	76,326	76,285	76,125	74,825	Pill	100	parit	pin	pint
75,265	74,625	76,125	75,265	75,265	77,658	76,966	75,625	74,266	76,458			2		
					110 110 110									
75,265	75,265	74,256	77,458	72,625	74,155	75,458	74,128	74,856	76,988					
72,326	74,655	76,869	76,265	74,550	76,222	74,265	76,658	75,625	75,658	-				
74,255	73,265	74,180	74,825	75,625	76,458	73,265	75,625	76,265	77,650					100
75,125	74,125	72,625	76,265	75,144	76,265	71,255	75,658	74,255	74,856			Ser.	7.5	
75,265	75,625	73,265	74,855	76,265	76,265	75,656	74,825	73,265	77,859					
75,124	75,625	72,562	73,265	72,855	75,958	76,864	75,658	72,458	76,568					
74,125	74,265	74,526	74,565	74,446	74,856	76,444	75,458	75,625	75,658				100	
74,362	73,265	72,855	76,586	72,458	76,856	71,285	76,568	76,458	77,859	187 / 18				100
72,585	75,265	74,662	74,625	72,625	76,265	73,265	75,658	76,568	76,565					
73,265	74,214	74,255	72,658	76,625	72,625	74,825	74,580	74,650	75,120					
75,625	75,625	73,265	72,458	77,855	74,254	74,265	75,658	76,855	73,265	75,011	75,000	0,011	9,02	1,50
75,265	74,265	72,145	73,265	78,568	75,250	78,655	76,458	74,715	75,658					100
75,625	75,625	72,625	74,255	76,650	76,265	74,855	75,856	76,265	76,265					
74,856	76,255	73,265	76,558	73,265	75,655	73,265	74,568	76,265	74,856		10	200		and No.
76,265	75,625	72,625	77,855	74,129	74,856	73,265	76,568	77,458	75,658			-	AM CAN	
72,458	74,258	76,265	74,585	74,825	74,680	74,855	74,855	73,265	74,855				1	30 B
72,625	73,265	75,248	76,658	75,268	76,658	74,856	75,236	74,568	76,655	AS E		10 Table 1		A PARTY
72,456	75,625	75,485	75,856	72,235	72,856	76,265	74,125	76,265	77,856				300	
73,847	72,625	72,625	75,655	76,265	73,265	76,458	72,325	77,856	76,245	-			37	
76,256	71,458	76,265	74,858	74,840	76,655	76,585	75,625	76,650	74,820	54 163K				
76,245	73,265	72,584	73,265	72,325	74,856	74,125	74,254	74,825	74,856	Service Control			13850	18 mg
74,855	75,845	72,625	75,568	73,265	75,428	76,265	73,265	76,265	76,600	200		100	F 742	10
75,625	74,532	73,265	74,257	74,855	76,268	77.856	71,458	76,265	76,855		10.75	La Property	Service Control	and a

Jeie de Laboratorio Ing. Luís Loayza Capcha Reg. CIP Nº 152631

FIN DEL DOCUMENTO

CERTIFICADO DE CALIBRACIÓN Nº LB - 217 - 2018

Página: 1 de 3

Expediente Fecha de Emisión

T 107-2018 : 2018-03-03

1. Solicitante

CONSTRUCTORA INGENIEROS Y ARQUITECTOS

ASESORES SANTA CRUZ S.R.L.

Dirección

: AV. ORIENTE NRO. 772 - CONCEPCION - JUNIN

2. Instrumento de Medición

: BALANZA

Marca

: OHAUS

Modelo

: SE402F

Número de Serie

: B145294233

Alcance de Indicación

División de Escala

: 400 g

de Verificación (e)

: 0,1 g

División de Escala Real (d) : 0,01 g

Procedencia

: USA

Identificación

: NO INDICA

Tipo

: ELECTRÓNICA

Ubicación

: LABORATORIO

Fecha de Calibración

: 2018-03-03

La incertidumbre reportada en el presente certificado es incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estándar por el factor de cobertura k=2. La incertidumbre fue determinada según la "Guía para la Expresión de la incertidumbre en la medición". Generalmente, el valor de la magnitud está dentro del intervalo de los valores determinados con la incertidumbre expandida con una probabilidad de aproximadamente 95 %.

Los resultados son válidos en el momento y en las condiciones en que se realizarón las mediciones y no debe ser utilizado como certificado de conformidad con normas de productos o como certificado del sistema de calidad de la entidad que lo produce.

Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso. conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

PUNTO DE PRECISIÓN S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aquí declarados.

3. Método de Calibración

La calibración se realizó mediante el método de comparación según el PC-001 3ra Edición, 2009; Procedimiento para la Calibración de Balanzas de Funcionamiento no Automático Clase III y IIII del SNM-INDECOPI.

4. Lugar de Calibración

LABORATORIO de CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES SANTA CRUZ S.R.L. AV. ORIENTE NRO. 772 - CONCEPCION - JUNIN

Jete de Laboratorio Ing. Luis Loayza Capcha Reg. CIP Nº 152631

CERTIFICADO DE CALIBRACIÓN № LB - 217 - 2018

Página: 2 de 3

5. Condiciones Ambientales

	Inicial	Final		
Temperatura	21,4 °C	21,4 °C		
Humedad Relativa	60 %	60 %		

6. Trazabilidad

Este certificado de calibración documenta la trazabilidad a los patrones nacionales, que realizan las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

Trazabilidad INACAL - DM	Patrón utilizado	Certificado de calibración		
INACAL - DM	Pesas (exactitud F1)	LM-C-140-2017		

7. Observaciones

Los errores máximos permitidos (e.m.p.) para esta balanza corresponden a los e.m.p. para balanzas en uso de funcionamiento no automático de clase de exactitud III, según la Norma Metrológica Peruana 003 - 2009. Instrumentos de Pesaje de Funcionamiento no Automático.

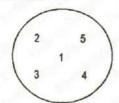
Se colocó una etiqueta autoadhesiva de color verde con la indicación de "CALIBRADO".

Los resultados de este certificado de calibración no debe ser utilizado como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

8. Resultados de Medición

INSPECCIÓN VISUAL							
AJUSTE DE CERO	TIENE	ESCALA	NO TIENE				
OSCILACIÓN LIBRE	TIENE	CURSOR	NO TIENE				
PLATAFORMA	TIENE	SIST. DE TRABA	NO TIENE				
NIVELACIÓN	TIENE						

ENSAYO DE REPETIBILIDAD

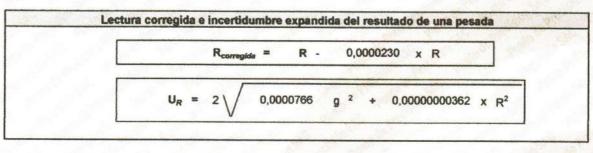

Medición	Carga L1=	7emp. (*		Carga L2=	400.00	480,00 g		
N°	1(9)	ΔL(mg)	E(mg)	I(g)	ΔL(mg)	E(mg)		
1	200,00	9	4	400,00	6	-1		
2	200,00	8	-3	400,00	8	-3		
3	200,00	7	-2	400,01	5	10		
4	200,00	8	-3	400,00	9	4		
5	200,00	9	-4	400,00	8	-3		
6	200,01	5	10	400,00	7	-2		
7	200,00	8	-3	400,01	3	12		
8	200,00	7	-2	400,01	5	10		
9	200,00	9	-4	400,00	8	-3		
10	200,01	4	11	400,00	6	-1		
erencia Máxima			15			16		
or máximo permi	tido ±	200 n	ng	±	300 1			

PUNTO DE PRECISION S.A.C.

lefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP Nº 152631

Punto de Precisión SAC

CERTIFICADO DE CALIBRACIÓN Nº LB - 217 - 2018


Página: 3 de 3

ENSAYO DE EXCENTRICIDAD

			Temp. (°C)	21,4	21,4	The same of the sa					
Posición Determinación de E ₈					Determinación del Error corregido						
de la Carga	Garga minima (g)	l(g)	ΔL(mg)	Eo(mg)	Carga (g)	l(g)	ΔL(mg)	E(mg)	Ec(mg)		
1		0,10	6	-1		100,00	6	-1	0		
2		0,10	5	0		100,00	9	4	4		
3	0,10	0,10	9	4	100,00	100,00	8	-3	1		
4		0,10	8	-3		100,01	4	11	14		
5		0,10	7	-2		100,00	7	-2	0		
valor entre 0	10 a				Error mévio	on normalida .		200			

ENSAYO DE PESAJE

			Temp. (°C)	21,4	21,4					
Carga		CRECIEN	TES		DECRECIENTES					
L(g) (g)	AL(mg)	E(mg)	Ec(mg)	l(g)	AL(mg)	E(mg)	Ec(mg)	±(mg)		
0,10	0,10	6	-1						100	
0,20	0,20	9	4	-3	0,20	5	0	1	100	
0,50	0,50	8	-3	-2	0,50	6	-1	0	100	
1,00	1,00	5	0	1	1,00	8	-3	-2	100	
10,00	10,00	7	-2	-1	10,00	9	-4	-3	100	
25,00	25,00	8	-3	-2	25,00	6	-1	0	100	
50,00	50,00	5	0	1	50,00	7	-2	-1	100	
100,00	100,01	3	12	13	100,00	8	-3	-2	200	
200,00	200,00	8	-3	-2	200,01	3	12	13	200	
300,00	300,01	4	11	12	300,01	5	10	11	300	
400,00	400,00	9	4	-3	400,00	9	-4	-3	300	

R: en

FIN DEL DOCUMENTO

Jefe de Laboratorio Ing. Luis Loayza Capch Reg. CIP Nº 152631

PT-06.F06 / Diciembre 2016 / Rev 02

CERTIFICADO DE CALIBRACIÓN Nº LB - 218 - 2018

Página: 1 de 3

Expediente Fecha de Emisión T 107-2018 2018-03-03

1. Solicitante

CONSTRUCTORA INGENIEROS Y ARQUITECTOS

ASESORES SANTA CRUZ S.R.L.

Dirección

: AV. ORIENTE NRO. 772 - CONCEPCION - JUNIN

2. Instrumento de Medición

: BALANZA

Marca

: OHAUS

Modelo

: R31P30

Número de Serie

: 8335320413

Alcance de Indicación

: 30000 g

División de Escala

de Verificación (e)

: 10 g

División de Escala Real (d)

Procedencia

· IISA

Identificación

: NO INDICA

Tipo

: ELECTRÓNICA

Ubicación

: LABORATORIO

Fecha de Calibración

: 2018-03-03

La incertidumbre reportada en el presente certificado es incertidumbre expandida de medición que resulta de multiplicar la incertidumbre estándar por el factor de cobertura k=2. La incertidumbre fue determinada según la "Guía para la Expresión de la incertidumbre en la medición". Generalmente, el valor de la magnitud está dentro del intervalo de los determinados con la incertidumbre expandida con una probabilidad de aproximadamente 95 %.

Los resultados son válidos en el momento y en las condiciones en que se realizarón las mediciones v no debe ser utilizado como certificado de conformidad con normas de productos o como certificado del sistema de calidad de la entidad que lo produce.

Al solicitante le corresponde disponer en su momento la ejecución de una recalibración, la cual está en función del uso, conservación y mantenimiento del instrumento de medición o a reglamentaciones vigentes.

PUNTO DE PRECISIÓN S.A.C. no se responsabiliza de los perjuicios que pueda ocasionar el uso inadecuado de este instrumento, ni de una incorrecta interpretación de los resultados de la calibración aqui declarados

3. Método de Calibración

La calibración se realizó mediante el método de comparación según el PC-001 3ra Edición, 2009; Procedimiento para la Calibración de Balanzas de Funcionamiento no Automático Clase III y IIII del SNM-INDECOPI.

4. Lugar de Calibración

LABORATORIO de CONSTRUCTORA INGENIEROS Y ARQUITECTOS ASESORES SANTA CRUZ S.R.L. AV. ORIENTE NRO. 772 - CONCEPCION - JUNIN

Jefe de Laboratorio Ing. Luis Loayza Capcha Reg. CIP Nº 152631

CERTIFICADO DE CALIBRACIÓN Nº LB - 218 - 2018

Página: 2 de 3

5. Condiciones Ambientales

	Inicial	Final
Temperatura	20,8 °C	21,0 °C
Humedad Relativa	61 %	61 %

6. Trazabilidad

Este certificado de calibración documenta la trazabilidad a los patrones nacionales, que realizan las unidades de medida de acuerdo con el Sistema Internacional de Unidades (SI).

Trazabilidad	Patrón utilizado	Certificado de calibración			
INACAL - DM	Pesas (exactitud F1 y F2)	LM-C-140-2017 LM-093-2018	1	LM-102-2017 LM-094-2018	
	1.2)	LM-095-2018			

7. Observaciones

Los errores máximos permitidos (e.m.p.) para esta balanza corresponden a los e.m.p. para balanzas en uso de funcionamiento no automático de clase de exactitud III, según la Norma Metrológica Peruana 003 - 2009. Instrumentos de Pesaje de Funcionamiento no Automático.

Se colocó una etiqueta autoadhesiva de color verde con la indicación de "CALIBRADO".

Los resultados de este certificado de calibración no debe ser utilizado como una certificación de conformidad con normas de producto o como certificado del sistema de calidad de la entidad que lo produce.

8. Resultados de Medición

INSPECCIÓN VISUAL						
AJUSTE DE CERO	TIENE	ESCALA	NO TIENE			
OSCILACIÓN LIBRE	TIENE	CURSOR	NO TIENE			
PLATAFORMA	TIENE	SIST. DE TRABA	NO TIENE			
NIVELACIÓN	TIENE	THE PERSON NAMED IN				

ENSAYO DE REPETIBILIDAD

		Temp. ((C) 20,8	20,8	- A		
Medición	Carga L1= 15 000 g			Carga L2=	30 000	30 000 g	
N°	I(g)	AL(g)	E(g)	l(g)	AL(g)	E(g)	
1	15 000	0,8	-0,3	30 000	0,6	-0,1	
2	15 000	0,5	0,0	30 000	0,8	-0,3	
3	15 000	0,9	-0,4	30 001	0,5	1,0	
4	15 001	0,3	1,2	30 000	0,9	-0,4	
5	15 000	0,5	0,0	30 000	0,6	-0,1	
6	15 000	0,6	-0,1	30 001	0,4	1,1	
7	15 000	0,7	-0,2	30 001	0,5	1,0	
8	15 000	0,8	-0,3	30 000	0,8	-0,3	
9	15 001	0,5	1,0	30 000	0,6	-0,1	
10	15 001	0,4	1,1	30 001	0,5	1,0	
erencia Máxima			1,6			1,5	
or máximo permi	tido ±	20 g		±	30 g	The second second	

PUNTO DE PRECISION SAC.

Jefe de Laboratorio Ing. Luis Loayza Capch Reg. CIP Nº 152631

PT-06.F06 / Diciembre 2016 / Rev 02

CERTIFICADO DE CALIBRACIÓN Nº LB - 218 - 2018

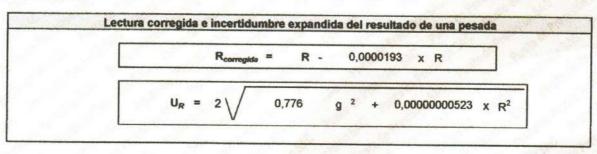
Página: 3 de 3

2 5 1 3 4

Vista Frontal

ENSAYO DE EXCENTRICIDAD

Inicial Final


Posición de la Carga minima (g)		Determinación de E _e				Determinación del Error corregido				
	I(g)	AL(g)	Eo(g)	Carga (g)	l(g)	AL(g)	E(g)	Ec(g)		
1	10	10	0,7	-0,2	10 000	10 000	0,9	-0.4	-0,2	
2		10	0,6	-0,1		10 000	0,6	-0,1	0,0	
3		10	0,5	0,0		10 000	0,8	-0,3	-0,3	
4		10	0,8	-0,3		10 001	0,3	1,2	1,5	
5		10 0,6 -0,1	10 000	0,7	-0,2	-0,1				
valor entre 0 y	10 e	-	100		Error máxin	no permitido :	±	20 g		

ENSAYO DE PESAJE

Inicial Final emp. (°C) 20,9 21,0

Carga L(g)		CRECIEN	DECRECIENTES				emp(**)		
	(g)	AL(g)	E(g)	Ec(g)	1(g)	AL(g)	E(g)	Ec(g)	#(9)
10	10	0,6	-0,1						10
20	20	0,5	0,0	0,1	20	0,7	-0,2	-0,1	10
100	100	0,6	-0,1	0,0	100	0,6	-0,1	0.0	10
500	500	0,9	-0,4	-0,3	500	0,8	-0,3	-0,2	10
1 000	1 000	0,6	-0,1	0,0	1 000	0,9	-0,4	-0,3	10
5 000	5 000	0,5	0,0	0,1	5 000	0,9	-0,4	-0,3	10
10 000	10 000	0,8	-0,3	-0,2	10 001	0,3	1,2	1,3	20
15 000	15 000	0,7	-0,2	-0,1	15 000	0,6	-0,1	0,0	20
20 000	20 001	0,3	1,2	1,3	20 000	0,8	-0.3	-0,2	20
25 000	25 001	0,5	1,0	1,1	25 001	0,4	1,1	1,2	30
30 000	30 000	0,6	-0,1	0,0	30 000	0,6	-0,1	0,0	30

(**) error máximo permitido

R : Lectura de la balanza

AL: Carga Incrementad

: Error encontra

E.: Error en

F.

Error corregido

R: en g

FIN DEL DOCUMENTO

lefe de Laboratorio Ing. Łuis Loayza Capcha Reg. CIP Nº 152631

PT-06.F06 / Diciembre 2016 / Rev 02

Anexo N° 4: Panel Fotográfico

"APLICACIÓN DE POLVO DE CONCRETO RECICLADO EN EL COMPORTAMIENTO REOLÓGICO DE MEZCLAS ASFALTICAS CALIENTE, HUANCAYO - 2018"

PANEL FOTOGRÁFICO

FOTOGRAFÍA Nº 1

Aquí se visualiza el tamizado del polvo de concreto reciclado.

FOTOGRAFIA N° 2

Aquí visualizamos el tamizado del agregado grueso y retenido de las mallas ¾", ½", 3/8", del agregado fino para realizar las briquetas del ensayo Marshall y Cántabro.

FOTOGRAFIA Nº 4

Aquí se visualiza el pesaje del agregado fino para realizar las briquetas del ensayo Marshall y Cántabro

Aquí se visualiza el pesaje del agregado grueso para realizar las briquetas del ensayo Marshall y Cántabro

FOTOGRAFIA Nº 5

Aquí se visualiza el pesaje del polvo de concreto reciclado para realizar las briquetas del ensayo Marshall y Cántabro.

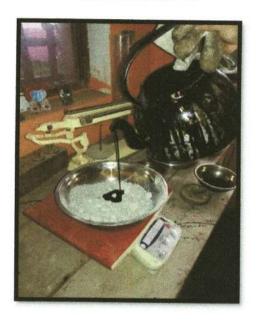
FOTOGRAFIA Nº 6

Aquí se visualiza el pesaje del polvo de concreto reciclado para realizar las briquetas del ensayo Marshall y Cántabro para cada uno de los porcentajes del polvo de concreto reciclado.

FOTOGRAFÍA Nº 7

Aquí se visualiza el pesaje del agregado grueso, fino y del polvo de concreto reciclado, para cada una de las briquetas del ensayo Marshall y Cántabro.

FOTOGRAFIA N° 8


Aquí se visualiza todos los pesajes agregado grueso, fino y del polvo de concreto reciclado, para cada una de las briquetas del ensayo Marshall y Cántabro para cada uno de los porcentajes.

FOTOGRAFIA Nº 9

Aquí se visualiza todos los pesajes agregado grueso, fino y del polvo de concreto reciclado, para cada una de las briquetas del ensayo Marshall y Cántabro para cada de uno los porcentajes.

FOTOGRAFÍA Nº 11

Aquí se visualiza el pesaje del agregado grueso y fino ya calentado a 150°C donde se incorpora el PEN 85/100 que se encuentra a 150°C.

FOTOGRAFÍA Nº 10

Aquí se visualiza al PEN 85/100 que es colocado en el horno para mantener la temperatura.

Aquí se visualiza al agregado grueso, fino, polvo de concreto reciclado y PEN 85/100, siendo mezclados en la cocina industrial.

FOTOGRAFIA Nº 13

Aquí se visualiza el mezclado del agregado grueso, fino, polvo de concreto reciclado y PEN 85/100, controlando la temperatura.

FOTOGRAFÍA Nº 15

Una vez alcanzado la temperatura del mezclado de la mezcla asfáltica se procede al llenado de la briqueta, llenando en dos tiempos.

FOTOGRAFÍA Nº 14

Una vez alcanzado la temperatura del mezclado de la mezcla asfáltica se procede al llenado de la briqueta, llenando en dos tiempos.

FOTOGRAFÍA Nº 16

Una vez que se tiene la mezcla asfáltica en la briqueta se procede a llevar al martillo de compactación, siendo compactado ambas caras por 75 golpes cada una.

FOTOGRAFÍA Nº 17

FOTOGRAFÍA Nº 18

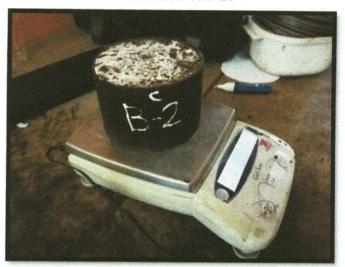
asfáltica en la briqueta se procede a llevar al martillo de compactación, siendo compactado ambas caras por 75 golpes cada una.

Una vez que se

tiene la mezcla

FOTOGRAFÍA Nº 19

FOTOGRAFÍA Nº 20



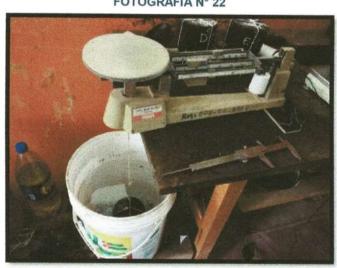
Aquí se visualiza las briquetas del MAC convencional adicionado el polvo concreto reciclado al 1%, 1.5% 2% respectivamente.

Luego de un tiempo se procede desmoldar con el extractor de núcleo de muestras.

Aquí se visualiza las briquetas del MAC convencional adicionado el polvo concreto reciclado al 1%, 1.5% У 2% respectivamente.

FOTOGRAFÍA Nº 21

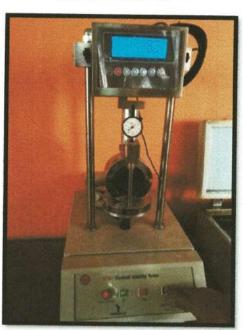
Aquí se visualiza el pesaje en seco de cada una de las briquetas con/sin polvo de concreto reciclado.


FOTOGRAFÍA Nº 23

Aquí se visualiza donde sumergen las briquetas a baño maría, para nuestro caso entran 10 briquetas y deben llegar a 60°C.

FOTOGRAFÍA Nº 24

FOTOGRAFÍA Nº 22


Aquí se visualiza el pesaje bajo agua de las briquetas con/sin polvo de concreto reciclado.

Una vez alcanzado la temperatura del baño maría, se procede a la rotura de cada una de las briquetas con/sin polvo de concreto reciclado con la máquina de carga de comprensión.

100

FOTOGRAFÍA Nº 25

Se visualiza la briqueta siendo colocado la abrazadera para luego ser llevado a la máquina de carga de comprensión.

FOTOGRAFIA Nº 26

Se visualiza la rotura de cada una de las briquetas con/sin polvo de concreto reciclado con la máquina de carga de comprensión, midiendo el flujo y estabilidad.

FOTOGRAFÍA Nº 27

Aquí se visualiza el área donde se van realizando la rotura de las briquetas con/sin polvo de concreto reciclado.