UNIVERSIDAD PERUANA LOS ANDES FACULTAD DE INGENIERÍA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

"APLICACIÓN DE LAS CONDICIONES GEOMECÁNICAS DEL ÍNDICE SLOPE MASS RATING EN LA ESTABILIDAD DEL TALUD EN CARRETERA PUENTE COLLPA – YANACANCHA"

PRESENTADO POR:

Bach. CANDIOTTI DUEÑAS Fanny Veronica

LÍNEA DE INVESTIGACIÓN INSTITUCIONALTRANSPORTE Y URBANISMO

PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERA CIVIL

HUANCAYO – PERÚ 2023 Mg. Carlos Enrique Palomino Davirán **ASESOR**

DEDICATORIA

El presente trabajo de investigación va dedicado a Dios quien me brindó paciencia, perseverancia, fortaleza e inteligencia para culminar esta investigación.

A mis padres, hermana y tíos, personas excepcionales con un corazón bondadoso quienes me alentaron y apoyaron a continuar en cada etapa de mi formación profesional.

Bach. Fanny Veronica Candiotti Dueñas.

AGRADECIMIENTO

Quiero agradecer al Mg. Carlos Enrique Palomino Davirán asesor de esta investigación gracias a su dirección, conocimiento, enseñanza y colaboración me guió en el desarrollo de la tesis a fin de lograr los objetivos planteados.

También quiero agradecer a los ingenieros que realizaron estudios similares con anterioridad, cuya información ha sido de utilidad en la elaboración de esta investigación.

Bach. Fanny Veronica Candiotti Dueñas.

UNIVERSIDAD PERUANA LOS ANDES

FACULTAD DE INGENIERÍA DIRECCIÓN DE LA UNIDAD DE INVESTIGACIÓN

"Año del Fortalecimiento de la Soberanía Nacional"

EL DIRECTOR DE LA UNIDAD DE INVESTIGACIÓN DE LA FACULTAD DE INGENIERÍA DEJA:

CONSTANCIA N° 337

Que, el (la) bachiller: Bachilleres, Bachiller, FANNY VERONICA, CANDIOTTI DUEÑAS; de la Escuela Profesional de INGENIERÍA CIVIL, presentó la tesis denominada "APLICACIÓN DE LAS CONDICIONES GEOMECÁNICAS DEL ÍNDICE SLOPE MASS RATING EN LA ESTABILIDAD DEL TALUD EN CARRETERA PUENTE COLLPA – YANACANCHA", la misma que cuenta con 248 Páginas, ha sido ingresada por el SOFTWARE – TURNITIN FEEDBACK STUDIO obteniendo el 19% de similitud.

Se expide la presente constancia para los fines pertinentes.

Huancayo 28 de Octubre del 2022

Dr. Santiago Zevallos Salinas Director de la Unidad de Investigación

HOJA DE CONFORMIDAD DE MIEMBROS DEL JURADO

Dr. RUBÉN DARÍO TAPIA SILGUERA
PRESIDENTE

Mg. PORRÁS MAYTA JULIO FREDY JURADO REVISOR

Ing. FLORES ESPINOZA CARLOS GERARDO

JURADO REVISOR

Ing. CORDOVA ZORRILLA NATALY LUCIA ${\tt JURADO\ REVISOR}$

Mg. UNTIVEROS PEÑALOZA LEONEL

SECRETARIO DOCENTE

ÍNDICE

DEDICATORIA	iv
AGRADECIMIENTO	V
ÍNDICE	
ÍNDICE DE TABLAS	X
ÍNDICE DE FIGURAS	xiii
ÍNDICE DE GRÁFICAS	
SIGLAS, ABREVIATURAS Y ACRÓNIMOS	XV
RESUMEN	
ABSTRACT	xviii
INTRODUCCIÓN	xix
CAPÍTULO I	
PLANTEAMIENTO PROBLEMA	21
1.1. Descripción de la realidad problemática	21
1.2. Formulación del problema	
1.2.1. Problema general	23
1.2.2. Problemas específicos	23
1.3. Justificación	23
1.3.1. Justificación social	23
1.3.2. Justificación científica	24
1.3.3. Justificación metodológica	24
1.4. Delimitación del problema	
1.4.1. Espacial	
1.4.2. Temporal	25
1.4.3. Económica	25
1.5. Limitaciones	26
1.6. Objetivos	26
1.6.1. Objetivo general	26
1.6.2. Objetivos específicos	26
CAPÍTULO II	
MARCO TEÓRICO	27
2.1. Antecedentes	27
2.1.1. Antecedentes nacionales	27
2.1.2. Antecedentes internacionales	30
2.2. Marco conceptual	34
2.2.1. Metodología Slope Mass Rating	34
2.2.2. Características estructurales del macizo rocoso	55
2.2.3. Características litológicas de la roca intacta	55
2.2.4. Generalidades en la estabilidad de taludes	58
2.3. Definición de términos	65
2.4. Hipótesis	68
2.4.1 Hipótesis general	
2.4.2 Hipótesis específicas	68
2.5. Variables	69
2.5.1. Definición conceptual de la variable	
2.5.2. Definición operacional de la variable	
2.5.3. Operacionalización de la variable	72
CAPÍTULO III	

METODOLOGÍA	73
3.1. Método de investigación	73
3.2. Tipo de investigación	
3.3. Nivel de investigación	74
3.4. Diseño de la investigación	74
3.5. Población y muestra	
3.5.1. Universo	75
3.5.2. Población	75
3.5.3. Muestra	76
3.6. Técnicas e instrumentos de recolección de datos	76
3.6.1. Técnicas de recolección de datos	76
3.6.2. Instrumentos de recolección de datos	77
3.7. Procesamiento de la Información	78
3.8. Técnicas y análisis de datos	78
CAPÍTULO IV	80
RESULTADOS	
4.1. Descripción de los resultados	80
4.1.1. Georreferenciación de la zona de estudio.	
4.1.2. Caracterización litológica del área de estudio	81
4.1.3. Caracterización geomecánica del talud rocoso	
4.1.4. Análisis de estabilidad del talud por el método cinemático	
4.1.5. Valoración del índice Slope Mass Rating	115
4.1.6. Propuesta de sostenimiento del talud	120
4.2. Contrastación de hipótesis	126
4.2.1. Análisis estadístico	126
4.2.2. Contrastación de la hipótesis general	127
4.2.3. Contrastación de la hipótesis específica 'a'	130
4.2.4. Contrastación de la hipótesis específica 'b'	133
CAPÍTULO V	137
DISCUSIÓN DE RESULTADOS	137
5.1. Discusión general	137
5.1.1. Aplicación de las condiciones geomecánicas del índice Slope Mass Rating	(SMR)
	137
5.2. Discusiones específicas	
5.2.1. Calidad del macizo rocoso mediante la clasificación Rock Mass Rating	
5.2.2. Sub-factores de ajuste de las discontinuidades	
CONCLUSIONES	
RECOMENDACIONES	
REFERENCIAS BIBLIOGRÁFICAS	144
ANEXOS	156
ANEXO 01: Matriz de consistencia	
ANEXO 02: Matriz de operacionalización de variables	
ANEXO 03: Matriz de operacionalización del instrumento de investigación	
ANEXO 04: Instrumento de investigación 01: Guía de observación p	
georreferenciación de la zona en estudio.	
ANEXO 05: Instrumento de investigación 02: Guía de observación basada en el f	
normalizado para toma de datos de las discontinuidades en el macizo rocoso	
ANEXO 06: Instrumento de investigación 03: Guía de observación para ens	
resistencia de la roca con el método del martillo de rebote (ISRM - 2009)	175

ANEXO 07: Instrumento de investigación 04: Guía de observación para ensayo de
propiedades físicas de la roca (ASTM C97 / C97M–18)
ANEXO 08: Instrumento de investigación 05: Guía de observación para Inspección
petrográfica de roca en sección delgada (ASTM C1271-21)
ANEXO 09: Validación de los instrumentos de investigación, consentimiento informado
e informe de opinión del juicio de expertos191
ANEXO 10: Estadísticas de las condiciones de las discontinuidades y proyecciones
estereográficas con software DIPS
ANEXO 11: Análisis cinemático de la estabilidad del talud con software DIPS 211
ANEXO 12: Fichas de paráfrasis: Propiedades litológicas de la roca
ANEXO 13: Sección 225 del manual de carreteras, mantenimiento o conservación vial e
ítem 7.3 del manual de carreteras: túneles y obras complementarias. – Ministerio de
transportes y comunicaciones
ANEXO 14: Certificado de calibración de equipos219
ANEXO 15: Planos
ANEXO 16: Panel fotográfico de la aplicación de los instrumentos de investigación 230
· · · · · · · · · · · · · · · · · · ·

ÍNDICE DE TABLAS

Tabla 01. Ca	alidad del talud de roca según Rock Mass Rating (RMR)	34
Tabla 02. Ín	dices de campo para la resistencia de la roca intacta con esclerómetro	37
Tabla 03. Re	esistencia a la compresión uniaxial (megapascales) por tipo de roca	37
Tabla 04. Va	aloración de la resistencia a la compresión uniaxial (megapascales)	40
Tabla 05. Va	aloración del índice de calidad de la roca (RQD)	41
Tabla 06. Va	aloración del espaciamiento entre discontinuidades	42
	aloración de la persistencia en discontinuidades	
Tabla 08. Va	aloración de la abertura en discontinuidades	44
Tabla 09. Va	aloración de la rugosidad en discontinuidades	45
Tabla 10. Va	aloración del relleno entre discontinuidades	46
Tabla 11. Va	aloración de la alteración de discontinuidades	47
Tabla 12. Pu	untuación para la presencia de agua	48
	ub-factor de ajuste según el método de excavación	
	ub-factores de ajuste para discontinuidades propuesto por Romana	
Tabla 15. St	ub-factores de ajuste propuestas por Tómas, et al. (2006)	53
	lases de estabilidad de talud según Slope Mass Rating (SMR)	
	ope Mass Rating asociado al mecanismo de falla en el talud rocoso	
	létodos de sostenimiento sugeridos según el Índice Slope Mass Rating	
	peracionalización de las variables de la investigación	
	aracterísticas geométricas del talud en estudio	
	ltura, pendientes y volumen del talud en estudio por progresivas	
	dice Rock Quality Designation (RQD) por familias de discontinuidades	
	ensidad del macizo rocoso por cada estación geomecánica	
	esistencias a la compresión uniaxial del talud por estación geomecánica	
	anos de familias de discontinuidades en cada estación geomecánica	
	spaciamiento entre discontinuidades por estación geomecánica	
	ersistencias en las discontinuidades por estación geomecánica	
	bertura entre las discontinuidades por estación geomecánica	
	lteración de las discontinuidades por estación geomecánica1	
	arámetros geomecánicos del Rock Mass Rating en la familia 01-EG ₀₁ 1	
	arámetros geomecánicos del Rock Mass Rating en la familia 03-EG ₀₁ 1	
	arámetros geomecánicos del Rock Mass Rating en la familia 01-EG ₀₂ 1	
	arámetros geomecánicos del Rock Mass Rating en la familia 02-EG ₀₃ 1	
	arámetros geomecánicos del Rock Mass Rating en la familia 03-EG ₀₂ 1	
	arámetros geomecánicos del Rock Mass Rating en la familia 02-EG ₀₃ 1	
	arámetros geomecánicos del Rock Mass Rating en la familia 03-EG ₀₃ 1	
	aloración del Rock Mass Rating por familia de discontinuidades1	
	lecanismo de falla probable en el talud por estaciones geomecánicas 1	
	dices Slope Mass Rating por estaciones geomecánicas 1	
	rientaciones del talud y las discontinuidades1	
	ab-factores de ajuste para el cálculo del índice Slope Mass Rating 1	
	ab-factores de ajuste de discontinuidades en familia 02 y 03 1	
	ase de estabilidad de talud estudiado según índice Slope Mass Rating 1	
	létodos de sostenimiento según el índice SMR para el talud estudiado 1	
	nálisis de costos unitarios de instalación de sistema flexible de alta resisten	
para estabili	zación de taludes	22

Tabla 46. Análisis de costos unitarios de subpartida: Instalación de perno de anclaje
helicoidal123
Tabla 47 Análisis de costos unitarios de subpartida: Instalación de cable de acero interior
Tabla 48 Análisis de costos unitarios de subpartida: Instalación de cable de acero perimetral
I .
Tabla 49. Análisis de costos unitarios de subpartida: Instalación de mallas: de alta
resistencia y de triple torsión
Tabla 50. Análisis de costos unitarios por unidad de medida de desatado manual de roca
suelta en talud
Tabla 51. Normalidad de la variable dependiente: Estabilidad del talud126
Tabla 52. Contraste de hipótesis general con el estadístico T-Student unilateral para una
muestra
Tabla 53. Cálculo del p-valor y nivel de significancia para la hipótesis general 129
Tabla 54. Contraste de hipótesis específica 'a' con el estadístico T–Student unilateral para
una muestra
Tabla 55. Cálculo del p-valor y nivel de significancia para la hipótesis específica 'a' 132
Tabla 56. Contraste de la hipótesis específica 'b' con el estadístico T-Student bilateral
para muestras relacionadas
Tabla 57. Cálculo del p–valor y nivel de significancia para la hipótesis específica 'b' 135

ÍNDICE DE FIGURAS

Figura 01. Caída de rocas en la progresiva 018+632.14	. 22
Figura 02. Caída de rocas en progresiva 018+723	. 22
Figura 03. Delimitación espacial del problema	. 25
Figura 04. Relación entre resistencia a la compresión uniaxial de la roca y resistencia e	con
el martillo de Schmidt	. 36
Figura 05. Martillo de Schmidt (esclerómetro)	. 38
Figura 06. Espaciamiento entre discontinuidades de una misma familia.	. 42
Figura 07. Persistencia de discontinuidades	. 43
Figura 08. Abertura o apertura de discontinuidades.	. 44
Figura 10. Rugosidad de una superficie de discontinuidad	. 44
Figura 09. Tipos de rugosidad	. 45
Figura 11. Relleno entre discontinuidades.	. 46
Figura 12. Alteración biológica y física entre discontinuidades del talud	
Figura 13. Efecto del agua produce discontinuidades en macizo rocoso	. 48
Figura 14. Medición del buzamiento en las discontinuidades con brújula	
Figura 15. Medición del rumbo en las discontinuidades con brújula	. 49
Figura 16. Talud (plano inclinado), rumbo y buzamiento.	. 50
Figura 17. Dirección de inclinación y ángulo de buzamiento	. 50
Figura 18. Proyección estereográfica de un plano	
Figura 19. Vista en corte de los elementos del talud	. 58
Figura 20. Talud inestable.	. 59
Figura 21. Elementos de un deslizamiento planar de macizo rocoso	. 60
Figura 22. Clasificación de movimientos de masas propuesta por Varnes	
Figura 23. Deslizamiento planar de bloques de roca	
Figura 24. Bloqueo de carretera a causa de deslizamiento de rocas por falla planar	. 63
Figura 25. Análisis estereográfico de falla planar	. 64
Figura 26. Esquema de superficie o plano de falla planar en talud	
Figura 27. Cálculo del Rock Quality Designation mediante el software Geotable	
Figura 28. Resistencia a la compresión uniaxial en estación geomecánica EG ₀₁	
Figura 29. Resistencia a la compresión uniaxial en estación geomecánica EG ₀₂	
Figura 30. Resistencia a la compresión uniaxial en estación geomecánica EG ₀₃	
Figura 31. Ingreso de resistencia a la compresión uniaxial al software Geotable	
Figura 32. Análisis estadístico descriptivo de las condiciones de discontinuidades en	
estación geomecánica EG ₀₁ mediante el software Dips	
Figura 33. Análisis estadístico descriptivo de las condiciones de discontinuidades en	
estación geomecánica EG ₀₂ mediante el software Dips	
Figura 34. Análisis estadístico descriptivo de las condiciones de discontinuidades en	
estación geomecánica EG ₀₃ mediante el software Dips	
Figura 35. Orientación de los planos y polos de las discontinuidades al hemisferio sur	
el software Dips.	
Figura 36. Transformaciones de rumbos en direcciones de buzamientos por familias	
discontinuidades	
Figura 37. Diagrama estereográfico de planos de discontinuidades en estac	
geomecánica EG ₀₁	
Figura 38. Diagrama de rosetas y planos de discontinuidades 3D en estación geomecár	
Eigure 20 Diagrama estara gráfica de planes de discontinuidades en EG	
Figura 39. Diagrama estereográfico de planos de discontinuidades en EG ₀₂	. <i>7</i> 2

Figura 40. Diagrama de rosetas y planos de discontinuidades 3D en estación geomecánica
EG_{02}
Figura 41. Diagrama estereográfico de planos de discontinuidades en estación
geomecánica EG ₀₃ 93
Figura 42. Diagrama de rosetas y planos de discontinuidades 3D en estación geomecánica
EG_{03}
Figura 43. Software Geotable para estimar el índice Rock Mass Rating (RMR). Tomado
de software Geotable (Inmunt, 2020)
Figura 44. Ingreso a las clasificaciones geomecánicas en el software Geotable para
caracterización físico-mecánica del macizo rocoso. Tomado de (Inmunt, 2020) 108
Figura 45. Calidad del macizo rocoso en la familia de discontinuidades 01 de la estación
geomecánica EG ₀₁ 109
Figura 46. Calidad del macizo rocoso en familias de discontinuidades 03 de la estación
geomecánica EG ₀₁
Figura 47. Calidad del macizo rocoso en la familia de discontinuidades 01 de la estación
geomecánica EG ₀₂ 110
Figura 48. Calidad del macizo rocoso en la familia de discontinuidades 02 de la estación
geomecánica EG ₀₂
Figura 49. Calidad del macizo rocoso en familias de discontinuidades 03 de la estación
geomecánica EG ₀₂
Figura 50. Calidad del macizo rocoso en la familia de discontinuidades 02 de la estación
geomecánica EG ₀₃
Figura 51. Calidad del macizo rocoso en familias de discontinuidades 03 de la estación
geomecánica EG ₀₃
Figura 52. Reporte de calidad de macizos rocosos
Figura 53. Falla planar en la estación geomecánica EG ₀₁
Figura 54. Falla planar en familia de discontinuidades 02 de la EG ₀₂
Figura 55. Falla planar en familia de discontinuidades 02 de la EG ₀₃
Figura 56. Software SMRTool Beta para procesar datos y obtener índices Slope Mass
Rating
Figura 57. Índice Slope Mass Rating en la familia de discontinuidades 02 de la estación
geomecánica EG ₀₂
Figura 58. Índice Slope Mass Rating en la familia de discontinuidades 02 de la estación
geomecánica EG ₀₃ 118

ÍNDICE DE GRÁFICAS

Gráfica 01. Espaciamiento de discontinuidades en estación geomecánica EG ₀₁	94
Gráfica 02. Espaciamiento de discontinuidades en estación geomecánica EG ₀₂	95
Gráfica 03. Espaciamiento de discontinuidades en estación geomecánica EG ₀₃	95
Gráfica 04. Persistencia en discontinuidades de estación geomecánica EG ₀₁	96
Gráfica 05. Persistencia en discontinuidades de estación geomecánica EG ₀₂	
Gráfica 06. Persistencia en discontinuidades de estación geomecánica EG ₀₃	
Gráfica 07. Abertura entre discontinuidades de estación geomecánica EG ₀₁	
Gráfica 08. Abertura entre discontinuidades de estación geomecánica EG ₀₂	
Gráfica 09. Abertura entre discontinuidades de estación geomecánica EG ₀₃	
Gráfica 10. Rugosidad en discontinuidades de estación geomecánica EG ₀₁	99
Gráfica 11. Rugosidad entre discontinuidades de estación geomecánica EG ₀₂	. 100
Gráfica 12. Rugosidad entre discontinuidades de estación geomecánica EG ₀₃	. 100
Gráfica 13. Relleno entre discontinuidades de la estación geomecánica EG ₀₁	
Gráfica 14. Relleno entre discontinuidades de la estación geomecánica EG ₀₂	
Gráfica 15. Relleno entre discontinuidades de la estación geomecánica EG ₀₃	
Gráfica 16. Alteración de las discontinuidades en estación geomecánica EG ₀₁	. 102
Gráfica 17. Alteración de las discontinuidades en estación geomecánica EG ₀₂	
Gráfica 18. Alteración de las discontinuidades en estación geomecánica EG ₀₃	. 103
Gráfica 19. Presencia de agua en las discontinuidades de EG ₀₁	. 103
Gráfica 20. Presencia de agua en las discontinuidades de EG ₀₂	
Gráfica 21. Presencia de agua en las discontinuidades de EG ₀₃	. 104
Gráfica 22. Prueba de normalidad de la variable dependiente: Estabilidad del talud	
Gráfica 23. Distribución T-Student en hipótesis general	. 128
Gráfica 24. Distribución T-Student en hipótesis específica 'a'	
Gráfica 25. Distribución T–Student en hipótesis específica 'b	. 134

SIGLAS, ABREVIATURAS Y ACRÓNIMOS

ASTM : Sociedad americana de pruebas y materiales

CE : Componente estructural

DGPRCS : Dirección general de políticas y regulación en construcción y

saneamiento

EG : Estación geomecánica

EQ : Equivalente

: Galón gal

hh : Hora-hombre : Hora-máquina hm

HP : Caballos de fuerza

Inc. : Incluido

IGME : Instituto Geológico y Minero de España

IGP : Instituto Geofísico del Perú

INGEMMET: Instituto geológico, minero y metalúrgico

: Sociedad Internacional de Mecánica de Rocas **ISRM**

m.s.n.m. : Metros sobre el nivel del mar

MO : Mano de obra

MPa : Megapascal

MTC : Ministerio de Transportes y Comunicaciones

Nm : Newton metro

Osinergmin : Organismo Supervisor de la Inversión en Energía y Minería

RMR : Índice Rock Mass Rating

: Índice de la calidad de la Roca **RQD**

: Sistema electrónico de contrataciones del estado SEACE

: Sistema de información para la gestión del riesgo de desastres **SIGRID**

: Índice Slope Mass Rating **SMR**

: Universal transversal de Mercator **UTM**

Ø : Diámetro : Densidad

γ

: ángulo del talud ψt

ψi : ángulo de la discontinuidad

RESUMEN

El problema planteado en la tesis fue: ¿Cuál es el resultado de la aplicación de las condiciones geomecánicas del índice Slope Mass Rating (SMR) en la estabilidad de taludes de la carretera puente Collpa - Yanacancha? El objetivo general fue: Establecer el resultado de la aplicación de las condiciones geomecánicas del índice Slope Mass Rating (SMR) en la estabilidad de taludes de la carretera del puente Collpa - Yanacancha. Para ello se formuló la hipótesis general: La aplicación de las condiciones geomecánicas del índice Slope Mass Rating (SMR) permite estimar de manera óptima la estabilidad de taludes en la carretera del puente Collpa - Yanacancha, contrastada en el Capítulo IV Resultados del desarrollo de este estudio.

El método general de investigación fue científico y el método específico fue inductivodeductivo, el tipo de investigación aplicada, la tesis fue cuantitativa, de nivel descriptivoexplicativo con un diseño no experimental-transversal. La población estuvo constituida
por los taludes que presentan desprendimientos de rocas en la carretera puente Collpa Yanacancha en su extensión (progresiva inicial: km 0+000 hasta la progresiva final: km
40+056). El muestreo fue no probabilístico o dirigido entre las progresivas 18+632.14 a
18+982.14, correspondientes a los taludes rocosos inestables de la carretera puente Collpa
- Yanacancha.

En conclusión: Se estimó la estabilidad del talud rocoso como clase IV, tipo inestable (SMR global=30.00 puntos) luego de aplicar las condiciones geomecánicas del índice Slope Mass Rating, lo que permitió plantear la implementación de un sistema flexible de alta resistencia y desatar manualmente las rocas sueltas para estabilizarlo. Asimismo, mediante el estadístico T-Student se contrastaron las hipótesis de la investigación.

Palabras clave: Índice Slope Mass Rating, caracterización geomecánica, estabilidad del talud.

ABSTRACT

The problem posed in the thesis was: What is the result of the application of the

geomechanical conditions of the Slope Mass Rating (SMR) index in the slope stability of

the Collpa - Yanacancha bridge road? The general objective was: To establish the result

of the application of the geomechanical conditions of the Slope Mass Rating (SMR) index

in the slope stability of the Collpa - Yanacancha bridge road. For this purpose, the general

hypothesis was formulated: The application of the geomechanical conditions of the Slope

Mass Rating (SMR) index allows to optimally estimate the slope stability of the Collpa -

Yanacancha bridge road, contrasted in Chapter IV Results of the development of this

study.

The general research method was scientific and the specific method was inductive-

deductive, the type of applied research, the thesis was quantitative, descriptive-

explanatory level with a non-experimental-transversal design. The population consisted

of the slopes that present rock falls on the Collpa - Yanacancha bridge road in its extension

(initial progressive: km 0+000 to the final progressive: km 40+056). The sampling was

non-probabilistic or targeted between the 18+632.14 to 18+982.14 gradients,

corresponding to the unstable rocky slopes of the Collpa - Yanacancha bridge road.

In conclusion: The rock slope stability was estimated as class IV, unstable type (global

SMR=30.00 points) after applying the geomechanical conditions of the Slope Mass

Rating index, which allowed to propose the implementation of a high strength flexible

system and manually untie the loose rocks to stabilize it. Likewise, by means of the T-

Student statistic, the research hypotheses were contrasted.

Key words: Slope Mass Rating Index, characterisation geomechanics, slope behaviour.

xviii

INTRODUCCIÓN

La presente **investigación titulada** "Aplicación de las condiciones geomecánicas del índice Slope Mass Rating en la estabilidad del talud en carretera Puente Collpa – Yanacancha" se realizó para obtener el título profesional considerando la normativa vigente de la Universidad Peruana Los Andes; respecto al ámbito metodológico se ha producido un estudio cuantitativo orientado a indagar metodologías que promuevan la rapidez en el análisis de la estabilidad de taludes rocosos.

Para **estudiar esta problemática** (inestabilidades de taludes rocosos) es necesario conocer su causa principal: La desfavorable configuración geomecánica y geométrica de las discontinuidades y del talud (Alva Hurtado, 2006, [p. 4]). Esta tesis se realizó por el interés de proponer solución ante esta problemática que ocurre en el área de estudio. En tal sentido, es necesario realizar la investigación.

Los datos se obtuvieron a partir de: levantamiento topográfico, toma de muestras para la medición de los parámetros físicos y geomecánicos de la roca intacta, toma de datos de las características geomecánicas del talud, procesamiento con softwares especializados: Dips, SMRTools, Geotable; análisis e interpretación de datos aplicando la estadística descriptiva e inferencial, discusión de resultados, planteamiento de propuesta para estabilizar talud rocoso.

Para una mayor precepción, la tesis se ha estructurado en 5 capítulos que se precisan a continuación:

En el capítulo I.- Planteamiento del problema, consta de la formulación del problema de investigación dentro del cual detallo el problema general, los problemas específicos, justificación de la investigación, delimitaciones espacial, temporal, económica, el objetivo general y los objetivos específicos.

En el capítulo II.- Marco teórico, se redactaron los antecedentes nacionales e internacionales, el marco conceptual y la definición de términos, también se formuló la hipótesis general e hipótesis específicas, a partir de las cuales se definieron las variables de investigación a nivel conceptual y operacional.

En el capítulo III.- Metodología en el cual se detalló el método de investigación, el tipo de investigación, nivel de investigación, diseño de investigación, población y muestra, técnicas e instrumentos de recolección de datos, técnicas de procesamiento y análisis de la información y por último los aspectos éticos de la investigación.

En el capítulo IV.- Resultados, que consta de los resultados de la investigación, los

mismos que fueron expresados mediante tablas y gráficos en función a los objetivos.

También se logró contrastar la hipótesis general y las hipótesis específicas de la tesis con

el estadístico T-Student.

En el Capítulo V.- Discusión de resultados, se consideró el análisis y discusión de los

resultados que fueron contrastados con los antecedentes y demás teorías utilizadas en la

revisión bibliográfica de la investigación.

Para culminar se formularon las conclusiones y recomendaciones, así como las

referencias bibliográficas y en la parte final, se adjuntar los anexos con información

imprescindible que sustentan la elaboración de la tesis con el propósito de aportar y

generar trascendencia en la carrera de Ingeniería Civil.

Bach: Fanny Veronica CANDIOTTI DUEÑAS

XX

CAPÍTULO I

PLANTEAMIENTO PROBLEMA

1.1. Descripción de la realidad problemática

La inestabilidad en taludes rocosos se debe principalmente a la configuración geomecánica y geométrica del macizo rocoso, las cuales están relacionadas con la litología predominante y la presencia de agua (Alva Hurtado, 2006, [p. 4]); influye también la geometría del talud (altura y pendiente), las condiciones climatológicas de la zona y la forma de construcción del talud.

La inestabilidad de taludes ocasiona: deslizamientos y caídas de rocas que atentan contra la integridad física y el patrimonio de la población. Así lo demostró la base de datos internacional: Eventos de Emergencia EM-DAT (CENTRO de Investigación sobre Epidemiología de Desastres, 1988) al reconocer que al 2022 dichos peligros cobraron 605 muertes, 1393 heridos y 680 personas sin hogar.

Así mismo en Perú, entre los años 2003–2020 la base de datos de emergencia y daños (INDECI, 2022) reportó: 50 muertes, 93 heridos, y 396 viviendas destruidas a consecuencia de estos peligros. Según Luque-Poma, Rosado—Seminario, Pari–Pinto, Peña–Laureano y Huaman–Nieto (2020) en su Boletín C-72, en Junín entre 1995–2020 figuran 647 peligros por caída de rocas y

deslizamientos, por ejemplo, en los distritos de San Juan de Jarpa—Yanacancha. Ver mapa de susceptibilidad de Luque-Poma, *et al.* (2020).

Así mismo, según el inventario de peligros geológicos del Perú realizado por la base de datos GEOCATMIN (2013), en el distrito de San Juan de Jarpa y Yanacancha, los posibles efectos si no se estabilizan los taludes son: Daños a la plataforma de la infraestructura vial, destrucción de terrenos de pastoreo, terrenos de cultivo y viviendas.

De esta manera se explican las constantes caídas de rocas en el área a intervenir, las cuales impactan en la plataforma vial (figura 01 y 02), entre las progresivas 18+632.14 al 18+982.14 del tramo carretero puente Collpa—Yanacancha.

Figura 01. Caída de rocas en la progresiva 018+632.14 Fuente: Elaboración propia.

Figura 02. Caída de rocas en progresiva 018+723

Fuente: Elaboración propia.

Frente a esta problemática, la norma CE. 020 estabilización de suelos y taludes elaborada por la DIRECCIÓN General de Políticas y Regulación en Construcción y Saneamiento (2012, p.13.) recomienda entre otros métodos mejorar las propiedades del macizo; sin embargo, no especifica la metodología a emplear sino señala que el profesional responsable deberá seleccionarla adecuadamente.

En razón a ello, Jordá Bordehore y Tomás Jover (p. 6, 2014) después de aplicar la metodología Slope Mass Rating (SMR) en diferentes zonas de la cordillera de los Andes (Perú, Ecuador y Bolivia), recomiendan su uso para pre-diseñar taludes rocosos.

Razones por la cuales en la presente tesis se plantea la aplicación de las condiciones geomecánicas del índice Slope Mass Rating en el macizo rocoso con el propósito principal de estimar la estabilidad del talud, cuantificar la calidad del macizo rocoso, calcular la probabilidad y mecanismo de falla del talud y de cuerdo a dicha metodología plantear una medida de sostenimiento de taludes rocosos.

1.2. Formulación del problema

1.2.1. Problema general

¿Cuál es el resultado de la aplicación de las condiciones geomecánicas del índice Slope Mass Rating (SMR) en la estabilidad del talud de la carretera puente Collpa – Yanacancha?

1.2.2. Problemas específicos

- a) ¿Cuál es el resultado de la calidad del macizo rocoso mediante la clasificación geomecánica Rock Mass Rating para valorar la estabilidad del talud?
- b) ¿Cuáles son los valores de los sub–factores de ajuste de las discontinuidades para estimar la estabilidad del talud?

1.3. Justificación

1.3.1. Justificación social

La presente investigación contribuyó en gran medida a la sociedad al plantear una alternativa de solución ante inestabilidades en taludes rocosos que implican altos costos en mantenimiento de la infraestructura vial, así como pérdidas humanas; la estabilización de taludes rocosos en el tramo crítico

identificado beneficiará a los usuarios de la carretera puente Collpa—Yanacancha, así como a los pobladores de la comunidad campesina de Achipampa y de los distritos de San Juan de Jarpa y Yanacancha, Chupaca.

1.3.2. Justificación científica

Esta tesis se realizó con el propósito de aportar al conocimiento científico sobre la estabilidad de taludes rocosos mediante la aplicación de las condiciones geomecánicas del índice Slope Mass Rating (SMR), cuyos resultados se concretaron en una propuesta de solución.

Así también, la presente investigación buscó incentivar la aplicación de esta metodología en estudios geotécnicos de proyectos en los cuales se identifiquen taludes rocosos. La información contenida en la presente tesis podrá ser usada como marco teórico de futuras investigaciones y guía para aplicar dicha metodología. Por lo tanto, se requiere la presente tesis.

1.3.3. Justificación metodológica

En el desarrollo del presente estudio se empleó el método científico y las normativas internacionales de la Sociedad Internacional de Mecánica de Rocas (ISRM) y la Sociedad Americana para Pruebas y Materiales (ASTM) para evaluar el talud rocoso en estudio mediante la toma de datos con instrumentos de investigación validados por expertos (guías de observación) y el procesamiento de datos con softwares especializados.

La presente tesis ha sido guiada y orientada por el método científico desde su concepción: la observación y recopilación de datos hasta llegar a la discusión de resultados; esta tesis podrá ser tomada como base y antecedente para el desarrollo de nuevas investigaciones.

1.4. Delimitación del problema

1.4.1. Espacial

La investigación se proyecta desarrollar en:

Región : Junín

Provincia : Chupaca

Distrito : San Juan de Jarpa

Comunidad campesina : Achimpampa

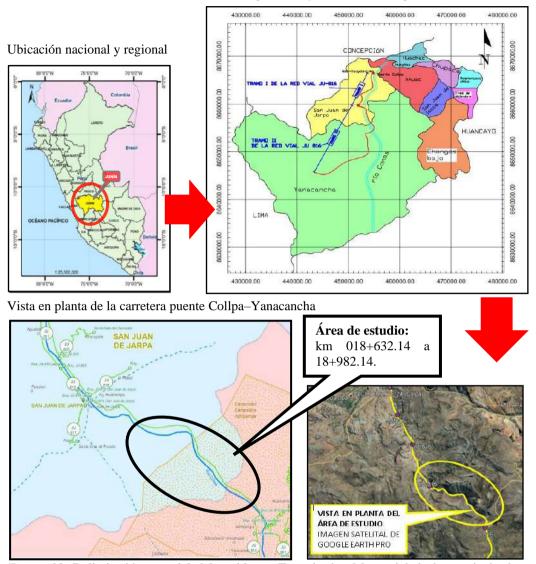


Figura 03. Delimitación espacial del problema. Tomada de «Mapa vial de la provincia de Chupaca, Dpto. de Junín», por Dirección General de Caminos y Ferrocarriles (MTC), 2017 y «Procesos ejecutados para el año 2006 del departamento de Junín, provincia Chupaca», por Sistema Electrónico de Contrataciones del Estado (SEACE), 2006.

1.4.2. Temporal

La investigación se desarrolló en el año 2021 entre los meses de febrero y octubre, donde se realizó un trabajo exclusivo de toma de datos en campo, ensayo de laboratorio, procesamiento e interpretación de datos en gabinete para finalmente estimar la estabilidad del talud.

1.4.3. Económica

Para el desarrollo de la investigación la tesista asumió la totalidad de los gastos financieros, por ende, la investigación fue autofinanciada.

1.5. Limitaciones

Durante el desarrollo de la presente investigación todos los habitantes del Perú atravesamos por una cuarentena para salvaguardar nuestra salud, razón por la cual se pausó por un lapso de tiempo el desarrollo del presente estudio.

A nivel local no se cuenta con ensayos de carga puntual ni compresión uniaxial de la roca intacta razón por la cual se optó por realizar el ensayo de martillo de rebote según normativa internacional ISRM 2009

1.6. Objetivos

1.6.1. Objetivo general

Establecer el resultado de la aplicación de las condiciones geomecánicas del índice Slope Mass Rating (SMR) en la estabilidad del talud en la carretera puente Collpa – Yanacancha.

1.6.2. Objetivos específicos

- a) Cuantificar el resultado de la calidad del macizo rocoso mediante la clasificación geomecánica Rock Mass Rating para valorar la estabilidad del talud.
- b) Calcular los valores de los sub-factores de ajuste de las discontinuidades para estimar la estabilidad del talud.

CAPÍTULO II MARCO TEÓRICO

2.1. Antecedentes

2.1.1. Antecedentes nacionales

-Bravo (2020) en su tesis: Análisis estratégico y evaluación, "Estabilidad de taludes del Ccaccañan" distrito Tambobamba, provincia de Cotabambas – región Apurímac período 2019" presentada para alcanzar el grado de magister en ingeniería civil con mención en geotecnia y vías terrestres en la Universidad Nacional de San Antonio Abad del Cusco plantea como **objetivo general**: determinar el análisis estratégico y evaluación "estabilidad de taludes" del Ccaccañan distrito Tambobamba, provincia de Cotabambas, Región Apurímac periodo 2019. Al desarrollar una investigación tipo aplicada, de nivel descriptivo-correlacional y diseño no experimental-transversal obtuvo como **resultados:** talud rocoso de calidad media, (RMR clase III) con posible falla planar en la familia de discontinuidades F1, a partir de estos resultados **se concluye** que el talud estudiado presentó estabilidad medía o parcial: bloques rocosos resistentes poco continuos por ello se recomienda implementar un sistema flexible compuesto por mallas y pernos de acero galvanizado así como

monitorear la zona para mitigar caídas de rocas. **El aporte de esta investigación** es que demuestra la importancia de las caracterizaciones geomecánicas del talud rocoso. La tesis muestra una alternativa en la elección del método, tipo, nivel y diseño de la investigación, además de la muestra de investigación.

- -Breña (2019), elaboró la tesis: "Estabilidad de taludes de la carretera longitudinal de la sierra; tramo Cochabamba-Cutervo-Chiple, Cajamarca-Perú", a fin de alcanzar el grado de magister en geología con mención en geotecnia en la Universidad Nacional Mayor de San Marcos cuya meta principal fue: Evaluar los resultados de los parámetros geotécnicos de la interacción roca-suelo que afecte la estabilidad de los taludes en el área de estudio, con una metodología: diseño experimental y nivel descriptivo se lograron los **resultados**: El sector crítico consta de taludes de roca tipo lutitas, esquistos (RMR = 60 puntos) con desprendimientos ocasionados por la gelifracción que desestabilizaron estratos resistentes de rocas tipo andesitas (RMR entre 90 a 100 puntos), para solucionar esta problemática se propone instalar pernos de anclaje el talud. Luego se concluye que los agentes desestabilizantes: infiltración agua, humedad, variaciones extremas de temperaturas y pendientes elevadas causan inestabilidades en los taludes en taludes de rocas ya que intervienen en procesos de meteorización y gelifracción. El aporte de esta investigación consistió en demostrar la influencia de las condiciones climáticas como agentes desestabilizantes de los taludes, a la vez suministrar sugerencias para la elección del tamaño de la muestra en la presente investigación.
- -D. Ortega (2019), en su tesis titulada: "Factor de seguridad y análisis de estabilidad del talud en roca, en la carretera Sarhua Porta Cruz, progresiva km 35+000 2018." para lograr el título de magister en ingeniería geotécnica y geomecánica aplicada a minería en la Universidad Nacional de Huancavelica, la investigación alcanzó su objetivo general: Determinar la estabilidad del talud en roca y el factor de seguridad, en la carretera Sarhua Porta Cruz, progresiva KM 35+000, Huancasancos-Ayacucho 2018 mediante una metodología de investigación científica, tipo aplicada con diseño no experimental transversal y de nivel descriptivo, obteniendo los resultados: El área de estudio posee

taludes de roca caliza con estratos de 400 metros, calidad media, estabilidad parcial de acuerdo al sistema Rock Mass Rating e índice Slope Mass Rating respectivamente; razón por la cual se propone construir banquetas. Finalmente, se generaron las **conclusiones**: Se caracterizaron 10 taludes rocosos en 8 estaciones geomecánicas mediante el índice Slope Mass Rating como parcialmente estables con un mecanismo de falla predominante tipo cuña; además se demostró que el talud es inestable debido a trabajos de excavación y voladura inadecuada. Luego se delimitó la pendiente máxima (α <83°) proponiendo la reducción de la pendiente y altura del talud para estabilizarlo (p. 47). **Este estudio aporta a la presente investigación** ya que evidencia los factores que afectan la estabilidad de taludes rocosos, además, sirvió como referente en la formulación del marco conceptual, técnicas de recolección, procesamiento y análisis de datos y la selección del método, tipo, nivel y diseño de la investigación, así como en la elaboración de los indicadores de las variables de investigación.

-Herrera (2020) en su tesis titulada "Caracterización geomecánica del macizo rocoso aplicado al análisis de estabilidad de taludes en el vacimiento Jésica, Ocuviri - Lampa - Puno - 2015 - 2016" para obtener el grado de magister en geología con mención en geotecnia en la Universidad Nacional Mayor de San Marcos logró su objetivo general: Determinar la importancia de la caracterización geomecánica del macizo rocoso por tipo de alteración hidrotermal para determinada la calidad del macizo rocoso y el análisis de estabilidad de taludes, en la explotación de un yacimiento de alta sulfuración explotado a tajo abierto. En su investigación de enfoque cuantitativo, diseño no experimental – transversal y nivel descriptivo–correlacional, obteniendo los resultados: Los taludes estudiados presentaron calidad media según sistema Rock Mass Rating, comportamiento estable a completamente inestable con un índice Slope Mass Rating entre 70 y 12 puntos, estos datos se relacionaron mediante la estadística descriptiva e inferencial alcanzando las conclusiones: La calidad del macizo rocoso y la estabilidad del talud están directamente relacionados, es decir, que a mayor calidad el macizo rocoso, el talud será más estable; esta afirmación se validó con el contraste de hipótesis. El aporte de esta investigación consistió el empleo de la estadística inferencial para relacionar las variables de estudio y validar sus hipótesis que servirá como referente para redactar el ítem 4.2 contrastación de hipótesis de la presente tesis con mayor énfasis en el la calidad y estabilidad del talud que en las alteraciones hidrotermales.

-J. Ortega (2018), en su investigación titulada: "Estudio geotécnico y geomecánico para el diseño del Túnel principal de la Mina Polveros, empresa Green Mine Ltda., Maripí – Boyacá, Colombia." a fin de alcanzar el grado de magister en ingeniería geotécnica y geomecánica aplicada a minería en la Universidad Nacional de Huancavelica fijo como objetivo general: Realizar el estudio Geotécnico y Geomecánico para el diseño del túnel principal de área de estudio, y evaluar el impacto que genera en el desarrollo minero del Municipio de Maripí – Boyacá. Para lo cual J. Ortega (2018) empleó un enfoque cuantitativo, diseño experimental con alcance exploratorio, realizando un análisis cinemático y ensayos de mecánica de rocas como: resistencia a la compresión uniaxial a fin de obtener resultados: Macizo rocoso de calidad media (RMR = 59 puntos), clase III según sistema Rock Mass Rating, con 3 familias de discontinuidades presentando una probabilidad de ocurrencia de falla por vuelco del 24% en la familia de discontinuidades 03 por lo que se propone un sostenimiento sistemático con pernos de anclaje. El autor arribó a las conclusiones: Gracias al mapeo geomecánico se identificaron 3 familias de discontinuidades con orientación predominante N10W, resistencia de la roca intacta 54.74 MPa, además el talud presentó una probabilidad de mecanismo de falla por vuelco del 24%. Se sugiere que la excavación puede auto-soportar un avance máximo de 5 metros lineales sin deformaciones significativas lineales, luego se deberá implementar sostenimiento sistemático con pernos de anclaje de 3 metros. El aporte de esta investigación es que muestra un caso real para análisis cinemático de la estabilidad de taludes y clasificación geomecánica Rock Mass Rating que sirvió como modelo en la ejecución de softwares como Dips. La tesis también evidencia una alternativa en la elaboración del tipo de la muestra de investigación.

2.1.2. Antecedentes internacionales

 Andino (2020), realizaron el trabajo de investigación "Evaluación dinámica del macizo rocoso de la Casa de Máquinas 2 (P.H. Pusuno) mediante métodos numéricos en 2D y 3D", para alcanzar el grado de magister en geotecnia aplicada de la Universidad Central de Ecuador fijando como **objetivo general**: Evaluar la respuesta dinámica del macizo rocoso de la Casa de Máquinas 2 del Proyecto Hidroeléctrico Pusuno mediante modelos numéricos en dos y tres dimensiones. La investigación de tipo aplicada, nivel descriptivo evaluó taludes de roca lutita obteniendo los resultados: taludes de calidad media (según sistema Rock Mass Rating) altamente fracturados sin presencia de mecanismos de fallas, con una resistencia al corte de 80 MPa; por lo que se modeló el anclaje con pernos de 25 mm de diámetro por 6 metros de longitud, cada 2 metros. Considerando estos resultados, el estudio se concluye: La matriz rocosa de roca sedimentaria Lutita presentó una calidad tipo III (Media) según la clasificación Rock Mass Rating. Y con la propuesta de solución, los taludes mejoran sus características geomecánicas resistentes y se mantienen estables. El aporte de la investigación consiste la explicación del ensayo de resistencia a la compresión simple que se utilizó en (ítem 4.1.3. caracterización geomecánica del talud), la propuesta de sostenimiento con pernos de anclaje. También señala una alternativa en la formulación del tipo del tipo y nivel de investigación.

-Cacao (2018), realizó la tesis: "Clasificación de calidad de roca con el método Slope Mass Rating (SMR) en un tramo de la ruta CA-9, para la identificación de taludes inestables y herramienta para estudio diagnóstico" a fin de obtener el título de magister en ciencias en ingeniería geotécnica en la Universidad de San Carlos de Guatemala. La investigación cumplió su **objetivo general**: Determinar la calidad de roca en el tramo carretero Km. 25+200m a 36+300m de la vía CA-9 con el método Slope Mass Rating (SMR) a través de su investigación de enfoque cuantitativo ya que plantea una forma ordenada para obtener resultados a través de la recolección y análisis de datos; logrando los **resultados:** Basado en el estudio de 31 estaciones geomecánicas se calcularon valores muy buenos a regulares para la clasificación geomecánica Rock Mass Rating y valores totalmente estables a muy inestables para el índice Slope Mass Rating; además los estereogramas mostraron las familias principales de discontinuidades con sus respectivas fallas en el talud (planar, por cuña y vuelco). Luego, se alcanzaron las siguientes **conclusiones**: Los taludes

estudiados poseen índice SMR regular a muy buena. Según la experiencia del autor, la mejor alternativa para evaluar la estabilidad del talud consiste la estimación de la clasificación geomecánica Rock Mass Rating y los análisis cinemáticos en todas las familias del talud. El aporte de la investigación consiste en la explicación de la interpretación de prospecciones estereográficas que servirán como guía en el desarrollo del marco conceptual (ítem 2.2.4.E. Mecanismo de falla en taludes de roca).

- -Loor y Macías (2020) elaboraron la investigación "Estudio de la estabilidad de taludes de la vía Garrapata-Santa María, entre las abscisas 7+900 Y 63+040, provincia de Manabí, Ecuador" a fin de lograr el grado de magister en geotecnia en la Escuela Superior Politécnica del Litoral, estableciendo como meta: Evaluar la estabilidad de los taludes en el área de estudio a partir de parámetros geomecánicos y geotécnicos, para mitigar los efectos de riesgos de inestabilidad en la vía, mediante la caracterización geomecánica, cinemática y análisis de estabilidad para taludes rocosos logrando los resultados: Los taludes de roca arenisca presentaron mecanismo de falla por cuña totalmente inestable de acuerdo al índice SMR=17 por ello se sugiere la instalación de pernos de anclaje y colocación de mallas en cortinas según el análisis de estabilidad de taludes. Basado en estos resultados se concluye que la caracterización geomecánica depende de las características geológicas, estructurales y resistencia de los macizos rocosos, además el talud de roca arenisca es totalmente inestable por presentar mecanismo de falla por cuña e índice SMR =17 puntos. El aporte de la investigación consiste en selección de la alternativa de sostenimiento óptimo para taludes de roca que se utilizó en (ítem 4.1.6. Propuesta de sostenimiento del talud).
- -Pinillos (2017) realizó la investigación: "Metodología para la evaluación cuantitativa de amenaza por deslizamientos en roca" para obtener el grado de magister en ingeniería geotécnica en la Universidad Nacional de Colombia, cuyo **objetivo principal** fue: evaluar cuantitativamente la amenaza generada por deslizamientos en roca, la cual considera la estimación de la susceptibilidad del macizo rocoso, la probabilidad de ocurrencia por diferentes mecanismos de falla, la magnitud del deslizamiento y su intensidad. El desarrollo de esta tesis fue de enfoque cuantitativo, en base a ello se obtuvieron los siguientes

resultados: El talud en estudio es totalmente inestable según el índice SMR=12.35 puntos, posee fallas planares en la estratificación-talud y fallas en cuña en la estratificación-familia 1 con altas probabilidades a presentar fallas planares (85.85%), falla en cuña (79.81%) finalmente se concluye: Al evaluar la probabilidad de deslizamiento se empleó el análisis cinemático obteniendo 85.85% de probabilidad de presentar fallas planares y 79.81% de probabilidad de presentar falla en cuña así como un índice SMR muy inestable clase V. El aporte de la investigación radica en su matriz de referencias bibliográficas que sirvieron como guía en la metodología del presente estudio, también presenta sugerencias para la elaboración del marco conceptual: ítem 2.2.1. Metodología Slope Mass Rating. En adición expone una alternativa en la selección de la muestra de investigación.

-Vinicius (2019) elaboró su tesis "Propuesta de correlación entre los índices SMR y Q-slope" a fin de alcanzar el grado de magister en ciencias de la Universidad de Sao Paulo cuyo objetivo general fue aplicar y comparar empíricamente el SMR y Q-slope, para determinar la existencia de correlación entre los métodos y obtener una función matemática que los correlacione, a partir de los datos obtenidos de taludes situadas en la mina Vau Novo (Santana de Parnaíba). La investigación arrojó los resultados: De los 10 taludes evaluados según el índice Slope Mass Rating considero 8 taludes con estabilidad regular, clase II y dos taludes inestables con clase III parcialmente estable sugiriendo medidas de fuerzo y revestimiento para estabilizarlo. En base a estos resultados se concluye que estos métodos (índice Slope Mass Rating y Q_{slope}) basados en la experiencia e interpretación están correacionados satisfactoriamente correlacionados y se utilizan para analizar la estabilidad de taludes de roca reduciendo el tiempo de cálculo y brindando un mejor panorama en la elección del sostenimiento. El aporte de esta investigación consistió en brindar una guía para el análisis cinemático y cálculo de las condiciones geomecánicas del índice Slope Mass Rating, que se implementó en los ítems 4.1.3 y 4.1.4 de la presente tesis.

2.2. Marco conceptual

2.2.1. Metodología Slope Mass Rating

La metodología Slope Mass Rating fue propuesta por Manuel Romana (1993) con el propósito de evaluar la estabilidad en taludes rocosos a partir de la transformación de parámetros cualitativos: características geomecánicas y geotécnicas en parámetros cuantitativos que expresa en términos ingenieriles la estabilidad y calidad del talud de roca (González de Vallejos-Luis, Ferrer-Mercedes, Ortunio-Luis y Oteo-Carlos, 2002. p. 469).

En las tablas 16, 17, 18 de la presente tesis se aprecia las clases de la estabilidad del talud según los rangos establecidos.

A. Clasificación geomecánica Rock Mass Rating Bieniawski, 1989

La clasificación geomecánica Rock Mass Rating valora la calidad del macizo rocoso en una escala de 0 a 100 puntos que resultan de la suma de 05 parámetros: resistencia de la roca intacta, el índice Rock Quality Designation, presencia del agua, espaciamiento y demás condiciones de las discontinuidades (González de Vallejo, Luis et al., 2002. p. 230).

Estos parámetros relacionan a la calidad geotécnica del macizo rocoso con la estabilidad de talud, la puntuación de la clasificación geomecánica del Rock Mass Rating se ubica en la tabla 01 a partir del cual también se estima la cohesión y el ángulo de rozamiento.

Tabla 01
Calidad del talud de roca según Rock Mass Rating (RMR)

Clase	Calidad	Valor RMR	Tiempo de autosoporte	Cohesión	Ángulo de fricción
I	Muy Buena	100 - 81	20 años para 15m	> 4 kg/cm2	> 45°
II	Buena	80 - 61	1 año para 10m	3 - 4 kg/cm2	35° - 45°
III	Media	60 - 41	1 sem. para 5m	2 -3 kg/cm2	25° - 35°
IV	Mala	40 - 21	10 hrs para 2.5 m	1 - 2 kg/cm2	15° - 25°
V	Muy mala	< 20	30 min para 1 m	< 1 kg/cm2	< 15°

Nota: RMR: índice Rock Mass Rating; kg: kilogramos; cm2: centímetros cuadrados; °: grados sexagesimales<: signo menor; >: signo mayor; sem: semana; hrs: horas; min: minutos; m: metros. Adaptado de Hoek, Ever, 2007 p. 9.

a. Mapeo geomecánico del macizo rocoso

Cada parámetro de la clasificación Rock Mass Rating se obtiene por inspección visual de las características del macizo rocoso mediante el mapeo geomecánico, el cual se realiza exclusivamente en afloramientos

superficiales tales como taludes (ORGANISMO Supervisor de la Inversión en Energía y Minería (OSINERGMIN), 2017).

El mapeo geomecánico en afloramientos superficiales se puede realizar por: celdas de detalle-registro volumétrico y línea de rastreo-registro lineal, este último implica trazar una línea en la cara del talud a partir de la cual se describen características de las discontinuidades y roca intacta (Suárez Ludger, 2015, pp. 102-103).

En la presente investigación se eligió el mapeo geomecánico en afloramiento superficial (talud rocoso) por línea de rastreo puesto que se puede acceder fácilmente a la zona en estudio para estimar las características de las discontinuidades y roca intacta; además esta metodología es práctica y fácil.

α) Resistencia de la roca intacta

La resistencia a la compresión uniaxial de la roca intacta se calcula en laboratorio a través de la correlación en el gráfico de Miller (figura 04) del número de rebotes corregidos aplicados con el martillo de Schmidt perpendicularmente a la cara de la roca intacta (dureza de la roca) y la densidad de la roca intacta.

El número de rebotes expresa la intensidad del impacto del resorte acerado liberado al presionar perpendicularmente el pin del martillo de Schmidt en la cara del talud, midiendo la dureza de la roca intacta. Este procedimiento esta normado por la sociedad internacional de mecánica de rocas (ISRM – 2009).

Mientras que la densidad de la roca se procesa en laboratorio siguiendo los lineamientos de la normativa ASTM C97-18: Método estándar para la determinación de las propiedades físicas de la roca intacta.

Debido a que en el Perú no se especifican normativas para determinar la resistencia a la compresión uniaxial de rocas, la presente tesis empleó la normativas más utilizadas a nivel internacional:

- Prueba para la determinación de la dureza de la roca con martillo
 Schmidt: Sociedad Internacional de Mecánica de Rocas ISRM
 2009.
 - Prueba estándar para la absorción y la gravedad específica a granel de la piedra dimensional según norma ASTM C97 – 18.

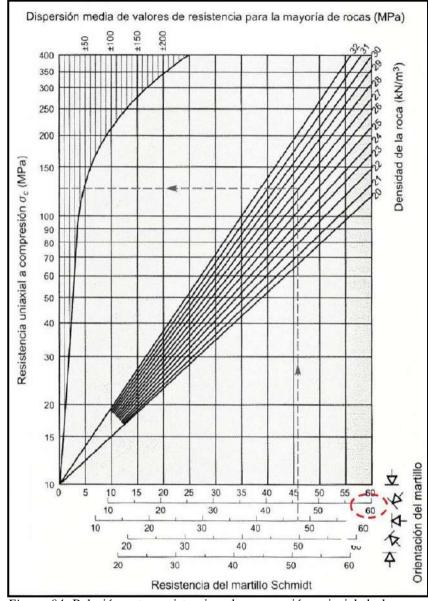


Figura 04. Relación entre resistencia a la compresión uniaxial de la roca y resistencia con el martillo de Schmidt. Tomada de «Guía de criterios geomecánicos para diseño, construcción, supervisión y cierre de labores subterráneas», por OSINERGMIN, 2007, p. 225.

preliminarmente la resistencia de la roca intacta también se mide según su comportamiento al ser sometida a golpes con el martillo de geólogo o al rayar su superficie con una navaja. Ver la tabla 02

Tabla 02 Índices de campo para la resistencia de la roca intacta con esclerómetro

Class	D	114:6	Resistencia uniaxial	
Clase	Descripcion	Identificación del Campo	MPa	kg/cm ²
\mathbf{R}_1	Roca muy blanda	Deleznable bajo golpes del martillo de geólogo. Se talla fácilmente con una navaja	1.0-5.0	10 – 50
\mathbf{R}_2	Roca blanda	Puede rayarse con dificultad con la navaja, se pueden hacer marcas poco profundas golpeando fuertemente con la punta del martillo	5.0-25	50-250
\mathbb{R}_3	Roca moderadam ente dura	No se puede rayar con una navaja pero se puede romper con un golpe firme del martillo de geólogo, al impacto la punta del martillo ingresa hasta 5 milímetros.	25-50	250-500
\mathbf{R}_4	Roca dura	Se necesita más de un golpe con el martillo de geólogo para romper la muestra.	50-100	500-1000
\mathbf{R}_5	Roca muy dura	Se necesita muchos golpes con el martillo de geólogo para romper la muestra.	100-250	1000-2500
R ₆	Roca extremada mente dura	El martillo produce solamente descarrillado de la muestra, sonido metálico de golpe. Solo saltan esquirlas de roca.	> 250	> 2500

Nota: MPa: Megapascales. Tomado de González de Vallejo, Luis, *et al.*, 2002, p. 131.

Así mismo, los resultados de la resistencia a la compresión uniaxial de la roca intacta se pueden contrastar con los valores de resistencia a la compresión uniaxial para diferentes tipos de roca (ver tabla 03).

Tabla 03Resistencia a la compresión uniaxial (megapascales) por tipo de roca

Tino do roco	Resistencia a	iaxial (MPa)	
Tipo de roca	Mínimo	Máximo	Medio
Limonita	25	38	32
Esquisto	31	70	43
Pizarra	33	150	70
Arcillita	36	172	95
Arenisca	40	179	95
Marga	52	152	99
Mármol	60	140	112
Caliza	69	180	121
Dolomía	83	165	127
Andesita	127	138	128
Granito	153	233	188
Gneis	159	256	195
Basalto	168	359	252
Cuarcita	200	304	252
Sílice	587	683	635

Nota: MPa: Megapascales. Tomado de Belandría y Bongiorno, 2012, p. 2.

Ensayo de esclerometría (dureza de la roca intacta)

Siguiendo los lineamientos de la American Society for Testing and Materials International ASTM (2014) y la Sociedad Internacional de Mecánica de Rocas ISRM (2009), la dureza de la roca se estima al aplicar el esclerómetro perpendicularmente a la cara del talud (ver figura 05).

Figura 05. Martillo de Schmidt (esclerómetro)

Fuente: Elaboración propia.

Existen dos tipos de esclerómetro o martillo de Schmidt según su energía de impacto: tipo N con una energía de impacto 2.207 Nm usado en rocas duras y tipo L con una energía de impacto 0,735 Nm usado para rocas blandas; ambos aceptados para lecturas en campo por la ISRM (Aydin, 2008, p. 628).

Respecto a la ejecución del ensayo, según Vera (2020) el primer paso consiste en calibrar el equipo promediando 10 lecturas de rebote sobre el yunque; luego de acuerdo a la ISRM (2009) se muestrean 20 rebotes en cada punto de interés perpendicularmente a superficies planas, lisas y sin fracturas.

Estas lecturas que no deben diferir en ± 7 de la media. A continuación, estas lecturas se corrigen multiplicando por un factor de corrección definido por el cociente de la dureza del yunque de calibración entre el promedio de rebotes de 10 lecturas sobre dicho yunque (Aydin, 2009)

Vera (2020) menciona que la dureza del yunque de calibración se obtiene directamente de su placa de especificaciones técnicas.

Condicionalmente, si se utilizó el esclerómetro tipo N, se transformarán los rebotes corregidos tipo N a tipo L mediante la fórmula de correlación propuesta por Aydin Adnan (1992), dónde RL son los rebotes corregidos con martillo tipo L y RN son los rebotes corregidos con martillo tipo N: $RL = \frac{RN-7.124}{1.249}$

Finalmente, el número de rebotes corregidos – transformados y la densidad de la roca se ingresan a la gráfica de Miller obteniendo la resistencia a la compresión uniaxial, con este valor se estimará la clasificación geomecánica Rock Mass Rating.

A diferencia de la norma ASTM C805–18: Método de prueba estándar para el número de rebotes de concreto endurecido, la prueba para la determinación de la dureza de la roca con martillo Schmidt propuesta por la ISRM 2009 no señala realizar correcciones por carbonatación.

-Ensayo de densidad de la roca según ASTM C97 – 18

Esta tesis se basó en la norma ASTM C97 – 18 publicada por la AMERICAN Society for Testing and Materials International (2018) para determinar las propiedades físicas del talud rocoso aplicando los procedimientos:

- La muestra extraída es suficiente para preparar 5 especímenes de dimensiones entre 2 y 3 pulgadas con una superficie lisa.
- El porcentaje de absorción relaciona los pesos secos y saturados de los especímenes que deben ser sumergidos en agua destilada durante 48 horas registrándose respectivamente, luego se obtiene:

$$\% absorci\'on = \left[\frac{(Peso\ saturado - peso\ seco)}{peso\ seco}\right]*100$$

La gravedad especifica se obtuvo pesando muestras saturadas dentro del agua, para ello se utiliza un balde suspendido con un cable hacia una balanza, se registra el peso del balde antes y después de colocar la muestra:

$$Gravedad\ específica = \left[\frac{peso\ seco}{peso\ saturado\ -\ peso\ sumergido\ en\ agua}\right]$$

- La densidad de la roca se obtiene al multiplicar la gravedad específica por la densidad del agua destilada empleada para saturar la roca (1 gr/cm³).
 - densidad de la roca = gravedad especifica * 1 gr/cm3
- Los resultados se promediaron para obtener un valor global de absorción y peso específico.

Una vez obtenidos: número de rebotes y densidad se ingresan a la gráfica de Miller para estimar la resistencia a la compresión uniaxial de la roca intacta la cual se ubica en la tabla 04 para lograr la clasificación Rock Mass Rating:

Tabla 04Valoración de la resistencia a la compresión uniaxial (megapascales)

Descripción	Resistencia UCS (MPa)	Carga puntual (MPa)	Valoración
Extremadamente dura	> 250	> 10	15
Muy dura	100 - 250	4 - 10	12
Dura	50 - 100	2 - 4	7
Moderadamente dura	25 - 50	1 - 2	4
Blanda	5 - 25		2
Muy blanda	1 - 5	< 1	1
	<1		0

Nota: UCS: resistencia a la compresión simple; MPa: Megapascales. Tomado de Belandría y Bongiorno, 2012 pág. 2.

β) Índice Rock Quality Designation (RQD)

El índice Rock Quality Designation (RQD) fue instaurado por Deere en 1964 como clasificación geomecánica para estimar el grado de fracturación de macizos rocosos en túneles, actualmente es considerado un parámetro de otras clasificaciones geomécánicas como: Rock Mass Rating y Q de Barton.

Existen dos formas de estimar el índice Rock Quality Design y dependen de la accesibilidad al afloramiento: el mapeo geomecánico y el logueo geomecánico, este último recomendado

por el OSINERGMIN, (2017) cuando es imposible acceder a la cara del afloramiento rocoso (p. 13).

Mientras que en mapeos geomecánicos de afloramientos superficiales tales como taludes de fácil acceso a la cara de la roca OSINERGMIN (2017) recomienda emplear la fórmula de correlación de Priest, S.D. y Hudson, J. A, (1981): $RQD\% = 100 * e^{-0.1*\lambda} * (0.1\lambda + 1)$, donde: λ es el número de discontinuidades por metro lineal.

Luego, el porcentaje se valora según el sistema Rock Mass Rating:

Tabla 05Valoración del índice de calidad de la roca (RQD)

Índice de calidad RQD (%)	Calidad	Valoración
0 - 25	Muy mala	3
25 - 50	Mala	8
50 - 75	Regular	13
75 - 90	Buena	17
90 - 100	Excelente	20

Nota: RQD: Índice de calidad de la roca. Tomado de Belandría y Bongiorno, 2012 pág. 4.

En la presente investigación se empleó la fórmula de correlación, pues como se aprecia en las fotografías 01,02 y 03 del anexo 16 (estaciones geomecánicas EG_{01} , EG_{02} y EG_{03} respectivamente), es fácil acceder a la cara del macizo rocoso.

χ) Espaciamiento de las discontinuidades

El espaciamiento es la distancia media perpendicular entre los planos de discontinuidad de una misma familia. A menor espaciamiento, menor calidad del macizo rocoso (tal como se aprecia en la figura 06); y mayor permeabilidad (González de Vallejo, Luis, *et al.*, 2002, p. 181).

Conforme a lo citado, el espaciamiento de las discontinuidades influye en la resistencia rocosa al permitir o no la permeabilidad de agua que a su vez disminuirá la resistencia a la compresión y esta originarácontribuirá a la formación de o no la fracturas del macizo rocoso, alterando el índice Rock Quality Design (RQD).

En la tabla 06 se muestra la descripción del tipo de espaciamiento entre discontinuidades según la distancia y su valoración para la clasificación Rock Mass Rating.

Figura 06. Espaciamiento entre discontinuidades de una misma familia. Tomada de «Curso: geología aplicada Capítulo I: introducción a la mecánica de rocas», por Morales, Wilver, 2014, Diapositiva 53.

Tabla 06Valoración del espaciamiento entre discontinuidades

Descripción	Espaciado de juntas	Tipo de macizo rocoso	Valoración
Muy separadas	> 2 m	Sólido	20
Separadas	0.6 - 2 m	Masivo	15
Moderadamente juntas	$0.2\;m-0.6\;m$	En bloques	10
Juntas	0.06 m -0.20 m	Fracturado	8
Muy juntas	< 0.06 mm	Machacado	5

Nota: mm: milímetros; m: metros; <: signo menor; >: signo mayor. Tomado de Belandría y Bongiorno, 2012 p. 59.

δ) Condición de las discontinuidades

Las condiciones geomecánicas del índice Slope Mass Rating permite estimar la estabilidad del talud establecidas por Romana–Manuel (1989). Consisten en las propiedades físico–mecánicas, geométricas, mecanismo de falla y método de excavación o construcción del talud y sus discontinuidades.

Persistencia

Es la longitud del recorrido de la discontinuidad, a menor persistencia mayor estabilidad de bloque rocoso (Morales, Wilver, 2014). Para medirlas se debe definir la orientación del

talud y trazar la línea de rastreo perpendicular a las persistencias (Suárez Ludger, 2015, p. 124). Ver figura 07.

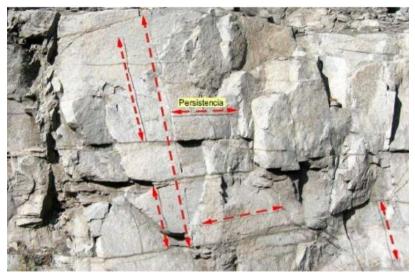


Figura 07. Persistencia de discontinuidades. Tomada de «Curso: geología aplicada Capítulo I: introducción a la mecánica de rocas», por Morales, Wilver, 2014. Diapositiva 54.

A partir de lo mencionado se deduce que el macizo rocoso es más estable cuando posee pocas fracturas. A continuación, se muestra el valor de cada tipo de persistencia según su distancia para la clasificación geomecánica Rock Mass Rating.

Tabla 07 *Valoración de la persistencia en discontinuidades*

Grado	Descripción	Persistencia	Valoración
1	Muy baja	< 1 m	6
2	Baja	1 -3 m	4
3	Media	3 -10 m	2
4	Alta	10 - 20 m	1
5	Muy alta	> 20 m	0
3.7		T 1	1 D 1 17

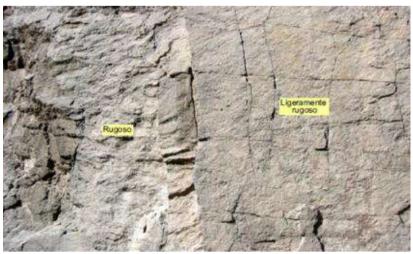
Nota: m: metros; <: signo menor; >: signo mayor. Tomado de Belandría y Bongiorno, 2012 pág. 5.

Abertura de la discontinuidad

La abertura es la distancia perpendicular entre paredes de discontinuidades, es directamente proporcional a la permeabilidad de la roca. Superficialmente la abertura puede ser muy pronunciada, pero medida que aumenta la profundidad, disminuye (González de Vallejo, Luis, *et al.*, 2002, p. 253).

Se mide en milímetros cuando es profunda y cuando es superficial se mide en centímetros (figura 08) y se clasifica en:

Figura 08. Abertura o apertura de discontinuidades. Tomada de «Curso: geología aplicada Capítulo I: introducción a la mecánica de rocas», por Morales, Wilver, 2014. Diapositiva 56.


Tabla 08 *Valoración de la abertura en discontinuidades*

Grado	Descripción	Separación	Valoración
1	Abierta	> 5 mm	0
2	Mod. abierta	1 - 5 mm	1
3	Cerrada	0.1 - 1 mm	4
4	Muy cerrada	< 0.1 mm	5
5	Ninguna	0	6

Nota: mm: milímetros; <: signo menor; >: signo mayor. Tomado de Belandría y Bongiorno, 2012 p. 5.

Rugosidad

La rugosidad es la ondulación o irregularidad observable en la superficie de discontinuidades y es directamente proporcional a la resistencia al corte sobre el plano de discontinuidad (González de Vallejo, Luis, *et al.*, 2002, pp. 250-251).

Figura 9. Rugosidad de una superficie de discontinuidad. Tomada de «Curso: geología aplicada Capítulo I: introducción a la mecánica de rocas», por Morales, Wilver, 2014. Diapositiva 55.

De acuerdo a su forma existen tres tipos: escalonada, ondulada, plana, ver figura 10. A su vez cada tipo de rugosidad, se subdividen en (muy rugosa, rugosa, ligeramente rugosa, lisa y pulida), tal como se aprecia en la figura 09 (González de Vallejo, *et. al*, 2002 p. 250-251).

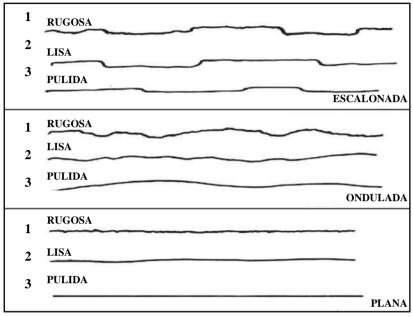


Figura 010. Tipos de rugosidad. Tomada de «Ciencia e Ingeniería Neogranadina», por Camacho Tauta Javier F. et al., 2009, p. 04.

Una vez medida la rugosidad de la superficie de discontinuidad, se ubican los valores en la tabla 09 para establecer el índice Rock Mass Rating

Tabla 09 *Valoración de la rugosidad en discontinuidades*

Grado	Descripción	Valoración
1	Muy rugosa	6
2	Rugosa	5
3	Ligeramente rugosa	3
4	Lisa	1
5	Plana (Espejo de falla)	0

Nota: Tomado de Tomado de Belandría y Bongiorno, 2012 pág. 5.

Relleno de las discontinuidades

El relleno entre discontinuidades lo conforma el material de propiedades físico-mecánicas diferentes al macizo rocoso y posee una resistencia al corte por lo general inferior a la resistencia del macizo rocoso (González de Vallejo, Luis, *et al.*, 2002, pp. 253-254). El relleno se clasifica cualitativamente para

valorar el índice Rock Mass Rating según la tabla 10 de la presente investigación

Figura 11. Relleno entre discontinuidades. Tomada de «Curso: geología aplicada Capítulo I: introducción a la mecánica de rocas», por Morales, Wilver, 2014. Diapositiva 57.

Así pues, el tipo de relleno entre discontinuidades puede ser: duro o blando, en ambos casos influye en la estabilidad del talud, por ejemplo, si el relleno es duro como se aprecia en la figura 11: Vetillas aparentemente de cuarzo o calcita, producirá mayor cohesión entre discontinuidades lo cual favorecerá la estabilidad del talud.

Tabla 10Valoración del relleno entre discontinuidades

Grado	Descripción	Valoración
1	Blando > 5 mm	0
2	Blando < 5 mm	2
3	Duro > 5 mm	2
4	Duro < 5 mm	4
5	Ninguno	6

Nota: mm: milímetros; <: signo menor; >: signo mayor. Tomado de Belandría y Bongiorno, 2012 p. 6.

Alteración/meteorización

El grado de meteorización de la superficie de las discontinuidades condiciona las propiedades mecánicas: resistencia al corte, porosidad y permeabilidad; así a mayor meteorización mayor porosidad, permeabilidad y menor resistencia al corte del macizo rocoso (González de Vallejo, Luis, *et al.*, 2002, p. 244).

Este parámetro se expresa cualitativamente y depende de las condiciones climáticas a las que se encuentra sometido el macizo rocoso. En la zona en estudio aprecian tres tipos de meteorización: física, química y biológica.

Tabla 11
Valoración de la alteración de discontinuidades

Grado	Descripción	Valoración	
1	Descompuesta	0	
2	Muy alterada	1	
3	Moderadamente alterada	3	
4	Ligeramente alterada	5	
5	No alterada	6	

Nota: Tomado de Tomado de Belandría y Bongiorno, 2012 pág. 6.

La meteorización física ocasionada por el cambio brusco de temperaturas, la meteorización química debido a la presencia de lluvias ácidas y la meteorización biológica se debe a raíces vegetativas que captan agua de lluvias introduciéndolas al interior del talud, tal como se ve en la figura 12.


Figura 12. Alteración biológica y física entre discontinuidades del talud. Tomada de «Ingeniería geológica», por González de Vallejo, Luis I., *et al.*, 2002, p. 253.

Fuente: Elaboración propia.

ε) Presencia de agua

El agua pluvial y subterránea se filtra por las fisuras del macizo rocoso recorriendo el patrón de discontinuidades y con el efecto de las bajas temperaturas y clima frígido de la zona andina se convierte en hielo rompiendo la estructura interna del macizo rocoso al incrementar su volumen (Ramírez-Pedro y Alejano-Leandro, 2004, pp. 271-272).

En excavaciones para obras lineales tanto el agua superficial como subterránea ingresan a los macizos rocosos a través de sus poros y discontinuidades debilitando el relleno poco consolidado y saturando estratos inestables entre rocas competentes (ver figura 13) (Ortega, 2019, p. 1).

Figura 13. Efecto del agua produce discontinuidades en macizo rocoso. Tomada de «Control de erosión mediante geo–sintéticos», por Nuttapong, Kovittayanun y Portillo, Gustavo, 2015, [p. 10].

Según lo mencionado la mayoría de fallas y desprendimientos de rocas sueltas están ligados al efecto negativo de la presencia de agua entre discontinuidades. En adición Romana (1989) estableció puntuaciones para valorar el flujo de agua y poder estimar la calidad el macizo rocoso (ver tabla 12).

Tabla 12Valoración para la presencia de agua

Caudal por 10 m de túnel	Relación presión agua entre discontinuidades/ esfuerzo mayor	Descripción	Valoración
Nulo	0	Seco	15
< 10 litros/ min	< 0.1	Húmedo	10
10 - 25 litros/min	0.1 - 0.2	Mojado	7
25- 125 litros/min	0.2 - 0.5	Goteando	4
> 125 litros/min	> 0.5	Fluyendo	0

Nota: l: litros; lig: ligeramente; min: minutos; <: signo menor; >: signo mayor. Tomado de Belandría y Bongiorno, 2012 pág. 6.

B. Orientaciones del talud y sus discontinuidades

Determinadas por el buzamiento y dirección de buzamiento y/o rumbo; estas mediciones se realizan en campo con la brújula. En la figura 14, se aprecia a la medición del buzamiento en una discontinuidad pues la brújula está apoyada en favor máxima pendiente y para medir el buzamiento se usa el clinómetro interno, el cual se estabiliza con el nivel tubular.

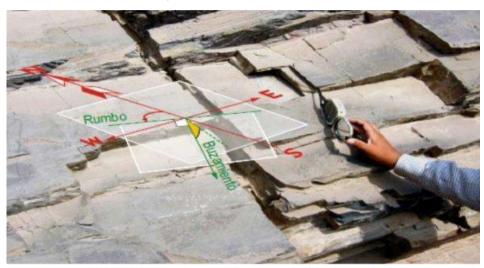


Figura 14. Medición del buzamiento en las discontinuidades con brújula. Tomada de «Curso: geología aplicada Capítulo I: introducción a la mecánica de rocas», por Morales, Wilver, 2014. Diapositiva 52.

Para medir el rumbo de una discontinuidad, la brújula debe estar perpendicular a la línea de máxima pendiente y nivelada internamente como se observa en la figura 15. El rumbo está indicado por las agujas de la brújula en el limbo graduado que varía de 0 a 90° y se anota el cuadrante al que pertenece (Bongiorno, [2018?], pp. 4-7).

Figura 15. Medición del rumbo en las discontinuidades con brújula. Tomada de «Usos de la brújula en una medición de campo», por Bongiorno, Francisco 2018. P. 6. Fuente: Elaboración propia.

En la figura 16 se muestra esquemáticamente las orientaciones del plano geológico (talud), plano imaginario horizontal, buzamiento y rumbo de forma gráfica.

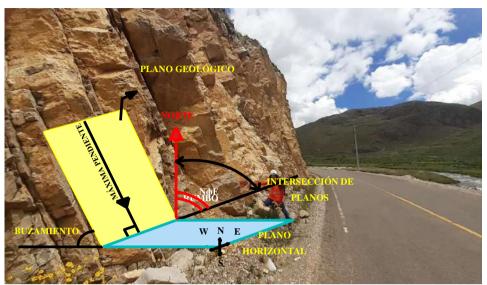


Figura 16. Talud (plano inclinado), rumbo y buzamiento. Tomada de «Manual de geología para ingenieros», por Duque, Gonzalo, 2017, p. 354. Fuente: Elaboración propia.

a. Dirección de buzamiento

Según Babín, Rosa; Gómez, David (2010, p. 12), la dirección de buzamiento, tiene un intervalo angular de 0° a 360° que se mide desde la proyección en el plano horizontal de la línea de máxima pendiente hasta el norte geográfico. Esta proyección es perpendicular a la línea de rumbo (ver figura 17).

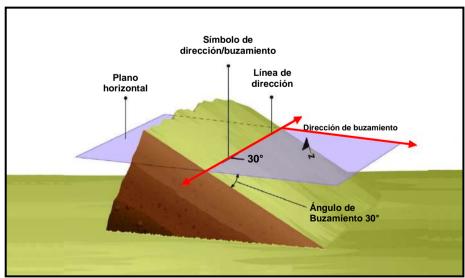


Figura 17. Dirección de inclinación y ángulo de buzamiento. Tomada de «Geología estructural», por Rodríguez Rafael, 2012.

C. Proyecciones estereográficas

Las proyecciones estereográficas representan la orientación e inclinación de planos de: diaclasas, talud, fallas a través de sus polos; es decir reducen las tres dimensiones, a dos dimensiones (x,y). Las proyecciones estereográficas pertenecen al grupo de proyecciones circulares (Ramírez Oraguren, P. y Alejano Monge, L., 2004).

Desde la perspectiva de Ramírez Oraguren, P. y Alejano Monge, L., (2004) la proyección estereográfica se logra siguiendo:

- ➤ Intersecar el plano con la esfera hueca que utiliza como plano de proyección al plano ecuatorial tal como se aprecia en la figura 18.
- Proyectar los puntos de intersección entre el plano y la esfera hueca hacia el zenit (norte de esfera), la unión dichos puntos que crucen por el plano ecuatorial se denomina traza o proyección estereográfica del plano (ver figura 18).
- Representar el vector normal del plano (perpendicular a éste) y proyectarlo hacia el zenit, el punto que cruza la línea a proyectar en el plano ecuatorial se denomina polo del plano con el cual se identifican estructuras geológicas predominantes, probabilidad y mecanismo de falla del talud (ver figura 18).

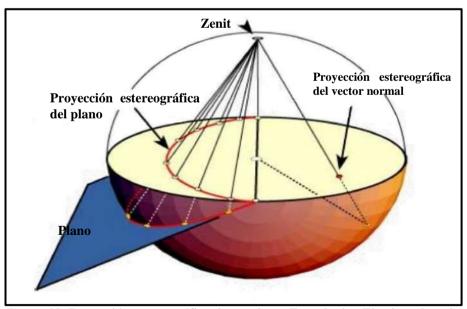


Figura 18. Proyección estereográfica de un plano. Tomada de «El primer lote de supervisores de doctorado para el censo y la exploración de minerales en la Nueva China: el profesor He Shaoxun y el profesor Chen Guoda1», por Mining and Metallurgical Park, 2017-2019.

D. Estimación del índice Slope Mass Rating para taludes

La estimación del índice Slope Mass Rating (SMR) resulta de la suma de la clasificación geomecánica Rock Mass Rating (RMR) más el producto de los tres sub–factores de ajuste de las discontinuidades y un cuarto sub–factor de ajuste de las discontinuidades relacionado con el método de excavación del talud (González de Vallejos-Luis, Ferrer-Mercedes, Ortunio-Luis y Oteo-Carlos, 2002. P. 469).

A partir de lo mencionado, se entiende que el método de excavación es sinónimo de origen o tipo del talud, por ejemplo, una ladera o un talud en corte perfilado con voladura controlada, deficiente o regular. Luego:

$$SMR = RMR + (F_1 * F_2 * F_3) + F_4$$

Donde:

 F_1 – Depende del paralelismo entre la dirección de buzamiento de las discontinuidades y del talud.

F₂ – Depende del buzamiento de la discontinuidad.

F₃ – Refleja la relación entre los buzamientos de la discontinuidad y el talud. Según D. Ortega (2019) se valora con signo negativo ya que se produce desequilibrio del talud cuando el buzamiento de la discontinuidad es mayor al buzamiento del talud (p. 101).

 F_4 – Depende del método de excavación o conformación del talud, se valora según la tabla 13:

Tabla 13Sub-factor de ajuste según el método de excavación

	Sub-facto	r de ajuste segú	n el método de	excavación	
Método	Ladera	Pre – corte	Voladura controlada	Voladura regular	Voladura deficiente
F4	15	10	+8	0	-8

Nota: +: Signo de adición. Tomado del software Imunt S.A, 2020.

a. Sub-factores de ajuste de las discontinuidades

Los sub-factores de ajuste de las discontinuidades fueron originalmente formulados por Romana-Manuel (1989) quien asignó puntuaciones y fórmulas trigonométricas a cada intervalo de orientaciones que gobiernan los tres primeros sub-factores de ajuste de las discontinuidades en sus diferentes mecanismos de falla: falla planar y falla por volteo tal como se muestra en la tabla 14.

También asignó puntuaciones para el método de excavación del talud ya sea una ladera o un talud en pre-corte perfilado con voladura controlada, deficiente o regular.

Tabla 14Sub –factores de ajuste para discontinuidades propuesto por Romana.

Sub factores non signate de juntos (Domono Mongel 1000)						
Sub-factores por ajuste de juntas (Romana-Manuel, 1989)						
Cas	80	Muy favorable	Favorable	Regular	Desfavorable	Muy desfavorable
_,		F1 = (1 – sin(aj –	as)) ²	para fall	as planares
Fórmula	a de F1	F1 = (1 — sin aj —	as – 180)	² para fall	as por vuelco
` '	as - aj as - aj - 180	30°	30°-20°	20°-10°	10° -5°	5°
Valores	de F1	0.15	0.40	0.70	0.85	1.00
Fórmula	a de F2				$F2 = (\tan bj)$	$)^2$
Cas	80	Muy favorable	Favorable	Regular	Desfavorable	Muy desfavorable
Planar (P)	bj	< 20	20° -30°	30°-35°	35°-45°	45°
Valores	de F2	0.15	0.40	0.70	0.85	1.00
Cas	80	Muy favorable	Favorable	Regular	Desfavorable	Muy desfavorable
Planar (P)	bj - bs	>10°	0° - 10°	0	0° - (-10°)	<-10°
Volteo (T)	bj + bs	>110°	110°-120°	> 120°		
Valores	de F3	0	-6	-25	-50	-60

Nota: as: Dirección de buzamiento del talud; aj: Dirección de buzamiento de las discontinuidades; bj: Buzamiento de las discontinuidades; bs: Buzamiento del talud; ψ_t : Ángulo del talud; ψ_i : Ángulo de discontinuidad; P: Falla plana; T: Falla por vuelco; F1: sub–factor de ajuste 1; F2: sub–factor de ajuste 2; F3: sub–factor de ajuste 3; F4: sub–factor de ajuste según el método de excavación. Tomado del software Imunt S.A, 2020.

Luego Tómas, *et al.* (2006) introdujo expresiones matemáticas que precisaron el cálculo de los tres primeros sub–factores de ajuste ya que los consideró inexactos sobre todo en sus límites preestablecidos (p. 5). Dichas funciones continuas al igual que las fórmulas trigonométricas y valores propuestos por Romana-Manuel (1989) se asignaron según el mecanismo de falla.

Tabla 15Sub-factores de ajuste propuestas por Tómas, et al. (2006)

	Sub-factores de ajuste propuestos por tómas, et al (2006)
Sub-factor	Fórmula
F1	$\frac{\frac{16}{25} - \frac{3}{500} * Arctan(\frac{1}{10}(A - 17))}{17}$
F2	$\frac{9}{16} - \frac{1}{195} * Arctan(\frac{17}{100} * B - 5)$
F3	Para falla planar: $-30 + \frac{1}{3}Arctan C$
	Para falla por cuña: $-13 - \frac{1}{7}Arctan (C - 120)$

Nota: A: diferencia entre direcciones de buzamiento de la discontinuidad y el talud, B: Buzamiento de las discontinuidades; C: Diferencia entre buzamientos de las discontinuidades y del talud. Tomado del software SMRTools, 2014.

Tabla 16Clases de estabilidad de talud según Slope Mass Rating (SMR)

Descripción de las clases de SMR												
Clase	Vb	Va	IVb	IVa	IIIb	IIIa	IIb	IIa	Ib	Ia		
Valor SMR	0- 10	11- 20	21- 30	31- 40	41- 50	51- 60	61- 70	71- 80	81- 90	91- 100		
Descripción	Muy mala		Mala		Normal		Bu	ena	Estable			
Estabilidad	Totaln inesta	Inestable		Parcialmente estable		Esta	able	Totalmente estable				
Roturas	Grandes roturas por planos continuos o por cuñas		Juntas o grandes cuñas		Algunas juntas o muchas cuñas		Algı bloo		Ninguna			
Sostenimiento	Re-excav	Impor	tantes	Sistemáticos		Ocasi	onales	Ninguna				

Nota: Tomado de Hudson, John, 1993, p. 580.

Tabla 17Slope Mass Rating asociado al mecanismo de falla del talud rocoso

	Estabilidad Asociada al SMR										
SMR	Falla Planar	SMR	Falla en Cuña								
>75	Ninguna	>75	Ninguna								
60-75	Ninguna	60-75	Algunas								
40-55	Grandes	40-55	Muchas								
15-40	Mayores	15-40	No								
SMR	Falla por Volteo	SMR	Falla Tipo Suelo								
>65	Ninguna	30	Ninguna								
50-65	Menores	10 - 30	Posibles								
30-35	Mayores	10-30	Posibles								

Nota: <: signo menor; >: signo mayor. Tomado de Pinillos-Deisy, 2017, p. 42.

Tabla 18 *Métodos de sostenimiento sugeridos según el Índice Slope Mass Rating*

	Valo	res	de	el S	SMR pa	ara cada	fo	rn	ıa d	e r	otu	ra (e	emp	íri	co	s)			
Roturas planas	Muy grandes						Importantes					Ninguna							
Roturas en cuña								Muchas				Algunas				Muy pocas			guna
Rot. Por vuelco	Importante							Menores					s Ninguna						
Rot. Completas		Posibles						Ninguna											
SMR →	0 1	0	15	2	0 3	0 40) . I	45	50	55	60	65	7	0	75	8	1 30	90	100
Re-excavación		R	m	uro	avación, os de nción					•		•	•					•	
Drenaje		Drenaje superficial, Drenaje profundo																	
Hormigón					Hormigo contra	o, h	orm , mu	igón iros d	denta le pie	al,									
Refuerzo								Bul	ones.	, anc	lajes								
Protección					·			Za pie ma	nja ç 20 d illas	ie pi e tal (de	e, va ud) i talud	illas (edes	de y/o						
Sin sostenimiento		Saneo ninguno									О								
					Métodos	de soste	nin	nie	nto	sug	erid	os							

Nota: SMR: Slope Mass Rating; IMPORT: Importantes; Rot: Roturas. Tomado de Romana Ruiz, Manuel, Serón Gáñez, José y Montalar Yago, Enrique, 2003, p. 3.

2.2.2. Características estructurales del macizo rocoso

A. Número de familias de discontinuidades

El número de familias de discontinuidades representa la agrupación de las mismas con similar orientación, cuantas más familias de discontinuidades tenga un macizo rocoso, más inestable será (Ramírez-Pedro y Alejano-Leandro, 2004, p. 199).

B. Orientación de las familias de discontinuidades

La orientación de las familias de discontinuidades representa la ubicación de las mismas en el espacio. Se expresa mediante los estereogramas (distribución de polos y planos de discontinuidades del macizo rocoso y del talud) que predicen el mecanismo de falla (Ramírez-Pedro y Alejano-Leandro, 2004, p. 199).

C. Tamaño de bloque

Según González de Vallejo, *et al.* (2002 p. 256) "La dimensión y la forma de los bloques están definidas por el número de familias de discontinuidades, su orientación, su espaciado y su persistencia [..]".

El tamaño de bloque es inversamente proporcional al número de discontinuidades en el macizo rocoso y está representado por el parámetro (λ) y su cálculo se desarrolla con el índice Rock Quality Design (Ramírez-Pedro y Alejano-Leandro, 2004, p. 200).

2.2.3. Características litológicas de la roca intacta

La litología es una ciencia que investiga el origen, evolución y clasificación de las rocas. (Dávila, 2011, p. 505). La litología se considera sinónimo de petrografía, gracias a la cual se clasifican e identifican tipos de rocas.

A. Tipo de roca según su origen geológico

Según Tarbuck y Lutgens (2005), existen 3 grupos de rocas según su origen: rocas ígneas, rocas sedimentarias y rocas metamórficas (p. 24). En el presente estudio se identificaron rocas sedimentarias: calizas que componen al talud.

B. Color

El color de una roca está en función de su composición mineralógica y el grado de meteorización; se califica en campo quitando la capa superficial

de alteración. Cuantas más variaciones de color se visualicen, mayores procesos de meteorización habrá atravesado la roca (González de Vallejo, Luis, *et al.*, 2002, p. 244).

C. Grado de meteorización

El grado de meteorización es una característica geológica cualitativa. Tiene incidencia en las propiedades de la roca: resistencia a la compresión uniaxial y permeabilidad (González de Vallejo, Luis, *et al.*, 2002, p. 244).

Existen tres tipos de meteorización de la roca: biológica, física y química, esta última modifica la textura de la roca, al alterar la estructura interna de los minerales que la compone.

D. Dureza

La dureza es una característica geológica cualitativa que incide en la resistencia rocosa y se expresa en términos de la escala de Mohs que establece valores de 1 a 10 para diferentes materiales siendo 10 la puntuación para la roca más dura: el diamante (González de Vallejo, Luis, *et al.*, 2002, p. 244).

E. Textura

La textura hace referencia al tamaño y forma de los minerales que componen la estructura interna de la roca El tamaño y forma de los minerales se puede aproximar en campo empleado una regla graduada al milímetro y una lupa (Tarbuck y Lutgens, 2005).

F. Composición mineralógica

La composición mineralógica permite la clasificación de la roca a través de la identificación y cuantificación de los minerales que la componen (González de Vallejo, Luis, *et al.*, 2002, p. 244).

G. Formación geológica a la cual pertenece

Según Rodríguez Fernández, *et al.* (2018) una formación geológica es una unidad litoestratigráfica que agrupa zonas rocosas con propiedades litológicas similares y puede cartografiarse fácilmente y que cuenta con una extensión adecuada. Por ejemplo, el talud estudiado en esta tesis pertenece a la formación geológica de Condorsinga.

H. Petrología de roca en sección delgada según normativa ASTM C1271-21: Guía estándar para el examen petrográfico de piedras dimensionadas

Con la intención de describir las características litológicas de la roca intacta, en el presente trabajo de investigación se realizó el ensayo: petrografía de roca en sección delgada según normativas internacionales: ISRM 1978: Descripción petrográfica de rocas y ASTM C1271-21: Guía estándar para el examen petrográfico de piedras dimensionadas (ver anexo 08) cuyo procedimiento es el siguiente:

a. Muestreo

La normativa ASTM C1271-21: Guía estándar para el examen petrográfico de piedras dimensionadas recomienda recolectar y codificar los especímenes anotando su orientación y geolocalización.

b. Aparatos y materiales

Para la preparación de secciones delgadas se requiere:

- ➤ 1 sierra y hoja de sierra de 15.250 mm de diámetro.
- ▶ 1 placa de hierro de 250 mm x 250 mm x 20 mm
- > 2 placas de vidrio de 250 mm x 250 mm x 20 mm
- ➤ 1 máquina para la preparación de secciones delgadas
- ➤ Polvos de carburo de silicio de número de grano 180 o 220 (placa de hierro fundido), 600 (molienda fina) y 1000 (acabado)
- ➤ 1 portaobjetos de vidrio de 25 mm x 45 mm, espesor ± 1 mm-2 mm
- Resina epóxica para pegar las muestras de roca
- Tintas para distinguir minerales

Para describir características litológicas de rocas se requiere:

➤ 1 microscopio petrográfico y accesorios

c. Preparación de especímenes

De acuerdo a Allman y Lawrence (1972) se preparan láminas delgadas de 3 cm x 2 cm x 30 μm, obtenidas al pulir, cortar y desbastar la superficie de tacos de roca de 3 cm x 2 cm x 1 cm adheridos al portaobjetos.

d. Observación y descripción de las características litológicas del espécimen

Luego, se visualizan bajo el microscopio de polarización las características litológicas del espécimen: textura y composición mineralógica.

2.2.4. Generalidades en la estabilidad de taludes

A. Talud y sus elementos

Según el Ministerio de Vivienda, Construcción y Saneamiento (2018) mediante la norma CE 020: El talud es una superficie plana o inclinada conseguida naturalmente o artificialmente por acción antrópica al excavar o rellenar un área a fin de realizar obras civiles. Los elementos principales de un talud son:

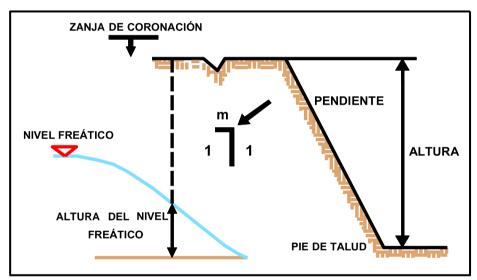


Figura 19. Vista en corte de los elementos del talud. Tomada de «Capítulo 1 Nomenclatura y Clasificación de los Movimientos. En: Suarez, Jaime. Deslizamientos. Análisis Geotécnico Vol. 1», por Suarez Jaime, 2009, p. 3.

- -**Pie, pata o base:** Según Suarez (2009a), el pie del talud ubicado en la parte inferior puede ocasionar cambios de pendiente debido a su forma cóncava (p. 04).
- -Cabeza, cresta, cima o escarpe: Según Suarez (2009), la cabeza de un talud está en la parte superior del talud. Se llama escarpe si la pendiente es muy pronunciada; por lo general los escarpes inician las discontinuidades y roturas en el talud (p. 04).
- -Altura: Para Suarez (2009) la altura del talud contiene la distancia vertical desde el pie hasta la cabeza del mismo (p. 04).

- -Altura de nivel freático: Suarez (2009), afirma que "Es la distancia vertical desde el pie del talud hasta el nivel de agua (la presión en el agua es igual a la presión atmosférica). La altura del nivel freático se acostumbra medirla debajo de la cabeza del talud" (p. 04).
 - La altura del nivel freático se expresa en longitud vertical desde el pie del talud hasta el nivel de agua en el talud.
- -**Pendiente:** Suarez (2009), define pendiente del talud como la relación entre la distancia vertical entre la distancia horizontal, o la oblicuidad del talud respecto al plano horizontal (p. 04).
- -**Ángulo de talud:** Representdo simbolicamente por (ψt), es el arco formado desde el pie a la cabeza del talud; cuando el ángulo de talud es mayor que el ángulo de reposo (ψi) se producirán inestabilidades.

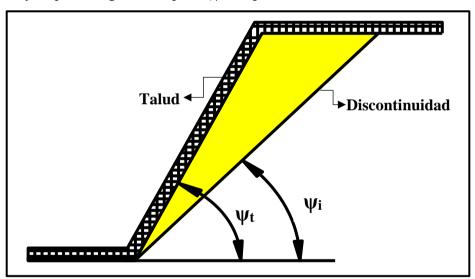


Figura 20. Talud inestable, Nota: El ángulo del talud (ψ_t) es mayor al ángulo de la discontinuidad (ψ_i). Tomada de «Imunt S.A», 2020, por Lecca, Irveen.

B. Inestabilidad de taludes

Desde un punto de vista mecánico, la inestabilidad del talud ocurre cuando la resistencia al esfuerzo cortante del macizo rocoso es menor que los esfuerzos cortantes que se producen en el plano de falla (peso propio del macizo rocoso y del agua). La inestabilidad de taludes es un peligro más común de masas de rocas (Oliva, 2015, p. 1).

La inestabilidad de talud se produce cuando rocas sueltas se deslizan o caen por una superficie más o menos definida (Oliva, 2015, p. 1). Influyen

también la alteración de: pendiente, altura, superficie de falla, superficie original). Tal como se muestran en la figura 21.

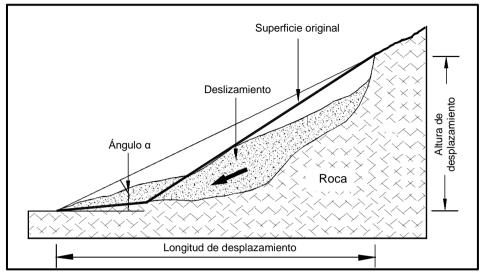


Figura 21. Elementos de un deslizamiento planar de macizo rocoso. Tomada de «Capítulo 1 Nomenclatura y Clasificación de los Movimientos. En: Suarez, Jaime. Deslizamientos. Análisis Geotécnico Vol. 1», por Suarez Jaime, 2009, p. 7.

Un talud rocoso puede fallar principalmente por la orientación del patrón de discontinuidades, este a su vez afecta su pendiente y altura. Dicha variación en la orientación comúnmente se debe a la actividad antrópica al realizar obras viales y mineras; sin embargo, también se debe a cambios en la geodinámica interna y externa de la tierra.

Ante la problemática de inestabilidades en el talud es sustancial reconocer los factores que afectan su estabilidad al variar sus características y condiciones de equilibrio para plantear soluciones ingenieriles seguras.

a. Factores causantes de inestabilidad en talud

La estabilidad de un talud está determinada por factores geométricos (altura e inclinación), factores geológicos (que condicionan la presencia de discontinuidades, factores hidrogeológicos (presencia de agua) y factores mecánicos relacionados con la resistencia a la compresión uniaxial de la roca intacta (González de Vallejo, Luis, et al., 2002).

Según el Instituto Geológico y Minero de España (IGME) (1987), los factores extrínsecos tales como la actividad humana determinan la estabilidad del talud al realizar movimiento de tierras para obras civiles.

En el caso de macizos rocosos competentes, el principal factor condicionante es la caracterización geológica: la disposición y frecuencia de los planos de discontinuidad, el grado de fracturación, la litología y el grado de meteorización (González de Vallejo, Luis, et al., 2002).

C. Metodología del análisis de estabilidad de taludes

El análisis de estabilidad del talud busca satisfacer las condiciones gravitatorias desfavorables en taludes utilizando criterios geotécnicos integrales a fin de resguardar la seguridad tanto de infraestructuras como de las personas que lo rodean. Para ello existen: métodos observacionales y cinemáticos.

D. Tipos de movimientos de bloques rocosos en talud

Los movimientos de bloques rocosos en talud son procesos físicos que se generan cuando aumenta la carga sobre éste y/o con la reducción de la resistencia a la compresión uniaxial (Ortega, 2019, p. 26). De acuerdo a la clasificación de movimientos de masas propuesta por Varnes (1978), se tienen diferentes tipos de movimientos rocosos:

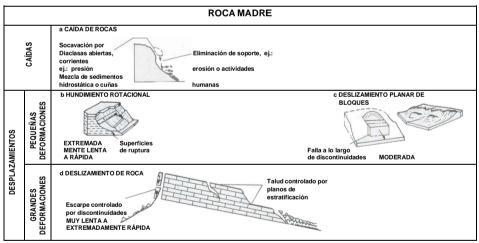


Figura 22. Clasificación de movimientos de masas propuesta por Varnes. Tomada de «Engineering Geology», por Bell F.G., 2007, p. 95

a. Caídas

Las caídas se originan cuando un bloque rocoso se desprende, desplazándose mayormente por el aire, rebotando y rodando en la superficie de falla. Si se desprenden rocas sanas, se llama caída de rocas (Suarez, 2009, pp. 8-9).

Según Luque Poma, *et al.* (p. 105, 2020), las caídas de rocas ocurren frecuentemente en rocas de litología sedimentaria y en rocas altamente fracturadas o meteorizadas con una pendiente moderada a fuerte.

b. Deslizamientos

Son movimientos de masas rocosas sobre un plano de falla a lo largo de la discontinuidad, que producen deformaciones; según la clasificación de movimientos de masas propuesta por Varnes (ver figura 22) considerando al deslizamiento planar de bloques como el más frecuente (Luque Poma, *et al.*, p. 106, 2020).

a) Deslizamiento planar de bloques

Es un deslizamiento traslacional que consiste en el movimiento de una o pocas rocas de diferentes tamaños que se desplazan y rompen, acumulándose al pie del talud. La acción de congelación y descongelación es una de las principales causas del desprendimiento de rocas (Bell, 2007, p. 95).

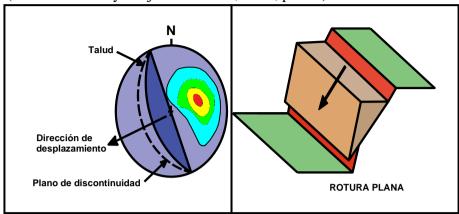
Figura 23. Deslizamiento planar de bloques de roca. Nota: Material a deslizar planos de falla planar compuestos por rocas sedimentaria tipo caliza grainstone. *Fuente:* Elaboración propia.

E. Mecanismo de falla en taludes de roca

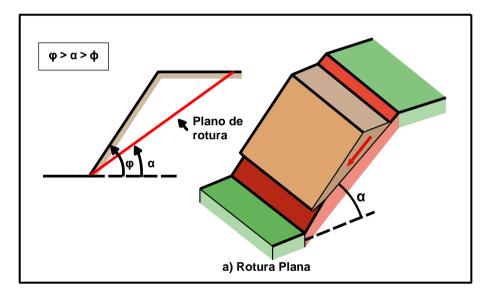
Los planos de falla son las zonas límite entre rocas estables e inestables del talud (Oliva, 2015). En macizos rocosos duros, las discontinuidades establecen los planos de falla y determinan estabilidad del talud. El mecanismo de falla más frecuente es la falla planar (González de Vallejo, Luis *et al.*, 2002. P. 440).

Figura 24. Bloqueo de carretera a causa de deslizamiento de rocas por falla planar. Tomada de «Mecánica de rocas: Fundamentos e Ingeniería de taludes», por Ramírez y Alejano, 2004, p. 288.

a. Falla planar


Es el desplazamiento de una roca a lo largo del plano de discontinuidad en la cara del talud. Antecede a esta falla grietas de tracción desde la discontinuidad hasta la cima del talud. La falla planar puede ocasionar bloqueos en carreteras, tal como se aprecia en la figura 24 (Ramírez-Pedro y Alejano-Leandro, 2004, p. 286).

Según el INSTITUTO Geológico y Minero de España (IGME) (1987, pp. 203-204), la falla planar se origina en macizos rocosos media a altamente resistentes, que presentan:


- -Discontinuidades que recorren todo el plano de falla del talud.
- -Buzamiento de la discontinuidad menor al buzamiento del talud (ver figura 26).
- -Rumbo del plano de discontinuidad debe ser paralelo al rumbo del talud, con un margen máximo de 20° (ver figura 26).
- La falla planar, se puede interpretar a través de proyecciones estereográficas, tal como se muestra en la figura 25.

Para el analizar la falla planar, es necesario conocer las fuerzas que se oponen a las inestabilidades: ángulo de cohesión y fricción; y las fuerzas que propician las inestabilidades: peso propio del talud, la presión de agua (Ramírez-Pedro y Alejano-Leandro, 2004, p. 289).

Si el macizo rocoso presenta cohesión, el talud no fallará, aunque el ángulo de fricción sea menor que el buzamiento de la discontinuidad (Ramírez-Pedro y Alejano-Leandro, 2004, p. 288).

Figura 25. Análisis estereográfico de falla planar. Tomada de «Ingeniería geológica», por González de Vallejo, Luis I., *et al.*, 2002, p. 441.

Figura 26. Esquema de superficie o plano de falla planar en talud. Tomada de «Ingeniería geológica», por González de Vallejo, Luis I., *et al.*, 2002, p. 454.

F. Soluciones para la estabilización de taludes

Según Bravo (2020) las medidas de estabilización de taludes son activas porque actúan directamente sobre la inestabilidad del talud, modificando su geometría, o añadiendo elementos de refuerzo que incrementen sus fuerzas resistentes tales como anclajes y bulones.

El primer paso a seguir para estabilizar un talud consiste en descubrir cuales son los agentes desestabilizantes para eliminarlos o neutralizarlos; entre los más comunes figuran: las infiltraciones de agua, el tipo de material rocoso y meteorización, los cuales suelen combinarse, razón por la cual se deben formular soluciones mixtas (IGME, 1987, p. 370).

El segundo paso consiste en aumentar las fuerzas estabilizadoras mediante anclajes, modificación de la pendiente e incremento el pie del talud y disminución del nivel freático (IGME, 1987, p. 370).

Para el diseño de taludes se usan diferentes soluciones a continuación, detallo las más usadas (IGME, 1987, pp. 371-372):

- -Anclaje y bulones: Se deben calcular todas fuerzas que actúan sobre el talud, obteniendo la orientación a la cual colocar los refuerzos (IGME, 1987, pp. 371-372).
- -Corte del talud: Para estabilizar bloques rocosos inestables en la cima del talud se propone retirar parte del material rocoso (IGME, 1987, pp. 371 -372).

Se parafraseó la información y se concuerda con el IGME (1987), líneas arriba.

2.3. Definición de términos

Ángulo de reposo

Es la máxima longitud de arco entre un plano horizontal y un plano geológico que define el equilibrio del talud (Dávila, 2011); para el Ministerio de Transportes y Comunicaciones (2014) el máximo ángulo de reposo para taludes de corte en roca fija de 5 metros a 10 metros de altura es 84.29° (10H:1V).

Buzamiento

Es el ángulo vertical medido desde la línea de máxima pendiente hasta el plano horizontal (Dávila, 2011) a continuación se debe anotar el cuadrante al cual pertenece (Duque, 2017). se deduce entonces que el buzamiento expresa la inclinación del talud y varía entre 0° y 90° (ver figura 17).

Clasificación geomecánica

Es un sistema basado en la experiencia y observación que transforma datos cualitativos: características geológicas, geotécnicas y geomecánicas en parámetros cuantitativos: calidad de la roca, en función de la cual se sugieren sostenimientos para estabilizar las excavaciones superficiales o subterráneas.

Condiciones geomecánicas

Son los parámetros que intervienen en el cálculo de clasificación geomecánica Slope Mass Rating puesto que caracterizan las propiedades físicas, mecánicas y geométricas del macizo rocoso (roca intacta y discontinuidades).

Diaclasa

Las diaclasas son las superficies de rocas que conforman las discontinuidades que aún no se ha deslizado o su movimiento ha sido muy pequeño. (González de Vallejo, Luis I., *et al.*, 2002, p. 178).

Dirección de buzamiento

Según Babín, Rosa; Gómez, David (2010, p. 12), la dirección de buzamiento, tiene un intervalo angular de 0° a 360° que se mide desde la proyección en el plano horizontal de la línea de máxima pendiente hasta el norte geográfico. Esta proyección es perpendicular a la línea de rumbo (ver figura 17).

Discontinuidad

Según Ferrer Gijón y González de Vallejo (2007) es cualquier plano que indica un comportamiento no continuo del macizo rocoso (p. 11).

Estabilidad del talud

La estabilidad del talud es una solución geotécnica que satisface condiciones gravitatorias generando seguridad, equilibrio y sostenibilidad tanto a la plataforma vial como a los usuarios de la vía.

> Falla

Las fallas, son roturas en la superficie de un talud con desplazamiento causado por la liberación de energía desde el núcleo terrestre que separan los bloques de macizos rocosos presentes en taludes generando 'zonas de falla' (González de Vallejo, Luis I., *et al.*, 2002, p. 180).

Gelifracción

Es la desintegración mecánica del macizo rocoso, producido por periodos de hielo y deshielo del agua en los poros del macizo rocoso y entre las discontinuidades, impidiendo que esta discurra con normalidad. Debido a la expansión del agua congelada, se separarán más las discontinuidades.

Litología

Es una ciencia que investiga el origen, evolución y clasificación de las rocas. (Dávila, 2011, p. 505). Las características litológicas que debe contener el estudio litológico son: tipo, nombre, color, grado de meteorización, textura, dureza, discontinuidades (Rojas González, 2018).

Macizos rocosos

Son zonas montañosas conformadas por roca intacta y discontinuidades. Sus características más importantes son el tamaño de bloque, número y orientación de las familias de discontinuidades (González de Vallejo, Luis I., *et al.*, 2002, p. 123). Ver fotografía 01 del anexo 16: Panel fotográfico.

Heterogeneidad del macizo rocoso

Es la variación de propiedades físicas, grado de alteración y contenido en agua en un mismo macizo rocoso.

> Índice Slope Mass Rating

Es una clasificación geomecánica que evalúa la estabilidad del talud, está en función del sistema Rock Mass Rating y de 4 sub—factores de ajuste de las discontinuidades. Se calcula por cada familia de discontinuidades, escogiendo el menor valor resultante (González de Vallejo, Luis *et al.*, 2002. p. 469).

Plano de falla

Según, Dávila el término plano de falla se utiliza para referirse a una superficie asumida a lo largo de la cual puede ocurrir desprendimientos y caídas de rocas en el talud (2011, p.54).

Petrografía

Según, Dávila (2011), la petrografía es una ciencia que describe el origen, evolución y composición de las rocas a nivel macroscópico y microscópico.

Roca intacta

Es el material rocoso intacto e interno y sin discontinuidades compuesto por varios minerales, y definido por propiedades físicas y mecánicas: peso específico, dureza, resistencia a la compresión uniaxial (González de Vallejo, Luis I., *et al.*, 2002, p. 123).

Rock Mass Rating

Es una clasificación geomecánica que valora la calidad del macizo rocoso en una escala de 0 a 100 puntos mediante la suma de: resistencia de la roca intacta, el índice Rock Quality Designation, presencia del agua, espaciamiento y demás condiciones de las discontinuidades (González de Vallejo, Luis et al., 2002).

Rumbo

Es el ángulo horizontal representado por Φ y formado por la intersección entre un plano geológico y un plano horizontal con el norte. Una vez obtenido el rumbo, anteponer el norte o sur, y transponer este u oeste conforme a su ubicación (Duque, 2017, p. 353). El rumbo oscila entre 0° y 90° (ver figura 16).

> Talud

Es un "Perfil conseguido tras una excavación o terraplenado no necesariamente vertical, sino con cierto ángulo con la horizontal, llamado ángulo de talud." (Ministerio de Vivienda, Construcción y Saneamiento, 2018, párr. 80). Un talud es una estructura artificial diseñada por estabilidad con pendiente.

Unidad litoestratigráfica

Es una clasificación de un cuerpo rocoso basado en sus características litológicas y físicas, más no en su edad o tiempo geológico. Por ejemplo, en el Perú existen unidades litoestratigráficas tales como la formación Condorsinga, Amanchay, entre otras las cuales fueron formuladas por Mégard F., en 1968.

2.4. Hipótesis

2.4.1 Hipótesis general

La aplicación de las condiciones geomecánicas del índice Slope Mass Rating (SMR) permite estimar óptimamente la estabilidad del talud en la carretera puente Collpa – Yanacancha.

2.4.2 Hipótesis específicas

- a) La cuantificación del resultado de la calidad del macizo rocoso, establecida con la clasificación geomecánica Rock Mass Rating, contribuye a valorar de la estabilidad del talud.
- b) El cálculo de los sub-factores de ajuste de las discontinuidades permite estimar la estabilidad del talud ofreciendo resultados aceptables.

2.5. Variables

2.5.1. Definición conceptual de la variable

A. Condiciones geomecánicas del índice Slope Mass Rating

Fueron establecidas por Romana–Manuel (1989), son las propiedades físicas mecánicas y geométricas de los taludes y sus discontinuidades tales como: El índice RQD, espaciamiento, presencia de agua, condiciones de las discontinuidades, resistencia mecánica de la roca intacta, orientaciones y mecanismo de falla.

Para Romana Manuel, (1989) la aplicación de dichas condiciones forma niveles de estabilidad del talud en una escala numérica del 0 al 100 donde 0 representa taludes totalmente inestables y 100 representa taludes completamente estables.

B. Estabilidad del talud

Según el MVCS, (2018, párr. 55) la estabilidad del talud es una solución geotécnica que satisface condiciones gravitatorias, genera equilibrio y sostenibilidad tanto a la plataforma vial como a sus usuarios.

2.5.2. Definición operacional de la variable

A. Variable independiente: Condiciones geomecánicas del índice Slope Mass Rating

Las condiciones geomecánicas del índice Slope Mass Rating (SMR) consisten en la sumatoria de:

- Los parámetros geomecánicos del índice Rock Mass Rating básico (Resistencia de la roca intacta, índice Rock Quality Design (RQD), espaciamiento, la presencia de agua y demás condiciones de las discontinuidades).
- El producto de 3 sub-factores de ajuste relacionados con las orientaciones del talud y sus discontinuidades además del mecanismo de falla probable obtenido a partir de las proyecciones estereográficas del talud.
- El cuarto sub-factor de ajuste dependiente del método de excavación del talud.

A partir de la aplicación de las condiciones geomecánicas del índice Slope

Mass Rating, se puede estimar la estabilidad del talud en una escala

numérica del 0 al 100 donde 0 representa un talud totalmente inestable y

100 representa un talud completamente estable.

X: CONDICIONES GEOMECÁNICAS DEL ÍNDICE SLOPE MASS

RATING

Indicadores:

X₁: Resistencia a la compresión uniaxial.

X₂: Índice de designación de la calidad de la roca

X₃: Espaciamiento

X₄: Persistencia

X₅: Abertura

X₆: Rugosidad

X₇: Relleno

X₈: Alteración

X₉: Presencia de Agua

X₁₀: Sub – factor de ajuste de las discontinuidades F1

X₁₁: Sub – factor de ajuste de las discontinuidades F2

X₁₂: Sub – factor de ajuste de las discontinuidades F3

X₁₃: Sub – factor de ajuste de las discontinuidades F4

B. Variable dependiente: Estabilidad del talud

La estabilidad del talud de roca estudia los cambios en las propiedades litológicas, físicas y geométricas de sus discontinuidades. El análisis de la estabilidad del talud en la presente tesis se realizó mediante los métodos observacionales y cinemáticos (índice Slope Mass Rating y proyecciones estereográficas), considerando además el ángulo de reposo del talud pendiente del talud.

Y: ESTABILIDAD DEL TALUD

Indicadores

Y₁: Composición mineralógica

Y₂: Color

Y₃: Dureza

Y₄: Textura

Y₅: Tipo de roca según su origen

Y₆: Angulo de reposo del talud

Y₇: Pendiente del talud

2.5.3. Operacionalización de la variable

Tabla 19Operacionalización de las variables de la investigación

TESIS: "APLICACIÓN DE LAS CONDICIONES GEOMECÁNICAS DEL ÍNDICE SLOPE MASS RATING EN LA ESTABILIDAD DEL TALUD EN CARRETERA PUENTE COLLPA -YANACANCHA" Variable Instrumento Concepto Dimensión **Sub-dimensiones Indicadores** Unidad ➤ Resistencia Megapascales Guías de observación del ensavo de RATING Calidad del macizo ➤ Clasificación la geomecánica Rock compresión uniaxial. resistencia de la roca con el martillo de rocoso rebote (Anexo 06) Mass Rating ➤ Índice de designación de % Software: Geotable, (Ver Ítem 4.1.3.A SLOPE MASS Las condiciones geomecánicas del índice Slope la calidad de la roca – Capítulo IV) Mass Rating (SMR) establecidas por Romana-➤ Condición de las Guía de observación basada en el Manuel (1989), consisten en las propiedades físicodiscontinuidades Formato normalizado para mecánicas de los taludes y sus discontinuidades -Espaciamiento recolección de datos de (índice RQD, espaciamiento, presencia de agua, -Persistencia discontinuidades en el macizo rocoso m condiciones de las discontinuidades y la resistencia (Anexo 05) -Abertura mecánica de la roca intacta) expresadas por el Rock mm Mass Rating básico; además de sus propiedades -Rugosidad cualitativo geométricas (orientaciones), mecanismo de falla y -Relleno mm método de excavación o construcción del talud que VARIABLE INDEPENDIENTE: CONDICIONES GEOMECÁNICAS expresan los sub-factores de ajuste de las -Alteración S/U discontinuidades. -Presencia de Agua 1/min Mediante la aplicación de las condiciones ➤Orientación del geomecánicas del índice Slope Mass Rating, se Sub-factores de ➤Buzamiento del talud y Grados (°) Guía de observación basada en el puede estimar la estabilidad del talud en una escala ajuste de las talud y de sus sus Formato normalizado para la numérica del 0 al 100 donde 0 representa a los discontinuidades discontinuidades discontinuidades recolección de datos de las taludes totalmente inestables y 100 representa a ➤ Dirección de buzamiento Grados (°) discontinuidades en el macizo rocoso taludes completamente estables (Romana Manuel, del talud (Anexo 05) y sus discontinuidades Software SMRTool, para la obtención ➤Método de ➤Sub-factor de ajuste de Puntos de sub-factores de ajuste de las las discontinuidades F4 excavación del talud discontinuidades (Ver Ítem 4.1.5.A – Capítulo IV). ►Tipo de roca según su Cualitativa Guía de observación para Inspección Características litológicas de la roca origen Petrográfica de Roca según ASTM YABET La estabilidad del talud es una solución geotécnica que satisface condiciones gravitatorias generando seguridad, equilibrio y sostenibilidad tanto a la plataforma vial como a los usuarios de la vía MVCS, (2018, párr. 55). Cualitativa **≻**Dureza C1271–21 (anexo 08) intacta que compone Cualitativa ➤ Composición mineralógica Fichas de Fichas de resumen: al talud Propiedades litológicas de la roca (anexo 12) ▶Pendiente del talud Software: AutoCAD civil 3D y MS Grados (°) Características Excel (Tabla 21 del ítem 4.1.1 -Cap.IV) geométricas del talud ➤Ángulo de reposo Ángulo referencial para rocas fijas = Grados (°) 84.2894° (Ver ítem 2.3.)

Fuente: Elaboración propia.

CAPÍTULO III METODOLOGÍA

3.1. Método de investigación

Se consideró al método científico como método general de investigación porque se siguieron pasos ordenados: identificación y formulación de problemas, planteamiento de metas, formulación de supuestos, revisión de antecedentes, visita a campo, análisis de datos, contraste de hipótesis, obtención de resultados y elección del método de estabilidad en taludes (Hernández *et al.*, 2018, p. 18).

Está investigación se realizó bajo un enfoque cuantitativo ya que empleó la estadística descriptiva para procesar datos de campo codificables numéricamente, también empleó la estadística inferencial para analizar las variables de investigación a fin de obtener resultados verificables a partir de los cuales se generalizar conclusiones (Ñaupas, *et al.*, 2018, p. 97).

La presente investigación contempló al método inductivo—deductivo; como método específico. Inductivo porque en su desarrollo se utilizaron técnicas como la observación y análisis documental para estudiar y ordenar en partes el macizo rocoso y deductivo porque, una vez procesados y analizados estadísticamente los resultados se generalizaron las conclusiones.

3.2. Tipo de investigación

Para Gómez-Miguel, Alzate-María y Deslauriers-Jean Pierre (2015), existe una diferencia principal entre la investigación de tipo básica y la investigación de tipo aplicada:

[...] se puede distinguir las tesis de investigación fundamental de las tesis de investigación aplicada. En el primer caso, la contribución al enriquecimiento del modelo teórico de partida es el objetivo, en el segundo caso, el objetivo es la traducción del modelo teórico en herramientas aplicables al terreno que se tiene en la mira (p. 30).

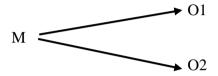
En consecuencia y al igual que en las investigaciones de Ortega, J. (2019, p. 48) y Bravo, P (2020, p. 75) la presente investigación convirtió el conocimiento teórico en herramientas tecnológicas y prácticas para resolver la problemática real de inestabilidades en taludes rocosos con aplicación directa a mediano plazo en la sociedad.

3.3. Nivel de investigación

La presente investigación fue de nivel descriptivo – explicativo; descriptivo porque según Gonzales-Abel, Oseda-Dulio, Ramírez-Felisicimo y Gave-José (2011) y al igual que en la tesis de Ortega, J. (2019, p. 48) se recopilaron y especificaron las condiciones geomecánicas del índice Slope Mass Rating en el talud rocoso para estimar su estabilidad.

Explicativo porque según Carrasco (2005, p. 42) la tesis plasma la razón científica de la realidad problemática (inestabilidad de taludes) para ello se investigó la aplicación de las condiciones geomecánicas del índice Slope Mass Rating del talud rocoso en la estabilidad del talud, contribuyendo de esta manera a plantear una solución para estabilizarlo.

3.4. Diseño de la investigación


El diseño de la presente investigación fue **no experimental – transversal**, no experimental porque al igual que en las investigaciones de Ortega, J. (2019, p. 49) y Bravo, P. (2020, p. 75) se analizó la variable independiente "Condiciones geomecánicas del índice Slope Mass Rating" observándola, sin manipularla directamente.

Al respecto Hernández, et al. (2014) señala que

"[...] En la investigación no experimental las variables independientes ocurren y no es posible manipularlas, no se tiene control directo sobre dichas variables ni se puede influir en ellas, porque ya sucedieron, al igual que sus efectos" (p. 152).

La presente tesis tiene diseño transversal porque al igual que en las investigaciones de Ortega, J. (2019, p. 49) y Bravo, P. (2020, p. 75) y lo planteado por Hernández, *et al.* (2014 p. 154), la toma de datos del talud rocoso se realizó en un solo momento vinculado las dimensiones de las variables de estudio en la población para contrastar la hipótesis mediante la prueba T–Student.

Esquema del diseño de investigación

Donde:

O1 = Observación de la variable independiente.

O2 = Observación de la variable dependiente.

M = Muestra

3.5. Población y muestra

3.5.1. Universo

Para Carrasco (2005), el término 'universo', responde a la definición

"[...]conjunto de elementos finitos o infinitos que son materia de investigación y al que pertenecen la población y la muestra de estudio, pudiendo ser dichos elementos naturales, sociales o abstractos, tales como el agua, las rocas, las plantas, etc.., acciones humanas, grupos sociales, procesos o programas, etc., ideas, conceptos, símbolos, teorías, etc." (p. 238).

Partiendo de la definición anterior el universo del presente trabajo de investigación se constituyó por todos los taludes rocosos en las redes viales vecinales de Junín. (1076 redes viales) cuyas características litológicas son variadas.

3.5.2. Población

Para Carrasco (2005) la definición de población es:

"[...]conjunto de todos los elementos que forman parte del espacio territorial al que pertenece el problema de investigación y poseen características mucho más concretas que el universo:

- Sólo abarca la totalidad de elemento del espacio territorial del problema
- Su estudio es muy costoso
- Contiene a la muestra
- Son limitados, es decir son finitos" (p. 238).

Según lo mencionado la población de la tesis estuvo conformada por los taludes rocosos de la carretera puente Collpa—Yanacancha desde la progresiva inicial: km 0+000 hasta la progresiva final: km 40+056.

3.5.3. Muestra

Según Juan Ortega, la definición de muestra es:

"La muestra es una porción determinante o representativa de la población que se toma con el fin de realizar un estudio más manejable y con alto grado de confiabilidad. Estas muestras pueden ser aleatorias o sistemáticas, dependiendo del grado de representatividad que se requiera." (ORTEGA, 2018, p. 76)

En adición, para definir el muestreo de esta investigación se tomó como referente la tesis de Christian Breña, quien definió su muestra en zonas críticas (p. 63); Pinillos (2017), que eligió los puntos más críticos dentro de la vía Girador Cambao y Bravo (2020), quien escogió la muestra identificando zonas inestables (p. 77).

Basada en las investigaciones mencionadas en el párrafo anterior, la presente tesis empleó un muestreo **no probabilístico o dirigido**, puesto que se identificaron las condiciones geomecánicas del índice Slope Mass Rating además de las características geométricas del talud rocoso inestable.

Por lo tanto, la muestra constó de taludes rocosos en una extensión de 350 metros lineales desde las progresivas 018+632.136 a 018+982.136 de la carretera puente Collpa—Yanacancha.

3.6. Técnicas e instrumentos de recolección de datos

3.6.1. Técnicas de recolección de datos

Según Ñaupas, *et al.* (2018), las técnicas de recopilación de datos son un grupo de normas y procedimientos que definen procesos y logran objetivos. Para Yuni José (2014, p. 29), "[...] son procedimientos mediante los cuales se generan informaciones válidas y confiables, para ser utilizadas como datos científicos"

A partir de lo citado, se infiere todo dato científico necesita validarse para generar conocimiento, o contrastar teorías existentes. Entre las técnicas de recolección de datos más utilizadas están: análisis documental y observación, las mismas que se emplearon tanto en la tesis de Ortega, J. (2019) y la presente investigación.

3.6.2. Instrumentos de recolección de datos

A continuación, se describen los instrumentos de recolección de datos que se utilizaron en la presente investigación:

- Software Global Mapper V.20, Google Earth y AutoCAD Civil 3D, para la obtención del relieve y topografía de la zona de estudio.
- Softwares geotécnicos especializados: DIPS, SMRTool, para generar planos de fallas y sub-factores de ajuste de las discontinuidades respetivamente.
- Fichas bibliográficas y paráfrasis en el desarrollo del marco teórico de la presente investigación ya que se recogió información de normas, textos, tesis, libros, revistas.

Guías de observación:

- O Anexo 04: Instrumento de investigación 01: Guía de observación para la georreferenciación de la zona de estudio (levantamiento topográfico, c/ estación total mediante el cual se obtuvo el relieve y topografía de la zona de estudio, mediante los softwares: Global Mapper V.20, Google Earth y AutoCAD Civil 3D).
- Anexo 05: Instrumento de investigación 02: Guía de observación basada en el formato normalizado para toma de datos de las discontinuidades en el macizo rocoso.
- Anexo 06: Instrumento de investigación 03: Guía de observación para ensayo en laboratorio para determinar la resistencia a la compresión uniaxial de la roca mediante el método de martillo de rebote según norma ISRM – 2009
- Anexo 07: Instrumento de investigación 04: Guía de observación para ensayo de propiedades físicas de la roca ASTM C97 / C97M – 18.
- Anexo 08: Instrumento de investigación 05: Guía de observación para Inspección petrográfica de roca en sección delgada ASTM C1271–21.

Las guías de observación fueron validadas mediante el juicio de expertos que se muestra en el anexo 09 de la presente tesis.

3.7. Procesamiento de la Información

Índice Slope Mass Rating

Para el cálculo del índice Slope Mass Rating se aplicaron las técnicas: observación—toma de datos a través de los instrumentos de investigación 02, 03 y 04 mostrados en los anexos 05, 06, 07 y 08 respectivamente y análisis documental mediante fichas de paráfrasis para describir las condiciones geomecánicas del índice Slope Mass Rating mostrado en el anexo 12.

Luego se procesó la información con el software Dips obteniendo la probabilidad y mecanismo de falla de las discontinuidades (anexo 11) y el análisis estadístico-descriptivo de las condiciones de las discontinuidades (anexo 10). Respecto a éstas últimas también se plasmaron estadísticamente en tablas y gráficas con el software MS Excel (ver Capítulo IV, Ítem 4.1.3).

Finalmente, mediante el software SMRTools y Geotable que contienen tablas de clasificación geomecánica y fórmulas establecidas por Bieniawski, Tomás y Romana se logró calcular el índice Slope Mass Rating (SMR) (ver Capítulo IV, Ítem 4.1.5).

Estabilidad del talud

Para definir la estabilidad del talud se realizó primeramente el levantamiento topográfico de la zona de estudio que brindó una visión global del relieve del talud (alturas y pendientes) permitiendo identificar y señalar el tramo crítico evaluado, el cual se plasma en el plano TC-01 del anexo 15 de la presente tesis.

Mediante el análisis estadístico descriptivo e inferencial de los índices Slope Mass Rating (SMR) obtenidos se logró: valorar la estabilidad del talud, proponer la alternativa económica: desatado de rocas. Finalmente se validó la investigación mediante la contrastación de hipótesis realizada con el software IBM Statistics SPSS (ver Capítulo IV, Ítem 4.2).

3.8. Técnicas y análisis de datos

Según Muñoz (2011) el análisis de datos consiste en ordenar, agrupar procesar e interpretar la información utilizando la estadística de forma que sean útiles a la

investigación (p. 121). A partir de ello se deduce que el análisis de datos permitió describir, graficar, analizar, comparar los resultados a fin de probar la hipótesis mediante el análisis estadístico inferencial.

La contrastación de la hipótesis se realiza negándola mediante el análisis paramétrico que presenta normalidad en la distribución poblacional y medición de la variable por intervalos o razón (Ñaupas *et al.*, 2018, p. 430 – 432).

Al igual que Ortega, Juan (2019, p. 105) el autor de la presente investigación realizó la prueba de hipótesis mediante el estadístico paramétrico T–Student para una sola muestra y para muestras relacionadas, a fin de encontrar relevancia en los resultados de ensayos de laboratorio y exploraciones en campo mediante el software IBM SPSS Statistics (ver Capitulo IV, ítem 4.2).

Es necesario mencionar que los instrumentos de investigación (guías de observación) fueron validados empleando la "validez de contenido" mediante el juicio de expertos calificados (ver anexo 09). Finalmente se detallan los softwares empleados para el procesamiento de la información:

- AutoCAD Civil 3D, Google Earth y Global Mapper, para el procesamiento de datos del levantamiento topográfico (altura y pendientes del talud rocoso)
- Geotable: Para la valoración de la estabilidad talud expresado por la clasificación geomecánica Rock Mass Rating propuesto por Bieniawski.
- SMRTools: Para la valoración exacta de la estabilidad del talud expresado por el índice Slope Mass Rating formulado por Tomás, et al. (2006).
- Dips: Para el procesamiento de las condiciones de las discontinuidades: (dirección de buzamiento, buzamiento, calidad de la roca, espaciamiento, persistencia, abertura, rugosidad Relleno, alteración, presencia de agua) y el análisis cinemático del talud mediante la interpretación de proyecciones estereográficas: Probabilidad y mecanismo de falla.
- Ms Excel: Para la interpretación estadística de las condiciones de las discontinuidades en cada familia de discontinuidades del macizo rocoso en estudio.

CAPÍTULO IV RESULTADOS

4.1. Descripción de los resultados

Al culminar la tesis se muestran los resultados del proceso de investigación:

4.1.1. Georreferenciación de la zona de estudio.

Se realizó el levantamiento topográfico con una estación total Topcon ES—105 de la zona de estudio: progresiva 018+632.136 hasta 018+982.136 tal como se expone en las fotografías 05, 06 y 07 del anexo 16 y anexo 04.

A. Estado actual del talud en estudio

Siendo la pendiente y altura del talud características geométricas que influencian la estabilidad, se midieron y plasmaron en las secciones transversales (ver anexo 15: ST01, ST02) obteniendo un resumen:

 Tabla 20

 Resumen de características geométricas del talud en estudio.

Características del talud	Medida
Pendiente media	(5H: 1V)
Altura media del talud	78°
Altura media del talud	9.67 m

Nota: °: grados sexagesimales; m: metros lineales.

En la tabla 21 se aprecian las características geométricas del tramo crítico del talud estudiado en la presente investigación, tales como su altura y pendientes. En dicho tramo crítico se identificaron fragmentos de rocas sueltas inestables que se desprendieron de la superficie del talud e impactaron en la plataforma de la carretera afectando al tránsito vehicular tal como se aprecia en la fotografía 04 del anexo 16.

Tabla 21Altura y pendientes del tramo crítico del talud en estudio por progresivas.

Progresiva	Altura del talud	Distancia Horizontal	Pendiente	V: H
18+680	10.3129 m	2.4722 m	77°	4:1
18+685	10.9696 m	2.6029 m	76°	4:1
18+690	10.9051 m	2.3161 m	79°	5:1
18+696	10.7403 m	2.1153 m	79°	5:1
18+699	10.4671 m	2.2103 m	79°	5:1
18+702	10.1939 m	2.3086 m	76°	5:1
18+705	9.9207 m	2.4070 m	76°	4:1
18+708	9.8055 m	2.4412 m	76°	4:1
18+711	10.1212 m	2.3057 m	76°	5:1
18+714	10.4311 m	2.1693 m	81°	5:1
18+717	10.7528 m	2.0348 m	81°	5:1
18+720	11.0685 m	1.8993 m	81°	6:1
18+723	10.7096 m	1.7191 m	81°	6:1

Nota: H: horizontal; V: vertical; °: grados sexagesimales; m: metro lineal.

Fuente: Elaboración propia.

4.1.2. Caracterización litológica del área de estudio

La caracterización litológica del talud en estudio se fundamenta en la identificación visual e inspección petrográfica de roca según norma internacional ASTM C1721–21(ver anexo 08 y fotografías 01, 02 y 03 del anexo 16) obteniendo:

Tipo de roca : Sedimentaria

Nombre de la roca : Caliza grainstone

Color de la roca : Beige claro y gris

Grado de meteorización: Moderadamente meteorizada

Textura de la roca : Ligeramente rugosa

Dureza de la roca : 3 según escala de Mohs

Además, según el mapa morfoestructural de Carpio, Mario; Torre, Jhonny y Fuentes, Jesús (2019), el talud estudiado pertenece a zonas montañosas cubiertas por sedimentos de la formación Condorsinga.

A. Formación Condorsinga

De acuerdo al mapa geológico del cuadrángulo de Huancayo 25–m, el talud estudiado en la presente investigación se encuentra dentro de la formación Condorsinga, una unidad litoestratigráfica formulada por MÉGARD F., en 1968 (GEOCATMIN: Sistema de información geológico y catastral minero, 2013).

En el distrito de San Juan de Jarpa se observó estratos de rocas calizas 700 metros de espesor, con las siguientes características litológicas por lo general: una coloración plomo claro – crema, textura micrítica, estratos compactos y algunas micro–venillas o intercalaciones de calcita menores a 1 milímetro (Carpio, *et al.*, 2019, pp. 25-27).

4.1.3. Caracterización geomecánica del talud rocoso

A. Índice de designación de la calidad de la roca (RQD)

El índice Rock Quality Designation (RQD) se ejecutó aplicando la fórmula de correlación propuesta por Aydin Adnan (1992): RQD%= $100*e^{-10.1*\lambda}$ (0.1 λ +1), donde λ es número de discontinuidades por metro lineal, en la tabla 22 se obtuvieron dichos valores, los cuales fueron ingresados al software Geotable obteniendo un índice Rock Quality Design excelente (91.40%):

Tabla 22Índice Rock Quality Designation (RQD) por familias de discontinuidades

Est. Geomecánica	Familia	Línea de rastreo (m)	Discontinuidades	λ	RQD %
EC	familia 01	12.20	61	5.000	90.90%
EG_{01}	familia 03	10.92	51	4.670	91.90%
	familia 01	12.80	64	5.000	90.90%
EG_{02}	familia 02	12.80	64	5.000	90.90%
	familia 03	11.90	57	4.790	91.60%
EG_{03}	familia 02	12.18	60	4.926	91.20%
EG03	familia 03	8.95	40	4.469	92.50%
Valor mínimo del ín	dice Rock Qua	ality Designation (RQD) e	en el talud		90.90%
Valor máximo del índice Rock Quality Designation (RQD) en el talud					
Mediana del índice Rock Quality Designation (RQD) en el talud					91.20%
Valor promedio del	Valor promedio del índice Rock Quality Designation (RQD) en el talud 91.40%				
Desviación estándar	del índice Roo	ck Quality Designation (R	(QD) en el talud		0.006

Nota: est.: Estación; m: metros; RQD: Rock Quality Designation; λ: número de discontinuidades por metro lineal; EG: estación geomecánica.

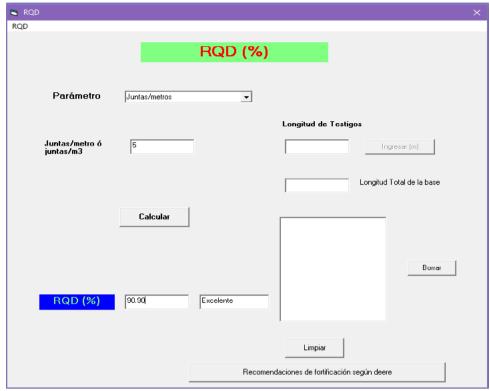


Figura 27. Cálculo del Rock Quality Designation mediante el software Geotable

B. Resistencia de la roca mediante el método de martillo de rebote

La resistencia a la compresión uniaxial de la roca intacta se halló con el gráfico de Miller que relaciona sus propiedades densidad y dureza, basados en las normas: ASTM C97–18 e ISRM–2009 expresada por Aydin respectivamente. También se consideraron como referencias los valores de las tablas 02 y tabla 03 en la presente tesis.

En cuanto a la densidad de la roca se siguieron los pasos:

- Se extrajeron 03 rocas intactas en total, una por cada estación geomecánica de 15 centímetros de lado (ver fotografía 11–anexo 16), las cuales fueron procesadas en laboratorio obteniendo 5 especímenes de 2 ½ pulgadas (ver fotografía 12–anexo 16)
- Se llevaron dichos especímenes al horno por 48 horas registrando su peso 30 minutos después de su enfriamiento (fotografía 13–anexo 16) enseguida se saturaron las muestras con agua destilada por 48 horas luego se retiraron, secaron superficialmente y pesaron nuevamente (fotografía 14 y 15–anexo 16). Al relacionar los pesos saturados y pesos secos se obtuvo el porcentaje de absorción mediante la fórmula:

$$\%absorci\'on = \left[\frac{(Peso\ saturado\ - peso\ seco)}{peso\ seco}\right]*100$$

• Inmediatamente se pesaron los especímenes saturados dentro del agua, utilizando un balde suspendido con un cable hacia una balanza, tal como se observa en la fotografía 16-anexo 16 para calcular

$$Gravedad\ específica = \left[\frac{peso\ seco}{peso\ saturado-peso\ sumergido\ en\ agua}\right]$$

 Finalmente, se calcularon las densidades de las rocas con la fórmula (Ver tabla 23):

Densidad de la roca = gravedad especifica * 1 gr/cm3

El resumen de resultados de densidad de rocas obtenidos con el ensayo de propiedades físicas se muestra en la tabla 23.

1 abla 23Densidad del macizo rocoso por cada estación geomecánica

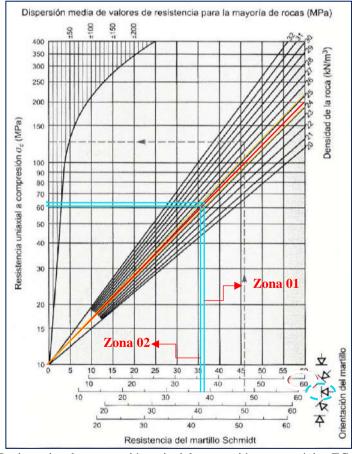
Estación geomecánica		Densidad rocosa (gr/cm3)
EG_{01}		2.51
EG_{02}		2.52
EG_{03}		2.49
Valor mínimo de la densidad de la roca	(gr/cm ³)	2.49
Valor máximo de la densidad de la roca	(gr/cm ³)	2.52
Mediana de la densidad de la roca	(gr/cm ³)	2.51
Valor promedio de la densidad de la roca	(gr/cm^3)	2.507
Desv. estándar de la densidad de la roca	(gr/cm ³)	0.015

Nota: EG₀₁: estación geomecánica 01; EG₀₂: estación geomecánica 02; EG₀₃: estación geomecánica 03; MPa: Megapascales; gr: gramos; cm³: centímetro cúbico.

Fuente: Elaboración propia.

Referente a la dureza de la roca intacta:

Se aplicó la metodología: ISRM – 2009 en cada estación geomecánica:


- Se consiguieron superficies planas y lisas al lijar la roca intacta con la piedra abrasiva trazando sobre ésta una malla de 4X5 con tiza. Posteriormente con un esclerómetro calibrado Pinzuar 137-A tipo 'N' se efectuaron rebotes en la misma dirección perpendicular a la cara del talud anotando veinte lecturas excluyendo las que difieren en ± 7 de la media (ver fotografías 17 y 18, 19, 20 y 21–anexo 16).
- En gabinete se corrigió el número de rebotes multiplicando por un factor de corrección que relaciona a la dureza estándar del yunque de calibración (que consta en su placa de especificaciones) y el promedio de lecturas de calibración (certificado de calibración del equipo – anexo 14).

Como la gráfica de Miller es válida para martillos tipo L se correlacionó rebotes de martillo tipo N a tipo L con la fórmula de propuesta por Aydin (1992): RN=7.124+1.249*RL. Finalmente, hallo la resistencia a la compresión uniaxial correlacionando la dureza y densidad de la roca.

Tabla 24Resistencias a la compresión uniaxial del talud por estación geomecánica

Estación geomecánica	Zona de ensayo	oresión uniaxial)			
EC	Zona 01	59.80 MPa	61.20 MDo		
EG_{01}	Zona 02	62.80 MPa	61.30 MPa		
EG_{02}	Zona 01	51.30 MPa	48.78 MPa		
EU_{02}	Zona 02	46.25 MPa	40.70 MFa		
EG_{03}	Zona 01	56.60 MPa	52.43 MPa		
EO03	Zona 02	48.25 MPa	32.43 MIF a		
Valor máximo de Resis	tencia a la compres	sión uniaxial (MPa)	46.25 MPa		
Valor mínimo de Resist	62.80 MPa				
Mediana de Resistencia	53.95 MPa				
Valor promedio de Resistencia a la compresión uniaxial (MPa) 54.17					
Desv. estándar de Resis	tencia a la compres	ión uniaxial (MPa)	6.60		

Nota: EG₀₁: estación geomecánica 01; EG₀₂: estación geomecánica 02; EG₀₃: estación geomecánica; MPa: Megapascales; Desv: Desviación.

Figura 28. Resistencia a la compresión uniaxial en estación geomecánica EG₀₁. *Fuente:* Elaboración propia.

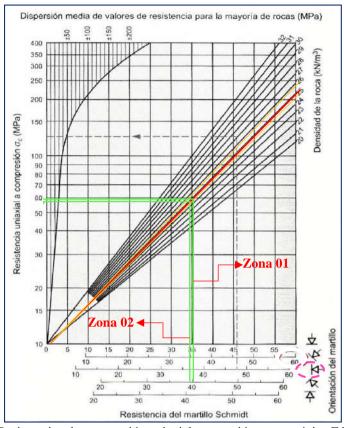
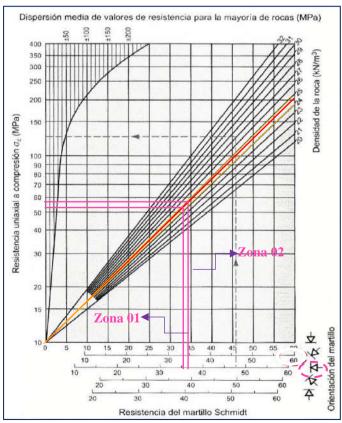
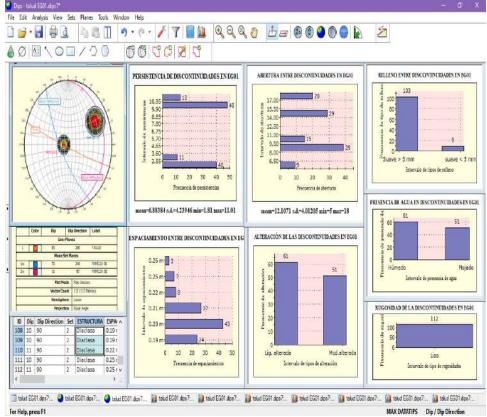
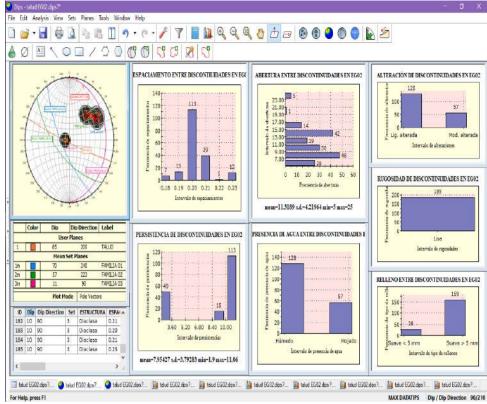



Figura 29. Resistencia a la compresión uniaxial en estación geomecánica EG₀₂. Fuente: Elaboración propia.

Figura~30. Resistencia a la compresión uniaxial en estación geomecánica EG_{03} . Fuente: Elaboración propia.


Según el ensayo de resistencia a la compresión uniaxial, el talud rocoso posee una resistencia de 54.17 Megapascales. El valor utilizado para el modelamiento en el software Geotable se ubica entre 50 a 100 MPa, según la figura 31:

Resistencia de la Roca Inalterada Resistencia a la compresión C > 250MPa C 100-250MPa © 50-100MPa C 25-50MPa uniaxial (MPa)


Figura 31. Ingreso de resistencia a la compresión uniaxial al software Geotable. *Fuente*: Elaboración propia.

C. Caracterización geomecánica de las discontinuidades

Se identificaron 3 estaciones geomecánicas, a partir de las cuales se recopilaron 397 discontinuidades en total con el método de línea de rastreo (ver fotografía 10 del anexo 16: Panel fotográfico); luego se ingresaron estos datos al software Dips a fin de evaluar la estabilidad del talud mediante el mecanismo y probabilidad de falla (ver figuras 32, 33, 34, anexo 10 y anexo 11).

Figura 32. Análisis estadístico descriptivo de las condiciones de discontinuidades en la estación geomecánica EG_{01} mediante el software Dips.

Figura 33. Análisis estadístico descriptivo de las condiciones de discontinuidades en la estación geomecánica EG₀₂ mediante el software Dips.

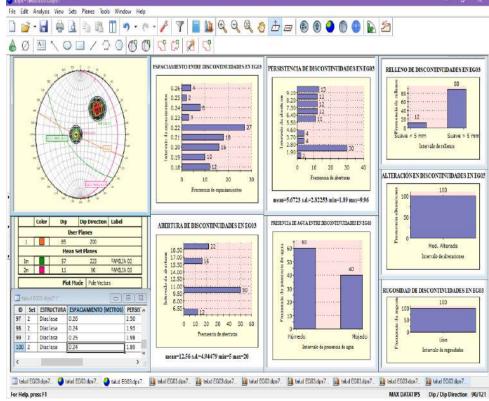
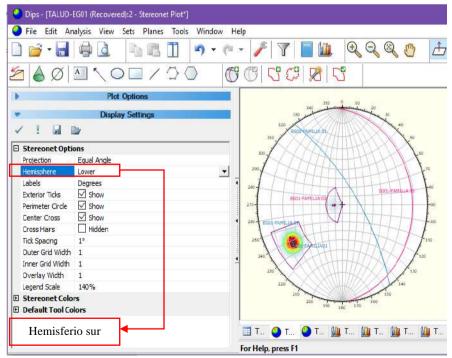


Figura 34. Análisis estadístico descriptivo de las condiciones de discontinuidades en la estación geomecánica EG_{03} mediante el software Dips.

a. Discontinuidades y número de familias de discontinuidades

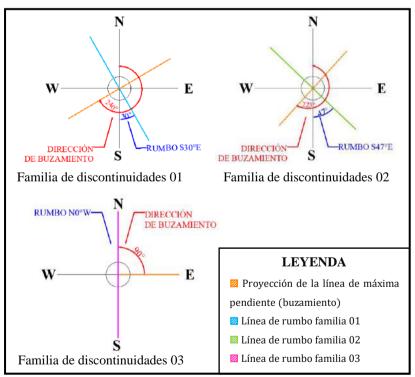

El software Dips, agrupó en 3 familias de discontinuidades según su orientación. (Ver desde Figura 37 al 42 de la presente tesis). A continuación, se muestra las condiciones de las discontinuidades

α) Orientación

Las orientaciones de las discontinuidades y del talud se tomaron en campo con una brújula Bruton en sentido horario encontrando 112, 185 y 101 (pares de rumbos y buzamientos) en las estaciones geomecánicas EG_{01} , EG_{02} y EG_{03} respectivamente (ver fotografías 22 y 23 del anexo 16).

Para orientar la posición de la brújula, se usó la regla de la mano derecha que consistió en poner la mano derecha de modo que desde el dedo índice al dedo meñique apuntaron hacia la dirección del buzamiento y el dedo pulgar apuntó al rumbo.

El software Dips permitió escoger el hemisferio en el cual trabajar, como la zona en estudio se ubica al sur del planeta, la concentración de discontinuidades representada por sus polos está orientado al hemisferio sur (lower).


Figura 35. Orientación de los planos y polos de las discontinuidades al hemisferio sur en el software Dips.

> Transformación del rumbo a dirección de buzamiento

Para el ingreso de orientaciones al software Dips fue necesario transformar rumbos a direcciones de buzamientos, ello se logró gracias a la interpretación de las definiciones (rumbo, línea de rumbo, dirección de buzamiento, proyección de la máxima pendiente) plasmadas sobre el plano cartesiano.

Al representar la línea de rumbo, el rumbo y la proyección de la máxima pendiente, perpendicular a la línea de rumbo en el plano cartesiano, se midió la dirección de buzamiento desde el norte hasta la proyección de la línea de buzamiento pues se conoce que la dirección de buzamiento oscila entre 0° y 360° en sentido horario.

En la figura 36 se observa representativamente la transformación de rumbo a dirección de buzamiento en cada familia de discontinuidades. Las demás orientaciones corregidas y transformadas se plasman en el anexo 10.

Figura 36. Transformaciones de rumbos en direcciones de buzamientos por familias de discontinuidades.

> Representación gráfica de la orientación

El software Dips proyectó y agrupó las orientaciones en familias de discontinuidades (figuras 37 al 42).

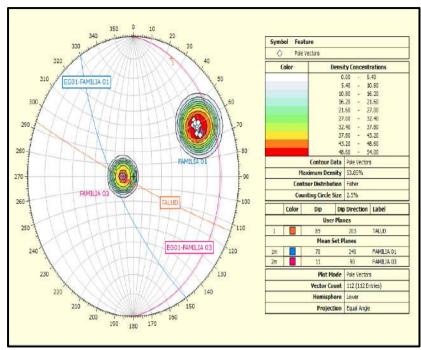
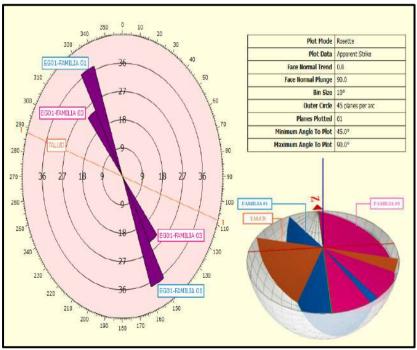
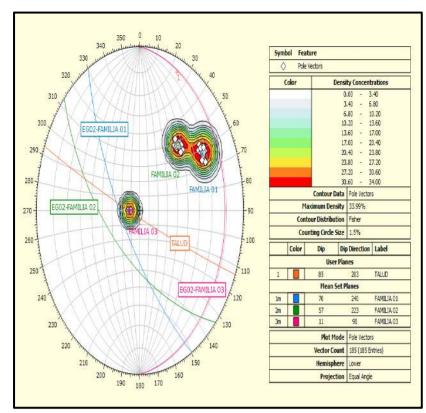




Figura 37. Diagrama estereográfico de planos de discontinuidades en estación geomecánica EG_{01} .

Fuente: Elaboración propia.

Figura 38. Diagrama de rosetas y planos de discontinuidades 3D en estación geomecánica EG₀₁.

Figura~39. Diagrama estereográfico de planos de discontinuidades en EG_{02} . Fuente: Elaboración propia.

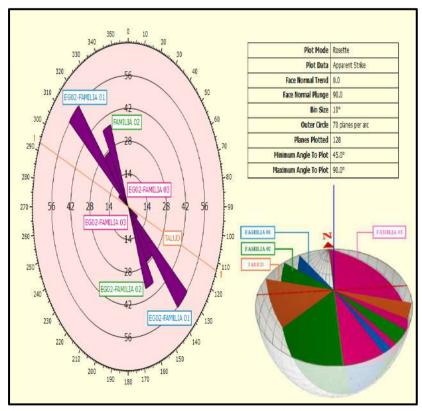
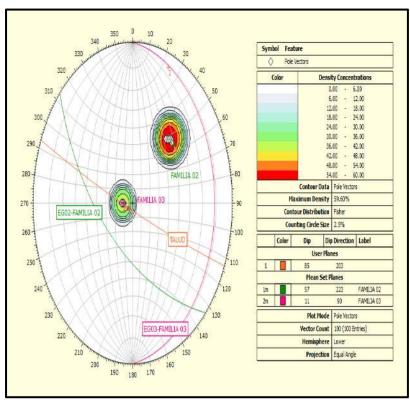



Figura 40. Diagrama de rosetas y planos de discontinuidades 3D en estación geomecánica EG_{02} .

Figura~41. Diagrama estereográfico de planos de discontinuidades en estación geomecánica EG_{03} .

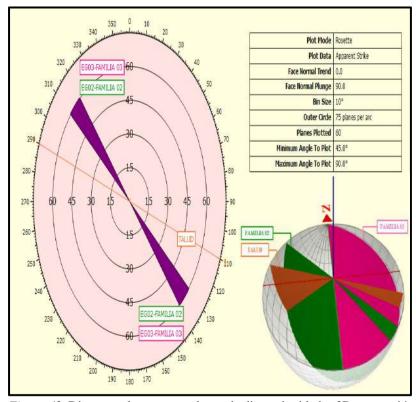
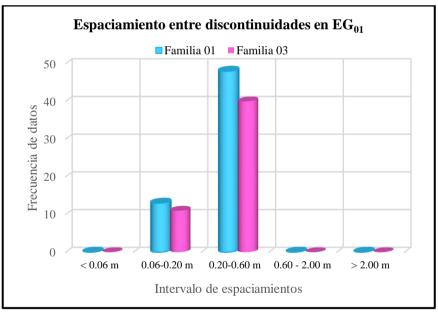


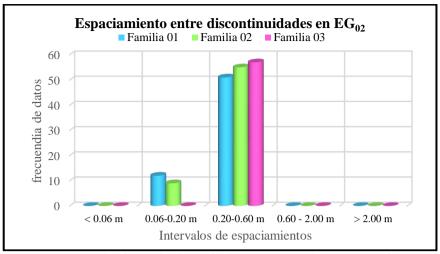
Figura 42. Diagrama de rosetas y planos de discontinuidades 3D en estación geomecánica EG_{03} .

Tabla 25 *Planos de familias de discontinuidades en cada estación geomecánica*

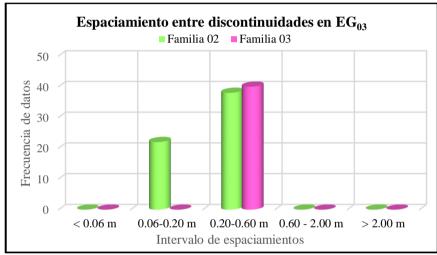
Estación	Familia de	Cantidad de	Plano observable	
geomecánica		discontinuidad	Dip	Dip Direc.
EC	familia 01 💋	112	70	240
EG_{01}	familia 03 🛮	112	11	90
	familia 01 💋		70	240
EG_{02}	familia 02 💋	185	57	223
	familia 03 🛮		11	90
EG_{03}	familia 02 💯	100	57	223
	familia 03 🖊	100	11	90


Nota: EG_{01} : estación geomecánica 01 \mathbb{Z} ; EG_{02} : estación geomecánica 02 \mathbb{Z} ;

*EG*₀₃: *Estación geomecánica 03* **∅**; direc.: Dirección.


Fuente: Elaboración propia.

β) Espaciamiento


En la presente tesis, los espaciamientos entre discontinuidades oscilan con mayor frecuencia entre 0.20 m a 0.60 m para las tres estaciones geomecánicas mapeadas del presente estudio e influyen en el tamaño de las rocas sueltas este a su vez constituye un indicador de la calidad y estabilidad del macizo rocoso. (fotografía 26–anexo 16, gráficos y tabla 26).

Gráfica 01. Espaciamiento de discontinuidades en estación geomecánica EG₀₁. Nota: m: metros <: signo menor; >: signo mayor; EG: estación geomecánica. *Fuente:* Elaboración propia.

Gráfica 02. Espaciamiento de discontinuidades en estación geomecánica EG₀₂. Nota: m: metros <: signo menor; >: signo mayor; EG: estación geomecánica. Fuente: Elaboración propia.

Gráfica 03. Espaciamiento de discontinuidades en estación geomecánica EG₀₃. Nota: m: metros <: signo menor; >: signo mayor; EG: estación geomecánica. Fuente: Elaboración propia.

Tabla 26Espaciamiento entre discontinuidades por estaciones geomecánicas

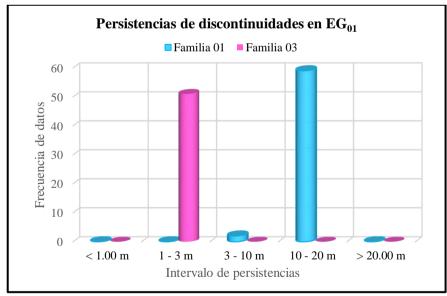
Estación geomecánica	Familia de discontinuidad	Espaciamiento Promedio (m)	Valor mín.	Valor máx.	Desviación estándar
	familia 01	0.20 m	0.19 m	0.21 m	0.0066
EG_{01}	familia 03	0.21 m	0.19 m	0.26 m	0.0218
	EG_{01}	0.20 m	0.19 m	0.25 m	0.0093
	familia 01	0.20 m	0.18 m	0.21 m	0.0086
EG_{02}	familia 02	0.20 m	0.18 m	0.23 m	0.0080
EG_{02}	familia 03	0.21 m	0.20 m	0.23 m	0.0062
	EG_{02}	0.20 m	0.18 m	0.23 m	0.0088
	familia 02	0.20 m	0.18 m	0.22 m	0.0161
EG_{03}	familia 03	0.22 m	0.20 m	0.26 m	0.0196
	EG_{03}	0.20 m	0.18 m	0.23 m	0.0161

Nota: m: metros; EG: estación geomecánica; m: metros; mín.: mínimo; máx.: máximo.

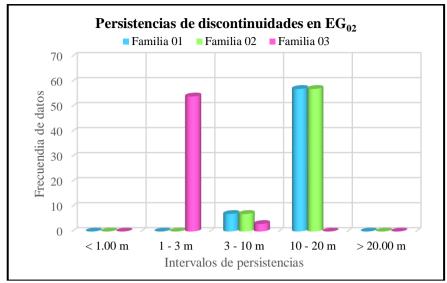
χ) Persistencia

Se midieron las distancias desde la línea de rastreo hasta la línea de censura paralela a ésta en la cima del talud empleando estación total y flexómetro (ver tabla 27 y gráficas 04, 05 y 06).

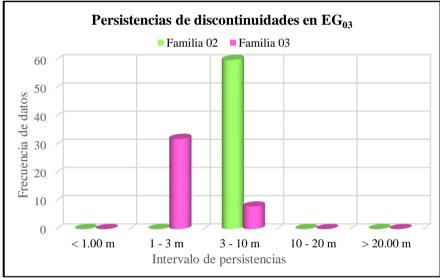
Se identificaron persistencias entre 1 m - 3 m y 10 m - 20 m mayormente en las familias de discontinuidades 01 y 02 del talud estudiado las cuales podrían generar inestabilidades ya que cortan al macizo rocoso casi en la totalidad de su altura (ver fotografías 26 y 27–anexo 16).


Tabla 27Persistencias en las discontinuidades por estación geomecánica

Estación geomecánica	Familia de discontinuidad	Persistencia prom.(m)	Valor mín.	Valor máx.	Desviación estándar
	familia 01	10.73 m	9.92 m	11.01 m	0.31 m
EG_{01}	familia 03	2.28 m	1.81 m	2.64 m	0.27 m
	EG_{01}	9.85 m	1.86 m	11.01 m	2.63 m
	familia 01	10.48 m	9.56 m	10.92 m	0.37 m
EC	familia 02	10.45 m	9.80 m	11.06 m	0.36 m
EG_{02}	familia 03	2.31 m	1.90 m	3.57 m	0.37 m
	EG_{02}	9.99 m	1.91 m	11.06 m	1.95 m
	familia 02	7.79 m	5.51 m	9.96 m	1.29 m
EG_{03}	familia 03	2.50 m	1.89 m	4.24 m	0.69 m
	EG_{03}	7.52 m	1.99 m	9.96 m	1.74 m

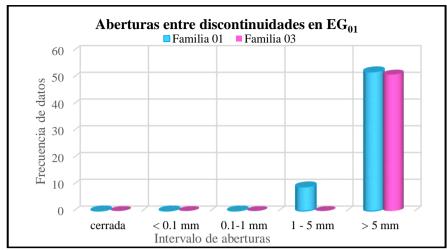

Nota: m: metros; EG: estación geomecánica; prom.: promedio; mín.: mínimo;

máx.: máximo.

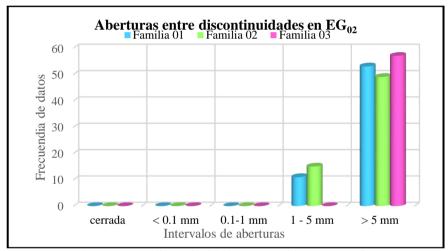

Fuente: Elaboración propia.

Gráfica 04. Persistencia en discontinuidades de estación geomecánica EG₀₁. *Nota*: <: signo menor; >: signo mayor; m: metros.

Gráfica 05. Persistencia en discontinuidades de estación geomecánica EG₀₂. *Nota*: <: signo menor; >: signo mayor; m: metros.



Gráfica 06. Persistencia en discontinuidades de estación geomecánica EG_{03.} *Nota*: <: signo menor; >: signo mayor; m: metros.


Fuente: Elaboración propia.

δ) Abertura

Después de procesar las distancias perpendiculares entre paredes de discontinuidades tomadas con una regla graduada al milímetro (ver anexo 16, Fotografía 28, tabla 29 y gráficos 07, 08, 09) se demuestra que la frecuencia de aberturas en su mayoría es abierta mayor a 5 milímetros por lo que permiten mayor ingreso del flujo de agua al macizo rocoso disminuyendo su resistencia a la compresión uniaxial.

Gráfica 07. Abertura entre discontinuidades de estación geomecánica EG₀₁. Nota: <: signo menor; >: signo mayor; mm: milímetros.

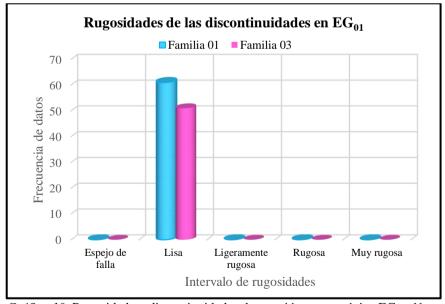
Gráfica 08. Abertura entre discontinuidades de estación geomecánica EG₀₂. Nota: <: signo menor; >: signo mayor; mm: milímetros.

Fuente: Elaboración propia.

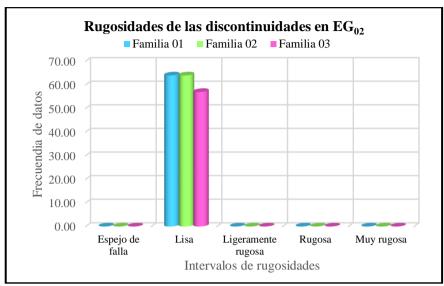
Gráfica 09. Abertura entre discontinuidades de estación geomecánica EG₀₃. Nota: <: signo menor; >: signo mayor; mm: milímetros.

Tabla 28Abertura entre las discontinuidades por estación geomecánica

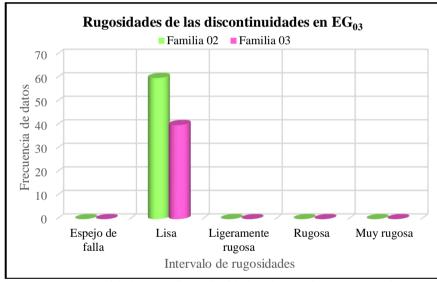
Estación	Familia de	Abertura	Valor	Valor	Desviación
geomecánica	discontinuidad	promedio (m)	mín.	máx.	estándar
	familia 01	10.14 m	5.00 m	15.00 m	3.42 m
EG_{01}	familia 03	15.14 m	11.00 m	18.00 m	3.13 m
	EG_{01}	11.14 m	5.00 m	18.00 m	3.89 m
	familia 01	11.42 m	5.00 m	15.00 m	3.14 m
EC	familia 02	10.96 m	5.00 m	15.00 m	3.71 m
EG_{02}	familia 03	16.38 m	10.00 m	25.00 m	6.23 m
	EG_{02}	11.93 m	5.00 m	25.00 m	4.24 m
	familia 02	10.76 m	5.00 m	16.00 m	3.90 m
EG_{03}	familia 03	15.71 m	10.00 m	20.00 m	5.35 m
	EG_{03}	12.00 m	5.00 m	20.00 m	4.73 m


Nota: m: metros; EG: estación geomecánica.

Fuente: Elaboración propia.


ε) Rugosidad

Las rugosidades de la superficie de las discontinuidades se obtuvieron, clasificaron y valoraron de acuerdo a la tabla 09; encontrándose rugosidades lisas para las estaciones geomecánicas EG₀₁, EG₀₂ y EG₀₃ (fotografía 30 y 31 y gráficas 10,11 y 12).

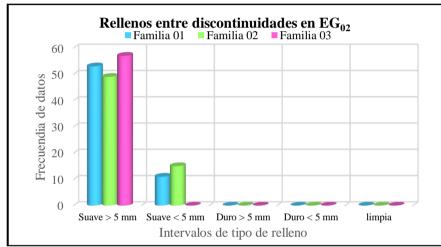

Después de analizar la rugosidad se afirma que es directamente proporcional a la estabilidad del talud, pues mientras menos rugosa sea la superficie de las discontinuidades habrá una menor fricción que se opondrá a la trayectoria de caída de los bloques de rocas sueltas.

 $Gráfica\ 10$. Rugosidad en discontinuidades de estación geomecánica EG_{01} . Nota: EG: estación geomecánica.

Gráfica 11. Rugosidad entre discontinuidades de estación geomecánica EG₀₂. *Nota*: EG: estación geomecánica.

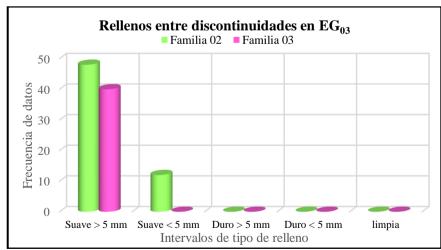
Gráfica 12. Rugosidad entre discontinuidades de estación geomecánica EG₀₃. *Nota*: EG: estación geomecánica.

Fuente: Elaboración propia.



En la inspección de campo se halló predominancia de rellenos suave con presencia de material fino ligeramente con aberturas mayores a 5 milímetros (ver fotografía 29 del anexo 16).

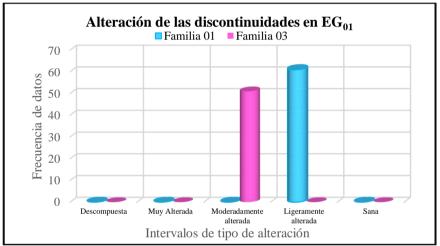
basado en dichas características se infiere que el relleno posee una baja resistencia al corte convirtiéndolo en un factor de inestabilidad en taludes rocosos.



Gráfica 13. Relleno entre discontinuidades de la estación geomecánica EG₀₁. Nota: <: signo menor; >: signo mayor; mm: milímetros.

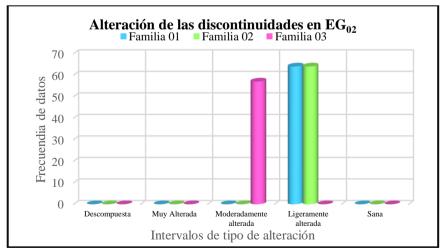
Gráfica 14. Relleno entre discontinuidades de la estación geomecánica EG₀₂. *Nota*: <: signo menor; >: signo mayor; mm: milímetros.

Fuente: Elaboración propia.

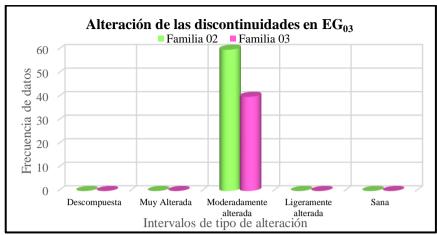


 $\it Gráfica~15$. Relleno entre discontinuidades de la estación geomecánica EG $_{03}$. $\it Nota: <: signo menor; >: signo mayor; mm: milímetros.$

γ) Alteración/Meteorización


Se evaluó visualmente la cara del talud en las tres estaciones geomecánicas obteniendo que está ligera y moderadamente alterado tal como se muestra en la tabla 29 y gráficas 16, 17 y 18 pues ha estado constantemente sometido a meteorización física, química y biológica (fotografía 32 y 33).

La meteorización física ocasionada principalmente por el cambio brusco de temperaturas, la meteorización química debido a la presencia de lluvias ácidas y la meteorización biológica se debe a raíces vegetativas que captan agua de lluvias introduciéndolas al interior del talud.



Gráfica 16. Alteración de las discontinuidades en estación geomecánica EG₀₁. *Nota:* EG: estación geomecánica.

Fuente: Elaboración propia.

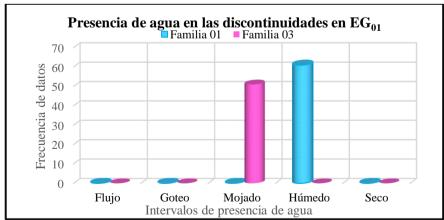
Gráfica 17. Alteración de las discontinuidades en estación geomecánica EG₀₂. *Nota:* EG: estación geomecánica.

Gráfica 18. Alteración de las discontinuidades en estación geomecánica EG₀₃.

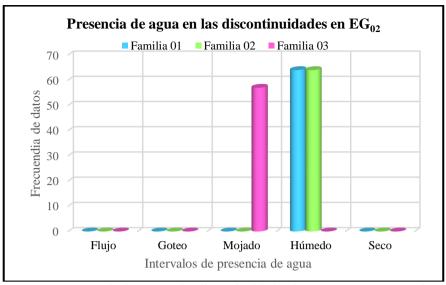
Nota: EG: estación geomecánica.

Fuente: Elaboración propia.

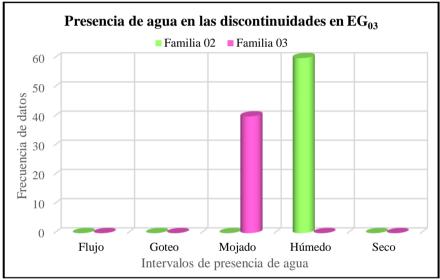
Tabla 29Alteración de las discontinuidades por estación geomecánica


Estación geomecánica	Discontinuidad	Tipo de alteración
Estación geomecánica EG ₀₁	familia 01	Ligeramente alterada
Estacion geomecanica EG ₀₁	familia 03	Moderadamente alterada
	familia 01	Ligeramente alterada
Estación geomecánica EG ₀₂	familia 02	Ligeramente alterado
	familia 03	Moderadamente alterada
Estación coomocónico EC	familia 02	Moderadamente alterada
Estación geomecánica EG ₀₃	familia 03	Moderadamente alterada

Nota: m: metros; EG: estación geomecánica.


Fuente: Elaboración propia.

η) Presencia de agua


En el área de estudio la presencia de agua mayormente fue húmedo saturó el relleno de material fino entre discontinuidades promoviendo a su vez el crecimiento de raíces vegetativas que introdujeron agua al interior del talud la cual causó gelifracción.

Gráfica 19. Presencia de agua en las discontinuidades de EG₀₁. *Nota:* EG: estación geomecánica.

Gráfica 20. Presencia de agua en las discontinuidades de EG $_{02}$. Nota: EG: estación geomecánica.

Gráfica 21. Presencia de agua en las discontinuidades de EG₀₃. *Nota:* EG: estación geomecánica.

Fuente: Elaboración propia.

D. Cálculo del índice Rock Mass Rating (RMR)

El índice Rock Mass Rating se puntúa sumando 05 parámetros geomecánicos: resistencia, Rock Quality Designation, espaciamiento, condiciones de las discontinuidades, presencia de agua (ver tablas 30 al 36).

Tabla 30Parámetros geomecánicos del Rock Mass Rating en familia 01-EG₀₁

Familia 01 de estación geomecánica EG ₀₁					
Parámetros para cálculo de RMR	Resultado	Intervalo	Puntos		
1. Resistencia de la roca intacta	61.30 MPa	50 – 100 MPa	7		
2. Rock Quality Designation (RQD)	99.90%	90 - 100%	20		
3. Espaciamiento de las discontinuidades	0.20 m	200 - 600 mm	10		
4. Condiciones de las discontinuidades					
4.1. Persistencia	10.73 m	10 - 20 m	1		
4.2 Abertura	10 mm	> 5 mm	0		
4.3. Rugosidad	Lisa	Lisa	1		
4.4. Relleno	Suave $> 5 \text{ mm}$	Suave $> 5 \text{ mm}$	0		
4.5. Alteración/meteorización	Lig. alterada	Ligeramente alterada	5		
5. Condiciones del agua	Húmedo	Húmedo	10		
Puntuación del Rock Mass Rating (I	RMR) en la fam	ilia 01 de la EG ₀₁	54		

Nota: RMR: Rock Mass Rating, RQD: Rock Quality Design.

Fuente: Elaboración propia.

Tabla 31Parámetros geomecánicos del Rock Mass Rating en familia 03-EG₀₁

Familia 03 de estación geomecánica EG ₀₁					
Parámetros para cálculo de RMR	Resultado	Intervalo	Puntos		
1. Resistencia de la roca intacta	61.30 MPa	50 – 100 MPa	7		
2. Rock Quality Designation (RQD)	91.90%	90 - 100%	20		
3. Espaciamiento de las discontinuidades	0.21 m	$200\ mm-600\ mm$	10		
4. Condiciones de las discontinuidades					
4.1. Persistencia	2.38 m	1 - 3 m	4		
4.2 Abertura	15 mm	> 5 mm	0		
4.3. Rugosidad	Lisa	Lisa	1		
4.4. Relleno	Suave $> 5 \text{ mm}$	Suave $> 5 \text{ mm}$	0		
4.5. Alteración/meteorización	Mod. Alterada	Moderadamente alterada	3		
5. Condiciones del agua	Mojado	Mojado	7		
Puntuación del Rock Mass Rating (RMI	R) en la familia 0	3 de la EG ₀₁	52		

Nota: RMR: Rock Mass Rating, RQD: Rock Quality Design.

Fuente: Elaboración propia.

Tabla 32Parámetros geomecánicos del Rock Mass Rating en familia 01-EG₀₂

Familia 01 de estación geomecánica EG ₀₂				
Parámetros para cálculo de RMR	Resultado	Intervalo	Puntos	
1. Resistencia de la roca intacta	48.78 MPa	50 - 100 MPa	7	
2. Rock Quality Designation (RQD)	90.90%	90 - 100%	20	
3. Espaciamiento de las discontinuidades	0.20 m	$200 - 600 \; mm$	10	
4. Condiciones de las discontinuidades				
4.1. Persistencia	10.48 m	10 - 20 m	1	
4.2 Abertura	10 mm	> 5 mm	0	
4.3. Rugosidad	Lisa	Lisa	1	
4.4. Relleno	Suave $> 5 \text{ mm}$	Suave $> 5 \text{ mm}$	0	
4.5. Alteración/meteorización	Lig. Alterada	Ligeramente alterada	5	
5. Condiciones del agua	Húmedo	Húmedo	10	
Puntuación del Rock Mass Rating (RMR) en la familia 01 de la EG ₀₂			54	

Nota: RMR: Rock Mass Rating, RQD: Rock Quality Design; mm: milímetros; m: metros; signo menor; >: signo mayor; %: porcentaje; MPa: megapascales; Lig: Ligeramente.

Tabla 33Parámetros geomecánicos del Rock Mass Rating en familia 02-EG₀₂

Familia 02 de estación geomecánica EG ₀₂				
Parámetros para cálculo de RMR	Resultado	Intervalo	Puntos	
1. Resistencia de la roca intacta	48.78 MPa	50 – 100 MPa	7	
2. Rock Quality Designation (RQD)	90.90%	90 - 100%	20	
3. Espaciamiento de las discontinuidades	0.20 m	200 - 600 mm	10	
4. Condiciones de las discontinuidades				
4.1. Persistencia	10.45 m	10 - 20 m	1	
4.2 Abertura	11 mm	> 5 mm	0	
4.3. Rugosidad	Lisa	Lisa	1	
4.4. Relleno	Suave > 5 mm	Suave $> 5 \text{ mm}$	0	
4.5. Alteración/meteorización	Lig. Alterada	Ligeramente alterada	5	
5. Condiciones del agua	Húmedo	Húmedo	10	
Puntuación del Rock Mass Rating (RMR) en la familia 02 de la EG ₀₃			54	

Nota: RMR: Rock Mass Rating, RQD: Rock Quality Design; mm: milímetros; m: metros; <: signo menor; >: signo mayor; %: porcentaje; MPa: megapascales; Lig: Ligeramente. Fuente: Elaboración propia.

Tabla 34Parámetros geomecánicos del Rock Mass Rating en familia 03-EG₀₂

Familia 03 de estación geomecánica EG ₀₂				
Parámetros para cálculo de RMR	Resultado	Intervalo	Puntos	
1. Resistencia de la roca intacta	48.78 MPa	50 – 100 MPa	7	
2. Rock Quality Designation (RQD)	91.60%	90 - 100%	20	
3. Espaciamiento de las discontinuidades	0.21 m	200 - 600 mm	10	
4. Condiciones de las discontinuidades				
4.1. Persistencia	2.31 m	1 - 3 m	4	
4.2 Abertura	14 mm	> 5 mm	0	
4.3. Rugosidad	Lisa	Lisa	1	
4.4. Relleno	Suave $> 5 \text{ mm}$	Suave $> 5 \text{ mm}$	0	
4.5. Alteración/meteorización	Mod. Alterada	Moderadamente alterada	3	
5. Condiciones del agua	Mojado	Mojado	7	
Puntuación del Rock Mass Rating (RMR) en la familia 03 de la EG ₀₂			52	

Nota: RMR: Rock Mass Rating, RQD: Rock Quality Design.

Fuente: Elaboración propia.

Tabla 35Parámetros geomecánicos del Rock Mass Rating en familia 02-EG₀₃

Familia 02 de estación geomecánica EG ₀₃				
Parámetros para cálculo de RMR	Resultado	Intervalo	Puntos	
1. Resistencia de la roca intacta	52.43 MPa	50 – 100 MPa	7	
2. Rock Quality Designation (RQD)	91.20%	90 - 100%	20	
3. Espaciamiento de las discontinuidades	0.20 m	0.60 m - 2 m	15	
4. Condiciones de las discontinuidades				
4.1. Persistencia	7.79 m	3 - 10 m	2	
4.2 Abertura	11 mm	> 5 mm	0	
4.3. Rugosidad	Lisa	Lisa	1	
4.4. Relleno	Suave $> 5 \text{ mm}$	Suave $> 5 \text{ mm}$	0	
4.5. Alteración/meteorización	Mod. alterada	Moderadamente alterada	3	
5. Condiciones del agua	Húmedo	Húmedo	10	
Puntuación del Rock Mass Rating (RMR) en la familia 02 de la EG ₀₃			53	

Nota: RMR: Rock Mass Rating, RQD: Rock Quality Design; mm: milímetros; m: metros; <: signo menor; >: signo mayor; %: porcentaje; MPa: megapascales; Lig: Ligeramente. Fuente: Elaboración propia.

Tabla 36Parámetros geomecánicos del Rock Mass Rating en familia 03-EG₀₃

Familia 03 de estación geomecánica EG ₀₃				
Parámetros para cálculo de RMR	Resultado	Intervalo	Puntos	
1. Resistencia de la roca intacta	52.43 MPa	50 – 100 MPa	7	
2. Rock Quality Designation (RQD)	92.50%	90 - 100%	20	
3. Espaciamiento de las discontinuidades	0.22 m	0.60 m - 2 m	15	
4. Condiciones de las discontinuidades				
4.1. Persistencia	2.50 m	1 - 3 m	4	
4.2 Abertura	16 mm	> 5 mm	0	
4.3. Rugosidad	Lisa	Lisa	1	
4.4. Relleno	Suave $> 5 \text{ mm}$	Suave $> 5 \text{ mm}$	0	
4.5. Alteración/meteorización	Mod. alterada	Moderadamente alterada	3	
5. Condiciones del agua	Mojado	Mojado	7	
Puntuación del Rock Mass Rating (RMR) en la familia 03 de la EG ₀₃			55	

Nota: RMR: Rock Mass Rating, RQD: Rock Quality Design; mm: milímetros; m: metros; <: signo menor; >: signo mayor; %: porcentaje; MPa: megapascales; Mod: Moderadamente.

Fuente: Elaboración propia.

Al ubicar las puntuaciones del índice Rock Mass Rating en la tabla 01 de la presente tesis se obtiene para todas las estaciones geomecánicas un macizo rocoso de calidad regular o media (Ver tabla 37 y figura 52).

Tabla 37Valoración del Rock Mass Rating por familia de discontinuidades

Estación geomecánica	Familia de discontinuidades	Valoración de (RMR)	Calidad	Cohesión	Ángulo de fricción
EG_{01}	familia 01	54 puntos	Media	2 -3 kg/cm2	25° - 35°
EG_{01}	familia 03	52 puntos	Media	2 -3 kg/cm2	25° - 35°
	familia 01	54 puntos	Media	2 -3 kg/cm2	25° - 35°
- 02	familia 02	54 puntos	Media	2 -3 kg/cm2	25° - 35°
	familia 03	52 puntos	Media	2 -3 kg/cm2	25° - 35°
EG ₀₃	familia 02	53 puntos	Media	2 -3 kg/cm2	25° - 35°
	familia 03	55 puntos	Media	2 -3 kg/cm2	25° - 35°

Nota: RMR: Rock Mass Rating; EG: estación geomecánica.

Fuente: Elaboración propia.

Se consideraron para dicha evaluación las condiciones hidrológicas más desfavorables puesto que según el atlas climático de precipitación y temperatura del aire en la Cuenca del Río Mantaro (IGP, 2005) la zona de estudio, presenta el 83% de las precipitaciones anuales entre los meses de octubre a abril.

A continuación, se observa el ingreso de los parámetros geomecánicos evaluados en campo por cada familia de discontinuidades al software Geotable (detallados en las tablas 30 al 36).

Figura 43. Software Geotable para estimar el índice Rock Mass Rating (RMR). Tomado de software Geotable (Inmunt, 2020)

Figura 44. Ingreso a las clasificaciones geomecánicas en el software Geotable para caracterización físico-mecánica del macizo rocoso. Tomado de (Inmunt, 2020)

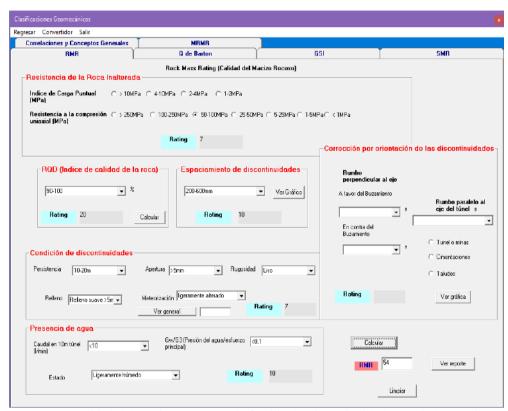


Figura 45. Calidad del macizo rocoso en la familia de discontinuidades 01 de la estación geomecánica EG_{01} .

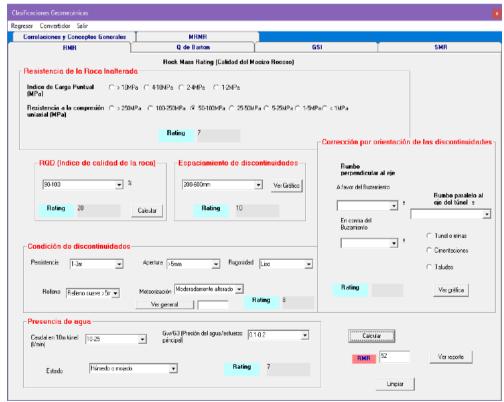


Figura 46. Calidad del macizo rocoso en familias de discontinuidades 03 de la estación geomecánica EG₀₁.

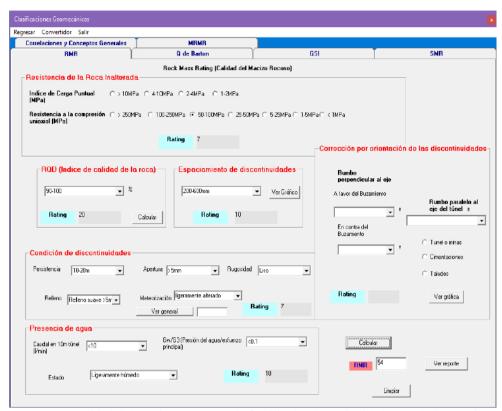


Figura 47. Calidad del macizo rocoso en la familia de discontinuidades 01 de la estación geomecánica EG_{02} .

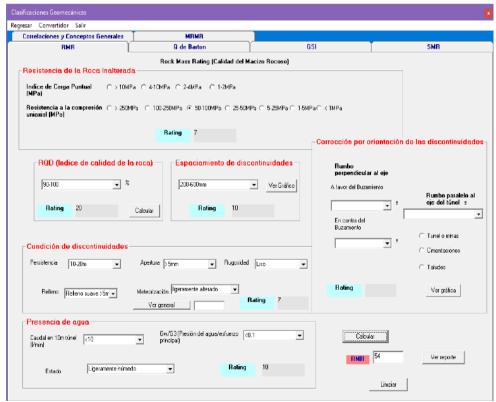


Figura 48. Calidad del macizo rocoso en la familia de discontinuidades 02 de la estación geomecánica EG_{02} .

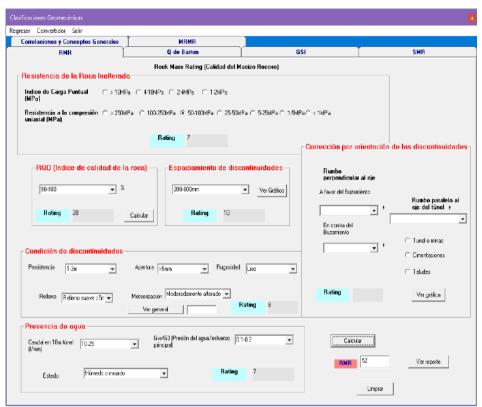


Figura 49. Calidad del macizo rocoso en familias de discontinuidades 03 de la estación geomecánica EG₀₂.

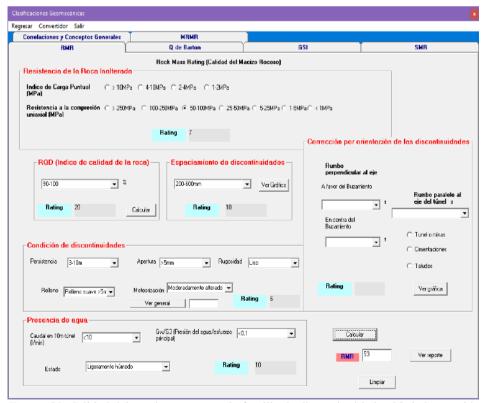
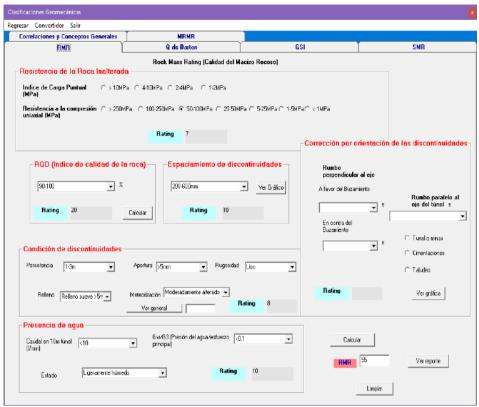



Figura 50. Calidad del macizo rocoso en la familia de discontinuidades 02 de la estación geomecánica EG_{03} .

Figura 51. Calidad del macizo rocoso en familias de discontinuidades 03 de la estación geomecánica EG₀₃.



Figura 52. Reporte de calidad de macizos rocosos.

4.1.4. Análisis de estabilidad del talud por el método cinemático

Mediante el análisis de estabilidad del talud por el método cinemático realizado con el software Dips se obtuvo fallas planares y zonas críticas de posibles caídas de rocas en la familia de discontinuidades 02 de las estaciones geomecánicas EG_{02} y EG_{03} ; mientras que en la estación geomecánica EG_{01} no se presentaron fallas.

En la tabla 38 se muestran las probabilidades de falla planar por estaciones geomecánicas. Estas fallas planares se ubicaron entre las progresivas 18+695.20 al 18+720.18.

Tabla 38 *Mecanismo de falla probable en el talud por estaciones geomecánicas*

Estación	Discor	ntinuidades	críticas	Mecanismo de	Probabilidad	
geomecánica	Familia	Polos	%	falla	de falla	
EG_{01}	No se	e presentaro	n fallas en la fa	amilia de discontinui	dades 01	
EG_{02}	familia 02	38	59.38%	falla planar	20.54%	
EG_{03}	familia 02	38	63.33%	falla planar	38.00%	

Nota: EG: Estación geomecánica; %: porcentaje; Nro.: número.

Fuente: Elaboración propia.

Para ello y según el INSTITUTO Geológico y Minero de España (IGME), la interacción entre las orientaciones de las familias de discontinuidades, el ángulo de fricción estimado (25°) y la orientación del talud (ver anexo 05), cumplieron las condiciones (1987, p. 203 – 204):

- -Las discontinuidades recorrieron todo el plano de falla del talud.
- El buzamiento de discontinuidades es menor al buzamiento del talud, pero mayor al ángulo de fricción.
- -El rumbo del plano de discontinuidad es paralelo al rumbo del talud, con un margen máximo de 20° (límite lateral $\pm 20^{\circ}$).

Así, el buzamiento de las discontinuidades (57°) es mayor al ángulo de fricción (25°) pero menor al buzamiento del talud (85°); el rumbo de las discontinuidades (S47°E) es paralelo al rumbo del talud (S67°E) y el ángulo que forman es 20°.

Finalmente se ubicaron las zonas de fallas en el talud representadas por la concentración de polos dentro del área pintada o sombreada de color de rojo de los diagramas estereográficos de análisis cinemáticos por falla planar (anexo 11 y figuras 53 al 55).



Figura 53. Falla planar en la estación geomecánica EG₀₁.

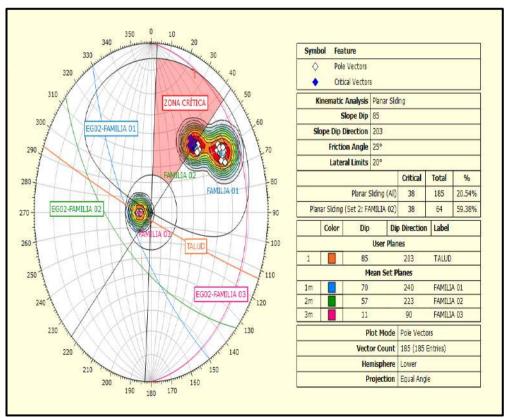


Figura 54. Falla planar en familia de discontinuidades 02 de la EG₀₂.

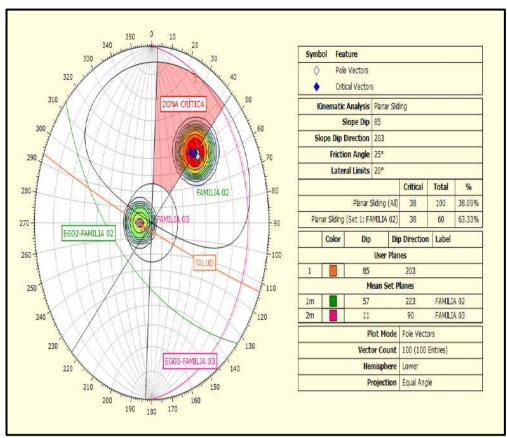


Figura 55. Falla planar en familia de discontinuidades 02 de la EG₀₃.

4.1.5. Valoración del índice Slope Mass Rating

Se calculó el índice Slope Mass Rating (SMR) sumando a la clasificación geomecánica Rock Mass Rating (RMR) el producto de los 3 primeros sub factores de ajuste de las discontinuidades definidos por funciones continuas propuestas por Tomás, et al. (2006); se sumó también un cuarto sub-factor de ajuste que depende del método de construcción del talud (ver tabla 13).

Luego del procesamiento de las orientaciones de las discontinuidades en el software Dips, se identificó que solamente la familia de discontinuidades 02 presentó mecanismo de falla planar en las estaciones geomecánicas EG₀₂ y EG₀₃ del talud estudiado tal como se aprecia en la tabla 39.

Tabla 39 Índices Slope Mass Rating por estaciones geomecánicas

Estación	Familia de	Valora	ción (SMR)	Clase	Estabilidad-	T 11
geomecánica	discontinuidad	Romana	Tomás et al.		talud	Fallas
EG ₀₁	No se presentó ni	ngún mecar	nismo de falla e	n la fami	lia de discontinuid	ades 01
EG_{02}	familia 02	38	31	IV a	Inestable	Planar
EG_{03}	familia 02	37	30	IV a	Inestable	Planar

Nota: as: Dirección de buzamiento del talud, bs: Buzamiento del talud, aj: Dirección de buzamiento de las discontinuidades, bj: Buzamiento de las discontinuidades.

E. Sub-factores de ajuste de las discontinuidades en la estabilidad del talud.

En esta investigación se emplearon las funciones continuas para calcular los 3 primeros sub-factores de ajuste porque son más exactos frente a las puntuaciones preestablecidas por Romana Ruiz Manuel (1989) que distorsionan el valor de cada sub-factor en los límites de los intervalos que toman las orientaciones que los gobiernan (Tomás, *et al.*, 2006).

Mediante el software SMRTool se estimaron los valores de cada subfactores de ajuste de las discontinuidades para la familia 02 de discontinuidades de la estación geomecánica EG02 y EG03 tanto según las funciones continuas de Tomás, et al., como las puntuaciones preestablecidas de Romana Ruiz Manuel a partir de las orientaciones:

Tabla 40 *Orientaciones del talud* y *las discontinuidades*

Símbolo	Parámetro	Familia 02
as	Dirección de buzamiento del talud	203°
bs	Buzamiento del talud	85°
aj	Dirección de buzamiento de las discontinuidades	223°
bj	Buzamiento de las discontinuidades	57°

Nota: °: grados.

Fuente: Elaboración propia.

También se identificó en campo indicios de voladura controlada mediante perforaciones al interior del talud (ver fotografía 34, 35 del anexo 16):

Tabla 41Sub-factores de ajuste para el cálculo del índice Slope Mass Rating

Sub-factor	Fórmula	Familia 02
F1	$\frac{16}{25} - \frac{3}{500} * Arctan(\frac{1}{10}(A - 17))$	0.5398
	Puntaje de F1 según Romana	0.40
F2	$\frac{9}{16} - \frac{1}{195} * Arctan(\frac{17}{100} * B - 5)$	0.96231
	Puntaje de F2 según Romana	1
F3	Para falla planar: $-30 + \frac{1}{3} \arctan C$	-59.3182
1.3	Puntaje de F3 según Romana	-60
F4	Método de excavación: Voladura controlada	+8

Nota: A: diferencia entre direcciones de buzamiento de la discontinuidad y el talud, B: Buzamiento de las discontinuidades; C: Diferencia entre buzamientos de las discontinuidades y del talud; arctan: arcotangente; F1: Sub–factor 01, F2: Sub–factor 02; F3: Sub–factor 03, F4: Sub–factor 04; SMR: Slope Mass Rating.

Con el software SMRTool también se estimaron los índices Slope Mass Rating para la familia de discontinuidades 02 de las estaciones geomecánicas EG02 y EG03 (ver figuras 56, 57 y 58).

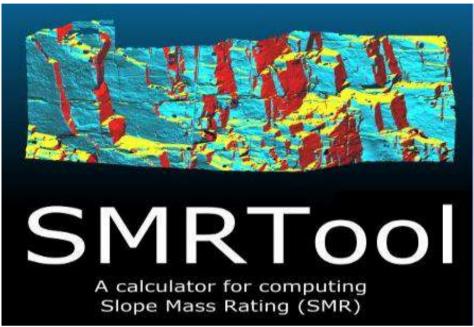
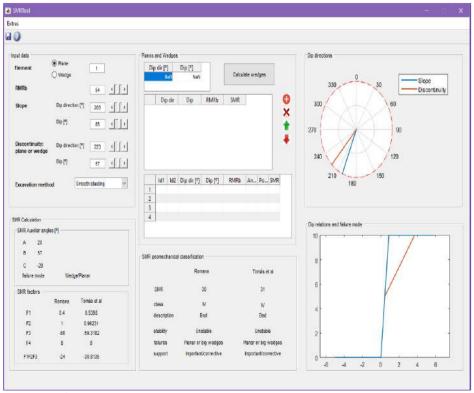
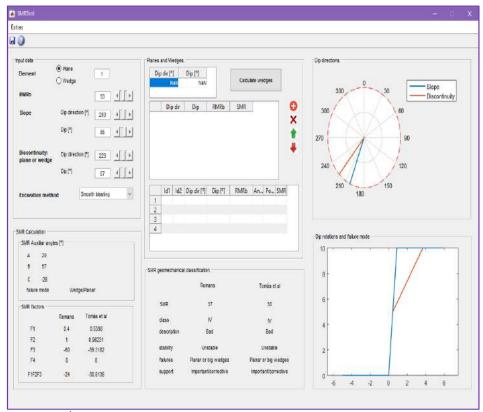




Figura 56. Software SMRTool Beta para procesar datos y obtener índices Slope Mass Rating. Tomado de software SMRTool (2014)

Figura 57. Índice Slope Mass Rating en la familia de discontinuidades 02 de la estación geomecánica EG₀₂.

Figura 58. Índice Slope Mass Rating en la familia de discontinuidades 02 de la estación geomecánica EG₀₃.

A continuación, basándose en las tabla 14 de la presente tesis, se puntúan los sub-factores de ajuste de las discontinuidades propuestos por Romana Ruiz Manuel (1989) para la familia de discontinuidades 02 en las estaciones geomecánicas EG₀₂ y EG₀₃:

Tabla 42Sub-factores de ajuste de discontinuidades en familia 02 y 03

	Sub – factor	res por ajı	uste de ju	ntas (Romana	-Manuel, 1989))
Planar (P)	as – aj	30°	30°-20	° 20°-10°	10° -5°	5°
Volteo (T)	as - aj - 180	30	30 -20	20 -10	10 -3	3
Valores	s de F1	0.15	0.40	0.70	0.85	1.00
Planar (P)	bj	< 20	20° -30	° 30°-35°	35°-45°	>45°
Valore	s de F2	0.15	0.40	0.70	0.85	1.00
Planar (P)	bj – bs	10°	10° -0	° 0	0° -(-10°)	<-10°
Volteo (T)	bj + bs	110°	110°-12	0° > 120°		
Valore	s de F3	0	-6	-25	-50	-60
Método	Ladera	Pre –	corte	Voladura controlada	Voladura regular	Voladura deficiente
F4	15	1	0	+8	0	-8

Nota: F1: Sub-factor 01, F2: Sub-factor 02; F3: Sub-factor 03, F4: Sub-factor 04; SMR: Slope Mass Rating; as: Dirección de buzamiento del talud; aj: Dirección de buzamiento de las discontinuidades; bj: Buzamiento del talud; °: grados sexagesimales; <: signo menor; >: signo mayor. Tomado del software Imunt S.A, 2020.

Con estos valores: $F_1 = 0.40$; $F_2 = 1$; $F_3 = -60$; $F_4 = +8$ se estimaron los índices Slope Mass Rating para la familia de discontinuidades 02 de las estaciones geomecánicas EG_{02} y EG_{03} :

SMR en EG₀₂ =
$$54 + (0.40 * 1 * - 60) + 8$$

SMR en EG₀₂ = 38 puntos
SMR en EG₀₃= $53 + (0.40 * 1 * - 60) + 8$
SMR en EG₀₃ = 37 puntos

En contraste, aplicando dichos sub-factores de ajuste de las discontinuidades según las expresiones matemáticas formuladas por Tómas, *et al.* (2009) se logró estimar el índice Slope Mass Rating en las estaciones geomecánicas EG_{02} y EG_{03} familia de discontinuidades 02:

SMR en EG₀₂ =
$$54 + (0.45 * 0.96 * - 60) + 8$$

SMR en EG₀₂ = 31.00 puntos
SMR en EG₀₃ = $53 + (0.45 * 0.96 * - 60) + 8$
SMR en EG₀₃ = 30.00 puntos

Con estos índices Slope Mass Rating calculados tanto expresiones matemáticas propuestas por Tómas, *et al.* (2009), como la metodología original de Romana Ruiz Manuel (1989) se logró estimar la estabilidad global del talud como inestable (ver tabla)

Tabla 43Clase de estabilidad de talud estudiado según índice Slope Mass Rating

	D	escripc	ión de	e las c	lases d	le SM	R			
Clase	V-b	V-a	IV-b	IV-a	III-b	III-a	II-b	II-a	I-b	I-a
Valor SMR	0-10	11-20	21-30	31- 40	41- 50	51- 60	61- 70	71- 80	81- 90	91- 100
Descripción	Mu	y mala	M	ala	Nor	mal	Ві	iena	Es	stable
Estabilidad	Totalmente inestable		Ines	table	Parcialmente estable		Estable		Totalmente estable	
Roturas	Grandes rotura por planos continuos o po cuñas		Jun gra	tas o ndes ñas	Algunas juntas o muchas cuñas		Algunos bloques		Nii	nguna
Sostenimiento		Re– avación	Impo	rtante	Sisten	náticos	Ocas	ionales	Nii	nguna

Nota: Tomado de Hudson, John, 1989, p. 580.

Para estabilizar el talud en estudio se sugiere tentativamente un tratamiento importante, es decir instalación de bulones o anclajes como refuerzo (ver tabla).

Tabla 44 *Método de sostenimiento según el índice SMR para el talud estudiado*

				Va	alor	es del SN	1R	l para cada	forr	na de	rotu	ra (eı	npi	írico	s)					
Roturas planas						Muy gr	an	des		Impo	rtante	S				N	Vingu	na		
Roturas en cuña							Г		Μu	chas				Algu	nas			Muy pocas		Ninguna
Rot. Por vuelco							П	Import.			1	Menoi	es					Ninguna		
Rot. Completas					Pos	ibles	Г								N	ingu	na			
SMR →	0	1	0	15	20)	3 0	40) 4	5 5 I	0 5	5 (50	65	7	0	75	80	9(100
Re-excavación				exca		ón, muro n	os							•						
Drenaje				Drei		superficial profundo	1	renaje					_							
Hormigón						Horn	nig itra	ón proyectado fuertes y/o vi	o, hor gas, r	migón nuros c	dental le pie	,								
Refuerzo							L			Bulon	es, and	clajes								
Protección										Zanja talu	d) rede	valla s y/o talud)	mal	e pie las (c	o de le					
Sin sostenimiento	1								_								Sa	neo ninguno)	
						Mét	od	os de soste	nimi	ento s	ugeri	idos								

Nota: SMR: Slope Mass Rating; IMPORT: Importantes; Rot: Roturas. Tomado de Romana Ruiz, Manuel, Serón Gáñez, José y Montalar Yago, Enrique, 2003, p. 3.

Fuente: Elaboración propia.

4.1.6. Propuesta de sostenimiento del talud

Se propone tentativamente sostener/estabilizar el talud instalando mallas, cables metálicos y pernos de anclaje de acuerdo a lo sugerido por la clasificación geomecánica Slope Mass Rating y la norma peruana CE020 suelos y taludes ya que el talud estudiado es inestable (SMR_{talud}=30.00 puntos) y presenta una probabilidad de falla planar 21–38%.

Según Castanon, *et al.* (2021) dichos elementos constituyen un sistema de estabilización flexible de alta resistencia que se recomienda cuando existen inestabilidades superficiales causadas por fallas planares, puesto que los pernos fijan las rocas sueltas a la roca estable, al mismo tiempo las mallas metálicas confinan la trayectoria de caída de las rocas sueltas en su origen.

Este sistema de estabilización de taludes de roca presenta un comportamiento activo siempre que la superficie del talud rocoso posea cierto grado de convexidad alrededor del perno de anclaje y se realice el pretensado inicial de los cables y pernos de anclaje, de lo contrario el sistema flexible desarrollará un comportamiento pasivo (CUI, *et al.* 2017).

Castanon, et al. (2021) indica utilizar dos tipos de mallas metálicas para este sistema flexible: Las mallas principales que deben ser de alta resistencia a la tracción pues soportarán los esfuerzos generados por los desprendimientos

transmitiéndolos a los pernos y estos a su vez al estrato estable y las mallas secundarias que mantendrán dichos desprendimientos en su lugar de origen, se recomienda para taludes rocosos las mallas hexagonales de triple torsión. Previa a la instalación de este sistema flexible se sugiere realizar desatado de rocas sueltas.

Al respecto Castanon, *et al.* (2021) propone unir ambas mallas antes de colocarlas para reducir tiempo y costos de instalación así el proceso constructivo consistiría en: Excavar alrededor de los pernos de anclaje creando concavidad, desplegar – conectar mallas metálicas, perforar – colocar anclajes y cables en parte superior, media e inferior del talud fijados con platinas de sujeción, finalmente pretensar el sistema flexible.

Este proceso constructivo es válido siempre que el diámetro del taladro sea inferior a 65 milímetros puesto que es la medida de los rombos de la malla metálica. De lo contrario se deberá instalar primero los pernos de anclaje, luego la malla metálica. Otras recomendaciones generales, indican un traslape mínimo entre mallas de 2 rombos unidos con clips de conexión o alambres (Geobrugg AG, 2021).

La instalación de este sistema flexible no está normada en Perú pese a que fue implementado en obras viales: "Rehabilitación de la Carretera Héroes de la Breña tramo II: Cocachacra – Matucana, Lima" y "Tramo Vial 4 Inambari– Azángaro del corredor vial interoceánico Sur, Perú–Brasil, razón por la cual se sugiere implementarlo según las recomendaciones del fabricante.

La instalación de pernos de anclaje se específica en el ítem 7.3 del manual de carreteras: túneles y obras complementarias (2016) el cual recomienda anclarlos perpendicularmente a la roca intacta con material cementante que evita la corrosión y genera fricción contrarrestando las fuerzas de tracción y uniendo discontinuidades.

El proceso constructivo para instalar de pernos de anclaje se divide en: perforación—limpieza del taladro donde se introducirá el perno, colocación de 2 guías de madera superior e inferior al interior del taladro, inserción del material cementante (cartuchos de cemento y resina saturados), roscado del perno comprobando topográficamente su posición, una vez alcanzada la fragua inicial de la resina (5 minutos), colocar y fijar la placa y tuerca al talud.

A fin de mantener la vida útil y resistencia mecánica de los cables de acero, mallas metálicas se recomienda que estén fabricados con acero galvanizado para evitar la corrosión ya que estarán expuestos al intemperismo, para proteger los pernos de anclaje de la corrosión se sugiere emplear material cementante para recubrirlos pues estarán en contacto con agua al interior del talud.

Se recomienda también: Utilizar mallas metálicas de alta resistencia, cartuchos de cemento y resina pues no sólo aceleran el fraguado, sino que con su uso se prescinde de maquinaria para bombear el concreto; además se sugiere emplear equipo de perforación de taladros liviano (martillo neumático) ya que son de fácil transporte y manipuleo.

A partir de lo mencionado se deduce que este sistema flexible es fácilmente transportado de aplicación rápida y no requiere maquinarias sofisticadas, luego de su intervención se puede poner inmediatamente en servicio la vía.

Es necesario mencionar que el personal de la cuadrilla esté capacitado y en óptimas condiciones físicas para realizar trabajos de altura. Se recomienda implementar Procedimientos Escritos de Trabajo Seguro (PETS) elaborados y aprobados por especialistas en prevención de accidentes en el trabajo a fin de salvaguardar la seguridad de la cuadrilla y de los usuarios de la vía.

A. Análisis de costo unitario de instalación de pernos de anclaje

Tabla 45Análisis de costos unitarios de instalación de sistema flexible de alta resistencia para estabilización de taludes

Presupuesto		isis de Prec APLICACIÓN DE L						
		STABILIDAD DEL						.55 KATING
Subpresupuesto		ABILIZACIÓN DE T			I OLIVIL OO		esupuesto:	20/06/2022
Partida	01.01	INSTALACIÓN DE TALUDES	SISTEMA FLEX	(IBLE DE A	LTA RESISTE	NCIA PARA	ESTABILIZA	CIÓN DE
Rendimiento	m2/DIA	MO. 30.0000	EQ.: 1		Costo afecta	do por el me	trado (1.00)	349.63
Código	Descripo	ción Recurso		Unidad	Cuadrilla	Cantidad	Precio S/	Parcial S/
		Subpartidas						
10102011162	INSTALA HELICOI	ACIÓN DE PERNO DI IDAL	DE ANCLAJE	und		1	208.17	208.17
10102011166	INSTALA	ACIÓN DE CABLES	DE ACERO	m		2	26.95	53.90
10102011168	INSTALA P/PERÍM	ACIÓN DE CABLES METRO	DE ACERO	m		0.5	22.95	11.48
10102011167		ACIÓN DE MALLAS ENCIA Y DE TRIPLE		m2		1	76.08	76.08
								349.63

Nota: m2.: metros cuadrados; MO: mano de obra: EQ: equivalente; S/: soles; und: unidad; glb: global; inc: incluido; m2: metro cuadrado; m: metro lineal; int.: interior.

Tabla 46Análisis de costos unitarios de subpartida: Instalación de perno de anclaje helicoidal

Presupuesto		s de Precios							
		LICACIÓN DE LAS CO							S RATING
0.1		BILIDAD DEL TALUD				IENTE COL			
Subpresupuesto Partida		IZACIÓN DE TALUD				IE LIEL IOO		a presupuesto:	20/06/2022
	01.01.01	INSTALACIÓN D							
Rendimiento	und/DIA	MO. 20.0000	EQ.:	20				etrado (1.00)	208.17
Código	L	escripción Recurso Mano de Obra			Unidad	Cuadrilla	Cantidad	Precio 5/	Parcial S/
101010005	PEÓN				hh	2	0.80	17.29	13.83
1010100060002		DE EQUIPO LIVIANO	1		hh	1	0.40	24.23	9.69
1010100060003	OPERADOR	DE PLATAFORMA			hh	1	0.40	24.23	9.69
		Materiales							33.21
204160003	PLATINA DE 200 mm X 20	ANCLAJE P/PERNO 0 mm	5 mm λ	(und		1.00	6.00	6.00
2221200010003	ACEITE LUB NEUMÁTICO	RICANTE PARA MAR	TILLO		gal		0.13	50.00	6.50
271050142		ANCLAJE TIPO BARR. . Ø 25 mm X 5 PIES	A		und		1.00	19.00	19.00
272010092		ACERO P/FIJACIÓN ANCLAJE Ø 25 mm	DE		und		1.00	4.00	4.00
2901500080003		DE CEMENTO			und		4.00	3.90	15.60
2901500080004	CARTUCHO	DE RESINA			und		1.00	18.00	18.00
		Equipos							69.10
301010006	HERRAMIEN	ITAS MANUALES			%mo		3.00	33.21	1.00
301030012		MA O MANIPULADOR CO MT 1030 MANITOL	J		hm	0.6	0.24	200.00	48.00
3011400020005		EUMÁTICO PERFOR C/ACCESORIOS	ADOR		hm	0.4	0.16	200.00	32.00
3011400060003		RA NEUMÁTICA 250	- 330 P	CM	hm	0.4	0.16	150.00	24.00
	• • • • • • • • • • • • • • • • • • • •	Subpartidas							105.00
10318010102	AGUA PARA	•			m3		0.01	85.62	0.86
									0.86

Nota: m3.: metros cúbicos; MO: mano de obra: EQ: equivalente; %mo: porcentaje de mano de obra; hh: hora—hombre; S/: soles; hm: hora—máquina; HP: caballos de fuerza; und: unidad; gal: galón; inc: incluido; mm: milímetros.

Fuente: Elaboración propia.

Tabla 47 *Análisis de costos unitarios de subpartida instalación de cable de acero interior*

Presupuesto	0103004 A	SIS de Prec	AS CONDI	CIONES GEO	MECÁNICA	S DEL ÍNDI	CE SLOPE MA	
Subpresupuesto		TABILIDAD DEL 1 BILIZACIÓN DE T			PUENTEC		esupuesto	20/06/2022
Partida	01.01.02	INSTALACIÓN	DE CABLE	S DE ACERC	INT.			
Rendimiento	m/DIA	MO. 60.0000	EQ.:	60	Costo afec	tado por el n	netrado (1.00)	53.91
Código	D	escripción Recur	so	Unidad	Cuadrilla	Cantidad	Precio S/	Parcial S/
-		Mano de Obra						
101010003	OPERARIO	0		hh	1	0.26	24.23	6.46
101010004	OFICIAL			hh	1	0.26	19.13	5.10
		Materiales						11.56
204250001		ACERO ALTA ICIA Ø 10 mm		m		2.00	21.00	42.00
		Equipos						42.00
301010006	HERRAMII	ENTAS MANUALE	S	%mo		3	11.56	0.35
								0.35

Nota: m.: metro lineal; MO: mano de obra: EQ: equivalente; %mo: porcentaje de mano de obra; hh: hora–hombre; S/: soles; hm: hora–máquina; int.: interior; und: unidad; Ø: diámetro; inc: incluido; mm: milímetros.

Tabla 48Análisis de costos unitarios de subpartida instalación de cable de acero perimetral

Presupuesto Análisis de Precios Unitarios Afectado por el Metrado 0103004 APLICACIÓN DE LAS CONDICIONES GEOMECÁNICAS DEL ÍNDICE SLOPE MASS RATING EN LA ESTABILIDAD DEL TALUD EN CARRETERA PUENTE COLLPA - YANACANCHA Subpresupuesto 001 ESTABILIZACIÓN DE TALUDES ROCOSOS 20/06/2022 Fecha presupuesto INSTALACIÓN DE CABLES DE ACERO P/PERÍMETRO Partida 01.01.03 Rendimiento m/DIA MO. **60.0000** EQ.: 60 Costo afectado por el metrado (0.50) 11.49 Descripción Recurso Unidad Cuadrilla Cantidad Precio S/ Parcial S/ Código Mano de Obra 101010003 OPERARIO 0.0667 hh 24.23 1.62 101010004 **OFICIAL** 0.0667 19.13 1.28 2.90 Materiales 2042500010001 CABLE DE ACERO ALTA 0.50 17.00 8.50 m RESISTENCIA P/PERÍMETRO Ø 8 mm 8.50 **Equipos** 301010006 HERRAMIENTAS MANUALES 3 2.90 0.09 %mo 0.09

Nota: m.: metro lineal; MO: mano de obra: EQ: equivalente; %mo: porcentaje de mano de obra; hh: hora—hombre; S/: soles; hm: hora—máquina; und: unidad; Ø: diámetro; inc: incluido; mm: milímetros.

Fuente: Elaboración propia.

Tabla 49Análisis de costos unitarios de subpartida instalación de mallas: de alta resistencia y de triple torsión

Presupuesto	Análisis de Precios Unitar	ios Af	ectado	por el	Metrado	
	0103004 APLICACIÓN DE LAS CONDICION					RATING
0.1	EN LA ESTABILIDAD DEL TALUD EN CARF		JENTE COL			
Subpresupuesto	001 ESTABILIZACIÓN DE TALUDES ROCOS				oresupuesto:	
Subpartida Rendimiento	01.01.04 INSTALACIÓN DE MALL. m2/DIA MO. 60.0000 EQ.: 60					51 0N 76.08
Código	m2/DIA MO. 60.0000 EQ.: 60 Descripción Recurso	Unidad		Cantidad	netrado (1.00)	Parcial S/
Codigo	Mano de Obra	Ulliuau	Cuaurilla	Calilluau	Precio S/	Parcial 3/
101010003	OPERARIO	hh	1	0.1333	24.23	3.23
101010004	OFICIAL	hh	3	0.4	19.13	7.65
101010005	PEÓN	hh	2	0.2667	17.29	4.61
						15.49
	Materiales					
210030003	MALLA METÁLICA DE ALAMBRE DE TRIPLE TORSIÓN	m2		1	19.00	19.00
210030004	MALLA METÁLICA DE SIMPLE TORSIÓN DE ALTA RESISTENCIA	: m3		1	25.00	25.00
271050065	GRAPA DE ANCLAJE DE ACERO P/CABLE	und		3	4.50	13.50
271050143	ALAMBRE DE ACERO DE ALTA RESISTENCIA P/CONEXIÓN DE MALLAS Ø 4 mm	kg		0.25	10.50	2.63
						60.13
	Equipos					
301010006	HERRAMIENTAS MANUALES	%mo		3	15.49	0.46
						0.46

Nota: m.: metro lineal; MO: mano de obra: EQ: equivalente; %mo: porcentaje de mano de obra; hh: hora-hombre; S/: soles; hm: hora-máquina; und: unidad; Ø: diámetro; inc: incluido; mm: milímetros.

Fuente: Elaboración propia.

Debido a que en el talud estudiado se observaron caídas de bloques de rocas de 20 cm de diámetro en promedio desde una altura de 9.68 metros provenientes de rocas sueltas, se propone su remoción mediante la técnica del

desatado manual siguiendo los lineamientos de la sección 225 del manual de carreteras, mantenimiento o conservación vial (2018) (anexo 13).

Para ejecutar la técnica se recomienda instalar puntos de anclaje en roca fija, en los cuales se instala una línea de vida temporal que soporte el peso de los trabajadores conectados a ésta con arneses. Así como restringir temporalmente el tránsito con señaléticas para resguardar la seguridad de sus usuarios.

Luego se procederá a identificar las rocas sueltas mediante la eliminación del polvo humectando la superficie del talud, también se identificarán las rocas sueltas por el sonido hueco producido al golpear con el extremo en punta de la barreta la roca mientras que un sonido metálico representa roca fija.

La barreta a usar posee dos extremos: un extremo termina en punta para golpear la roca y hacerla caer mientras el otro extremo termina en forma de uña que ejerce presión y desprende la roca. El manipuleo de la barreta consiste en colocarla al costado del cuerpo evitando intervenir en la caída de rocas sueltas.

También se identificarán las rocas sueltas a partir del análisis cinemático del talud rocoso. El ingeniero supervisará la técnica del desatado manual de rocas sueltas, indicando a la cuadrilla las zonas de fallas. Además de acuerdo a la evaluación de las condiciones geomecánicas del talud se identifican probables zonas de caída de rocas sueltas.

B. Análisis de costo unitario de desatado manual de rocas sueltas

Tabla 50Análisis de costos unitarios por unidad de medida de desatado manual de roca suelta en talud

Anulisis de Cos	ноз инна	rios por unidad	ue meataa ae	aesaiaao i	паниан ае	roca saen	a en iaina
	•		s de precios			•	_
Presupuesto	0103003	APLICACIÓN DE	LAS CONDICION	NES GEOMEC	ÁNICAS DE	L ÍNDICE SI	LOPE MASS
		RATING EN LA	ESTABILIDAD DI	EL TALUD EI	N CARRETE	RA PUENTE	COLLPA -
		YANACANCHA					
Subpresupuesto	001	Estabilización de t	talud rocosos		Fecha	oresupuesto:	15/10/2021
Partida	01.01	DESATADO MANU	JAL DE ROCA SUI	ELTA TALUDE	S EN ROCA	SUELTA	
Rendimiento	m3/DIA	MO. 5.0000	EQ. 5.0000	Costo afect	tado por el me	etrado (1.00)	55.78
Código	Descripci	ón recurso	Unidad	Cuadrilla	Cantidad	Precio S/	Parcial S/
		Mano de obra					
0101010003	OPERARI	0	hh	0.5000	0.8000	23.94	19.15
0101010005	PEÓN		hh	1.0000	1.6000	17.08	27.30
		Equipos					46.48
0301010006	HERRAMI	ENTAS MANUALES	%mo		20.0000	46.48	9.30
							0.20

Nota: m3.: metros cúbicos; MO: mano de obra: EQ: equivalente; %mo: porcentaje de mano de obra; hh: hora–hombre; S/: soles.

4.2. Contrastación de hipótesis

4.2.1. Análisis estadístico

Para determinar el tipo de análisis estadístico inferencial, se estableció la normalidad de las muestras de la variable dependiente *Estabilidad del talud*, mediante la técnica la técnica de Shapiro – Wilk, puesto que la cantidad de muestras es menor a 50 unidades. Según lo referido se plantearon las hipótesis:

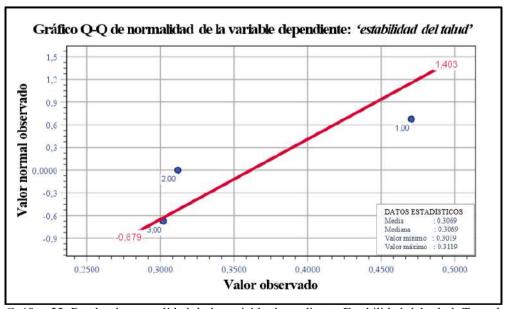

- Hipótesis nula (H₀): La estabilidad del talud tiene una distribución no normal, con un nivel de significancia menor a 0.05.
- Hipótesis alterna (H₁): La estabilidad del talud tiene una distribución normal, con un nivel de significancia mayor a 0.05.

Tabla 51Prueba de normalidad de la variable dependiente: Estabilidad del talud

Theod de normandad de la variable dependien	ic. Billomada di	ci icii	iii			
Pruebas de n	ormalidad					
	Kolmo	górov	7 _			
	Smir	rnov		Shapir	o-Wi	lk
	Estadíst		Si	Estadísti		
	ico	gl	g.	со	gl	Sig.
Estabilidad del talud	0,366	3		0,794	3	0,1
						01
a. Corrección de significación de Lilliefors						

Nota: Sig.: Significancia, gl: grados de libertad – Tamaño de muestra.

Fuente: Elaboración propia.

Gráfica 22. Prueba de normalidad de la variable dependiente: Estabilidad del talud. Tomada de «IBM SPSS STATISTICS V. 26», por Norman H. Nie, C. Hadlai (Tex) Hull y Dale H. Bent., 2019.

En la tabla 51 y gráfica 22 se observa que la significancia de la variable dependiente es mayor a 0.05 (Sig. > 0.05); como la distribución de los datos proviene de una distribución normal, se rechaza la hipótesis nula (H₀): La

estabilidad del talud tiene una distribución no normal; por tanto, el análisis estadístico inferencial elegido para esta tesis fue de tipo paramétrico.

Los datos de las variables de estudio fueron medidos en una relación de tanto por uno expresándose en decimales. La media poblacional hipotética para ambos casos fue de 0.61 en una relación de tanto por uno. La prueba de hipótesis se realizó con el estadístico T–Student que en palabras de Rial-Antonio y Varela-Jesús (2014), contrasta las medias de la variable en estudio: La media muestral versus la media poblacional hipotética, para definir discrepancias significativas y decidir si se acepta o rechaza la hipótesis nula.

4.2.2. Contrastación de la hipótesis general

Referente a la problemática general: ¿Cuál es el resultado de la aplicación de las condiciones geomecánicas del índice Slope Mass Rating (SMR) en la estabilidad del talud de la carretera puente Collpa – Yanacancha?, cuyo objetivo es establecer el resultado de la aplicación, se plantearon las hipótesis:

- Redacción de la hipótesis

Hipótesis alterna: La aplicación de las condiciones geomecánicas del índice Slope Mass Rating (SMR) permite estimar óptimamente la estabilidad del talud en la carretera puente Collpa – Yanacancha.

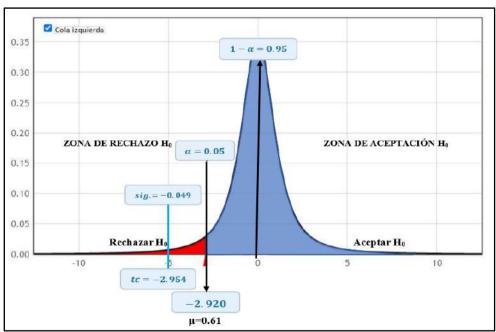
Hipótesis nula (**H**₀): La aplicación de las condiciones geomecánicas del índice Slope Mass Rating (SMR) **no** permite estimar la estabilidad del talud en la carretera puente Collpa – Yanacancha.

- Determinación del nivel de significancia o riesgo

Hernández, *et al.* (2014) expresa que el nivel de significancia es la probabilidad de error al contrastar la hipótesis de investigación; este valor oscila entre 0 y 1, mientras más se acerque a 0 más confiable será la hipótesis. Para la presente tesis, el nivel de significancia (*α*) es igual a 5 %.

- Elección de la prueba estadística

De acuerdo al análisis estadístico inferencial paramétrico, nivel de medición de la variable independiente (de razón) y muestreo transversal, se contrastó la hipótesis general con el estadístico T–Student para una sola muestra logrando comparar la media poblacional hipotética ($\mu_0 = 0.61$) que delimita la estabilidad del talud versus la media muestral (μ) de las 'Condiciones geomecánicas del índice Slope Mass Rating', ambas representadas por:


- -**Hipótesis nula** ($\mathbf{H_0}$): $\mu \le \mu_0$, La aplicación de las condiciones geomecánicas del índice Slope Mass Rating (SMR) **no** permite estimar la estabilidad del talud en la carretera puente Collpa Yanacancha.
- -**Hipótesis alterna** (**H**₁): $\mu \geq \mu_0$, La aplicación de las condiciones geomecánicas del índice Slope Mass Rating (SMR) permite estimar óptimamente la estabilidad del talud.

Además de acuerdo a la estructura, representación simbólica de las hipótesis se realizó el contraste de hipótesis unilateral, dividiendo la distribución muestral en: zona de rechazo y zona de aceptación.

El cálculo de la prueba estadística T-Student para una muestra con contraste de hipótesis unilateral o de una cola, se procesó con la fórmula: $t=\frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}}$

Donde:

- t: Valor estadístico de la prueba t
- \bar{x} : Media muestral
- σ: Desviación estándar de las muestras
- n: Tamaño muestral
- g: Grados de libertad

Gráfica 23. Distribución T–Student en hipótesis general. Tomada de «StatKey v. 2.1.1», por lock5stat.com, 2016.

- Cálculo del "p-valor" (probabilidad)

En opinión de Hernández *et al.* (2014), el p—valor cuantifica la probabilidad de equivocación al aceptar la hipótesis alterna en caso que la muestra no sea representativa o la elección del tipo de prueba sea incorrecta.

Como se empleó el estadístico T–Student para una sola muestra con contraste unilateral para contrastar la hipótesis general, el p–valor obtenido con el software IBM SPSS Statistics en la columna 'sig. bilateral' de la tabla 52 se dividió en dos para obtener un 'p–valor unilateral' igual a 0.0245.

Tabla 52Contraste de hipótesis general con el estadístico T–Student unilateral para una muestra

Prueba para una muestra								
Valor de prueba = 0.61								
					95% de intervalo de			
			Sig.	Diferencia	confianza de la diferencia			
	t	gl	(bilateral)	de medias	Inferior	Superior		
Condiciones geomecánicas del	-2,954	2	0,049	-0,1580900	-0,314298	-0,001882		
índice Slope Mass Rating (SMR)								

Nota: Sig.: Significancia, gl: grados de libertad – Tamaño de muestra, Valor de prueba: Valor de la media poblacional hipotética.

Fuente: Elaboración propia.

- Decisión estadística

Como el p-valor es menor al nivel de significancia se acepta la hipótesis general (ver tabla 53).

Tabla 53Cálculo del p-valor y el nivel de significancia para la hipótesis general

Contraste del p–valor y el nivel de significancia					
p-valor (unilateral) 'Condiciones geomecánicas del índice Slope Mass Rating (SMR)'	$=0.0245 < \alpha = 0.05$				

Nota: α: significancia, =: signo igual, <: signo menor.

Fuente: Elaboración propia.

- Conclusiones estadísticas

Después del procesamiento técnico – estadístico de los datos de campo y prueba de laboratorio; la comparación entre la media poblacional hipotética (μ =0.61) versus la media muestral de la variable independiente: 'Condiciones Geomecánicas del índice Slope Mass Rating', alcanzó valores inferiores al nivel de significancia establecido (α =0.05).

De modo que la aplicación de la variable independiente permitió estimar la estabilidad del talud en la carretera puente Collpa – Yanacancha; por lo anterior se acepta la hipótesis general considerada, obteniendo una veracidad en la investigación.

- Conclusiones técnicas

La identificación física, geomecánica y geométrica (orientación del macizo rocoso) del talud, fueron procesadas con el índice Slope Mass Rating (SMR) para calcular numéricamente la estabilidad del talud, concluyendo que: El talud por lo general es inestable, con un índice Slope Mass Rating (SMR) global de 35 puntos.

A consecuencia, la aplicación de las condiciones geomecánicas del índice Slope Mass Rating (SMR) permitió estimar óptimamente la estabilidad del talud en la carretera puente Collpa – Yanacancha. Por lo tanto, se acepta la hipótesis general de la investigación.

4.2.3. Contrastación de la hipótesis específica 'a'.

En relación a la problemática: ¿Cuál es el resultado de la calidad del macizo rocoso mediante la clasificación geomecánica Rock Mass Rating para valorar la estabilidad del talud?, cuyo objetivo es cuantificar el resultado, se plantean las siguientes hipótesis:

- Redacción de la hipótesis

Hipótesis alterna: Cuantificar el resultado de la calidad del macizo rocoso, establecida con la clasificación geomecánica Rock Mass Rating, contribuye a valorar de la estabilidad del talud.

Hipótesis nula (**H**₀): Cuantificar el resultado de la calidad del macizo rocoso, establecida con la clasificación geomecánica Rock Mass Rating, **no** contribuye a valorar de la estabilidad del talud.

- Determinación del nivel de significancia o riesgo

En esta tesis se estableció el valor del nivel de significancia α =5 %, puesto que, según Hernández, *et al.* (2014) fluctúa entre 0 y 1, mientras más se acerque este valor a 0 habrá menor probabilidad de equivocarse al aceptar la hipótesis de investigación.

- Elección de la prueba estadística

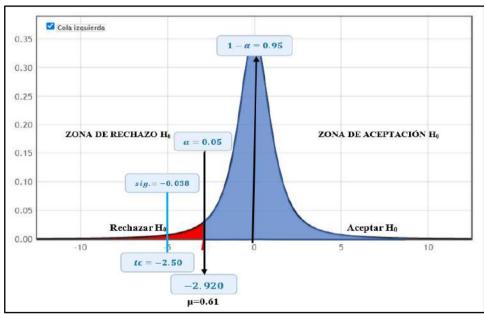
Se eligió el estadístico de contraste paramétrico T-Student para una sola muestra debido a que la distribución poblacional de la variable dependiente es normal, el nivel de medición de la variable independiente es por razón y la muestra fue tomada en un solo tiempo. Esta prueba compara la media

poblacional hipotética ($\mu_0 = 0.61$), versus la media muestral (μ) de la 'clasificación (Rock Mass Rating)' donde:

- -µ ≤ µ₀, entonces, Hipótesis nula (H₀): Cuantificar el resultado de la calidad del macizo rocoso, establecida con la clasificación geomecánica Rock Mass Rating, no contribuye a valorar de la estabilidad del talud.
- $-\mu \ge \mu_0$, entonces, **Hipótesis alterna** (**H**₁): Cuantificar el resultado de la calidad del macizo rocoso, establecida con la clasificación geomecánica.

La prueba estadística T-Student para una muestra con contraste de hipótesis unilateral o de una cola, se procesó mediante la siguiente fórmula: $t = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}}$

Donde


t: Valor estadístico de la prueba t – Student

x : Media muestral

σ: Desviación estándar de las muestras

n: Tamaño muestral

g: Grados de libertad

Gráfica 24. Distribución T-Student en hipótesis específica 'a'. Tomada de «StatKey v. 2.1.1», por lock5stat.com, 2016.

- Cálculo del "p-valor" (probabilidad)

El p-valor cuantifica la probabilidad de cometer un error al aceptar la hipótesis de investigación, causado por muestras no representativas o el tipo

de prueba estadística no idóneo para la investigación (Hernández, et al., 2014).

Al utilizar el estadístico T–Student para una sola muestra con contraste unilateral para contratar la hipótesis específica 'a', el p–valor obtenido con el software IBM SPSS Statistics en la columna 'sig. bilateral' de la tabla 56 se segmentó en dos logrando hallar la 'p–valor unilateral' igual a 0.019.

Tabla 54Contraste de hipótesis específica 'a' con el estadístico T–Student unilateral para una muestra

Prueba para una muestra								
Valor de prueba = 0.61								
					95% de intervalo de			
			Sig.	Diferencia	confianza de la	diferencia		
	t	gl	(bilateral)	de medias	Inferior	Superior		
Rock Mass Rating (RMR)	-5,00	2	0,038	-0,01667	-0,0374	0,0040		

Nota: Sig.: Significancia, gl: grados de libertad – Tamaño de muestra, Valor de prueba: Valor de la media poblacional hipotética.

Fuente: Elaboración propia.

- Decisión estadística

En la tabla 55 se expone la comparación entre el resultado del p-valor (unilateral) y el nivel de significancia, aceptando la hipótesis especifica 'a'.

Tabla 55

Cálculo del p-valor y nivel de significancia para la hipótesis específica 'a'

Contraste del p-valor y el nivel de significancia

p-valor (unilateral) 'Rock Mass Rating' = 0.019 < α = 0.05

Nota: α: Significancia, =: signo igual, <: signo menor.

Fuente: Elaboración propia.

- Conclusiones estadísticas

Después de transformar los datos de campo y laboratorio a estadísticas y examinar la variable independiente *'Rock Mass Rating'* con el estadístico inferencial paramétrico T–Student para una sola muestra; se demostró que el nivel de significancia calculado está por debajo del límite establecido con anterioridad (máximo 5%) de esta investigación.

Por consiguiente, la calidad del macizo rocoso establecida con la clasificación geomecánica Rock Mass Rating (RMR), contribuye a valorar de la estabilidad del talud; en consecuencia, la hipótesis especifica 'a' planteada es aceptada, como resultado la tesis es veraz.

- Conclusiones Técnicas

Los resultados de campo y del ensayo en laboratorio se obtuvieron tras el análisis, clasificación y procesamiento según el estudio geomecánico del talud y la metodología del Rock Mass Rating (RMR), concluyendo que, la calidad del macizo rocoso del talud globalmente es media o regular con un Rock Mass Rating (RMR) igual a 59 puntos.

En efecto, la calidad del macizo rocoso establecida con la clasificación geomecánica Rock Mass Rating (RMR) contribuye a valorar de la estabilidad del talud. Por lo tanto, se acepta la hipótesis específica 'a' de esta investigación.

4.2.4. Contrastación de la hipótesis específica 'b'.

En cuanto a la problemática: ¿Cuáles son los valores de los sub-factores de ajuste de las discontinuidades para estimar la estabilidad del talud? Cuyo objetivo es calcular los valores, se plantean las siguientes hipótesis:

- Redacción de la hipótesis

Hipótesis alterna: El cálculo de los sub-factores de ajuste de las discontinuidades permite estimar la estabilidad del talud ofreciendo resultados aceptables.

Hipótesis nula (H₀): El cálculo de los sub-factores de ajuste de las discontinuidades **no** permite estimar la estabilidad del talud ofreciendo resultados aceptables.

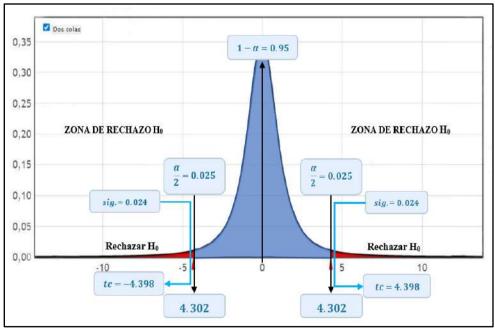
- Determinación del nivel de significancia o riesgo

Se definió para esta tesis, el nivel de significancia (α) = 0.05, debido a que como plantea Hernández, *et al.* (2014) el nivel de significancia cuantifica la probabilidad de equivocarse al contrastar la hipótesis de investigación, este valor fluctúa entre 0 y 1, los valores más cercanos a 0 se traducen en mayor probabilidad de acertar al aceptar la hipótesis.

- Elección de la prueba estadística

Se eligió la prueba estadística T-Student para muestras relacionadas ya que se cumplió las condiciones de acuerdo a la bibliografía consultada:

-Hernández, *et al.* (2014) la prueba T–Student para muestras relacionadas se aplica para el nivel de medición de la variable independiente por razón, por


intervalos y para una distribución poblacional normal de la variable dependiente.

-Ross (2007): la prueba T-Student para muestras relacionadas se aplica a pares de datos de la misma muestra que se interrelacionan naturalmente debido a ello las muestras no son independientes (p. 462).

Indiscutiblemente la prueba de hipótesis contrasta recurriendo a comparación y diferencia de las dos medias muestrales de la misma unidad de análisis: 'Rock Mass Rating' antes (µ1) y después (µ2) de aplicar los 'sub-factores de ajuste de las discontinuidades', donde sí:

- $-\mu_1 = \mu_2$, entonces, **hipótesis nula (H₀)**: El cálculo de los sub-factores de ajuste de las discontinuidades **no** permite estimar la estabilidad del talud ofreciendo resultados aceptables.
- $-\mu_1 \neq \mu_2$, entonces, **hipótesis alterna** (**H**₁): El cálculo de los sub-factores de ajuste de las discontinuidades permite estimar la estabilidad del talud ofreciendo resultados aceptables.

La idealización de las hipótesis y el valor de las medias muestrales $(u_1 - u_2 \neq 0)$ de la unidad de análisis, indican contraste bilateral que divide la distribución muestral en: zona de rechazo y zona de aceptación (ver gráfica 25).

Gráfica 25. Distribución T–Student en hipótesis específica 'b'. Tomada de «StatKey v. 2.1.1», por lock5stat.com, 2016.

La prueba estadística T-Student para dos muestras relacionadas con contraste de hipótesis bilateral, se procesó mediante la siguiente fórmula: $t = \frac{\overline{u_1} - \overline{u_2}}{\frac{\sigma}{\sqrt{n}}}$

Donde:

t: Valor estadístico de la prueba t

 $\overline{u_1}$: Media muestral 1

 $\overline{u_2}$: Media muestral 2

σ: Desviación estándar del promedio de las muestras

n: Tamaño muestral

g: Grados de libertad

- Cálculo del "p-valor" (probabilidad)

El cálculo del p-valor representa la probabilidad de incurrir en un error al aceptar la hipótesis alterna (H₁), ocasionado por elección inadecuada del tipo de prueba estadística para la investigación o muestras no representativas (Hernández, *et al.*,2014).

El 'p-valor (bilateral)' para la variable independiente 'sub-factores de ajuste de las discontinuidades', calculado mediante el software IBM SPSS Statistics se muestra en la columna 'sig. bilateral' de la tabla 56 igual a 0.048.

Tabla 56Contraste de la hipótesis específica 'b' con el estadístico T–Student bilateral para muestras relacionadas

reterestered								
Prueba de muestras emparejadas Diferencias emparejadas								
		Differenc	Desv.	95% de co	nfianza de			Sig.
		Desv.	Error	la dife			(bilater	
	Media	Desviación	prom.	Inferior	Superior	t	gl	al)
Par RMR – SMR 1 (sub–factores)	0,14142	0,0655666	0,03786	-0,021451	0,304301	4,398	2	0,048

Nota: Sig.: Significancia, gl: grados de libertad – Tamaño de muestra, Valor de prueba: Valor de la media poblacional hipotética.

Fuente: Elaboración propia.

- Decisión estadística

El nivel de significancia fue cotejado con el resultado del p-valor en la tabla 57, aceptando la hipótesis alterna de la presente tesis.

Tabla 57

Cálculo del p-valor y el nivel de significancia para la hipótesis específica 'b'

Contraste del p-valor y el nivel de significancia	1
P-valor (bilateral) 'sub-factores de ajuste de las discontinuidades'	$= 0.048 < \alpha = 0.05$

Nota: α: significancia, =: signo igual, <: signo menor.

- Conclusiones estadísticas

Conforme al análisis e interpretación estadística de la información, el estadístico paramétrico T–Student para muestras relacionadas de la hipótesis específica 'b', comprobó que el nivel de significancia calculado es menor al nivel de significancia establecido (α =0.05) para esta tesis.

Por lo expuesto se concluye que el cálculo de los 'sub-factores de ajuste de las discontinuidades' permite estimar la estabilidad del talud ofreciendo resultados aceptables. Entonces la hipótesis específica 'b' formulada, es aceptada y la investigación es verídica.

- Conclusiones Técnicas.

La determinación de los sub-factores de ajuste de las discontinuidades a través de la identificación geométrica del talud (orientación) y método de excavación, aumentan la precisión en el cálculo de estabilidad del talud respecto a la clasificación Rock Mass Rating (RMR).

Luego, se concluye que mediante la variable independiente se pudo estimar la estabilidad del talud, por lo tanto, se acepta la Hipótesis específica 'b' de la investigación.

CAPÍTULO V DISCUSIÓN DE RESULTADOS

5.1. Discusión general

5.1.1. Aplicación de las condiciones geomecánicas del índice Slope Mass Rating (SMR)

En relación al objetivo general: Establecer el resultado de la aplicación de las condiciones geomecánicas del índice Slope Mass Rating en la estabilidad del talud en la carretera puente Collpa – Yanacancha, se logró aplicarlas en las estaciones geomecánicas: $EG_{02}=31$ puntos y $EG_{03}=30$ puntos; eligiendo la menor puntuación $SMR_{global}=30$ que representa un talud inestable este requiere un sostenimiento importante como el refuerzo con pernos de anclaje.

Lo mencionado se logró a partir de: la caracterización geomecánica, las orientaciones de las discontinuidades y el talud. Por lo tanto, la aplicación de las condiciones geomecánicas del índice Slope Mass Rating permite estimar la estabilidad del talud ya que propone medidas correctivas para su estabilización/sostenimiento y mitigación.

En las investigaciones de Hudson (1993), Cacao (2018), D. Ortega (2019) y Pinillos (2017), se aplicaron las condiciones geomecánicas del índice Slope

Mass Rating prediciendo el nivel de estabilidad del talud según la caracterización geomecánica y las orientaciones de las discontinuidades y del talud.

En adición y de acuerdo a dichas investigaciones esta relación contribuye también a estimar la probabilidad y mecanismo de falla. Así, la inestabilidad de los taludes según Hudson (1993) se debe también a: importantes fallas planares, las mismas que se identificaron en la presente tesis, así como las investigaciones de Pinillos y Cacao.

Para solucionar las inestabilidades del talud, Cacao (2018) propone el reforzamiento del talud, medida de sostenimiento con la cual concuerda la presente tesis ya que el sistema flexible de alta resistencia activo compuesto por pernos de anclaje, mallas y cables metálicos fijarán los bloques de rocas desprendidos a consecuencia de fallas planares al talud.

Adicionalmente, debido a que en el talud estudiado se observó caída de rocas, se recomienda el desatado manual siguiendo los lineamientos de la sección 225 del manual de carreteras, mantenimiento o conservación vial (anexo 13).

Como la presente investigación se limita a aplicar el índice Slope Mass Rating para estimar la estabilidad del talud, se recomienda también la medida de sostenimiento propuesta según dicho índice: Instalación de mallas y pernos de anclaje considerando el ítem 7.3 del manual de carreteras: túneles y obras complementarias (2016) y los criterios del fabricante.

También es necesario dar a conocer que la presente investigación no consideró aspectos tales como el desarrollo, diseño y cálculo de costos de las alternativas de solución (pernos de anclaje y desatado manual de taludes) pues constituyen otros temas de investigación por su complejidad.

Afín a mis resultados fue la investigación de Cacao y Herrera pues, ambas obtuvieron taludes inestables con índices Slope Mass Rating clase IV, esto es coherente con los resultados obtenidos ya que a menor índice SMR, el talud será menos estable. En tal sentido se acepta la hipótesis general planteada.

5.2. Discusiones específicas

5.2.1. Calidad del macizo rocoso mediante la clasificación Rock Mass Rating.

En relación al objetivo específico 'a': Cuantificar el resultado de la calidad del macizo rocoso mediante la clasificación geomecánica Rock Mass Rating para valorar la estabilidad del talud; se caracterizó, clasificó y cuantificó la calidad de la roca siguiendo los pasos de la metodología de Bieniawski (1989), en cada estación geomecánica: EG₀₁=52 puntos, EG₀₂=52 puntos y EG₀₃=53 puntos, posteriormente, se eligió el menor valor RMR_{global}=52 puntos para representar la calidad del macizo rocoso; basado en la evaluación de las condiciones geomecánicas de las discontinuidades del talud, resultando un talud de calidad media o regular que puede auto – sostenerse una semana tras sufrir modificaciones geométricas horizontales en tramos cortos de 5 metros. En consecuencia, la valoración de la calidad del talud mediante la caracterización, clasificación y evaluación de las discontinuidades con la metodología Rock Mass Rating contribuyó a estimar la estabilidad del talud.

Al respecto J. Ortega (2018) afirmó que la clasificación geomecánica Rock Mass Rating (RMR) contribuyó a estimar la estabilidad de taludes porque calculó en forma cuantitativa y sistemática el estado de la roca (calidad del macizo rocoso) para el diseño de taludes estables. La presente tesis concuerda con esta afirmación.

La calidad del macizo rocoso depende de las condiciones de sus discontinuidades: resistencia, Rock Quality Design (RQD), espaciamiento, presencia de agua y demás condiciones, las mismas que influenciaron la estabilidad del talud tal como se observa en el capítulo IV de la presente tesis, de tal forma, se comprueba la Hipótesis específica 'a'.

Similares a mis resultados fueron los de Bravo (2020), J. Ortega (2018) y D. Ortega (2019) que analizaron rocas de calidad regular clase III. Por las razones antes expuestas, se acepta la hipótesis específica 'a' planteada.

5.2.2. Sub-factores de ajuste de las discontinuidades

En relación al objetivo específico 'b': Calcular los valores de los subfactores de ajuste de las discontinuidades para estimar la estabilidad del talud y tomando en cuenta la metodología propuesta por Tomás, *et al.* (2006), se calcularon los sub-factores de ajuste, denominados F1= 0.4142, F2= 0.9623, F3=-59.3182 y F4=+8:

Dichos sub—factores están basados en la orientación de las discontinuidades, el método de excavación o construcción del talud y el mecanismo de falla predominante en cada familia de discontinuidades. Por lo tanto, el cálculo de los sub—factores de ajuste de las discontinuidades permite estimar la estabilidad del talud ofreciendo resultados aceptables al aumentar la precisión de dicho cálculo.

Es relevante mencionar que desde la perspectiva de Cacao (2018), D. Ortega (2019) y Pinillos (2017), los sub-factores de ajuste de las discontinuidades precisan la estabilidad del talud gracias a la disposición geométrica de las discontinuidades respecto al talud y el método de excavación ofreciendo resultados aceptables.

Mientras que Cacao (2018), Pinillos (2017) y D. Ortega (2019) cuantificaron los sub–factores F2 y F3 con puntuaciones asignadas por Romana-Manuel (1989), en esta investigación se calcularon dichas puntuaciones con expresiones matemáticas de Tomás, *et al.* (2006), que eliminaron la incertidumbre al escogerlas en los límites de los intervalos asignados.

Respecto al sub-factor F1, Pinillos (2017) y la presente investigación, comprobaron que mientras menos paralelos estén los planos dirección de buzamiento de las discontinuidades y del talud, más estable será el talud. En contraste para el sub-factor F2, ambas investigaciones demostraron que: a mayor inclinación o buzamiento de las discontinuidades, se producirán más inestabilidades en el talud.

Luego, citando a Pinillos (2017), el sub-factor F3 expresa la conexión entre el buzamiento del talud (bs) y buzamiento de sus discontinuidades (bj), es decir, el nivel de visibilidad de las discontinuidades en el talud (p. 39). Basado en esta premisa y los resultados de la presente tesis se demostró que, a mayor inclinación del talud, se incrementa la susceptibilidad de los taludes ante inestabilidades.

Concerniente a la corrección por la forma de construcción del talud, Cacao (2018), describe que sub–factor F4 estima el impacto de la excavación la estabilidad del talud. Se valora negativamente a taludes construidos con voladuras deficientes y positivamente a taludes estables, ejecutados adecuadamente con voladuras o pre–corte (p. 42).

Es así que Pinillos (2017), encontró taludes construidos por excavación mecánica, valorando el sub–factor F4 en 0; mientras que D. Ortega (2019) y la presente tesis observaron taludes originados por voladura controlada cuantificando el sub–factor F4 en +8.

Los párrafos anteriores denotan que los resultados de la presente tesis, son congruentes con los planteamientos de la bibliografía mencionada en el marco teórico; entonces, se acepta la formulación de la Hipótesis específica 'b': El cálculo de los sub—factores de ajuste de las discontinuidades permite estimar la estabilidad del talud ofreciendo resultados aceptables.

CONCLUSIONES

- 1. La aplicación de las condiciones geomecánicas del índice Slope Mass Rating permitió estimar la estabilidad del talud como inestable (SMRglobal=30 puntos) con probabilidad (21-38%) de presentar mecanismo de falla planar al identificar 38 planos de falla críticos ubicados entre progresivas: 18+695.20 al 18+720.18, como medida correctiva se propone instalar un sistema flexible de alta resistencia compuesto por malla metálica, cable de acero y pernos de anclaje helicoidal siguiendo los lineamientos del ítem 7.3 del manual de carreteras: túneles y obras complementarias además de las recomendaciones del fabricante cuyo costo por metro cuadrado asciende a S/ 349.63 soles (según análisis de costos unitarios); así mismo se plantea el desatado manual de rocas sueltas conforme a lo indicado por la sección 225 del manual de carreteras, mantenimiento o conservación vial, cuyo costo por metro cúbico asciende a S/ 55.78 soles (según análisis de costos unitarios) para estabilizar el talud y mitigar la caída de rocas, por lo tanto, se valida la hipótesis general: La aplicación de las condiciones geomecánicas del índice Slope Mass Rating (SMR) permite estimar óptimamente la estabilidad del talud en la carretera puente Collpa - Yanacancha mediante el contraste unilateral del estadístico T-Student para una muestra: (p-valor: 0.0245 < 0.05).
- 2. Se concluye que la cuantificación del resultado de la calidad del macizo rocoso establecida con la clasificación geomecánica Rock Mass Rating es igual a RMR_{global}=52 puntos, es decir un macizo rocoso de calidad media o regular. Así mismo, dicha clasificación geomecánica está relacionada con las caracteristicas geomecánicas de las discontinuidades. En razón a ello, se validó la hipótesis especifica 'a': La calidad del macizo rocoso establecida con la clasificación geomecánica Rock Mass Rating, contribuye a valorar de la estabilidad del talud con un contraste unilateral brindado por el estadístico T–Student para una muestra (p–valor=0.019< 0.05).
- 3. Los sub–factores de ajuste de las discontinuidades son: F1= 0.5398, F2= 0.9623 , F3= -59.3182 y F4= +8 para la familia de discontinuidades 02, permitieron estimar la estabilidad del talud al aumentar la precisión en su cálculo empleando expresiones matemáticas implementadas por Tómas, *et al.* (2006) que involucran la orientación de las discontinuidades, del talud y el método de excavación. Se confirma la hipótesis especifica 'b': El cálculo de los sub–factores de ajuste de las discontinuidades permite estimar la estabilidad del talud ofreciendo resultados aceptables gracias al contraste bilateral del estadístico T–Student para dos muestras (p–valor=0.048 <0.05).

RECOMENDACIONES

- 1. Se recomienda aplicar las condiciones geomecánicas del índice Slope Mass Rating (SMR) a la inspección, reconocimiento y monitoreo de zonas rocosas a fin de: identificar zonas de peligro por caídas de rocas y plantear tentativamente alternativas de solución en inestabilidades puntuales del talud rocoso tales como el desatado manual de rocas sueltas e instalación de pernos de anclaje helicoidales de acuerdo a los lineamientos de la sección 225 del manual de carreteras: mantenimiento o conservación vial, e ítem 7.3 del manual de carreteras: túneles y obras complementarias respectivamente (anexo 13).
- 2. Al evaluar la calidad del macizo rocoso con la metodología Rock Mass Rating (RMR), se sugiere considerar las condiciones más desfavorables del parámetro presencia de agua debido a que erosiona al talud y genera desprendimientos de rocas sueltas que con la acción de la gravedad impactan a la carretera especialmente en períodos de lluvias comprometiendo la seguridad de los usuarios de la vía (peatones y transportistas).
- 3. Se recomienda calcular los sub–factores de ajuste de las discontinuidades con fórmulas matemáticas propuestas por Tomás, et al. (2006) que eliminan la incertidumbre al elegir puntuaciones asignadas para un intervalo de orientaciones en cada sub–factor de ajuste de las discontinuidades.

REFERENCIAS BIBLIOGRÁFICAS

Documentos en línea

- 01. Alva Hurtado, Jorge. Estabilización de taludes de roca. [en línea]. Lima, Perú: Oficina de Posgrado de la Universidad Nacional de Ingeniería, 2006. [Fecha de consulta: 28 de abril del 2022]. Disponible en: http://www.jorgealvahurtado.com/files/Estabilizacion%20de%20Taludes%20de%20Roca.pdf
- 02. Belandría, N y Bongiorno, F. Belandría, Norly y Bongiorno, Francisco. Clasificación geomecánica de los macizos rocosos según: Bieniawski, Barton, Hoek&Brown, Romana; Guía práctica didáctica de geotecnia aplicada. [en línea]. Mérida—Venezuela: Universidad de Los Andes, 2012. [Fecha de consulta: 21 de octubre de 2020]. Disponible en: https://docplayer.es/76295829-Clasificaciones-geomecanica-de-de-los-macizos-rocosos-segun-bieniawski-barton-hoek-y-brown-romana.html.
- 03. Carpio, Mario, Torre, Jhonny y Fuentes, Jesús. Investigación de calizas para el desarrollo de la región Junín. [en línea]. Lima–Perú: INGEMMET, Boletín, Serie B: Geología Económica, 65, 2019. [fecha de consulta: 03 de marzo de 2021]. Disponible en: https://hdl.handle.net/20.500.12544/2425.
- **04. Díez, Andrés,** *et al.* A todo riesgo XIV Convivir con los desastres geológicos cotidianos Guion de la Excursión científico divulgativa para la educación en riesgos geológicos celebrada en el marco de la Semana de la Ciencia de Castilla y León 2020. [en línea]. Madrid: Instituto Geológico y Minero de España y Segovia Educa en Verde, 2020. [fecha de consulta: 09 de enero de 2021]. Disponible en: http://www.geologiadesegovia.info/wp-content/uploads/2020/10/A-todo-riesgo-XIV-2020-version-01.pdf.
- 05. Geobrugg AG. Manual del sistema de estabilización de taludes TECCO SYSTEM. [en línea]. Romanshorn, Suiza: Sistemas de protección, 2021. [fecha de consulta: 12 de diciembre 2021]. Disponible en: https://www.geobrugg.com/file-50268/downloadcenter/level2-product-manuals/TECCO/L2 TECCO-sp-Manual-19 210323.pdf
- **06. IGP–Instituto Geofísico del Perú.** *Atlas Climático de precipitación y temperatura del aire de la Cuenca del Río Mantaro.* [En línea]. Lima–

Perú: CONAM–Consejo Nacional del Ambiente, 2005. [Fecha de consulta: 02 de octubre de 2021]. Disponible en: https://repositorio.igp.gob.pe/bitstream/handle/20.500.12816/714/Atlas_Climatico_precipitacion%20-

%20v.%201.pdf?sequence=1&isAllowed=y. 110 pp. ISBN: 9972824136

- **07**. **Luis Jordá Bordehore, Roberto Tomás Jover.** *Aplicación del Slope Mass Rating (SMR) en Perú: caracterización geomecánica de un talud en la carretera Izcuchaca—Quichuas (Huancavelica).* [en línea]. Lima-Perú: 1ra Conferencia Internacional de Diseño de Mina por Métodos Empíricos, 2014. [Fecha de consulta: 27 de enero 2021]. Disponible en: https://es.scribd.com/document/405488219/Aplicabilidad-del-Slope-Mass-Rating-SMR.
- 08. Luque Poma, Griselda, et al. Peligro geológico en la región Junín. [en línea].
 Lima, Perú: INSTITUTO geológico, minero y metalúrgico (INGEMMET)
 Boletín Serie C: Geodinámica e Ingeniería Geológica, 2020. 222 pp.
 [Fecha de consulta: 25 de noviembre de 2020]. Disponible en:
 https://hdl.handle.net/20.500.12544/2545.
- 09. Morales, Wilver. Curso: geología aplicada Capítulo I: Introducción a la mecánica de rocas. [en línea]. Cajamarca: Universidad Nacional de Cajamarca, 2014. [fecha de consulta: 29 de diciembre de 2020]. Disponible en: https://es.slideshare.net/rodersc/cap1-introduccion-mecanica-de-rocas.
- **10.** Nuttapong, Kovittayanun y Portillo, Gustavo. Control de erosión mediante geo—sintéticos. [en línea]. [Bangkok, Tailandia]: CeTeau, 2015. [fecha de consulta: 08 de diciembre de 2020]. Disponible en: https://es.slideshare.net/wequips/wequips-ceteau-control-de-erosin.
- 11. Oliva, Aldo. Estabilidad de taludes y laderas. Análisis cuantitativo y cualitativo. [en línea]. México: Grupo de ingeniería del terreno-Instrumentación y control euro-americano, 2015. [fecha de consulta: 31 de diciembre de 2020] Disponible en: https://www.researchgate.net/publication/324507337.
- 12. Organismo Supervisor de la Inversión en Energía y Minería (OSINERGMIN). Guía de criterios geomecánicos para diseño,

construcción, supervisión y cierre de labores subterráneas. [en línea]. Lima: Organismo Supervisor de la Inversión en Energía y Minería, 2017. [fecha de consulta: 29 de diciembre 2020]. Disponible en: https://www.osinergmin.gob.pe/seccion/centro_documental/mineria/Documentos/Publicaciones/Guia-Criterios-Geomecanicos.pdf.

13. Romana Ruiz, Manuel, Serón Gáñez, José y Montalar Yago, Enrique. SMR Geomechanics classification: Application, experience and validation [en línea]. En: Congreso ISRM, (10°: 2003: Sandton, South Africa). Valencia, España: Universidad Politécnica de Valencia, 2003. [Fecha de consulta: 11 de febrero de 2021]. Disponible en: https://www.stmr.es/recursos/downloads/STMR Art SMRGeomechanic sClassification.pdf.

Libros

- **14. Bell, F. G.** Engineering Geology. [en línea]. 2° ed. Oxford, Estados Unidos: Elsevier Ltd., 2007. [Fecha de consulta: 02 de noviembre de 2021]. 592 pp. ISBN: 9780080469522. Disponible en: https://books.google.com.pe/books?id=Izm6IUVDBcUC&pg=PA555&lpg=PA555&dq=Bell,+F.+G.+1993.+Engineering+Geology.+Blackwell+Scientific+Publications:+Cambridge,+Mass.
- **15. Carrasco, Sergio.** *Metodología de la investigación científica.* Lima: San Marcos, 2005. 474 pp. ISBN: 9972342425.
- **16. Duque, Gonzalo.** *Manual de geología para ingenieros*. [en línea]. Manizales (Colombia): Universidad Nacional de Colombia, 2017. [Fecha de consulta: 21 de noviembre de 2020]. Disponible en: https://repositorio.unal.edu.co/bitstream/handle/unal/3145/manualgeo.pdf
- 17. Ferrer, Mercedes y González de Vallejo, Luis. Manual de campo para la descripción y caracterización de macizos rocosos en afloramientos. 2° ed. [en línea]. Madrid: Instituto Geológico y Minero de España, 2007. [Fecha de consulta: 31 de diciembre del 2020]. Disponible en: https://es.scribd.com/document/367220096/Manual-de-Campo-Para-La-Descripcion-y-Caracterizacion-de-Macizos-Rocosos.
- **18. García, Fernándo.** Curso Básico de Topografía: Planimetría, Agrimensura, Altimetría. [en línea]. México: Editorial Pax México, 2017. [Fecha de

- consulta: 18 de marzo de 2021]. Disponible en: https://books.google.com.pe/books?id=f2ySmhH_Pf8C&dq=de+rumbo+a+azimut&source=gbs_navlinks_s.
- **19. Gómez, Miguel; Alzate, María y Deslauriers, Jean Pierre.** *Cómo hacer tesis de maestría y doctorado*. Bogotá: Ecoe Ediciones, 2015. 192 pp. ISBN: 9789587712780.
- **20. González de Vallejo, Luis, et al.** *Ingeniería Geológica.* Madrid, España: Pearson Education, 2002. 715 pp. ISBN: 8420531049.
- 21. Hernández, Arturo, et al. Metodología de la investigación científica. España: Editorial Área de Innovación y Desarrollo, S.L., 2018. [Fecha de consulta: 21 de noviembre de 2020]. ISBN: 9788494825705. Disponible en: https://www.researchgate.net/profile/Marcos-Ramos-Rodriguez/publication/322938332_Metodologia_de_la_investigacion_cientifica/links/5aa14866aca272d448b36198/Metodologia-de-la.
- **22.** Hernández, Roberto, Fernández, Carlos y Baptista, Pilar. *Metodología de la Investigación 6ta edición*. México: Mc Graw Gill Education, 2014. 600 pp. ISBN: 9781456223960.
- 23. Hoek, Ever. Rock mass classification [en línea]. Columbia Británica, Canadá: [s.n.], 2007. Pp. 52-74. [Fecha de consulta: 04 de febrero de 2021]. Capítulo 3. Practical rock engineering ISBN: 9781483297972. Disponible en: https://www.rocscience.com/assets/resources/learning/hoek/Practical-Rock-Engineering-Full-Text.pdf.
- 24. Hudson, John. Pruebas de rocas y caracterización del sitio: Ingeniería integral de rocas: Principios, práctica y proyectos. [en línea]. New York (Estados Unidos): Elsevier, 1993. [Fecha de consulta: 03 de enero de 2021]. ISBN: 9781483297972. Disponible en: https://books.google.com.pe/books?id=IuXTBQAAQBAJ&pg=PA580&dq=Some+joints+or+many+wedges+Planar+or+big+wedges+Big+planar+or+soil-like+None+Occasional&hl=es&sa=X&ved=2ahUKEwi20uv.
- 25. INSTITUTO Geológico y Minero de España (IGME). Manual de Taludes.
 [en línea]. Madrid: Ministerio de Industria, Comercio y turismo, 1987.
 ISBN: 9788478406265. [fecha de consulta: 07 de diciembre de 2020].
 Disponible en:

- http://www.mediafire.com/download_repair.php?qkey=dwtnukijzfm&dk
 ey=sl8yueaqcff&template=1&origin=click_button.
- **26. Muñoz, Carlos.** *Cómo elaborar y asesorar una investigación de tesis.* 2.° Ed. México: Pearson Education, 2011. 320 pp. ISBN: 9786073204569.
- **27.** Ñaupas, H, et al. Metodología de la investigación cuantitativa-cualitativa y redacción de la tesis. 5°. Ed. Bogotá: Ediciones de la U, 2018. 562 pp. ISBN: 9789587628760.
- 28. Ramírez, Pedro y Alejano, Leandro. Mecánica de rocas: Fundamentos e Ingeniería de taludes. [en línea]. Madrid: Escuela Técnica Superior de Ingenieros de Minas de la UPM, 2004. [fecha de consulta: 03 de diciembre de 2020]. Disponible en: http://oa.upm.es/14183/1/MECANICA_DE_ROCAS_1.pdf.
- **29. Rial Boubeta, Antonio y Varela Mallou, Jesús**. Estadística práctica para la investigación en ciencias de la salud. La Coruña, España: Netbiblo S.L, 2008. 344 pp. ISBN: 9788497452434.
- 30. Ross, Sheldon M. *Introductory Statistics*. [en línea]. Barcelona, España: Reverté, 2007. Disponible en: https://books.google.com.pe/books?id=pPM2TgQsx8wC&printsec=copyright#v=onepage&q&f=false.809pp.ISBN:9788429194241.
- 31. Suarez, Jaime. Capítulo 1 Nomenclatura y Clasificación de los Movimientos.
 En: Suarez, Jaime. Deslizamientos. Análisis Geotécnico Vol. 1. Colombia:
 Geotecnología S.A.S, 2009. pp. 1-36 [fecha de consulta: 09 de diciembre del 2020]. ISBN: 9789588504032.
- 32. Suárez Burgoa, Ludger. Descripción del macizo rocoso: introducción a la ingeniería de rocas de superficie y subterráneas. [en línea]. Medellín: [s.n.], 2015. [fecha de consulta: 18 de diciembre de 2020]. Disponible en: https://www.researchgate.net/profile/Ludger-Suarez-Burgoa/publication/330834433 Descripcion del macizo rocoso introdu ccion a la ingenieria de rocas de superficie y subterranea/links/5c56
- **33. Tarbuck, E. J., & Lutgens, F. K.** (2005). Ciencias de la Tierra. [en línea]. 8° Ed. Madrid: España. Pearson Educación S. A. 2005. [fecha de consulta: 27 de noviembre de 2021]. Disponible en: <a href="mailto:chrome-

- extension://efaidnbmnnnibpcajpcglclefindmkaj/https://xeologosdelmund u.org/wp-content/uploads/2016/03/TARBUCK-y-LUTGENS-Cienciasde-la-Tierra-8va-ed.-1.pdf
- 34. Yuni José, Urbano Claudio. Técnicas para investigar: recursos metodológicos para la preparación de proyectos de Investigación. [en línea]. Córdoba, España: Brujas, 2014. [fecha de consulta: 11 diciembre 2020]. Disponible en: https://abacoenred.com/wp-content/uploads/2016/01/T%c3%a9cnicas-para-investigar-2-Brujas-2014-pdf.pdf 113 pp. ISBN: 9789875915480.

Trabajos de grado

- 35. Andino, Cristina. "Evaluación dinámica del macizo rocoso de la Casa de Máquinas 2 (P.H. Pusuno) mediante métodos numéricos en 2D y 3D". 2020. Tesis (Magister en Geotecnia Aplicada). Ecuador: Universidad Central de Ecuador, 2020. 178 pp. [Fecha de consulta: 02 de mayo de 2020]. Disponible en: http://www.dspace.uce.edu.ec/bitstream/25000/21250/3/T-UCE-0012-FIG-020-P.pdf.
- **36. Bravo, Percy.** "Estabilidad de taludes del Ccaccañan" distrito Tambobamba, provincia de Cotabambas–región Apurímac período 2019". Tesis (Magister en Ingeniería Civil mención Geotecnia y Vías Terrestres). Perú: Universidad de San Antonio Abad del Cusco, 2020. 166 pp. [Fecha de consulta: 20 de noviembre de 2020]. Disponible en: http://repositorio.unsaac.edu.pe/bitstream/handle/20.500.12918/5737/253 T20201041_TC.pdf?sequence=1&isAllowed=y.
- 37. Breña, Christian. "Estabilidad de taludes de la carretera longitudinal de la sierra; tramo Cochabamba-Cutervo-Chiple, Cajamarca-Perú". Tesis (Magister en Geología con mención en Geotecnia). Perú: Universidad Nacional Mayor de San Marcos, 2019. 174 pp. [Fecha de consulta: 17 de noviembre de 2020]. Disponible en: https://cybertesis.unmsm.edu.pe/bitstream/handle/20.500.12672/11386/B rena_vc.pdf?sequence=1&isAllowed=y.
- **38.** Cacao, Erick. Clasificación de calidad de roca con el método Slope Mass Rating (SMR) en un tramo de la ruta CA-9, para la identificación de

taludes inestables y herramienta para estudio diagnóstico. Tesis (Magister en Ciencias en Ingeniería Geotécnica). Guatemala: Universidad de San Carlos de Guatemala, 2018. 136 pp. [Fecha de consulta: 19 de noviembre de 2020]. Disponible en: http://www.repositorio.usac.edu.gt/9022/1/Erick%20Noe%20Cacao%20 Chiquin.pdf.

- 39. Herrera, Editta. "Caracterización geomecánica del macizo rocoso aplicado al análisis de estabilidad de taludes en el yacimiento Jésica, Ocuviri Lampa Puno 2015 2016". Tesis (Magister en geología con mención en geotecnia). Perú: Universidad Nacional Mayor de San Marcos, 2020. 336 pp. [fecha de consulta: 29 de noviembre de 2020]. Disponible en: http://cybertesis.unmsm.edu.pe/bitstream/handle/20.500.12672/15519/Herrera_ce.pdf?sequence=1&isAllowed=y.
- 40. Loor, Digna y Macías, Lucía. "Estudio de la estabilidad de taludes de la vía Garrapata-Santa María, entre las abscisas 7+900 Y 63+040, provincia de Manabí, Ecuador". Tesis (Magister en Geotecnia). Guayaquil, Ecuador: Escuela Superior Politécnica del Litoral, 2020. 168 pp. [fecha de consulta: 29 de marzo de 2021]. Disponible en: https://www.dspace.espol.edu.ec/bitstream/123456789/53845/1/T-70621%20Loor-Mac%c3%adas.pdf
- 41. Ortega, Darwin. Factor de seguridad y análisis de estabilidad del talud en roca, en la carretera Sarhua Porta Cruz, progresiva km 35+000 2018. Tesis (Magister en Ingeniería Geotécnica y Geomecánica Aplicada en Minería). Huancavelica, Perú: Universidad Nacional de Huancavelica, 2019. 176 pp. [fecha de consulta: 29 de noviembre de 2020]. Disponible en: https://repositorio.unh.edu.pe/bitstreams/a922f817-9eaa-4015-b402-78f832d3cb37/download.
- 42. Ortega, Juan. Estudio geotécnico y geomecánico para el diseño del túnel principal de la Mina Polveros, empresa Green Mine Ltda, Maripí Boyacá, Colombia. Tesis (Magister en Ingeniería Geotécnica y Geomecánica Aplicada en Minería). Huancavelica, Perú: Universidad Nacional de Huancavelica, 2018. 205 pp. [fecha de consulta: 29 de noviembre de 2020]. Disponible en:

- https://repositorio.unh.edu.pe/bitstreams/a4cec92e-e156-4b29-899c-8d6297a45995/download.
- **43. Pinillos, Deisy.** Metodología para la evaluación cuantitativa de amenaza por deslizamientos en roca. Tesis (Magister en Ingeniería Geotecnia). Bogotá, Colombia: Universidad Nacional de Colombia, 2017. 248 pp. [fecha de consulta: 29 de noviembre de 2020]. Disponible en: https://repositorio.unal.edu.co/bitstream/handle/unal/61001/1122126882_
 Deisy Viviana Pinillos.pdf?sequence=1&isAllowed=y.
- 44. Rojas yerman. Guía metodológica para el reconocimiento geológico en campo y revisión de los procedimientos de ensayos in situ enfocado en los estudios de suelos realizados en la empresa López hermanos Ltda. Tesis (Título de ingeniero geólogo). Bocayá, Colombia: Universidad Pedagógica y tecnológica de Colombia, 2018. 100 pp. [fecha de consulta: 29 de noviembre de 2021]. Disponible en: https://repositorio.uptc.edu.co/bitstream/001/2510/1/TGT-1096.pdf
- 45. Vinicius, André. "Propuesta de correlación entre los índices SMR y Q-slope". Tesis (Magister en Ciencias). Brasil: Universidad de Sao Paulo, 2019. 111 pp. [fecha de consulta: 29 de mayo de 2021]. Disponible en: https://www.researchgate.net/profile/Andre-Maion/publication/351661308_Proposta_de_correlacao_entre_os_indices-SMR-e-Q-slope.pdf

Revistas

- **46. Aydin, Adnan.** ISRM Método sugerido para la determinación del martillo Schmidt dureza de rebote: versión revisada. *Revista Internacional de Mecánica de Rocas y Ciencias de la Minería*. [en línea]. 2009. 46(3), 627-634. [fecha de consulta: 07 de octubre de 2021]. ISSN: 1365-1609. Disponible en: https://doi.org/10.1016/j.ijrmms.2008.01.020.
- 47. Babín, Rosa y Gómez, David. Problemas de Geología Estructural. Orientación y proyección de planos en el espacio. Reduca (Geología). Serie Geología Estructural. [en línea]. 2010. 2(1), 11-23 [fecha de consulta: 07 de enero de 2021]. ISSN: 1989-6557. Disponible en https://eprints.ucm.es/10015/1/134-281-1-PB.pdf

- **48.** Camacho Tauta, J. F, et al. Resistencia al corte en discontinuidades con diferentes grados de rugosidad [en línea]. Junio, 2009, 19(1), 55-70 [fecha de consulta: 20 de enero de 2021]. ISSN: 0124-8170. Disponible en: https://doi.org/10.18359/rcin.310
- **49.** Castanon, Jano, L., Castro, Fresno. D., Blanco, Fernandez E., & Carpio, Garcia. J. Selection of membranes and linking method in slope stabilization systems for the reduction on the installation time using multicriteria decision analysis. *Ain Shams Engineering Journal* [en línea]. 2021, 12(4), 3471-3484 [fecha de consulta: 07 de enero de 2021]. ISSN: 2090-4479. Disponible en: https://doi.org/10.1016/j.asej.2021.03.010
- **50. CUI, L., WANG, M., SUN, J., & CHU, Z.** Theoretical Study on the Reinforcement Capacity of Cable Nets in Active Rockfall Protection System. *Engineering Transactions* [en línea]. junio, 2017, 65(2), 391–401 [fecha de consulta: 04 de enero de 2021]. ISSN: 2450-8071. Disponible en: https://et.ippt.gov.pl/index.php/et/article/download/383/680
- 51. Priest, S.D., Hudson, J. A. Estimación del espaciado de discontinuidad y longitud de la traza mediante encuestas de línea de exploración. Revista Internacional de Mecánica de Rocas y Ciencias Mineras y Geomecánica. [en línea]: junio, 1981. 18 (3), 183-197 [fecha de consulta: 02 de marzo de 2021]. ISSN:0148-9062. Disponible en: https://doi.org/10.1016/0148-9062%2881%2990973-6.
- 52. Tomás, R., et al. Nuevas funciones continuas para el cálculo del Slope Mass Rating (SMR): aplicación mediante un sistema de información geográfica a los taludes rocosos de una cantera. Revista de la Sociedad Geológica de España. [en línea]. 2006. 19(1-2), 87-97. [fecha de consulta: 07 de octubre de 2021]. ISSN: 0214-2708. Disponible en: https://rua.ua.es/dspace/bitstream/10045/2695/1/Art06.pdf.

Normas

53. AMERICAN Society for Testing and Materials International. Método de prueba estándar para la determinación del índice de resistencia de la roca y la aplicación a las clasificaciones de la resistencia de la roca. ASTM C97 / C97M–18. Pensilvania: ASTM, 2018. 06 pp.

- **54. MINISTERIO de Transportes y Comunicaciones**. Manual de carreteras: Suelos, Geología, Geotecnia y Pavimentos. MC-05-14. Lima, Perú: MTC, 2014. 301 pp.
- **55. Ministerio de Vivienda, Construcción y Saneamiento.** Estabilización de suelos y taludes CE.020. Lima, Perú: MVCS, 2018. 30 pp.
- **56. Ministerio de Vivienda, Construcción y Saneamiento.** Manual Carreteras: Túneles, Muros y Obras Complementarias. MC-03-16. Lima, Perú: MTC, 2016. 442 pp.

Mapas

57. Mapa vial de la provincia de Chupaca Departamento de Junín. Dirección General de Caminos y Ferrocarriles. [mapa en línea]. 2017. [Fecha de consulta: 05 de enero de 2021]. Disponible en: https://portal.mtc.gob.pe/transportes/caminos/normas_carreteras/Mapas%20Provinciales/Junin/JU-09%20Chupaca.pdf.

Programas computacionales

- **58. Imunt S.A.** [Software]. Versión 1.0 GEOTABLE. Trujillo: Irveen Lecca Castillo, 2020. [fecha de consulta: 27 de noviembre de 2020]. Disponible en: https://mineria-in.weebly.com/uploads/3/7/3/3/37334991/geotable 1.0.exe.
- 59. Riquelme Guill Adrián J. [Software]. SMRTools. España: Departamento de ingeniería civil de la Universidad de Alicante. 2014. [fecha de consulta: 27 de diciembre de 2021]. Disponible en: https://rua.ua.es/dspace/bitstream/10045/52179/1/SMRTool_installer_x6 4.exe

Bases de datos

- 60. INSTITUTO Nacional de Defensa Civil (INDECI). Base de Datos de Emergencias y Daños. [en línea]. [Lima, Perú]: s.n., 2018. [Fecha de consulta: 15 de febrero de 2022]. Disponible en: https://portal.indeci.gob.pe/wp-content/uploads/2021/10/BD-EMER-Y-DA%C3%91OS-INTEGRADA-2003-2020-validada.xlsx
- **61. CENTRO de Investigación sobre Epidemiología de Desastres (CRED).**Base de Datos de Eventos de Emergencia (EM-DAT). [en línea]. Brucelas,

Bélgica: Universidad Católica de Lovaina (UCLouvain), 1988. [Fecha de consulta: 04 de febrero de 2022]. Disponible en: https://public.emdat.be/data.

62. GEOCATMIN: Sistema de información geológico y catastral minero.

Peligros Geológicos del Perú. [en línea]. [Lima–Perú]: INSTITUTO
Geológico, Minero y Metalúrgico (INGEMMET), 2013. [Fecha de consulta: 01 de enero de 2022]. Disponible en:

https://geocatmin.ingemmet.gob.pe/geocatmin/.

Páginas web

- 63. Rodríguez, Rafael. Geología estructural. 2012. [fecha de consulta: 12 de diciembre 2020]. Disponible en: https://www.medellin.unal.edu.co/~rrodriguez/geologia/estructural.htm.
- **64. Sistema Electrónico de Contrataciones del Estado (SEACE).** Procesos ejecutados para el año 2006 del departamento de Junín, provincia Chupaca. 2006. [fecha de consulta: 08 de diciembre 2020]. disponible en: http://app.seace.gob.pe/mon/ProcesoReporteGrafPb.jsp?tipo_cons=2&de
 <a href="mailto:pcdag=09&tipo-cons-sub=1&anhoentidad=2006&anho-rep="mailto:pcdag=09&tipo-cons-sub=1&anhoentidad=2006&anho-rep="mailto:pcdag=09&tipo-cons-sub=1&anhoentidad=2006&anho-rep="mailto:pcdag=09&tipo-cons-sub=1&anhoentidad=2006&anho-rep="mailto:pcdag=09&tipo-cons-sub=1&anhoentidad=2006&anho-rep="mailto:pcdag=09&tipo-cons-sub=1&anhoentidad=2006&anho-rep="mailto:pcdag=09&tipo-cons-sub=1&anhoentidad=2006&anho-rep="mailto:pcdag=09&tipo-cons-sub=1&anhoentidad=2006&anho-rep="mailto:pcdag=09&tipo-cons-sub=1&anhoentidad=2006&anho-rep="mailto:pcdag=09&tipo-cons-sub=1&anhoentidad=2006&anho-rep="mailto:pcdag=09&tipo-cons-sub=1&anhoentidad=2006&anho-rep="mailto:pcdag=09&tipo-cons-sub=1&anhoentidad=2006&anho-rep="mailto:pcdag=09&tipo-cons-sub=1&anhoentidad=2006&anho-rep="mailto:pcdag=09&tipo-cons-sub=1&anhoentidad=2006&anho-rep="mailto:pcdag=09&tipo-cons-sub=1&anhoentidad=2006&anho-rep="mailto:pcdag=09&tipo-cons-sub=1&anhoentidad=2006&anhoentid
- 65. Mining and Metallurgical Park. El primer lote de supervisores de doctorado para el censo y la exploración de minerales en la Nueva China: el profesor He Shaoxun y el profesor Chen Guoda. 2017. [fecha de consulta: 12 de enero 2022]. Disponible en: https://www-kuangyeyuan-com.translate.goog/article/1226?_x_tr_sl=zh-CN&_x_tr_tl=es&_x_tr_hl=es-419&_x_tr_pto=sc

Diccionario

66. (INSTITUTO Geológico, Minero y Metalúrgico [Ingemmet]) [ed.]. Diccionario Geológico. [en línea]. 3° ed. Lima: Arth Grouting S.A.C., 2011. [fecha de consulta: 15 de diciembre de 2020]. Disponible en: http://biblioteca.ismm.edu.cu/wp-content/uploads/2017/06/Diccionario-geologico.pdf.

Video

67. Vera, Miguel. Lab rocas v2 31/07/2020. [video de YouTube]. Santiago de Chile, 2020. (02 de agosto de 2020) [fecha de consulta: 07 de octubre del 2021]. Disponible en: https://www.youtube.com/watch?v=slrGAOkLnUA&ab_channel=MiguelVeraB.

ANEXOS

- ANEXO 01: Matriz de consistencia
- ANEXO 02: Matriz de operacionalización de variables
- ANEXO 03: Matriz de operacionalización de instrumentos de investigación
- ANEXO 04: Instrumento de investigación 01: Guía de observación para la georreferenciación de la zona en estudio.
- ANEXO 05: Instrumento de investigación 02: Guía de observación basada en el formato normalizado para toma de datos de las discontinuidades en el macizo rocoso
- ANEXO 06: Instrumento de investigación 03: Guía de observación para ensayo en laboratorio para determinar la resistencia de la roca mediante el método de martillo de rebote según norma internacional ISRM-2009.
- ANEXO 07: Instrumento de investigación 05: Guía de observación para ensayo de propiedades físicas de la roca (ASTM C97 / C97M-18)
- ANEXO 08: Instrumento de investigación 04: Guía de observación para Inspección Petrográfica de Roca en sección delgada (ASTM C1721–
 21)
- ANEXO 09: Validación de los instrumentos de investigación, consentimiento informado e informe de opinión del juicio de expertos.
- ANEXO 10: Estadísticas de las condiciones de las discontinuidades y proyecciones estereográficas con software DIPS
- ANEXO 11: Análisis de cinemático de la estabilidad del talud con software DIPS.
- ANEXO 12: Fichas de resumen: Propiedades litológicas de la roca.
- ANEXO 13: Sección 225 del manual de carreteras, mantenimiento o conservación vial Ministerio de transportes y comunicaciones (2018)
 e ítem 7.3 del manual de carreteras: túneles y obras complementarias. Ministerio de transportes y comunicaciones.
- ANEXO 14: Certificado de calibración de equipos
- ANEXO 15: Planos.
- ANEXO 16: Panel fotográfico

ANEXO 01: Matriz de consistencia

TESIS: "APLICACIÓN DE	LAS CONDICIONES GEOMEO	CÁNICAS DEL ÍNDICE SLOPE M	ASS RATING E	N LA ESTABILIDAD DI	EL TALUD EN CARF	RETERA PUENTE COLLPA – YANACANCHA'
Problema	Objetivos	Hipótesis	Variables	Dimensiones	Indicadores	
¿Cuál es el resultado de la aplicación de las condiciones geomecánicas del índice Slope Mass Rating (SMR) en la estabilidad del talud de la carretera puente Collpa – Yanacancha?	de la aplicación de las condiciones geomecánicas del	Hipótesis general: La aplicación de las condiciones geomecánicas del índice Slope Mass Rating (SMR) permite estimar óptimamente la estabilidad del talud en la carretera puente Collpa – Yanacancha.	Variable independiente (X): Condiciones geomecánicas del índice Slope Mass Rating (SMR)	 ❖ Calidad del macizo rocoso mediante clasificación Rock Mass Rating ❖ Sub-factores de ajuste de las discontinuidades 	compresión uniaxial. >Índice de designación de la calidad de la roca >Condición de las discontinuidades >Buzamiento del talud y de las discontinuidades >Dirección de buzamiento del talud y de las discontinuidades > Método de	kilómetros) Muestra: Taludes que presentan caídas de rocas hacia la plataforma de la carretera puente Collpa – Yanacancha entre las progresivas 18+632.14 al 18+982.14. Técnica: Análisis documental Instrumentos: Guía de observación 01: Georreferenciación de la zona– ver anexo 04 Guía de observación 02: Formato normalizado para toma de datos de las discontinuidades en el macizo rocoso – ver anexo 05
a) ¿Cuál es el resultado de la calidad del macizo rocoso mediante la clasificación geomecánica Rock Mass Rating para valorar la estabilidad del talud? b) ¿Cuáles son los valores de los sub-factores de ajuste	de la calidad del macizo rocoso mediante la clasificación geomecánica Rock Mass Rating para valorar la estabilidad del talud. b) Calcular los valores de los sub-factores de ajuste de las discontinuidades	geomecánica Rock Mass Rating, contribuye a valorar de la estabilidad del talud. b) El cálculo de los sub- factores de ajuste de las	Variable dependiente (Y): Estabilidad del talud	 Características litológicas de la roca intacta que compone al talud Características geométricas del talud 	según su origen > Dureza > Composición mineralógica	 Guía de observación 03: Ensayo de resistencia de la roca mediante el método de martillo de rebote – ver anexo 06 Guía de observación 04: Propiedades físicas de la roca – ver anexo 07 Guía de observación 05: Inspección Petrográfica de roca – ver anexo 08 Fichas de paráfrasis: Propiedades litológicas de la roca – ver anexo 12. Procesamiento de datos Descarga, exportación, análisis e interpretación de datos mediante softwares especializados que estiman la estabilidad del talud, para responder a la problemática de la tesis.

Fuente: Elaboración propia.

ANEXO 02: Matriz de operacionalización de variables

TESIS:	TESIS: "APLICACIÓN DE LAS CONDICIONES GEOMECÁNICAS DEL ÍNDICE SLOPE MASS RATING EN LA ESTABILIDAD DEL TALUD EN CARRETERA PUENTE COLLPA – YANACANCHA"													
Variables	Definición conceptual	Dimensión	Sub-dimensiones	Indicadores	Unidad	Instrumento								
ÍNDICE	Las condiciones geomecánicas del índice Slope Mass Rating (SMR) establecidas no Por Romana—Manuel (1989), consisten en las propiedades físico—mecánicas de		➤ Clasificación geomecánica Rock Mass Rating	 ➤ Resistencia a la compresión uniaxial. ➤ Índice de designación de la calidad de la roca 	Megapascales %	Guías de observación del ensayo de resistencia de la roca (Anexo 06) Software: Geotable, (Ítem 4.1.3.A – Capítulo IV)								
PENDIENTE: ÁNICAS DEL RATING	los taludes y sus discontinuidades (índice RQD, espaciamiento, presencia de agua, condiciones de las discontinuidades y la resistencia mecánica de la roca intacta) expresadas por el Rock Mass Rating básico; además de sus propiedades geométricas (orientaciones), mecanismo de falla y método de excavación o construcción del talud que expresan los			Características de las discontinuidades - Espaciamiento - Persistencia - Abertura - Rugosidad - Relleno - Alteración - Presencia de Agua	m m mm cualitativa mm cualitativa	Instrumento de investigación 02: Guía de observación basada en el Formato normalizado para la toma de datos de las discontinuidades en el macizo rocoso (Anexo 05)								
VARIABLE INDE CONDICIONES GEOMEC SLOPE MASS	sub-factores de ajuste de las discontinuidades. Mediante la aplicación de las condiciones geomecánicas del índice Slope Mass Rating, se puede estimar la estabilidad del talud en una escala numérica del 0 al 100 donde 0 representa a los taludes totalmente inestables y 100	❖Sub—factores de ajuste de las discontinuidades	Buzamiento de las discontinuidades y del talud Dirección de buzamiento de las discontinuidades y del talud Método de	 Sub-Factores de ajuste de las discontinuidades F₁ Sub-Factores de ajuste de las discontinuidades F₂ Sub-Factores de ajuste de las discontinuidades F₃ Sub-Factores de ajuste de las discontinuidades F₃ 	Puntos Puntos Puntos Puntos	Guía de observación basada en el Formato normalizado para la recolección de datos de las discontinuidades del macizo rocoso (Anexo 05) Software SMRTool, para la obtención de sub-factores de ajuste de las discontinuidades (Ver Ítem 4.1.5.A –								
TE: DEL	representa a taludes completamente estables (Romana Manuel, 1989). La estabilidad del talud es una solución geotécnica que satisface condiciones gravitatorias generando	roca intacta que	excavación del talud	discontinuidades F ₄ > Composición mineralógica > Color > Dureza > Textura	Cualitativa Cualitativa Cualitativa Cualitativa	Capítulo IV). Guía de observación para Inspección Petrográfica de Roca según ASTM C1721–21 (Anexo 08) Fichas de práfrasis: Propiedades								
VARIABLE DEPENDIENTE: ESTABILIDAD DE TALUD	seguridad, equilibrio y sostenibilidad tanto a la plataforma vial como a los usuarios de la vía MVCS. (2018.	 Características geométricas del talud 		➤ Tipo de roca según su origen➤ Pendiente del talud➤ Ángulo de reposo	Cualitativa Grados (°) Grados (°)	litológicas de la roca (Anexo 12) AutoCAD civil 3D y MS Excel (Tablas 20 Y 21 del ítem 4.1.1.A -Cap.IV) Ángulo de reposo para rocas fijas = 84.2894° (10H:1V) (ítem 2.3.)								

Fuente: Elaboración propia.

ANEXO 03: Matriz de operacionalización del instrumento de investigación

		DIMEN SIONES	SUB- DIMEN SIONES	INDICADORES	ÍTEMS	V	ESCALA ALORATIV	Ά	INSTRUMENTO
Collpa –				Resistencia a la compresión uniaxial.	1. ¿Cuál es el resultado valor de la resistencia a la compresión uniaxial de la roca según gráfica de Miller?		Megapascales		Guía de observación de ensayo resistencia cor martillo de rebote según
retera puente (Índice Rock Quality Design	2. ¿Cuál es la designación de la calidad de la roca (RQD) en función al número de discontinuidades por metro lineal?	I	Porcentaje (%))	ISRM 2009 (Anexo 06) Software: Geotable, (Ver Ítem 4.1.3.A–Capítulo IV)
en la car			Rating	Espaciamiento	3. ¿Cuál es el valor del espaciamiento de las discontinuidades en metros?		Metros		Guía de observación basada er formato para recolección de discontinuidades (Anexo 05)
del talud		rocoso	k Mass F	Persistencia	4. ¿Cuál es el valor de la persistencia/continuidad de las discontinuidades en metros?		Metros		Guía de observación basada en formato para recolección discontinuidades (Anexo 05)
bilidad	ICE	nacizro	ica Roc	Abertura	5. ¿Cuál es la abertura entre discontinuidades en milímetros?		Milímetros		Guía de observación basada en formato para recolección de discontinuidades (Anexo 05)
cánicas del índice Slope Mass Rating (SMR) permite estimar óptimamente la estabilidad del talud en la carretera puente Collpa Yanacancha.	CONDICIONES GEOMECÁNICAS DEL ÍNDICE SLOPE MASS RATING (SMR)	Calidad del macizro rocoso	Clasificación geomecánica Rock Mass Rating	Rugosidad	6. ¿Cómo es la rugosidad entre discontinuidades?	Muy rugoso	Rugoso Lig. Rugoso Liso	Espejo de falla	Guía de observación basada en formato para recolección de discontinuidades (Anexo 05)
imar óptin	MECÁNI SS RATIN		Clasifica	Relleno	7. ¿Cuáles son las características del relleno entre discontinuidades y su valor en milímetros?		Milímetros		Guía de observación basada en formato para recolección de discontinuidades (Anexo 05)
SMR) permite est Yanacancha.	CIONES GEOMECÁNICAS DEI SLOPE MASS RATING (SMR)			Alteración	8. ¿Cómo se clasifica el grado de alteración/meteorización entre discontinuidades?	Sana	Lig. Alterada Mod. Alterada Muy alterada	descompuesta	Guía de observación basade en formato para recolección de discontinuidades (Anexo 05)
ng (SM Yar	CONDI			Presencia de agua	9. ¿Cuál es la presencia de agua en litros/segundo?		Litros/minuto		Guía de observación basada e formato para recolección d discontinuidades (Anexo 05)
e Mass Rati		le las	ud y sus des		$10.\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $		Puntos		Guía de observación basada el formato para recolección discontinuidades en el macizo rocoso (Anexo 05)
ndice Slope		de ajuste de las tinuidades	Orientación del talud y sus discontinuidades	buzamiento del talud y discontinuidad	11. ¿Cuál es el sub – factor de ajuste de las discontinuidades F ₂ en función del buzamiento y dirección de buzamiento del talud?		Puntos		Guía de observación basada e formato para recolección d discontinuidades en el maciz rocoso (Anexo 05)
nicas del í		⊢factores de ajust discontinuidades			12. ¿Cuál es el sub – factor de ajuste de las discontinuidades F ₃ en función del buzamiento y dirección de buzamiento del talud?		Puntos		Guía de observación basada el formato para recolección discontinuidades en el macizorocoso (Anexo 05)
es geomecé		Sub-f	método de excavación del talud	Sub-factor de ajuste de las discontinuidad es F4	13. ¿Cuál es el sub – factor de ajuste de las discontinuidades F_4 en función del buzamiento y dirección de buzamiento del talud?		Puntos		Guía de observación basada en formato para recolección de discontinuidades en el macize rocoso (Anexo 05)
ndicion	금	Caracter	rísticas cas del	Tipo de roca según su origen	14. ¿Cuál es el tipo de roca según su origen?		Cualitativa		Guía de observación par Inspección Petrográfica de Roc ASTM C1721–21 (Anexo 08)
e las coi	ESTABILIDAD DEL TALUD	talı	ıd	Dureza Composición mineralógica	15. ¿Cuál es la dureza de la roca? 16. ¿Cuál la composición		Cualitativa Cualitativa		Fichas de paráfrasis Propiedades litológicas de la roca (Anexo 12)
ación de	ABILIDA TALUD	Caracter		Pendiente del talud	mineralógica de la roca? 17. ¿Cuál es la pendiente o buzamiento más crítico del talud?		Grados (°)		AutoCAD Civil 3D Microsoft Excel (tamblas 20
La aplicación de las condiciones geome	EST	talı		Ángulo de reposo	18. ¿Cuál es el ángulo de reposo del talud?		Grados (°)		21 del ítem 4.1.1.A – Cap. IV) Ángulo de reposo para rocas fijas = 84.2894°(10H:1V) (ítem 2.3.)

Fuente: Elaboración propia.

ANEXO 04: Instrumento de investigación 01: Guía de observación para la georreferenciación de la zona en estudio.

GUÍA DE OBSERVACIÓN PARA LA GEORREFERENCIACIÓN DE LA ZONA EN ESTUDIO CON ESTACIÓN TOTAL TOPCON ES-105

DATOS DEL PROYECTO:

: APLICACIÓN DE LAS CONDICIONES GEOMECÁNICAS DEL ÍNDICE NOMBRE DE TESIS SLOPE MASS RATING EN LA ESTABILIDAD DEL TALUD EN CARRETERA

PUENTE COLLPA – YANACANCHA

UBICACIÓN GEOGRÁFICA : C.P. Achipampa Yanacancha-Chupaca

: 8657748.8534 N. 456596.0661 E. 3759.017 Z PUNTO INICIAL UTM **MUESTRA** : Progresivas 018+632.14 al 018+ 982.14

TIEMPO : Templado - lluvioso : OCTUBRE DEL 2021 **FECHA**

	DATOS TO	OPOGRÁFICOS (COO	RDENADAS UTM)	
PUNTO	ESTE	NORTE	ELEVACIÓN	DETALLE
1	456632.757	8657705.460	3733.659 m.s.n.m	BM-01
2	456762.344	8657612.547	3735.458 m.s.n.m	BM-02
3	456613.088	8657769.193	3759.017 m.s.n.m	RELLENO
4	456595.472	8657754.586	3732.135 m.s.n.m	CARRETERA
5	456591.068	8657750.719	3732.140 m.s.n.m	CARRETERA
6	456596.903	8657756.075	3732.254 m.s.n.m	RELLENO
7	456598.118	8657757.374	3736.095 m.s.n.m	RELLENO
8	456589.820	8657749.127	3731.652 m.s.n.m	RELLENO
9	456623.504	8657757.316	3759.438 m.s.n.m	RELLENO
10	456630.658	8657723.342	3743.092 m.s.n.m	RELLENO
11	456629.013	8657721.710	3733.864 m.s.n.m	RELLENO
12	456635.877	8657716.204	3733.961 m.s.n.m	RELLENO
13	456636.765	8657718.798	3744.951 m.s.n.m	RELLENO
14	456639.015	8657742.663	3759.510 m.s.n.m	RELLENO
15	456645.212	8657713.083	3744.808 m.s.n.m	RELLENO
16	456644.539	8657711.120	3733.968 m.s.n.m	RELLENO
17	456655.748	8657706.357	3734.298 m.s.n.m	RELLENO
18	456656.800	8657708.599	3744.017 m.s.n.m	RELLENO
19	456659.087	8657727.896	3765.096 m.s.n.m	RELLENO
20	456668.233	8657700.589	3734.850 m.s.n.m	RELLENO
21	456601.704	8657746.781	3732.556 m.s.n.m	CARRETERA
22	456597.301	8657742.914	3732.561 m.s.n.m	CARRETERA
23	456604.417	8657735.491	3732.929 m.s.n.m	CARRETERA
24 25	456609.580	8657738.520	3732.961 m.s.n.m	CARRETERA
25 26	456619.187	8657728.812	3733.354 m.s.n.m	CARRETERA
20 27	456615.826 456623.120	8657723.906	3733.385 m.s.n.m 3733.670 m.s.n.m	CARRETERA CARRETERA
28	456627.880	8657716.920 8657720.580	3733.670 m.s.n.m	CARRETERA
28 29	456635.540	8657714.540	3733.900 m.s.n.m	CARRETERA
30	456632.220	8657709.080	3733.910 m.s.n.m	CARRETERA
31	456640.735	8657704.297	3734.178 m.s.n.m	CARRETERA
32	456644.171	8657709.170	3734.176 m.s.n.m	CARRETERA
33	456654.987	8657703.956	3734.332 m.s.n.m	CARRETERA
34	456653.047	8657698.125	3734.349 m.s.n.m	CARRETERA
35	456664.501	8657692.411	3734.484 m.s.n.m	CARRETERA
36	456667.256	8657697.901	3734.695 m.s.n.m	CARRETERA
37	456676.624	8657692.429	3734.814 m.s.n.m	CARRETERA
38	456674.322	8657686.862	3734.633 m.s.n.m	CARRETERA
39	456683.231	8657681.352	3734.832 m.s.n.m	CARRETERA
40	456686.415	8657686.275	3734.985 m.s.n.m	CARRETERA
41	456695.324	8657679.954	3734.979 m.s.n.m	CARRETERA
42	456691.848	8657675.032	3734.995 m.s.n.m	CARRETERA
43	456702.027	8657667.272	3735.058 m.s.n.m	CARRETERA
44	456705.695	8657671.858	3735.055 m.s.n.m	CARRETERA
45	456713.745	8657664.808	3735.095 m.s.n.m	CARRETERA

DUNTO	ECTE	NODTE	EI EVACIÓN	DETALLE
PUNTO	ESTE	NORTE	ELEVACIÓN	DETALLE
46 47	456710.168	8657660.568	3735.090 m.s.n.m	CARRETERA
47 48	456717.428 456721.446	8657653.892 8657657.770	3735.126 m.s.n.m 3735.121 m.s.n.m	CARRETERA CARRETERA
48 49	456728.892	8657650.448	3735.121 m.s.n.m 3735.111 m.s.n.m	CARRETERA
50	456724.816	8657646.408	3735.111 III.S.II.III	CARRETERA
50 51	456731.092	8657640.043	3735.146 m.s.n.m	CARRETERA
51 52	456736.074	8657643.231	3735.186 m.s.n.m	CARRETERA
53	456744.836	8657634.900	3735.222 m.s.n.m	CARRETERA
54	456740.685	8657630.281	3735.259 m.s.n.m	CARRETERA
55	456748.456	8657623.556	3735.317 m.s.n.m	CARRETERA
56	456753.623	8657627.319	3735.384 m.s.n.m	CARRETERA
57	456761.190	8657621.930	3735.580 m.s.n.m	CARRETERA
58	456759.450	8657616.080	3735.570 m.s.n.m	CARRETERA
59	456767.210	8657612.300	3735.820 m.s.n.m	CARRETERA
60	456769.690	8657617.660	3735.870 m.s.n.m	CARRETERA
61	456603.136	8657748.270	3732.675 m.s.n.m	RELLENO
62	456604.350	8657749.569	3736.516 m.s.n.m	RELLENO
63	456610.780	8657739.967	3732.956 m.s.n.m	RELLENO
64	456611.710	8657741.638	3739.363 m.s.n.m	RELLENO
65	456619.781	8657730.144	3733.463 m.s.n.m	RELLENO
66	456621.633	8657731.957	3741.492 m.s.n.m	RELLENO
67	456678.601	8657694.888	3734.992 m.s.n.m	RELLENO
68	456669.119	8657702.218	3746.034 m.s.n.m	RELLENO
69	456679.544	8657695.489	3743.156 m.s.n.m	RELLENO
70	456687.598	8657688.218	3735.005 m.s.n.m	RELLENO
71 72	456688.232	8657689.764	3739.909 m.s.n.m	RELLENO
72 73	456682.445	8657715.532	3770.021 m.s.n.m	RELLENO
73 74	456717.986	8657691.701	3765.549 m.s.n.m	RELLENO
74 75	456697.400 456696.538	8657683.225 8657681.492	3739.741 m.s.n.m 3735.118 m.s.n.m	RELLENO RELLENO
76	456706.910	8657673.640	3735.116 m.s.n.m	RELLENO
70 77	456707.182	8657674.403	3737.849 m.s.n.m	RELLENO
78	456715.216	8657666.966	3735.243 m.s.n.m	RELLENO
79	456715.782	8657667.802	3738.193 m.s.n.m	RELLENO
80	456722.781	8657659.730	3735.249 m.s.n.m	RELLENO
81	456723.265	8657660.519	3738.634 m.s.n.m	RELLENO
82	456730.466	8657652.384	3735.287 m.s.n.m	RELLENO
83	456730.961	8657652.910	3739.831 m.s.n.m	RELLENO
84	456737.728	8657644.679	3735.201 m.s.n.m	RELLENO
85	456746.165	8657636.816	3735.361 m.s.n.m	RELLENO
86	456738.437	8657645.102	3739.035 m.s.n.m	RELLENO
87	456746.840	8657637.650	3739.320 m.s.n.m	RELLENO
88	456755.520	8657630.300	3740.360 m.s.n.m	RELLENO
89	456763.260	8657625.010	3740.400 m.s.n.m	RELLENO
90	456771.210	8657620.540	3741.030 m.s.n.m	RELLENO
91	456770.501	8657619.232	3735.629 m.s.n.m	RELLENO
92	456754.853	8657629.255	3735.485 m.s.n.m	RELLENO
93	456762.322	8657623.644	3735.632 m.s.n.m	RELLENO
94 95	456776.423 456763.512	8657641.005 8657654.064	3758.264 m.s.n.m 3762.130 m.s.n.m	RELLENO RELLENO
95 96	456743.135	8657669.524	3768.269 m.s.n.m	RELLENO RELLENO
97	456703.927	8657701.930	3770.120 m.s.n.m	RELLENO
98	456728.985	8657682.589	3767.651 m.s.n.m	RELLENO
99	456596.053	8657741.322	3732.073 m.s.n.m	RELLENO
100	456603.104	8657733.839	3732.431 m.s.n.m	RELLENO
101	456614.132	8657722.275	3732.937 m.s.n.m	RELLENO
102	456620.838	8657713.970	3733.171 m.s.n.m	RELLENO
103	456629.306	8657704.372	3733.308 m.s.n.m	RELLENO
104	456638.344	8657700.162	3733.530 m.s.n.m	RELLENO
105	456649.012	8657689.148	3733.851 m.s.n.m	RELLENO
106	456657.845	8657681.666	3733.936 m.s.n.m	RELLENO
107	456664.967	8657674.988	3734.185 m.s.n.m	RELLENO

PUNTO	ESTE	NORTE	ELEVACIÓN	DETALLE
108	456671.613	8657666.520	3734.234 m.s.n.m	RELLENO
108	456681.934	8657660.276	3734.517 m.s.n.m	RELLENO
110	456693.744	8657652.479	3734.660 m.s.n.m	RELLENO
111	456700.228	8657646.519	3734.742 m.s.n.m	RELLENO
112	456708.158	8657640.482	3734.728 m.s.n.m	RELLENO
113	456717.233	8657634.503	3734.658 m.s.n.m	RELLENO
114	456723.965	8657629.316	3734.748 m.s.n.m	RELLENO
115	456735.166	8657622.764	3734.711 m.s.n.m	RELLENO
116	456744.899	8657617.079	3734.819 m.s.n.m	RELLENO
117	456756.760	8657612.090	3734.970 m.s.n.m	RELLENO
118	456764.810	8657608.170	3735.330 m.s.n.m	RELLENO
119	456779.040	8657613.070	3736.190 m.s.n.m	CARRETERA
120	456780.570	8657615.950	3740.340 m.s.n.m	RELLENO
121 122	456779.853 456792.455	8657614.644 8657630.867	3735.943 m.s.n.m 3757.578 m.s.n.m	RELLENO RELLENO
123	456774.166	8657603.578	3735.639 m.s.n.m	RELLENO
123	456776.558	8657607.713	3736.137 m.s.n.m	CARRETERA
125	456787.966	8657609.078	3736.496 m.s.n.m	CARRETERA
126	456789.494	8657611.960	3739.652 m.s.n.m	RELLENO
127	456788.780	8657610.651	3736.254 m.s.n.m	RELLENO
128	456783.094	8657599.585	3735.950 m.s.n.m	RELLENO
129	456785.485	8657603.720	3736.448 m.s.n.m	CARRETERA
130	456797.659	8657605.170	3736.778 m.s.n.m	CARRETERA
131	456799.187	8657608.052	3740.934 m.s.n.m	RELLENO
132	456798.473	8657606.743	3736.536 m.s.n.m	RELLENO
133	456811.793	8657623.483	3756.171 m.s.n.m	RELLENO
134	456792.786	8657595.677	3736.232 m.s.n.m	RELLENO
135	456795.178	8657599.812	3736.730 m.s.n.m	CARRETERA
136	456808.633	8657604.373	3742.657 m.s.n.m	RELLENO
137 138	456807.919 456821.239	8657603.064 8657619.804	3736.859 m.s.n.m 3756.494 m.s.n.m	RELLENO RELLENO
139	456802.232	8657591.998	3736.555 m.s.n.m	RELLENO
140	456804.624	8657596.133	3737.053 m.s.n.m	CARRETERA
141	456817.758	8657599.414	3743.325 m.s.n.m	RELLENO
142	456817.044	8657598.105	3737.127 m.s.n.m	RELLENO
143	456830.365	8657614.845	3756.762 m.s.n.m	RELLENO
144	456811.358	8657587.039	3736.823 m.s.n.m	RELLENO
145	456813.749	8657591.174	3737.321 m.s.n.m	CARRETERA
146	456826.363	8657593.661	3744.039 m.s.n.m	RELLENO
147	456825.650	8657592.350	3737.440 m.s.n.m	RELLENO
148	456838.970	8657609.090	3757.080 m.s.n.m	RELLENO
149	456819.960	8657581.290	3737.140 m.s.n.m	RELLENO
150 151	456822.350	8657585.420	3737.640 m.s.n.m 3745.775 m.s.n.m	CARRETERA
151	456835.820 456835.106	8657589.396 8657588.087	3737.777 m.s.n.m	RELLENO RELLENO
153	456848.426	8657604.827	3757.412 m.s.n.m	RELLENO
154	456829.419	8657577.021	3737.473 m.s.n.m	RELLENO
155	456831.810	8657581.156	3737.971 m.s.n.m	CARRETERA
156	456845.322	8657586.123	3747.426 m.s.n.m	RELLENO
157	456844.608	8657584.814	3738.028 m.s.n.m	RELLENO
158	456857.929	8657601.554	3757.663 m.s.n.m	RELLENO
159	456838.922	8657573.748	3737.724 m.s.n.m	RELLENO
160	456841.313	8657577.883	3738.222 m.s.n.m	CARRETERA
161	456854.716	8657581.704	3747.086 m.s.n.m	RELLENO
162	456854.002	8657580.395	3738.288 m.s.n.m	RELLENO
163	456867.322	8657597.135	3757.923 m.s.n.m	RELLENO
164 165	456848.315 456850.706	8657569.329 8657573.464	3737.984 m.s.n.m	RELLENO
165 166	456850.706 456864.015	8657573.464 8657577.725	3738.482 m.s.n.m 3748.336 m.s.n.m	CARRETERA RELLENO
167	456863.301	8657576.416	3738.438 m.s.n.m	RELLENO
168	456876.621	8657593.156	3758.073 m.s.n.m	RELLENO
169	456857.614	8657565.350	3738.134 m.s.n.m	RELLENO

PUNTO	ESTE	NORTE	ELEVACIÓN	DETALLE
170	456860.005	8657569.485	3738.632 m.s.n.m	CARRETERA
171	456873.156	8657573.241	3744.537 m.s.n.m	RELLENO
172	456872.442	8657571.932	3738.539 m.s.n.m	RELLENO
173	456885.762	8657588.672	3758.174 m.s.n.m	RELLENO
174	456866.755	8657560.866	3738.235 m.s.n.m	RELLENO
175	456869.147	8657565.001	3738.733 m.s.n.m	CARRETERA
176	456881.947	8657567.954	3745.086 m.s.n.m	RELLENO
177	456881.230	8657566.650	3738.490 m.s.n.m	RELLENO
178	456894.550	8657583.390	3758.120 m.s.n.m	RELLENO
179	456875.550	8657555.580	3738.180 m.s.n.m	RELLENO
180	456877.940	8657559.710	3738.680 m.s.n.m	CARRETERA
181	456890.551	8657562.077	3742.688 m.s.n.m	RELLENO
182	456889.837	8657560.768	3738.490 m.s.n.m	RELLENO
183	456903.157	8657577.508	3758.125 m.s.n.m	RELLENO
184	456884.150	8657549.702	3738.186 m.s.n.m	RELLENO
185	456886.541	8657553.837	3738.684 m.s.n.m	CARRETERA
186	456707.643	8657619.679	3734.407 m.s.n.m	RELLENO
187	456716.999	8657615.848	3734.497 m.s.n.m	RELLENO
188	456729.014	8657611.555	3734.460 m.s.n.m	RELLENO
189	456689.874	8657630.184	3734.491 m.s.n.m	RELLENO
190	456672.834	8657643.910	3734.266 m.s.n.m	RELLENO
191	456654.553	8657662.392	3733.934 m.s.n.m	RELLENO
192	456809.286	8657584.337	3734.609 m.s.n.m	RIO
193	456817.891	8657578.584	3734.923 m.s.n.m	RIO
194	456827.347	8657574.319	3735.259 m.s.n.m	RIO
195	456836.850	8657571.046	3735.510 m.s.n.m	RIO
196	456846.243	8657566.627	3735.770 m.s.n.m	RIO
197	456855.542	8657562.648	3735.920 m.s.n.m	RIO
198	456864.684	8657558.164	3736.021 m.s.n.m	RIO
199	456705.571	8657616.977	3732.193 m.s.n.m	RIO
200	456714.927	8657613.146	3732.283 m.s.n.m	RIO
201	456726.942	8657608.853	3732.246 m.s.n.m	RIO
202	456687.802	8657627.483	3732.277 m.s.n.m	RIO
203	456670.762	8657641.208	3732.052 m.s.n.m	RIO
204	456652.481	8657659.690	3731.720 m.s.n.m	RIO
205	456873.475	8657552.877	3735.970 m.s.n.m	RIO
206	456882.078	8657547.000	3735.972 m.s.n.m	RIO
207	456593.980	8657738.620	3729.860 m.s.n.m	RIO
208	456601.030	8657731.140	3730.220 m.s.n.m	RIO
209	456612.060	8657719.570	3730.720 m.s.n.m	RIO
210	456618.770	8657711.270	3730.960 m.s.n.m	RIO
211	456627.234	8657701.670	3731.094 m.s.n.m	RIO
212	456781.022	8657596.883	3733.736 m.s.n.m	RIO
213	456790.714	8657592.975	3734.018 m.s.n.m	RIO
214	456587.749	8657746.425	3729.438 m.s.n.m	RIO
215	456589.058	8657727.866	3729.859 m.s.n.m	RIO
216	456596.011	8657719.799	3730.217 m.s.n.m	RIO
217	456604.893	8657710.673	3730.723 m.s.n.m	RIO
218	456612.574	8657700.518	3730.957 m.s.n.m	RIO
219	456619.181	8657691.025	3731.094 m.s.n.m	RIO
220	456773.486	8657577.536	3733.736 m.s.n.m	RIO
221	456783.596	8657574.638	3734.018 m.s.n.m	RIO
222	456802.689	8657568.596	3734.609 m.s.n.m	RIO
223	456812.383	8657565.590	3734.923 m.s.n.m	RIO
224	456822.752	8657563.377	3735.259 m.s.n.m	RIO
225	456832.308	8657559.699	3735.510 m.s.n.m	RIO
226	456841.659	8657554.982	3735.770 m.s.n.m	RIO
227	456850.496	8657550.151	3735.920 m.s.n.m	RIO
228	456858.304	8657542.730	3736.021 m.s.n.m	RIO
229	456864.745	8657534.330	3735.970 m.s.n.m	RIO
230	456869.945	8657527.118	3735.970 m.s.n.m	RIO
	456700.063	8657603.983	3732.193 m.s.n.m	RIO

PUNTO	ESTE	NORTE	ELEVACIÓN	DETALLE
232	456709.419	8657600.152	3732.283 m.s.n.m	RIO
233	456721.060	8657594.926	3732.246 m.s.n.m	RIO
234	456681.731	8657612.989	3732.277 m.s.n.m	RIO
235	456661.764	8657624.539	3732.052 m.s.n.m	RIO
236	456643.091	8657644.709	3731.720 m.s.n.m	RIO
237	456585.900	8657723.540	3731.020 m.s.n.m	RELLENO
238	456592.850	8657715.470	3731.370 m.s.n.m	RELLENO
239	456601.740	8657706.350	3731.880 m.s.n.m	RELLENO
240	456609.420	8657696.190	3732.110 m.s.n.m	RELLENO
241	456616.024	8657686.698	3732.251 m.s.n.m	RELLENO
242	456770.329	8657573.208	3734.893 m.s.n.m	RELLENO
243	456780.439	8657570.311	3735.175 m.s.n.m	RELLENO
244	456799.532	8657564.269	3735.766 m.s.n.m	RELLENO
245 246	456809.226 456819.595	8657561.263 8657559.050	3736.080 m.s.n.m 3736.416 m.s.n.m	RELLENO RELLENO
240 247	456829.151	8657555.372	3736.667 m.s.n.m	RELLENO
248	456838.502	8657550.655	3736.927 m.s.n.m	RELLENO
249	456847.339	8657545.824	3737.077 m.s.n.m	RELLENO
250	456855.147	8657538.403	3737.077 m.s.n.m	RELLENO
251	456861.588	8657530.003	3737.176 m.s.n.m	RELLENO
252	456866.788	8657522.791	3737.129 m.s.n.m	RELLENO
253	456696.906	8657599.655	3733.350 m.s.n.m	RELLENO
254	456706.262	8657595.824	3733.440 m.s.n.m	RELLENO
255	456717.903	8657590.598	3733.403 m.s.n.m	RELLENO
256	456678.574	8657608.662	3733.434 m.s.n.m	RELLENO
257	456658.607	8657620.212	3733.209 m.s.n.m	RELLENO
258	456639.934	8657640.382	3732.877 m.s.n.m	RELLENO
259	456578.537	8657713.144	3731.340 m.s.n.m	RELLENO
260	456585.199	8657704.497	3731.698 m.s.n.m	RELLENO
261	456592.538	8657694.118	3732.204 m.s.n.m	RELLENO
262	456600.219	8657683.964	3732.438 m.s.n.m	RELLENO
263	456606.826	8657674.471	3732.575 m.s.n.m	RELLENO
264	456761.131	8657560.981	3735.217 m.s.n.m	RELLENO
265	456771.241	8657558.084	3735.499 m.s.n.m	RELLENO
266	456790.334	8657552.041	3736.090 m.s.n.m	RELLENO
267	456800.030	8657549.040 8657545.530	3736.400 m.s.n.m	RELLENO
268 269	456809.750 456819.310	8657541.670	3736.740 m.s.n.m 3736.990 m.s.n.m	RELLENO RELLENO
270	456828.660	8657536.680	3737.250 m.s.n.m	RELLENO
270 271	456837.405	8657532.035	3737.401 m.s.n.m	RELLENO
272	456845.949	8657526.176	3737.502 m.s.n.m	RELLENO
273	456853.709	8657519.724	3737.451 m.s.n.m	RELLENO
274	456860.113	8657514.116	3737.453 m.s.n.m	RELLENO
275	456690.525	8657590.618	3733.674 m.s.n.m	RELLENO
276	456699.584	8657586.769	3733.764 m.s.n.m	RELLENO
277	456711.786	8657581.636	3733.727 m.s.n.m	RELLENO
278	456672.193	8657600.187	3733.758 m.s.n.m	RELLENO
279	456651.944	8657611.831	3733.533 m.s.n.m	RELLENO
280	456635.381	8657628.344	3733.201 m.s.n.m	RELLENO
281	456807.104	8657601.491	3737.101 m.s.n.m	CARRETERA
282	456816.230	8657596.532	3737.369 m.s.n.m	CARRETERA
283	456824.835	8657590.779	3737.683 m.s.n.m	CARRETERA
284	456834.291	8657586.514	3738.019 m.s.n.m	CARRETERA
285	456843.794	8657583.241	3738.270 m.s.n.m	CARRETERA
286	456853.187	8657578.822	3738.530 m.s.n.m	CARRETERA
287	456862.486	8657574.843	3738.680 m.s.n.m	CARRETERA
288	456871.628	8657570.359	3738.781 m.s.n.m	CARRETERA
289	456880.419	8657565.072 8657550 105	3738.730 m.s.n.m	CARRETERA
290 291	456889.022	8657559.195	3738.732 m.s.n.m 3756.756 m.s.n.m	CARRETERA
291 292	456802.736 456783.660	8657626.842 8657636.234	3756.756 m.s.n.m 3757.811 m.s.n.m	RELLENO RELLENO
292 293	456769.593	8657647.758	3760.191 m.s.n.m	RELLENO
493	430107.373	003/04/./30	3700.131 III.S.II.III	KELLENU

PUNTO	ESTE	NORTE	ELEVACIÓN	DETALLE
294	456755.856	8657659.739	3764.290 m.s.n.m	RELLENO
295	456748.157	8657665.498	3766.520 m.s.n.m	RELLENO
296	456735.648	8657676.283	3767.780 m.s.n.m	RELLENO
297	456723.490	8657686.870	3766.340 m.s.n.m	RELLENO
298	456710.700	8657696.810	3767.660 m.s.n.m	RELLENO
299	456692.360	8657709.060	3769.840 m.s.n.m	RELLENO
300	456669.760	8657721.880	3766.980 m.s.n.m	RELLENO
301	456650.416	8657734.027	3762.547 m.s.n.m	RELLENO
302	456631.730	8657749.263	3759.290 m.s.n.m	RELLENO
303	456617.898	8657763.547	3759.091 m.s.n.m 3735.388 m.s.n.m	RELLENO
304 305	456772.430 456761.061	8657599.717 8657601.507	3735.074 m.s.n.m	RELLENO RELLENO
306	456753.456	8657604.587	3734.717 m.s.n.m	RELLENO
307	456742.288	8657608.336	3734.568 m.s.n.m	RELLENO
308	456698.419	8657625.152	3734.477 m.s.n.m	RELLENO
309	456683.183	8657635.848	3734.409 m.s.n.m	RELLENO
310	456664.151	8657651.335	3733.983 m.s.n.m	RELLENO
311	456648.984	8657671.352	3733.685 m.s.n.m	RELLENO
312	456642.947	8657682.354	3733.600 m.s.n.m	RELLENO
313	456634.668	8657695.755	3733.682 m.s.n.m	RELLENO
314	456800.160	8657589.296	3734.341 m.s.n.m	RIO
315	456770.358	8657597.015	3733.174 m.s.n.m	RIO
316	456758.989	8657598.805	3732.860 m.s.n.m	RIO
317	456751.384	8657601.885	3732.503 m.s.n.m	RIO
318	456740.216	8657605.634	3732.354 m.s.n.m	RIO
319	456696.347	8657622.450	3732.263 m.s.n.m	RIO
320	456681.111	8657633.146	3732.195 m.s.n.m	RIO
321	456662.079	8657648.634	3731.769 m.s.n.m	RIO
322	456646.912	8657668.650	3731.471 m.s.n.m	RIO
323	456640.876	8657679.652	3731.386 m.s.n.m	RIO
324 325	456632.597 456580.681	8657693.054 8657736.840	3731.468 m.s.n.m 3729.438 m.s.n.m	RIO RIO
326	456793.553	8657571.541	3734.341 m.s.n.m	RIO
327	456763.740	8657579.230	3733.170 m.s.n.m	RIO
328	456752.470	8657582.770	3732.860 m.s.n.m	RIO
329	456744.770	8657585.210	3732.500 m.s.n.m	RIO
330	456733.220	8657589.390	3732.350 m.s.n.m	RIO
331	456690.464	8657608.800	3732.263 m.s.n.m	RIO
332	456673.821	8657617.997	3732.195 m.s.n.m	RIO
333	456652.043	8657632.247	3731.769 m.s.n.m	RIO
334	456638.362	8657653.852	3731.471 m.s.n.m	RIO
335	456631.311	8657668.811	3731.386 m.s.n.m	RIO
336	456624.873	8657681.628	3731.468 m.s.n.m	RIO
337	456577.524	8657732.512	3730.595 m.s.n.m	RELLENO
338	456790.396	8657567.214	3735.498 m.s.n.m	RELLENO
339 340	456760.587	8657574.905 8657578.445	3734.331 m.s.n.m 3734.017 m.s.n.m	RELLENO
340 341	456749.310 456741.613	8657578.445 8657580.881	3733.660 m.s.n.m	RELLENO RELLENO
341 342	456741.613 456730.065	8657580.881 8657585.065	3733.511 m.s.n.m	RELLENO RELLENO
343	456687.307	8657604.473	3733.420 m.s.n.m	RELLENO
344	456670.664	8657613.670	3733.352 m.s.n.m	RELLENO
345	456648.886	8657627.920	3732.926 m.s.n.m	RELLENO
346	456635.205	8657649.525	3732.628 m.s.n.m	RELLENO
347	456628.154	8657664.483	3732.543 m.s.n.m	RELLENO
348	456621.716	8657677.301	3732.625 m.s.n.m	RELLENO
349	456570.448	8657722.887	3730.919 m.s.n.m	RELLENO
350	456781.197	8657554.987	3735.822 m.s.n.m	RELLENO
351	456752.970	8657564.258	3734.655 m.s.n.m	RELLENO
352	456742.623	8657568.633	3734.341 m.s.n.m	RELLENO
353	456735.297	8657571.812	3733.984 m.s.n.m	RELLENO
354 355	456723.285	8657575.625	3733.835 m.s.n.m	RELLENO
355	456680.925	8657595.623	3733.744 m.s.n.m	RELLENO

PUNTO	ESTE	NORTE	ELEVACIÓN	DETALLE
356	456664.564	8657605.007	3733.676 m.s.n.m	RELLENO
357	456642.420	8657619.370	3733.250 m.s.n.m	RELLENO
358	456628.270	8657640.330	3732.950 m.s.n.m	RELLENO
359	456620.890	8657653.810	3732.870 m.s.n.m	RELLENO
360	456613.010	8657665.830	3732.950 m.s.n.m	RELLENO

ANEXO 05: Instrumento de investigación 02: Guía de observación basada en el formato normalizado para toma de datos de las discontinuidades en el macizo rocoso

		TO NOR		ADO PA	RA TO	MA DI	E D	ATC	S DI	E L	AS DISC	CONT	TIN	UII	DAI	DES EN	N EI	, M	ACI	ZO							naws	ki y	Gonz	alez	Va	lleje	os, 19	990)	V.
NOMB UBICA	RE DE TESI		1		STABILIE ERA PUEN	AD DEL	TALU .PA -	D EN	CARR	ETI	ANICAS DE ERA PUEN										DISC	CON	TINUI	DAD	ES X	1 ME			: 62/18.: : RQD% RQD	6 = 1	00 × e		Å * (0.	1×+	1)
COOR	DENADA U	TM - WGS84	1	FIN I	8S 8657713 8S 865770										ALTI	ITUD: 373	3.224	m.s.	n.m.				DISC				ES		: EG01 : FAMIL						
ALTUI	DE RASTR RA DEL TAI			: 12.20 ME : 10.71 ME	TROS																THE	IIA. MPO							: OCTU						
20000	DE ROC		ORIENT		GRAINST				NTO	LOC.	A EN SECC PER	SISTE			_	A	BER	TU	RA		RI	UGC	SIDA	D		REL	LENO		ALTE	RAC	IÓN	Т	AC	GUA	_
NRO. DISCONTINUIDAD	DISTANCIA A DIRECCION DE DISCONTINUIDAD	ESTRUCTURA F. Falla D: Diaclasa	BUZAMIENTO	RUMBO	DIRECCIPON BUZAMIENTO	LONGITUD EN METROS		B: 0.6 m - 2 m	D: 60 mm - 200	E: <0.06 m	LONGITUD EN METROS	A: <1 m longitud B: 1 m - 3 m long.	3-10 m lon	D: 10-20 m long.	E: >20 m long	LONGITUD EN MILIMETROS	A: Cerrada		C: 0.1 -1.0 mm D: 1-5 mm	25	A. May rugoso	B. Rugoso	C: Lig. Rugoso D: Lisa	E: Espejo falla	A: Limpio	B: Duro < 5mm	C: Duro > 5mm D: Suave < 5mm	E: Suave > 5mm	A: Sana B: Lig. Alterada	C: Mod. Alterada	D: Muy Alterada F- Descommesta	A: Seco	B: Húmedo	C: Mojado D: Gotso	D. Joseph
2	0.00 m 0.21 m	Diaclasa Diaclasa	70°SW 72°SW	S30°E S30°E	240 240	0.00 m 0.21 m	-		2		10.90 m	-		D	-	9 mm				Ē		-	D		-		1	Ē	В	н		Ė	В		-
4	0.41 m 0.61 m	Diaclasa Diaclasa	68°SW 70°SW	S33°E S35°E	237 235 240	0.20 m 0.20 m				#	10.97 m 10.96 m			D D		5 mm		=	D	E		=	D				D	Е	B		+	+	B	#	#
6	0.81 m 1.00 m	Diaclasa Diaclasa Diaclasa	69°SW 70°SW 69°SW	S30°E S30°E	237 240	0.20 m 0.19 m 0.21 m			D	=	10.96 m 10.95 m 10.95 m			D D		9 mm 5 mm 9 mm		#	D	E		1	D D			1	D	E	B B			+	B	#	#
8	1.21 m 1.41 m 1.61 m	Diaclasa Diaclasa	70°SW 70°SW	S25°E S30°E	245 240	0.20 m 0.20 m					10.94 m 10.94 m			B		9 mm 5 mm			D	E			D	- 8			D	E	B B B		1	1	B	=	
10	1.81 m 2.00 m	Diaclasa Diaclasa	69°SW 70°SW	S31°E S30°E	239 240	0.20 m 0.19 m		- 0	D		10.93 m 10.92 m			B		9 mm 9 mm	\vdash	1	1	E		4	D				1	E	B			1	B	1	
12	2.19 m 2.39 m	Diaclasa Diaclasa	70°SW 68°SW	S30°E S27°E	240 243	0.19 m 0.20 m			D	\dashv	10.91 m 10.88 m			B	П	9 mm 9 mm	\Box	\dashv		E			B			7		E	B		+	+	B	=	\pm
14	2.58 m 2.78 m	Diaclasa Diaclasa	70°SW 70°SW	S25°E S31°E	245	0.19 m 0.20 m			D	7	10.88 m			D		9 mm 9 mm	Ħ	7		E			D			1	Ŧ	E	B		+	1	B	#	#
16	2.98 m 3.18 m	Diaclasa Diaclasa	71°SW 70°SW	S30°E S33°E	240 237	0.20 m 0.20 m				-	10.82 m 10.79 m		H	D	Н	9 mm 9 mm	H	\exists		E		-	B		H	- 3	+	E	B		-	F	B	=	#
18	3.37 m 3.57 m	Diaclasa Diaclasa	72°SW 70°SW	S32°E S30°E	238 240	0.19 m 0.20 m		-	D	\exists	10.79 m 10.76 m			D	\vdash	9 mm		\dashv		E			D				+	E	B			+	B	-	+
20 21	3.77 m 3.97 m	Diaclasa Diaclasa	71°SW 69°SW	\$30°E \$31°E	240 239	0.20 m 0.20 m		(\exists	10.73 m 10.64 m		-	B		9 mm 5 mm	Н	\exists	D	E			D			-	D	E	B		-	Ŧ	B	-	F
22	4.18 m 4.39 m	Diaclasa Diaclasa	70°SW 70°SW	S31°E S30°E S29°E	240 241	0.21 m 0.21 m		- 0			10.55 m 10.46 m			D		15 mm 15 mm	H	\exists		E		-	D					E	B	- 1	-	1	B	=	-
24	4.59 m 4.78 m	Diaclasa Diaclasa	68°SW 70°SW	S27°E S25°E	243 245	0.20 m 0.19 m		-	D		10.37 m 10.28 m		-	D	H	15 mm 15 mm		-		E		-	D			-		E	B		-	-	B	-	1
26 27	4.97 m 5.17 m	Diaclasa Diaclasa	70°SW 71°SW	S31°E S30°E	239 240	0.19 m 0.20 m	9 0		D		10.19 m 10.14 m		-	D		15 mm 15 mm		\neg	1.55	E		-	D				70 0	E	B	- 13		+	B	-	
28	5.37 m 5.57 m	Diaclasa Diaclasa	70°SW 72°SW 70°SW	S33°E S32°E	237 238 240	0.20 m 0.20 m				\exists	10.10 m 9.92 m	H	C	D		15 mm 15 mm	\Box	\exists		E		-	D		\exists	=	-	E	B			Ŧ	B	\mp	=
30 31	5.77 m 5.98 m	Diaclasa Diaclasa	70°SW 72°SW	S30°E S30°E	240 240	0.20 m				\exists	10.94 m			B		9 mm 5 mm	\Box	\exists	D	E		- 1	D		7 2	-	D	E	В		-	Ŧ	B	+	\pm
32	6.19 m 6.39 m	Diaclasa Diaclasa	72°SW 68°SW 70°SW	S33°E S35°E	240 237 235	0.21 m 0.21 m 0.20 m		- 0			11.00 m 11.00 m			B		9 mm 9 mm		\exists		E			D D	Е		-		E	B B B			F	B	-	
34 35	6.60 m 6.79 m	Diaclasa Diaclasa	69°SW 70°SW	S30°E S33°E	240 237	0.21 m 0.19 m		(D		10.99 m 10.99 m		-	D		5 mm 9 mm	\Box	\exists	D	E		-	D		Н	-	D	E	B		+	F	B	_	\blacksquare
36	6.98 m 7.19 m	Diaclasa Diaclasa	69°SW 70°SW	S30°E S25°E	240 245	0.19 m 0.21 m			D	=	10.98 m 10.98 m		1	D		9 mm 5 mm		\dashv	D	E		-	D		Н	=	D	E	B	-	+	Ŧ	B	=	干
38	7.38 m 7.59 m	Diaclasa Diaclasa	70°SW 69°SW	S30°E S31°E	240 239	0.19 m 0.21 m			D	-	10.97 m 10.96 m	H	1	D		9 mm 9 mm		7	#	E		-	D			-	#	E	B		1	+	B	#	#
40	7.79 m 7.99 m	Diaclasa Diaclasa	70°SW 70°SW	S30°E S30°E	240 240	0.20 m 0.20 m				7	10.95 m 10.92 m			B		9 mm	H	\dashv		E		#	D			1	+	E	B			+	B	\mp	#
42	8.19 m 8.39 m	Diaclasa Diaclasa	68°SW 70°SW	S27°E S25°E	243 245	0.20 m 0.20 m				7	10.92 m 10.89 m			B		9 mm	\Box	\dashv		E		1	D			7		E	B	\dashv		+	B	\mp	
44 45	8.58 m 8.78 m	Diaclasa Diaclasa	70°SW 71°SW	S31°E S30°E	239 240	0.19 m 0.20 m			D		10.86 m 10.83 m		1	D		9 mm 9 mm		_		E		1	D			1		E	B	- 1	8	1	B	-	1
46 47	8.98 m	Diaclasa	70°SW 72°SW	\$33°E \$32°E	237 238	0.20 m 0.20 m			2	=	10.83 m			B		9 mm		#		E		#	D			#		E	B		1	+	B	1	#
48	9.18 m 9.38 m	Diaclasa Diaclasa	70°SW 71°SW	S30°E S30°E	240 240	0.20 m		-			10.80 m			D		9 mm		\dashv	1.	E		#	D	9			D	E	В			+	B	#	
50	9.58 m 9.79 m	Diaclasa Diaclasa Diaclasa	69°SW	S31°E	240 239 240	0.20 m 0.21 m					10.68 m 10.59 m			B		5 mm 9 mm		\Rightarrow	1)	E		1	D D			1	10	E	B			1	B	#	
51 52	9,99 m 10.18 m	Diaclasa Diaclasa	70°SW 70°SW	S30°E S29°E	240	0.20 m 0.19 m		+	D		10.50 m 10.41 m			B		9 mm 9 mm				E		-	D			-		E	B				B		+

53	10.39 m	Diaclasa	68°SW	S27°E	243	0.21 m	C	10.32 m	D	9 mm	E	D	E	В	В
54	10.60 m	Diaclasa	70°SW	S25°E	245	0.21 m	C	10.23 m	D	9 mm	E	D	E	B	B
55	10.80 m	Diaclasa	70°SW	S31°E	239	0.20 m	C	10.18 m	D	9 mm	E	D	E	В	В
56	11.00 m	Diaclasa	71°SW	S30°E	240	0.20 m		10.14 m	D	15 mm	E	D	E	В	В
57	11.20 m	Diaclasa	70°SW	S33°E	237	0.20 m	C	9.96 m	CD	15 mm	E	D	E	В	В
58	11,40 m	Diaclasa	72°SW	S32°E	238	0.20 m	C	10.98 m	D	15 mm	E	D	E	В	В
59	11.61 m	Diaclasa	71°SW	S30°E	240	0.21 m	C	10.95 m	D	15 mm	E	D	E	В	B
60	11.81 m	Diaclasa	70°SW	S33°E	237	0.20 m	C	10.95 m	D	15 mm	E	D	E	B	B
61	12.00 m	Diaclasa	72°SW	S32°E	238	0.19 m	D	10.92 m	D	9 mm	E	0.00	E	В	В
62	12.20 m	Diaclasa	70°SW	S30°E	240	0.20 m	C	10.89 m	D	5 mm	D	D	D	В	В

DIMBRE DE TESIS : "APLICACIÓN DE LAS CONDICIONES GEOMECÂNICAS DEL ÍNDICE SLOPE MASS RATING DISCONTINUIDADES EN 1 METRO ROCK QUALITY DESIGNATION R	ATOS	DEL PR	OYECTO																			DAT	OS	ADIC	TON	IAL	ES								_	90)
Supplementable Supplementable Supplementable Supplemental Supplementable Supple	MBR	E DE TESI JÓN	s		: CARRET	ERA PUE	NTE COL	LPA - Y	YAN				EL İNI	DICE:	SLOP	E M	ASS RATI	NG				DISC	ONTI	NUIE	ADE	SEN	IIM)	: RQ	D% =	= 100) * e	-0.1+	* (0.	.12
Color Colo				UTM	: INICIO 18	88 8657713	2.8858 N,	456631.	9792							ALT	TTUD: 373	34,21	m.s.n.	m.								ES		; EG	01					
Part	UR/	A DEL TAL			: 10.91 ME	TROS	ONE - PET	ROGR	AFIA	DEI	ROC.	A EN SECO	IN	DELG	AD																		1			
Duclass 11*NE NO"N 90	_	70.700		ORIENT													А	BER	RTUR	A		RU	GOS	SIDA	D	I	RELI	LENC)	AL.	TER	ACIĆ	N		AGU	UA
0.21 m Disclass 10°NE Nô°W 90 0.21 m C 2.22 m B 11 mm E D E C C C C 0.64 m Disclass 11°NE Nô°W 90 0.21 m C 2.22 m B 11 mm E D E C C C C C 0.64 m Disclass 11°NE Nô°W 90 0.21 m C 2.22 m B 15 mm E D E C C C C C C C C C	000			5000	5898	3777	LONGITUD EN METROS	A:>2m B:06-2m	C; 0.2-0.6 m	D: 0.06-0.2 m	E: <0.06 m	LONGITUD EN METROS		1-3 m	D: 10-20 m	E	Α	А: Сеггада				A: Muy rug.	B. Kugosa C. Lie. Rue	D: Lisa	E: Espejo falla	A; Limpio	Duro <	Suave	Suave	A: Sana	B: Lig. Alterada	Muy	E: Descompuesta	A: Seco	B: mumeuo C: Moiado	D. Goten
O.43 m Diaclass 11"NE NO"W 90 0.21 m C 2.22 m B 11 mm E D E C C C 0.83 m Diaclass 13"NE NO"W 90 0.21 m C 2.22 m B 15 mm E D E C C C C C C C C C							0.21 m				-	2 22 m	-		-	-	- 11 mm	-	-		-	-				-	-			-			-	-		
0.83 m Diaclass 13*ME N0*W 90 0.19 m D 2.60 m B 15 mm E D E C C C 1.24 m Diaclass 11*ME N0*W 90 0.25 m C 2.20 m B 18 mm E D E C C C C C C C C C					N0°W	90	0.22 m		C			1.86 m		В	t			\Box			E		+	D			\pm	\pm	E		C	2		\pm	C	
1.03 m Diaclass 10°NE NO°W 90 0.20 m C 2.01 m B 18 mm E D E C C C									C						1				- 3							-	4	+		\Box				-		
1.49 m Diaclasa 11*NE NO*W 90 0.25 m C 2.25 m B 18 mm E D E C C C	+														+	Н		Н	-	+	Е	-	+	D	\dashv	_	+	+	E	\vdash	C	2		+	C	2
1.68 m Diaclass 1.7NE NO*W 90 0.19 m D - 2.56 m B 1.5 mm E D D E C C C	1							8 11 13											_								1									
1.87 m Diaclasa 10°NE N0°W 90 0.19 m C 2.25 m B 11 mm E D E C C C	t								10		-				+	Н		\vdash	-	+			+		\dashv	-	+	+		\vdash			-	+		
2.28 m Diaclass 11°NE N0°W 90 0.19 m D 2.63 m B 15 mm E D E C C C C 2.48 m Diaclass 13°NE N0°W 90 0.20 m C 2.20 4 m B 15 mm E D E C C C C C 2.70 m Diaclass 10°NE N0°W 90 0.21 m C 2.52 m B 18 mm E D D E C C C C C C C C C		1.87 m	Diaclasa	10°NE	N0°W	90	0.19 m			D		1.89 m		В			11 mm				E	- 9		D					15		C	2			C	1
2.48 m Diaclasa 13°NE N0°W 90 0.20 m C 2.24 m B 15 mm E D E C C C	+								C		\vdash				+	Н		\vdash	-	+		-	+		\dashv	+	+	+		\vdash				+		
2.91 m Diaclasa 10°NE N0°W 90 0.21 m C 2.52 m B 11 mm E D E C C C	1	2.48 m	Diaclasa	13°NE	N0°W	90	0.20 m					2.04 m		В			15 mm				Е			D			#		E		C	7		\equiv	C	•
3.12 m Diaclasa 11°NE N0°W 90 0.21 m C 2.59 m B 11 mm E D E C C C															+	\vdash		\vdash	-	+		-	+		-	-	+	+		\vdash				+		
3.54 m Diaclasa 13°NE N0°W 90 0.21 m C 2.26 m B 15 mm E D E C C C				11°NE	N0°W	90								В							E			D			1									
3.76 m Diaclasa 10°NE N0°W 90 0.22 m C 2.64 m B 18 mm E D E C C C								878	C									\vdash						D		_	4	-			- 0			-	C	
4.17 m Diaclasa 11°NE N0°W 90 0.19 m D 2.24 m B 18 mm E D E C C								3 3 3										\Box									\pm									
4.36 m Diaclasa 11°NE N0°W 90 0.19 m D 2.53 m B 11 mm E D E C C 4.57 m Diaclasa 13°NE N0°W 90 0.26 m C 2.60 m B 15 mm E D E C C C 4.83 m Diaclasa 10°NE N0°W 90 0.26 m C 1.89 m B 18 mm E D D E C<									C						=			\Box					\perp			_	7	1		\Box				=		
4.57 m Diaclasa 13°NE N0°W 90 0.21 m C 2.60 m B 15 mm E D E C C C 4.83 m Diaclasa 10°NE N0°W 90 0.26 m C 1.81 m B 18 mm E D E C <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>+</td><td></td><td></td><td></td><td></td><td></td><td>+</td><td>Н</td><td></td><td>H</td><td>\dashv</td><td>+</td><td></td><td>-</td><td>+</td><td></td><td>\dashv</td><td>+</td><td>+</td><td>+</td><td></td><td>\vdash</td><td></td><td></td><td></td><td>+</td><td></td><td></td></t<>									+						+	Н		H	\dashv	+		-	+		\dashv	+	+	+		\vdash				+		
5.09 m Diaclasa 11°NE N0°W 90 0.26 m C 1.81 m B 18 mm E D E C C	1						0.21 m	2 1 2										\Box			E						1	1		\Box				_		
5.30 m Diaclasa 11°NE N0°W 90 0.21 m C 2.25 m B 18 mm E D E C C C 5.50 m Diaclasa 11°NE N0°W 90 0.25 m C 2.63 m B 15 mm E D E C C C C 5.75 m Diaclasa 10°NE N0°W 90 0.25 m C 2.55 m B 11 mm E D D E C<	+										\vdash				+			\vdash	+	+		-	+		\dashv	+	+	+		\vdash				+		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ं	5.30 m	Diaclasa	11°NE	N0°W	90	0.21 m	2 112	C			2.25 m		В			18 mm				E			D			1		E		C				C	1
5.97 m Diaclasa 10°NE N0°W 90 0.22 m C 2.04 m B 11 mm E D E C C C 6.17 m Diaclasa 11°NE N0°W 90 0.20 m C 2.23 m B 11 mm E D E C C C 6.36 m Diaclasa 11°NE N0°W 90 0.19 m D 2.52 m B 15 mm E D E C<	-										\vdash				+	\vdash		\vdash	-	_		-	+		-	-	+	+		\vdash			-	+		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	5.97 m	Diaclasa	10°NE	N0°W	90	0.22 m		C			2.04 m		В			11 mm				E			D			1		E		C			=	C	
6.56 m Diaclasa 13°NE N0°W 90 0.20 m C 2.59 m B 15 mm E D E C C C 6.77 m Diaclasa 10°NE N0°W 90 0.21 m C 2.22 m B 18 mm E D E C C C 6.97 m Diaclasa 13°NE N0°W 90 0.20 m C 2.26 m B 15 mm E D E C C C 7.19 m Diaclasa 10°NE N0°W 90 0.22 m C 2.64 m B 18 mm E D D E C C C 7.41 m Diaclasa 11°NE N0°W 90 0.22 m C 2.05 m B 18 mm E D D E C C C 7.66 m Diaclasa 11°NE N0°W 90 0.25 m C 2.24 m B <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>S 10</td><td>C</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>\vdash</td><td>_</td><td>\blacksquare</td><td></td><td></td><td>+</td><td></td><td></td><td>-</td><td>\perp</td><td>-</td><td></td><td>\Box</td><td></td><td></td><td></td><td>\perp</td><td></td><td></td></td<>								S 10	C									\vdash	_	\blacksquare			+			-	\perp	-		\Box				\perp		
6.77 m Diaclasa 10°NE N0°W 90 0.21 m C 2.22 m B 18 mm E D E C C C 6.97 m Diaclasa 13°NE N0°W 90 0.20 m C 2.26 m B 15 mm E D E C C 7.19 m Diaclasa 10°NE N0°W 90 0.22 m C 2.64 m B 18 mm E D E C C 7.41 m Diaclasa 11°NE N0°W 90 0.22 m C 2.05 m B 18 mm E D E C C 7.66 m Diaclasa 11°NE N0°W 90 0.25 m C 2.24 m B 18 mm E D E C C 7.85 m Diaclasa 11°NE N0°W 90 0.19 m D 2.53 m B 111 mm E D E C C C														В										D			\pm		E					\pm	C	
7.19 m Diaclasa 10°NE N0°W 90 0.22 m C 2.64 m B 18 mm E D E C C C 7.41 m Diaclasa 11°NE N0°W 90 0.22 m C 2.05 m B 18 mm E D E C C 7.66 m Diaclasa 11°NE N0°W 90 0.25 m C 2.24 m B 18 mm E D E C C 7.85 m Diaclasa 11°NE N0°W 90 0.19 m D 2.53 m B 11 mm E D E C C C									C						\vdash			\Box		\blacksquare	E		1			\neg	1	\perp	E					\Box		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+							S 19 E							1	Н							+		\vdash		+	+		\vdash				+		
7.85 m Diaclasa 11°NE N0°W 90 0.19 m D 2.53 m B 11 mm E D E C C		7.41 m	Diaclasa	11°NE	N0°W	90	0.22 m		C			2.05 m		В			18 mm				Е			D			1		E		C			1	C	
									C				\vdash	В						-			+	D			+	+	E	\vdash		2		+	C	
8.27 m Diaclasa 10°NE N0°W 90 0.21 m C 1.89 m B 18 mm E D E C C	97,	8.06 m	Diaclasa	13°NE	N0°W	90	0.21 m					2.60 m		В			15 mm				E			D		1	1		E		C				C	1

41	8.53 m	Diaclasa	11°NE	N0°W	90	0.26 m	C	1.81 m B	18 mm	E	D	E	C	C
42	8.74 m	Diaclasa	11°NE	N0°W	90	0.21 m	C	2.25 m B	18 mm	E	D	E	C	C
43	8.94 m	Diaclasa	11°NE	N0°W	90	0.20 m	C	2.63 m B	15 mm	E	D	E	C	
44	9.19 m	Diaclasa	10°NE	N0°W	90	0.25 m	C	2.55 m B	11 mm	E	D	E	C	C
45	9.44 m	Diaclasa	11°NE	N0°W	90	0.25 m	C	1.96 m B	11 mm	E	D	E	C	C
46	9.63 m	Diaclasa	11°NE	N0°W	90	0.19 m	D	2.15 m B	15 mm	E	D G	E	C	C
47	9.83 m	Diaclasa	13°NE	N0°W	90	0.20 m	C	2.24 m B	15 mm	E	D	E	C	C
48	10.02 m	Diaclasa	10°NE	N0°W	90	0.19 m	D	2,51 m B	18 mm	E	D	E	C	C
49	10.21 m	Diaclasa	10°NE	N0°W	90	0.19 m	D	2.51 m B	18 mm	E	D	E	C	C
50	10.43 m	Diaclasa	11°NE	N0°W	90	0.22 m	C	1.89 m B	18 mm	E	D	E	C	C
51	10.68 m	Diaclasa	10°NE	N0°W	90	0.25 m	C	2.55 m B	11 mm	E	D	E	C	
52	10.93 m	Diaclasa	11°NE	N0°W	90	0.25 m	C	1.96 m B	11 mm	E	D	E	C	

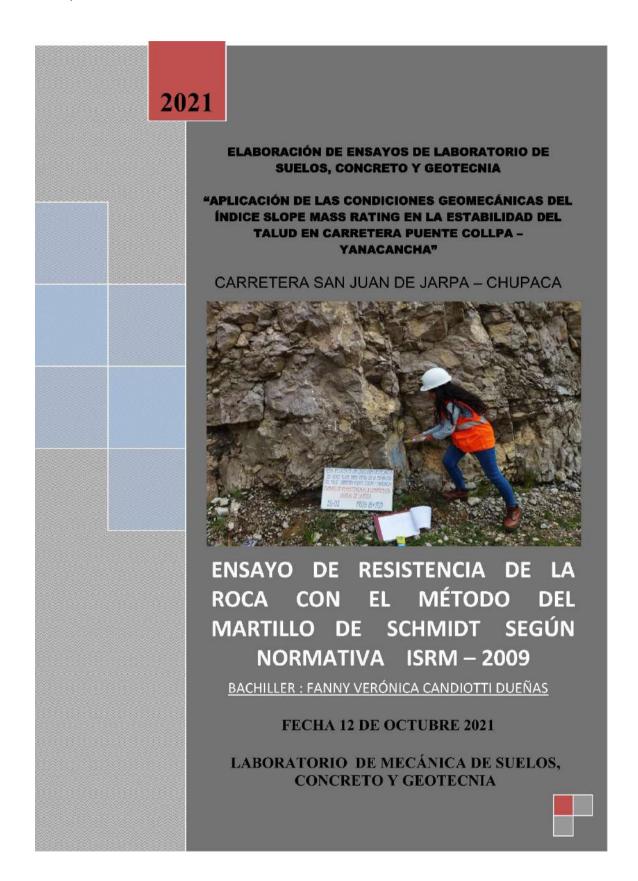
	FORMA	TO NOR	MALIZ	ADO PA	ARA TO	OMA D	E DA	TO	S DE I	AS DIS	CON	TIN	UID	AD	DES EN	EL	MA	CIZ	201	ROC	cosc) (S	egúr	Bie	naw	ski	y Gonz	alez	Vall	lejos.	199	0)	\neg
		COYECTO																			OS A												
UBIC/	NIO ESTRUC			: CARRET	CIÓN DE ERA PUEN ESIVAS 01 18S 865770	NTE COLI 8+695.20	PA - Y -18+708	ANA	CANCH	ÀNICAS DI A	EL ÍNE	OICE S			SS RATE		m.s.n.i	m.	1	ROCK	77/27/200	LITY	DESE	EN 1 M GNAT NICA	200	0	: 65/18.2 : RQD9 RQD9 : EG02	6 = 1	00 = 1		* (0.3	12+	1)
ALTU	DE RASTRI RA DEL TAL			: 12.80 MF : 10.71 ME	TROS															EAMII ECH CIEMI	۸	SCO	INITA	JIDAE	ES		: FAMIL : OCTUI : TEMPI	BRE 2					
	DE ROC		ORIENT		GRAINST		ACIAN	_		CA EN SECO	RSIST		_	_		DED	TUR/		-	DIT	GOSI	DAD	_	DEL	LEN	0	ALTE	DAC	IÓN	_	AGU	TA	_
DAI	A DE DAE	≾ .		ACION			ACIAN	IILI			1	ENCI	1	\dashv	_	IDEK			-	K	GOSI	DAD	+	T		_			1 -	\vdash	AGO		\dashv
NRO. DISCONTINUIDAD	DISTANCIA A DIRECCION DE DISCONTINUEDAD	ESTRUCTURA F: Falla D: Diaclasa	BUZAMIENTO	RUMBO	DIRECCIPON BUZAMIENTO	LONGITUD EN METROS	A:>2 m B: 0.6-2 m	С: 0.2-0.6 m	D: 0.06-0.2 m E: <0.06 m	LONGITUD EN METROS	₩.	B: 1-3 m long. C: 3-10 m long.	D: 10-20 m	E: >20 m long	LONGITUD EN METROS	Cerr	B: < 0.1 mm C: 0.1 -1.0 mm	D: 1-5 mm	E; > 5 mm	A: Muy rug. B: Pugges	C: Lig. Rug.	Lisa	E: Espejo falla A: Limpio	B: Duro < 5mm	C: Duro > 5mm	Suave >	Sana Lig. Allo	C. Mod. Alterada	D. Muy Alterada E: Descompuesta	A: Seco	B: Humedo C: Mojado	D: Goteo	E: Flujo
1	0.00 m	Diaclasa	70°SW	S30°E	240	0.00 m		-		- 10.00		-	-	-	-		-	-	-	2. 2	-	-	-	-						-		-	-
3	0.20 m 0.41 m	Diaclasa Diaclasa	72°SW 68°SW	S30°E S33°E	240	0.20 m 0.21 m	+	C	\vdash	10.90 m 10.97 m	+	+	D	\rightarrow	9 mm 5 mm	+	+	10	Е	+	+	D	+	+	-) E	B	+	+		B	+	\dashv
4	0.62 m	Diaclasa	70°SW	\$35°E	235	0.21 m		Č		10.96 m	\vdash		Ď	\neg	9 mm			1.7	E			D		\pm	+	T					B	\Box	\exists
5	0.80 m	Diaclasa	69°SW	S30°E	240	0.18 m			D	10.96 m	\vdash	_	D	\neg	9 mm		_		E	_		D	\perp	\perp	-	E		_			В	\vdash	-
7	1.00 m 1.20 m	Diaclasa Diaclasa	70°SW 69°SW	S33°E S30°E	237 240	0.20 m 0.20 m		C		10.95 m 10.95 m	+	-	D	\dashv	5 mm 9 mm	+	+	D	Е	-	+	D	+	+	- 1) E	B	+	+		B B	+	\dashv
8	1.40 m	Diaclasa	70°SW	S25°E	245	0.20 m		Č		10.94 m	\Box		D		9 mm				Ē			D		\Box		Ē	В				В	\Box	
9	1.58 m	Diaclasa	70°SW	S30°E	240	0.18 m			D	10.94 m	\Box	\perp	D	\dashv	5 mm		\perp	D		\perp	\perp	D	\perp	\Box	1		В	=	\perp		В	\Box	=
10	1.76 m	Diaclasa Diaclasa	69°SW 70°SW	S31°E S30°E	239 240	0.18 m 0.20 m	-	C	D	10.93 m 10.92 m	-	-	D	\rightarrow	9 mm 9 mm		-		E	-	-	D	+	+	-	E		+	3 6		B	+	\dashv
12	2.17 m	Diaclasa	70°SW	S26°E	244	0.21 m		Č		10.91 m	\vdash	$\overline{}$	Б	\dashv	9 mm	\vdash	-		E	$^{-}$	+	D	+	+	_	113		\pm	+		В	\vdash	\dashv
13	2.36 m	Diaclasa	68°SW	S27°E	243	0.19 m			D	10.88 m			D	\Box	9 mm				E			D	\blacksquare			E		=			В		\Box
14	2.56 m	Diaclasa	70°SW	S25°E	245 239	0.20 m	\perp	C		10.88 m	\vdash	1	D	\rightarrow	9 mm		+	+	E	+	1	D	+	+	-	E		+	_		В	\vdash	-
15	2.76 m 2.96 m	Diaclasa Diaclasa	70°SW 71°SW	S31°E S30°E	240	0.20 m 0.20 m	-	C	\vdash	10.85 m 10.82 m	+	-	D	\dashv	9 mm	-	-	+	E	+		D	+	+	+	E		+	+		B	+	\dashv
17	3.15 m	Diaclasa	70°SW	S33°E	237	0.19 m			D	10.79 m			Ď		9 mm				E			D		\Box		Ē					В	\Box	
18	3.36 m	Dinclasa	72°SW	S32°E	238	0.21 m		C		10.79 m			D	\neg	9 mm			\Box	E	\perp		D	\perp	\Box	\perp	E		\equiv	\perp		В	\Box	=
19	3.57 m	Diaclasa	70°SW	S30°E	240	0.21 m	-	C	D	10.76 m	+	+	D	\rightarrow	9 mm		+	+	E	+	+	D	+	+	-	E		+	+		В	\vdash	-
20	3.75 m 3.96 m	Diaclasa Diaclasa	71°SW 70°SW	S30°E S25°E	240 245	0.18 m 0.21 m	_	C	D	10.73 m 10.64 m	+	_	D	_	9 mm 5 mm	+	_	D	E	+	+	D	+	+	-	E	B	+	+		B	+	\dashv
22	4.17 m	Diaclasa	70°SW	S31°E	239	0.21 m		Č		10.55 m	\Box		D		15 mm				Е			D			1	E					В	\Box	
23	4.37 m	Diaclasa	71°SW	S33°E	237	0,20 m		C		10.46 m			D		15 mm				E			D				- 1:		\Box			В		
24	4.57 m	Diaclasa	70°SW	S31°E	239	0.20 m		C		10.37 m	\vdash	_	D		15 mm		_		E	-		D	-	\vdash	-	E		\rightarrow	+		В	\vdash	-
25 26	4.77 m 4.97 m	Diaclasa Diaclasa	72°SW 70°SW	S32°E S30°E	238 240	0.20 m	 	C	D	10.28 m 10.19 m	+	+	D		15 mm	-	_		E	+	+	D	+	+	_	E		+	_		B	\vdash	\dashv
27	5.17 m	Diaclasa	71°SW	S29°E	241	0.20 m		C		10.14 m	+	+	D		15 mm		_	+	E	\pm		D	+	+	\rightarrow	E		\pm	\pm		B	\vdash	\dashv
28	5.37 m	Diaclasa	70°SW	S33°E	237	0.20 m		C		10.10 m			D		15 mm				E			D				E		\equiv			В		
29	5.57 m	Diaclasa	72°SW	S32°E	238	0.20 m		C		10.12 m	\vdash	_	D		15 mm			\perp	E			D	_	\vdash	_	E		\rightarrow	_		В	\vdash	\Box
30	5.77 m 5.97 m	Diaclasa Diaclasa	70°SW 72°SW	S30°E S30°E	240 240	0.20 m	 	C	\vdash	10.81 m 10.88 m	\vdash	+	D	\rightarrow	9 mm 5 mm	\vdash	+	D	Е	+	+	D	+	+	- 1) 1:	B	+	+		B	+	-
32	6.15 m	Diaclasa	68°SW	S33°E	237	0.18 m		-	D	10.87 m	+	_	B	\dashv	9 mm		_	10	Е	-		D	+	+	+	1		+	-		B	+	\dashv
33	6.35 m	Diaclasa	70°SW	S35°E	235	0.20 m		C		10.87 m			D	\exists	9 mm				E			D				Ē	В			1	В		\Box
34	6.56 m	Diaclasa	69°SW	S30°E	240	0.21 m		C		10.86 m			D		5 mm			D				D	\perp		1		В	\perp			В	\Box	\Box
35	6.76 m	Diaclasa	70°SW	\$33°E	237 240	0.20 m	-		\vdash	10.86 m	\vdash	+	D	\dashv	9 mm	\vdash	-	+	E	-	-	D	+	+	-	E		+	+		В	+	\dashv
36	6.97 m 7.18 m	Diaclasa Diaclasa	69°SW 70°SW	\$30°E \$25°E	240	0.21 m 0.21 m	\vdash	C	\vdash	10.85 m 10.85 m	\vdash	+	D	\rightarrow	9 mm 5 mm	\vdash	+	D	E	+	+	D	+	+	+) E	B	+	+		B	\vdash	\dashv
38		Diaclasa			240	0.21 m		č		10.84 m	+	+	B	\rightarrow	9 mm	\vdash	_		E	-		D	+	+		1		+	+		В	+	\dashv

40	7.80 m					0.21 m		C		10.83 m		9 mm									B	B	
41		Diaclasa	70°SW	S30°E	240	0.20 m	- 8 - 8	C	3 - 4	10.82 m	D	9 mm		100	E	9 99)	1 1		E	В	В	
	8.00 m	Diaclasa	70°SW	S30°E	240	0.20 m		C		10.79 m	D	9 mm	\Box	18	E		5		\top	E	В	В	
42	8.21 m	Diaclasa	68°SW	S27°E	243	0.21 m	3 3	C	1	10.79 m	D	9 mm			E)			E	В	В	
43	8.41 m	Diaclasa	70°SW	S25°E	245	0.20 m		C		10.76 m	D	9 mm		- 60	E		5			E	В	В	
44	8.61 m	Diaclasa	70°SW	S31°E	239	0.20 m	- 5	C	1 8	10.73 m	D	9 mm		- 3	Е)			E	В	В	
45	8.81 m	Diaclasa	71°SW	S30°E	240	0.20 m		C		10.70 m	D	9 mm			E	1 3)			E	В	В	
46	9.02 m	Diaclasa	70°SW	S33°E	237	0.21 m		C		10.70 m	D	9 mm			E)			E	В	В	
47	9,22 m	Diaclasa	72°SW	S32°E	238	0.20 m		C		10.67 m	D	9 mm		133	E)			E	В	В	
48	9.42 m	Diaclasa	70°SW	S30°E	240	0.20 m	3 3	C		10.58 m	D	9 mm		_ 313	E)	1 1		E	В	В	
	9.62 m	Diaclasa	71°SW	S30°E	240	0.20 m	3 3	C	8	10.49 m	D	5 mm		D)		D	A A I R	В	В	
50	9.82 m	Diaclasa	69°SW	S31°E	239	0.20 m	1 1	C	3	10.40 m	D	15 mm			E)			E	В	В	
51	10.01 m	Diaclasa	70°SW	S30°E	240	0.19 m	8 8	- 11		10.31 m	D	15 mm		12	E					E	B	В	
52	10.20 m	Diaclasa	70°SW	S29°E	241	0.19 m		1)	10.22 m	D	15 mm		15	E)			E	В	В	
53	10.41 m	Diaclasa	68°SW	S27°E	243	0.21 m	10 1	C	- 5	10.13 m	D	15 mm	i 3 3	388	E	3 3 3)			E	В	В	
54	10.61 m	Diaclasa	70°SW	S25°E	245	0.20 m	1 (C		10.14 m	D	15 mm		118	E)			E	В	В	
55	10.81 m		70°SW	S31°E	239	0.20 m	3 3	C	0 8	10.04 m	D	15 mm			E)			E	В	В	
56	11.01 m	Diaclasa	71°SW	S30°E	240	0.20 m		C		10.12 m	D	15 mm			E)			E	В	В	
57	11.20 m	Diaclasa	70°SW	S33°E	237	0.19 m	3 3	1)	10.54 m	D	5 mm		D)		D		В	В	
58	11.40 m	Diaclasa	72°SW	S32°E	238	0.20 m		C		10.45 m	D	9 mm			E)			E	В	В	
59	11.60 m	Diaclasa	70°SW	S29°E	241	0.20 m	8 8	C	3) = 1	10.36 m	D	9 mm		1 (2)	E)	3 3		E	В	В	
		Diaclasa	68°SW	S27°E	243	0.20 m		C		10.27 m	D	5 mm		D)		D		В	В	
61		Diaclasa	70°SW	S25°E	245	0.21 m	3	C	-	10.18 m	D	9 mm		110000	E)			E	В	В	
62	12.21 m	Diaclasa	70°SW	S31°E	239	0.20 m	3 5	C	3. 3	10.19 m	D	9 mm		3 8	E)			E	В	В	
	12.42 m	Diaclasa	71°SW	S30°E	240	0.21 m		C		10.09 m	D	9 mm			E)			E	В	В	$\Box\Box$
64	12.60 m	Diaclasa	70°SW	S33°E	237	0.18 m	. 3	I)	10.17 m	D	5 mm		D)		D		В	В	
	12.80 m	Diaclasa	72°SW	S32°E	238	0.20 m		C		10.59 m	D	15 mm		125	Е)			E	В	В	

	FORMA'	TO NOR	MALIZ	ADO PA	ARA TO	MA E)E E	AT	os	DE	LAS	S DIS	CO	NTI	NUI	DA	DES EN	E	L MA	CIZ	O	RO	COS	SO (Seg	ún	Bier	aw:	ki y	y G	onza	lez '	Vall	lejos	, 19	90)	
DAT	DS DEL PR	OYECTO																				DA	ros	ADIC	OL	NAL	ES										
	RE DE TESI	S			CIÓN DE		100000					CAS DI	EL IN	DICE	SLOP	EM.	ASS RATI	NG.						INUIE)		/19.21			-0.1-			- 48
UBIC/					ERA PUE					ANC	HA										- 1	ROC	K QU	ALIT	Y DI	SIG	NATI	ON						e-0.1»	(1	0.17	+1)
ENGLY CARROLL	NIO ESTRUC		William W.		ESIVAS 01																- 1	and the latest and				- 2					QD %	- 90	.00 %	5			
COOR	DENADAS E	N WGS84 -	UTM		185 865770											ALT	TFUD: 373	34.21	m.s.n.	m.				V GEO						: EG		.0002					
o estimate		192201			185 86577	00.9633 1	N, 456	653,5	1085	3														AMIL	IAI	DISCO	DNII	NUID	ADE		MILL		east.				
	DERASTRI			112.80 me																		FEC									TUBI		121				
	RA DEL TAI DE ROC	.OD		: 10.71 me	GRAINST	ONE DE	TPO	CPAI	CLA P	E D	OC'A E	NECC	T NI	DELC	ZAD						- 1	TIEN	APO							: IE	MPL	ADO					
			ORIENT		OKALIST.		PACI				T I			CENC			Δ	BEI	RTUR	Δ	_	BI	IGO	SIDA	D		RELI	ENC	Υ.	Ι Δ	LTER	ACI	ÓN		ΔG	JUA	_
NO.	A OE OAI	5	10.20	ACION		3000	IACI	T I	DIVI	$\tilde{}$	_		(313	LLIVE	T.	1		I I	CIOR		\dashv	14.	300.	IDA		-	KLL.	1000					_	\vdash	7.0	UZ	
NRO. DISCONTINUIDAD	DISTANCIA A DIRECCION DE DISCONTINUIDAD	ESTRUCTURA F; Falla D; Diaclasa	BUZAMIENTO	RUMBO	DIRECCIPON BUZAMIENTO	LONGITUD EN METROS	A:>2 m	В: 0.6-2 m		D: 0.06-0.2 m		LUNGHUD EN METROS	A: <1 m long	B: 1-3 m long.	C. 3-10 III long. D: 10-20 m	E: >20 m long	LONGITUD EN METROS	A: Cerrada	B: < 0.1 mm	um.	E: > 5 mm	A: Muy rug.	B: Rugosa	D; Lisa	E: Espejo falla	.0	B: Duro < 5mm	C: Duro > Smm D: Suave < 5mm	Suave >		Lig. /	C. Mod. Alterada D. Muy Alterada	Desc		B: Húmedo	C: Mojado D: Goteo	E. Flujo
1	0 m	Diaclasa	59°SW	S47°E	223	0.00 n	1 -	-	-	-	-	· *	-		*	-	-	-		-	-			-		-	- -	-	-	-	-				-	-	-
2	0.20 m	Diaclasa	57°SW	S46°E	224	0.20 m	0		C		10	0.06 m			D		5 mm			D			$\neg \vdash$	D		\Box		D			7	C		I	В		
3	0.40 m	Diaclasa	55°SW	\$47°E	223	0.20 m	n		C		10).16 m			D		10 mm				E			D					E		19	C		I	В		\Box
4	0.59 m	Diaclasa	58°SW	S48°E	222	0.19 п	n			D	10	0.16 m			D		10 mm				E			D					E			C		T	В		
5	0.79 m	Diaclasa	58°SW	S42°E	228	0.20 m	n		C		10).26 m			D		10 mm				E			D					E			C		T I	В		
6	0.99 m	Diaclasa	57°SW	S45°E	225	0.20 m	n.		C		10).25 m			D		10 mm				E			D					E			C		1	В		
7	1.19 m	Diaclasa	57°SW	S42°E	228	0.20 m			C		10	0.26 m			D		10 mm				E			D					E			C		I	В		
- 8	1.39 m	Diaclasa	58°SW	S42°E	228	0.20 m	1		C		10).56 m			D		5 mm			D				D				D				C		1	В		
9	1.58 m	Diaclasa	57°SW	S50°E	220	0.19 m	a		- 33 5	D	10	0.66 m			D		15 mm			3	E			D					E			C		1	В		
10	1.77 m	Diaclasa	56°SW	S48°E	222	0.19 m	a			D	10).76 m			D		15 mm				E	- 9		D				_	E			C		1	В		
11	1.97 m	Diaclasa	58°SW	S52°E	218	0.20 m	n		C		10).86 m			D		15 mm				E			D					E	\Box		C		F	В		
12	2.16 m	Diaclasa	57°SW	S47°E	223	0.19 m				D).96 m			D		15 mm				13			D					E	ப		C			В		
13	2.36 m	Diaclasa	57°SW	S46°E	224	0.20 m			C			1.06 m			D		15 mm				E			D					E		-	C			В		
14	2.56 m	Diaclasa	56°SW	S42°E	228	0.20 m			C		10).96 m			D		5 mm			D				D				D		\perp		C		1	В		
15	2,76 m	Diaclasa	57°SW	S47°E	223	0.20 m			C).86 m			D		15 mm				13			D					E	\Box		C			В		
16	2.96 m	Diaclasa	58°SW	S52°E	218	0.20 m			C).76 m			D		5 mm			D				D				D	_	\square	_	C			В		
17	3.16 m	Diaclasa	57°SW	S50°E	220	0.20 n			C			0.66 m			D		15 mm				E			D					E	\Box		C		T	В		
18	3.36 m	Diaclasa	57°SW	S47°E	223	0.20 m			C).64 m			D		5 mm			D				D				D	_	\perp		C			В		
19	3.56 m	Diaclasa	58°SW	S45°E	225	0.20 m			C		_	.92 m			0		12 mm				E			D					E		_	C			В		
20	3.76 m	Diaclasa	55°SW	S50°E	220	0.20 m			C		_	.89 m		_			12 mm				E			D			_		E		_	C			В		
21	3.96 m	Diaclasa	57°SW	S46°E	224	0.20 m			C			.86 m			0		12 mm				Е			D			_		E	\Box		C			В		
22	4.16 m	Diaclasa	57°SW	S47°E	223	0.20 m			C		_	.86 m			3		12 mm				E			D					E	┸┚		C			В		
23	4.36 m	Diaclasa	58°SW	S45°E	225	0.20 m	1		C		9	.86 m		- (C		12 mm				E			D					E			C		F	В		

24	4.56 m	Diaclasa	59°SW	S45°E	225	0.20 m		9.96 m	LICI	11	12 mm [LIE	1 1 1	DI	$-\Gamma$	LIEL	TELL	I B I I
25	4.76 m	Diaclasa	59°SW	S47°E	223	0.20 m	Č	10.01 m		D	10 mm	777	Î		D		Ē	i č	B -
26	4.96 m	Diaclasa	57°SW	S46°E	224	0.20 m	Č	10.11 m		1)	10 mm	7 7 7	1 î		D		E	Č	В
27	5.16 m	Diaclasa	55°SW	S47°E	223	0.20 m	C	10.11 m		D	10 mm	8 8 8 8	I	8 8 0 0	D	Q 19 B	E	C	В
28	5.36 m	Diaclasa	58°SW	S48°E	222	0.20 m		10.21 m		D	10 mm		E		D		E	C	В
29	5.56 m	Diaclasa	58°SW	S42°E	228	0.20 m	C	10.20 m		D	10 mm		E		D		E	C	В
30	5.76 m	Diaclasa	57°SW	S45°E	225	0.20 m	C	10.21 m	1 1 1	D	5 mm		D		D		D	C	В
31	5.96 m	Diaclasa	57°SW	S42°E	228	0.20 m	C	10.51 m		D	15 mm		1		D	1 9	E	C	В
32	6.16 m	Diaclasa	58°SW	S42°E	228	0.20 m	C	10.61 m		D	15 mm		E		D		E	C	В
33	6.36 m	Diaclasa	57°SW	S50°E	220	0.20 m	C	10.71 m		D.	15 mm		E		D		Е	C	В
34	6.56 m	Diaclasa	56°SW	S48°E	222	0.20 m	C	10.81 m		D	15 mm		E		D		E	C	В
35	6.76 m	Diaclasa	58°SW	S52°E	218	0.20 m	С	10.91 m		D	15 mm	0 8 8 8	I	8 8 8 8	D	3 54 31	E	C	В
36	6.96 m	Diaclasa	57°SW	S47°E	223	0.20 m	C	11,01 m		D.	5 mm		D		D		D	C	В
37	7.16 m	Diaclasa	57°SW	S46°E	224	0.20 m	C	10.91 m		D	15 mm		E		D		E	C	В
38	7.35 m	Diaclasa	56°SW	S42°E	228	0.19 m	D	10.81 m		D	5 mm		D		D		D	C	В
39	7.55 m	Diaclasa	57°SW	S47°E	223	0.20 m	C	10.71 m		D	15 mm		1		D		E	C	В
40	7.74 m	Diaclasa	58°SW	S52°E	218	0.19 m	D	10.61 m		D	5 mm		D		D		D	C	B
41	7.94 m	Diaclasa	57°SW	S50°E	220	0.20 m	C	10.59 m		D	12 mm		E		D		E	C	В
42	8.14 m	Diaclasa	57°SW	S47°E	223	0.20 m	C	9.87 m	C		12 mm		E		D		E	C	В
43	8.35 m	Diaclasa	58°SW	S45°E	225	0.21 m	C	9.84 m	C		12 mm		I		D		E	C	В
44	8.55 m	Diaclasa	55°SW	S50°E	220	0.20 m	C	9.81 m	C		12 mm	3 3 3 5 3	1		D		E	C	В
4.5	8.75 m	Diaclasa	57°SW	S46°E	224	0.20 m	C	9.81 m	C		12 mm		E		D		E	C	В
46	8.94 m	Diaclasa	57°SW	S47°E	223	0.19 m	D	9.81 m	C		12 mm		F		D		E	C	В
47	9.14 m	Diaclasa	58°SW	S45°E	225	0.20 m	C	9.91 m	C		10 mm		E		D		E	C	В
48	9.34 m	Diaclasa	59°SW	S45°E	225	0.20 m	C	9.96 m	C		5 mm	3 6 3 6 3	D	7 (5.7) = 3	D	U X 3	D	C	В
49	9.54 m	Diaclasa	57°SW	S50°E	220	0.20 m	C	10.04 m		D	15 mm		E		D		E	C	В
50	9.77 m	Diaclasa	56°SW	S48°E	222	0.23 m	C	10.04 m		D	15 mm		E		D		E	C	В
51	9.97 m	Diaclasa	58°SW	S52°E	218	0.20 m	C	10.14 m		D	15 mm		I I		D		E	C	В
52	10.17 m	Diaclasa	57°SW	S47°E	223	0.20 m	C	10.13 m		D	15 mm	8 3 3 5	1		D		E	C	В
53	10.36 m	Diaclasa	57°SW	S46°E	224	0.19 m	D	10.14 m		D	15 mm	50 00 00 0	E		D		E	C	В
54	10.56 m	Diaclasa	56°SW	S42°E	228	0.20 m	C	10.44 m	-	D	5 mm		D	1 1	D		D	C	В
55	10.76 m	Diaclasa	57°SW	S47°E	223	0.20 m	C	10.54 m	-	D	15 mm		E		D		E	C	В
56	10.96 m	Diaclasa	58°SW	S52°E	218	0.20 m	C	10.64 m		D	5 mm		D		D		D	C	В
57	11.19 m	Diaclasa	57°SW	S50°E	220	0.23 m	C	10.74 m		D	15 mm	11 S 20 S V	E		D		E	C	В
58	11.39 m	Diaclasa	57°SW	S47°E	223	0.20 m	C	10.84 m		D	5 mm		D	40.0	D		D	C	В
59	11.59 m	Diaclasa	56°SW	S48°E	222	0.20 m	C	10.94 m		D	12 mm		F		D	-	E	C	В
60	11.77 m	Diaclasa	58°SW	S52°E	218	0.18 m	D	10.84 m		D	5 mm	\perp	D		D		D	C	В
61	11.97 m	Diaclasa	57°SW	S47°E	223	0.20 m	C	10.74 m		D	9 mm		E		D		E	C	В
62	12.17 m	Diaclasa	57°SW	S46°E	224	0.20 m	C	10.64 m	-	D	9 mm		E	+	D	-	E	C	В
63	12.40 m	Diaclasa	56°SW	S42°E	228	0.23 m	C	10.54 m		D	5 mm		D		D		D	C	B
64	12.60 m	Diaclasa	57°SW	S47°E	223	0.20 m	C	10.52 m		D	9 mm	\perp	I I		D	-	E	C	В
65		Diaclasa	58°SW	S52°E	218	0.20 m	C C	9.80 m			9 mm		L		D		I E	C	В

DAT	OS DEL PE	COYECTO	7																DAT												700
UBICA DOMII COOR LÍNEA ALTUI	NIO ESTRUC	CTURAL EN WGS84 - EO	UTM	: CARRET : PROGRE : INICIO I FIN : 11.90 ME : 11.90 ME	FERA PUE ESIVAS 01: 8S 865770 18S 865770 TROS ETROS	NTE COLL: 8+695.20 -1 6.6925 N, 4 00.9633 N, 4	PA – Y. 8+708. 56642. 56653.	ANAC 00 1715 E 9085 E	ANCH	ÁNICAS DE			AL	IASS RATII		m.s.i	n.m.		DISCO ROCK ESTAC FAMIL FECH TIEMI	QUAI CIÓN G LA DI	JEOM	ECÁN	NATIC	N	: I : I : C	52/11.9 RQD% RQD % EG02 FAMIL OCTUE FEMPL	6 = 1 6 = 91 IA 03 BRE 2	100 = 6 1 % 3 2021	-0.1*	* (0.	.1λ + 1
9	D		ORIENT		CIGHIASI		CIAM					ENCL		A	BEF	RTUI	RA		RUG	JOSII	DAD	1	RELL	ENO	- 2	ALTEI	RACI	IÓN		AGU	JA
NRO. DISCONTINUIDA	DISTANCIA A DIRECCION DE DISCONTINUIDA	ESTRUCTURA F: Falla D: Diaclasa	BUZAMIENTO	RUMBO	DIRECCIPON BUZAMIENTO	LONGITUD EN METROS	A:>2m B:0.6-2m	C: 0.2-0.6 m	900	LONGITUD EN METROS	121	B: 1-3 m long. C: 3-10 m long.	D: 10-20 m E: >20 m long	LONGITUD EN METROS	A: Cerrada	B; < 0.1 mm	C: 0.1 -1.0 mm D: 1-5 mm	E: > 5 mm	A: Muy rug. B: Rueosa	C: Lig. Rug.	D: Lisa E: Espeio falla	A: Limpio	B: Duro < 5mm C: Duro > 5mm	D: Suave < 5mm	E: Suave > 5mm A: Sana	B: Lig. Alterada	C: Mod. Alterada	D: Muy Alterada E: Descompuesta	A: Seco	B: Humedo C: Mojado	D; Goteo
1	0.00 m	Diaclasa	11°NE	N0°W	90	0.00 m				- X					-	-				-		-		-		-		1	-		
2	0.20 m	Diaclasa	11°NE	N0°W	90	0.20 m		C		2.01 m		В	-4-	10 mm				E	8 8	1	D		- 24	\perp	E	4	C	\perp	\vdash	C	++
3	0.40 m 0.60 m	Diaclasa Diaclasa	13°NE 11°NE	N0°W N0°W	90 90	0.20 m 0.20 m	-	C	-	1.95 m 1.91 m	\vdash	B	_	10 mm	Н	-	-	E	-	+	D	+	-	+	E		C	+	\vdash	C	
-1	0.81 m		10°NE	N0°W	90	0.20 m	_	c	-	2.05 m		B	-	17 mm		-		E		+ +	D	1	-	++	E .	0.0	6	+	\vdash	16	


	ORMA	TO NOR	MALIZ	ADO PA	RA TO	MA D	E D	ATC	S DE I	AS DIS	CON	TIN	UIL	AI	DES EN	EL	MA	CIZ	O I	ROC	oso) (Se	gún	Bio	enav	ski	y G	onzale:	z Vall	lejo	s, 19	90)	
DATO	S DEL PR	ROYECTO									- //									DATO)SA	DICK	NA	LES				V.10111					
UBICA				: CARRET	TERA PUE	NTE COL	LPA -	YAN		ANICAS DI IA	EL IND	ICE SI	OPI	BMA	ASS RATE	NG				ROCK						O	; F	2/11.9 2QD% =	100 *	e-0.	** (0	0.1À+	+ 1)
	IIO ESTRUC DENADAS I	EN WGS84 -	UTM	: INICIO 1		6.6925 N,	4566	42.471					15	ALT	ITUD: 373	4.21 r	n.s.n.r	n.		ESTAC							: E	G02					
LÍNEA	DE RASTRI	EO		FIN : 11.90 ME	18S 865770 TROS	00.9633 N	, 4566	53.90	85 E											FECH		SCON	TINU	IDA	DES			AMILIA (
ALTUR	A DEL TAI			: 11.90 ME	TROS															ГІЕМР								EMPLAD					
TIPO D			ORIENT		GRAINST			MIE		ROCA EN S	RSISTE		_	D	Α.	BER'	TIID		+	DIL	OCT	DAD	1	DEI	LEN	0	1 4	LTERA	CIÓN	_	ΛG	TTA	
DAI	A DE	a RA		ACION	~ 0	200	T I	I	T		KSISTI	I I	$\dot{\Box}$	\dashv		DER		T	+	T	T	JAD.	+					1 2		H	7.0		\blacksquare
O. INCI	DISTANCIA DIRECCION I ISCONTINUII	STRUCTUF F. Falla D: Diaclase	L.N.	0	S E	D EN		1	E .	DEN	long	3-10 m long		guc	D EN		C 0.1 mm 0.1 -1.0 mm	_	-1	de	sic	<u>-</u>		Smm		umc l		eradi	pues				
NRO.	STAN	RU(EN I	RUMBO	S EN	E 80	2 B	2 m	0.06-0.2 <0.06 m	ES	<1 m long	E	20 m	>20 m long	E SO	Cerrada	-1.0.1-	E I	E	Muy rug Rugosa	Rug	1,5	oid	V	< 0	Ve V		A. A.	A A	0	ने वि	00 00	0
NRO. DISCONTINUIDAD	DISTANCIA A DIRECCION DE DISCONTINUIDAD	ESTRUCTURA F: Falla D: Diaclasa	BUZAMIENTO	≅	DIRECCIPON BUZAMIENTO	LONGITUD	7	B: 0.6-2 m	D: 0.06-0.2 E: <0.06 m	LONGITUD		3 2	10-20	>20	LONGITUD			1-5	E: > 5 mm	Muy rug. Rugosa	C.Lig.1	D: Lisa F- Feneio	A: Limpio	Duro	C: Duro >	D: Suave < 5mm	Sama	8: Lig. Alterada C: Mod. Alterad	D: Muy Alterada E: Descompuesta	Seco	B: Húmedo	Mojad	Flujo
6	1.01 m	Diaclasa	11°NE	N0°W	90	0.20 m	×.	E C		2.94 m	₹ å		ä	ы	17 mm	4 (<u>ن</u> ق		E	ė iš	Ü	D	V	B.	Ü	i i		高 ご	O H	V			站
7	1.24 m	Diaclasa	10°NE	N0°W	90	0.23 m		0		2.24 m	I	3			17 mm				E			D				E		C				C	
8 9	1.44 m 1.67 m	Diaclasa Diaclasa	11°NE 10°NE	N0°W N0°W	90 90	0.20 m 0.23 m		- 6	1	3.57 m 2.24 m	F	C			25 mm 25 mm				E			D D				I		C			1	C	
10	1.90 m	Diaclasa	11°NE	N0°W	90 90	0.23 m		(2,21 m	E			\Box	17 mm				Е			D				1		C		F		C	
11	2.11 m 2.31 m	Diaclasa Diaclasa	11°NE 13°NE	N0°W N0°W	90	0.21 m 0.20 m		0		2.22 m 2.57 m	I			\exists	10 mm				E			D D	3 8 8	8 8	9 8 8	I I		C	8 8 8		0		
13 14	2.51 m 2.74 m	Diaclasa Diaclasa	11°NE 10°NE	N0°W	90 90	0.20 m 0.23 m		(2.51 m 3.57 m	E	3 C			10 mm				E			D .		3 6		I		C				C	
15	2.74 m 2.94 m	Diaclasa	11°NE	N0°W	90	0.20 m		- (2.61 m	E				17 mm 17 mm				E			D	983			I		C	8 19 S 1		- 6		
16	3.15 m 3.35 m	Diaclasa Diaclasa	11°NE 10°NE	N0°W N0°W	90	0.21 m 0.20 m		- 0		1.95 m 1.91 m	I I		\Box	\dashv	10 mm 10 mm		-		E			D D	-			I		C			- 0		
18	3.55 m	Diaclasa	11°NE	N0°W	90	0.20 m	0	1		2.05 m	I I				15 mm		8.8		E	0.80	10.00	D		2.0	9 00	İ		č	4 4 2 3			č	
19 20	3.76 m 3.97 m	Diaclasa Diaclasa	10°NE	N0°W N0°W	90 90	0.21 m 0.21 m		- 0		2.50 m 2.21 m	I E			=	17 mm 15 mm				E			D D				H		C			- 5	C	
21	4.18 m	Diaclasa	10°NE	N0°W	90	0.21 m			2	2.20 m	E	3			10 mm	84 10 2			E			D		0		I	5	C				C	
22	4.38 m 4.58 m	Diaclasa Diaclasa	13°NE 10°NE	N0°W N0°W	90 90	0.20 m 0.20 m	\vdash	- 0		2,28 m 2,24 m	H		-	\dashv	10 mm 25 mm				E			D D				I		C		\vdash			\vdash
24	4.79 m	Diaclasa	13°NE	N0°W	90	0.21 m		- 7		2.22 m	E	3		\equiv	10 mm				E			D				I		C				C	
25 26	5.02 m 5.23 m	Diaclasa Diaclasa	11°NE	N0°W N0°W	90	0.23 m 0.21 m		0	-	2.23 m 2.23 m	I I				15 mm				E			D D				I		C				3	
27	5.43 m	Diaclasa	10°NE	N0°W	90	0.20 m		(1.91 m	E	3			10 mm				E			D				Ė		C				C	口
28 29	5.66 m 5.87 m	Diaclasa Diaclasa	11°NE 10°NE	N0°W N0°W	90 90	0.23 m 0.21 m		(-	2,05 m 2,50 m	I F			\dashv	14 mm 17 mm				E			D				1		C					
30	6.07 m	Diaclasa	11°NE	N0°W	90	0.20 m		(3	2.22 m	E	3		\equiv	10 mm				E			D				Ē		C		二		C	\Box
31	6.28 m 6.48 m	Diaclasa Diaclasa	10°NE 10°NE	N0°W N0°W	90 90	0.21 m 0.20 m		0		2.20 m 2.20 m	E			\dashv	8 mm 12 mm				E			D D				E		C				C	\vdash
33	6.71 m	Diaclasa	13°NE	N0°W	90	0.23 m		0		2.26 m	1			=	10 mm				E			D				E	2	C				C	
34	6.91 m 7.11 m	Diaclasa Diaclasa	10°NE 11°NE	N0°W N0°W	90 90	0.20 m 0.20 m		0		2.24 m 2.22 m	E			\exists	12 mm 10 mm				E			D D		3 6	(6 (3 6)	I		C				C	
36	7.32 m	Diaclasa	10°NE	N0°W	90 90	0.21 m		(3	2.23 m	I			\Box	13 mm	П			E			D				E		C			-	C	
37 38	7.55 m 7.76 m	Diaclasa Diaclasa	10°NE	N0°W N0°W	90	0.23 m 0.21 m		(1.94 m 2.08 m	I I				16 mm				E			D D				I		C				C	
39 40	7.97 m	Diaclasa	10°NE 10°NE	N0°W N0°W	90 90	0.21 m 0.20 m		0		2.53 m	E				16 mm				E			D D				F		C				C	
41	8.17 m 8.37 m	Diaclasa Diaclasa	13°NE	N0°W	90	0.20 m		10	5	2.25 m 2.20 m	I I				24 mm 24 mm				E			D				Î		C				C _	
42	8.58 m 8.78 m	Diaclasa Diaclasa	10°NE 10°NE	N0°W N0°W	90 90	0.21 m 0.20 m		0		2,21 m 2,56 m	F F		-	\blacksquare	16 mm				E			D D				I		C					
44	8.99 m	Diaclasa	13°NE	N0°W	90	0.21 m				2.50 m	Ī			\exists	9 mm				E			D				Ē	Î	C				c –	
45 46	9.19 m 9.40 m	Diaclasa Diaclasa	10°NE 11°NE	N0°W N0°W	90	0.20 m 0.21 m		0		3.56 m 2.60 m	E	C		\vdash	9 mm 16 mm		_		E	-	-	D	-			I		C				C	\vdash
47	9.60 m	Diaclasa	10°NE	N0°W	90	0.20 m		(1.94 m	E	3			16 mm				E			D				Ī		C			(C	
48	9.81 m 10.01 m	Diaclasa Diaclasa	13°NE 11°NE	N0°W N0°W	90	0.21 m 0.20 m	1	0		1.90 m 2.04 m	I F			\dashv	9 mm 10 mm				E			D	1		8 8 2	I I		C		\vdash			-
50	10.22 m	Diaclasa	10°NE	N0°W	90	0.21 m		- (2.49 m	E	3			$11 \mathrm{mm}$		3 7		E	9	/ (S. 16)	D	8 W W	8 7	8 5 0	E		C				C	10 10
51	10.44 m 10.65 m	Diaclasa Diaclasa	10°NE 13°NE	N0°W N0°W	90 90	0.22 m 0.21 m	-	0		2.20 m 2.26 m	1			\dashv	8 mm 10 mm	-	-		E	-+-	-	D	+	-	-	E		C	+	-	- 6		
53	10.85 m	Diaclasa	10°NE	N0°W	90	0.20 m		(2.20 m	E	3			12 mm				E			D		13		1		C				Ĉ .	
54 55	11.05 m 11.26 m	Diaclasa Diaclasa	11°NE 10°NE	N0°W N0°W	90 90	0.20 m 0.21 m	+	(2.22 m 2.09 m	I E			\dashv	10 mm 14 mm	-	-		E	-	-	D	-	-	-	I E		C	-	\vdash			\vdash
56	11.46 m	Diaclasa	10°NE	N0°W	90	0,20 m				2,24 m	H	3			9 mm		3		E		18 3	D			5 8 8	I		C				C	
57 58	11.67 m 11.90 m	Diaclasa Diaclasa	10°NE 10°NE	N0°W N0°W	90 90	0.21 m 0.23 m		0		2.60 m 2.53 m	I I	3			20 mm 13 mm			8 9	E			D D				I		C					
11/11/11		aci n prop			mvenci i	n interne	2012033	100 0	acas	icaci n	a Dias	11/13425	1 1	22.00	uci o no		777	07 0	Va	ain													_

	FORMA	TO NOD	MALIZ	ADO P	ADA TO	MA DI	Z DA	TO	s DI	LASD	SCC	NTI	NIII	DA	DES EN	JET	M	CIZ	70	PΩ	COS	O (Sog	ún I	Rion	owe	ki v	Co	nzolo	z Vol	loio	e 1	000)	_
	OS DEL PR			ADOTA	MA IC	MIA DI	DA	10.	5 1/1	LASD	sec)NII	NUI	DA	DES EL	1	L IVI	CIZ	~		TOS					aws	кі у	Gu	nzaie	z va	цејо	5, 1	770)	
Mr. 4 M 4	RE DE TESI	1,00,00,00,00,00		: "APLICA	CIÓN DE	LAS CONI	DICION	ES G	HOM	ECÂNICAS	DEL.	NDICE	SLO	PE M.	ASS RATE	NG					ONT					TRO	K. B	60/1	12.18 =	4.93			_	-
UBICA						NTE COLL															K QU							RQ	D% =	100 *	$e^{-0.1}$	· 2 * ((0.1%	+1)
	NIO ESTRUC					8+708.20 -1													_)D % =	91.00 9	16			
COOR	DENADAS E	EN WGS84 -	UTM			0.9633 N, 4								ALT	TTUD: 373	34.21	m.s.n.i	m.			ACIÓ							EGO						
						05.5534 N,	456664	.8211	E													AMII	JAE	ISCC	NTIN	UIDA			MILIA 0					
	DE RASTRI			: 12.18 ME : 10.71 ME																FEC									TUBRE					
	DE ROC	.012				ONE - PET	ROGR	AFIA	DEF	OCA EN SE	CCL	N DEL	GAD						_	1 Heav	arci							LEN	VIFLAD	9				
			ORIENT		0.000.00		ACIAN					STEN			А	BEI	RTUR	A		RI	JGO:	SIDA	D	Б	RELL	ENO	T	AL	TERA	CIÓN	1	A	GUA	
NRO. DISCONTINUIDAD	DISTANCIA A DIRECCION DE DISCONTINUIDAD	₹ _			-			1		C47				_	0.00							T			\neg		_							\neg
. 5	DISTANCIA A DIRECCION DE ISCONTINUIDA	RUCTUR P. Falla Diaclasa	Ĕ		8 5	函			اء ا	圖		<u>50</u>	long.	50	岳		1 8			ш			cs		Smm		Smm		Alterada I. Alterad	Alterada				
NRO.	N N N	UCTU Falla Diaclas	鱼	BC	負白	8		E	2	E 9.	lono	1 5	<u></u>	long	8	g	mm o	8	-	50		io.	<u>a</u>		2 2		Α.		Fe Fe	3 1		9	0	- 1
ZZ	STA STA	E E	≥	RUMBO	Ø ≥	EI SO	E 2	18	2	190 E100	E		3-10 m k	8	E SO	Cerrada	< 0.1 mm	1-5 mm	mu	2	000		ej.	-ğı	V A	Ve	VC	· ·	주 구	Y S	0	Je l	ag ?	8 0
S	DIR	ESTRUCTURA F: Falla D: Diaclasa	BUZAMIENTO	≥ =	DIRECCIPON BUZAMIENTO	CONGITUD	>2 m	0.2-0.6	D: 0.06-0.2 m	CONGITUD I	□		3-10	>20	ONGITUD EN	ಲಿ	< 0.1	12	NO.	: Muy rug	Rugosa Lia Du	Lisa	Espejo falla	Limpio	B: Duro	Suave < 5mm	Suave	Sana	Lig. Alterada Mod. Alterada	D: Muy Alterada	Seco	B: Húmedo	Mojado	Gioteo Flujo
IG	D		BI		D	LO	A:	Ü	ä	B 2 B	4	iii	ا ا	H	S E	A:	E .	10	E	Α:	8 3	0	E	A:	ii ii	0	H	Y S	: : : : : : : : : : : : : : : : : : :	. H	¥	B:	3 6	E E
1	0.00 m	Diaclasa	58°SW	S47°E	223	0.00 m	-		-					-	-			-	-		-	-	-	-	-	-	-	-				-		
2	0.22 m	Diaclasa	57°SW	S46°E	224	0,22 m		C	\vdash	9.96 1			C		10 mm			+	E	\vdash	-	D		\rightarrow	_		E	+	C	_	1	В	+	\perp
4	0.44 m 0.66 m	Diaclasa	57°SW 57°SW	S44°E S47°E	226	0.22 m	_	C	\vdash	9.81 1			C	-	10 mm		-		E	\vdash	-	D	\vdash		-	-	E	+	C	-	+	В	+	+
5	0.85 m	Diaclasa Diaclasa	56°SW	S47°E S48°E	223 222	0.22 m 0.19 m		10	D	9.51 1			č		10 mm	H		1	E	\vdash	_	D	\vdash	-	-	-	E	+	C			В	+	+
6	1.04 m	Diaclasa	55°SW	S50°E	220	0.19 m			D	9.36 1			č		10 mm	- 0	\vdash	\top	E	\vdash		D		\neg		1 1	E	\neg	C		\mathbf{T}	В	_	\top
7	1.26 m	Diaclasa	58°SW	S46°E	224	0.22 m		C		9.21 1			Č		10 mm				E			D					E		C			В		
8	1.46 m	Diaclasa	57°SW	S47°E	223	0.20 m		C		9.06 1			C		5 mm			D				D				D			C			В	\perp	\Box
9	1.66 m	Diaclasa	56°SW	S48°E	222	0.20 m		C		8.91 1			C		10 mm				E	\vdash	_	D		-	-		E	-	C	_	\perp	В	-	\perp
10	1.85 m 2.05 m	Diaclasa Diaclasa	55°SW 58°SW	S50°E S46°E	220 224	0.19 m 0.20 m	-	C	D	8.76 r 8.61 r			C	-	10 mm		_	1	E	\vdash	-	D		\rightarrow	+	1 0	E	-	C	_	+	B	-	_
12	2.03 m 2.27 m	Diaclasa	58°SW	S46°E	224	0.20 m	\vdash	C	\vdash	8,46 1			c	+	10 mm		_	-	E	\vdash	_	D		\rightarrow	+	9 3	E	\rightarrow	C	_	+	В	\rightarrow	+
13	2.45 m	Diaclasa	58°SW	S47°E	223	0.18 m		1	D	8.31 1			č		10 mm			+	E	\vdash	\pm	D		$^{+}$	\pm		E	$^{+}$	C		+	В		\pm
14	2.65 m	Diaclasa	57°SW	S46°E	224	0.20 m		C		8.16 1	n		C		5 mm			D				D				D			C			В		
15	2.84 m	Diaclasa	57°SW	S44°E	226	0.19 m			D	8.01 1			C		16 mm				E			D				3 3	E	_	C		\perp	В		
16	3.02 m	Diaclasa	57°SW	S47°E	223 222	0.18 m	_	-	D	7.86 r			C	-	16 mm		_	-	E	\vdash		D		\rightarrow	_	4	E	\rightarrow	C	_	_	В	-	+
17	3.24 m 3.46 m	Diaclasa Diaclasa	56°SW 55°SW	S48°E S50°E	220	0.22 m 0.22 m	\vdash	C	\vdash	7,71 1			C	+	16 mm 5 mm		\vdash	D	E	\vdash	-	D		-	_	D	Е	+	C	-	+	B	+	+
19	3.64 m	Diaclasa	58°SW	S46°E	224	0.18 m		+-	D	7.41 1			č	+	16 mm		\vdash	10	E	\vdash	_	D			+	10	Е	\rightarrow	Č		+	В		+
20	3.82 m	Diaclasa	57°SW	S47°E	223	0.18 m			D	7.26 1			C		5 mm			D				D				D		\neg	C			В		\neg
21	4.04 m	Diaclasa	56°SW	S48°E	222	0.22 m		C		7.11 1			C		16 mm	-			E			D					E		C			В		
22	4.22 m	Diaclasa	57°SW	S47°E	223	0.18 m	\vdash	-	D	6.96 1			C	_	16 mm	\vdash	\vdash	-	E	\vdash	-	D		\rightarrow	_	-	E	\rightarrow	C	-	\perp	В	\rightarrow	+
23 24	4.44 m 4.66 m	Diaclasa Diaclasa	58°SW 57°SW	S47°E S46°E	223	0.22 m 0.22 m	\vdash	C	\vdash	6.81 1			C	+	5 mm	-	-	D	Е	\vdash	-	D		-	-	D	Е	+	C	-	+	B	\rightarrow	+
25	4.85 m	Diaclasa	57°SW	S44°E	226	0.19 m	-	1	D	6.51 1			č		16 mm		\vdash		E	\vdash	-	D		_	\pm		E	\rightarrow	Č		+	В	+	+
26	5.04 m	Diaclasa	57°SW	S47°E	223	0.19 m			D	6.36 1			Č		10 mm				E			D		\neg			E	\neg	C		\top	В		\top
27	5.26 m	Diaclasa	56°SW	S48°E	222	0.22 m	- 5	C		6.21 r			C	\perp	10 mm		- 1		E			D				1	E	\perp	C			В		
28	5.44 m	Diaclasa	55°SW	S50°E	220	0.18 m	\vdash	-	D	6.06 1			C	-	10 mm				E	\vdash	-	D		-		4	E	+	C	_	-	В	+	+
29 30	5.64 m 5.86 m	Diaclasa Diaclasa	58°SW 57°SW	S46°E S47°E	224	0.20 m 0.22 m	+	C	\vdash	5.91 r 5.76 r			C	+	10 mm		\vdash		E	\vdash	+	D	\vdash	-	+	9	E	+	C	+	+	B	+	+
31	6.05 m	Diaclasa	56°SW	S48°E	222	0.22 m		1	D	9.71 1	n		c	+	10 mm				E		-	D	\vdash		\pm	3	E	+	C			B	_	+
32	6.27 m	Diaclasa	55°SW	S50°E	220	0.22 m		C		9.56 1	n		C		5 mm			D				D				D			C			В		\top
33	6.49 m	Diaclasa	58°SW	S46°E	224	0.22 m		C		9.41 i	n		C		10 mm		- 1		E			D				6	Е		C			В		
34	6.67 m	Diaclasa	58°SW	S46°E	224 223	0.18 m		1	D	9.26 1			C		10 mm				E	\Box		D				4	E	_	C			В	\perp	\perp
35	6.87 m 7.06 m	Diaclasa Diaclasa	58°SW 57°SW	S47°E S46°E	223	0.20 m 0.19 m		C	D	9.11 r 8.96 r			C	+	10 mm		\vdash	+	E	\vdash	-	D	\vdash	\rightarrow	-		E	+	C	-	-	B	+	+
37	7.06 m 7.28 m	Diaclasa	57°SW	S44°E	224	0.19 m		C	D	8.96 r			č	+	10 mm				E	\vdash	-	D	\vdash	+	-	1	E	+	C	_		В	+	+
38	7.50 m	Diaclasa	57°SW	S47°E	223	0.22 m		Č	\vdash	8.66 1			č		5 mm		\vdash	D		\vdash	\neg	D		-	\neg	D	1	$^{+}$	Č		\mathbf{T}	В	\perp	\top
39	7.70 m	Diaclasa	56°SW	S48°E	222	0.20 m		C		8.51 r	n		C		16 mm				E			D					E		C			В		
40	7.88 m	Diaclasa	55°SW	S50°E	220	0.18 m			D	8.36 1			C		16 mm			\Box	E			D		-			E	\perp	C			В	\perp	\perp
41	8.09 m 8.29 m	Diaclasa	58°SW 57°SW	S46°E S47°E	224	0.21 m		C	\vdash	8.21 1			C		16 mm		\vdash	D	E	\vdash	-	D		\rightarrow	-	D	Е	+	C	-		B	-	+
43	8.29 m 8.47 m	Diaclasa Diaclasa	56°SW	S48°E	223	0.20 m 0.18 m		10	D	7.91 1			c		5 mm			1)	E	\vdash	-	D		-	-	1)	E	+	C	+	+	В	+	+
44	8.69 m	Diaclasa	57°SW	S47°E	223	0.18 m		C	1	7.76 1			č	+	5 mm			D		\vdash		D		+	_	D		$^{+}$	Č		T	В	\pm	+
45	8.91 m	Diaclasa	55°SW	S50°E	220	0.22 m		C		7.61 1	n		C		16 mm				E			D					Е		C			В		\perp
46	9.13 m	Diaclasa	58°SW	S46°E	224	0.22 m		C		7.46 1			C		16 mm				E			D					Е	\perp	C			В	\perp	
47	9.32 m	Diaclasa	57°SW	S47°E	223	0.19 m		-	D	7,31 1			C		5 mm	\vdash	-	D		\vdash	-	D		-	-	D	-	+	C	-		В	+	+
48	9.54 m 9.75 m	Diaclasa Diaclasa	56°SW 55°SW	S48°E S50°E	222	0.22 m 0.21 m		C		7.16 1			C	-	16 mm		-	1	E	+1	-	D		-	-	-	E	+	C		+	B	-	+
50	9.75 m 9.95 m	Diaclasa	58°SW	\$46°E	224	0.21 m		C	\vdash	6.86 1			č	1	10 mm		\vdash	+	E	\vdash	-	D		+	-	+	E	+	C	-	+	В	+	+
51	10.17 m	Diaclasa	58°SW	S46°E	224	0.22 m		C		6.71 1			Č		10 mm				E			D				3 3	E		Č			В		
52	10.36 m	Diaclasa	58°SW	S47°E	223	0.19 m			D	6.56 1	n		C		10 mm				E			D					E		C			В		

53	10.57 m	Diaclasa	57°SW	S46°E	224	0.21 m	9 9	C	6.41 m	C	10 mm	- 5 Y 2 Y	E	D		E	C	В
54	10.79 m	Diaclasa	57°SW	S44°E	226	0.22 m		C	6.26 m	C	10 mm		E	D		E	C	В
55	10.97 m	Diaclasa	57°SW	S47°E	223	0.18 m		D	6.11 m	C	10 mm		E	D		E	C	В
56	11.17 m	Diaclasa	56°SW	S48°E	222	0.20 m	0.19	C	5.96 m	C	10 mm	3 3	E	D		E	C	В
57	11.38 m	Diaclasa	55°SW	S50°E	220	0.21 m		C	5.81 m	C	10 mm		E	D		E	C	В
58	11.56 m	Diaclasa	58°SW	S46°E	224	0.18 m	1 1 1 1 1	D	5.66 m	C	5 mm	8 1 8 3)	D	D	3 3	C	B
59	11.78 m	Diaclasa	57°SW	S47°E	223	0.22 m		C	5.51 m		10 mm		E	D		E	C	В
60	12.00 m	Diaclasa	56°SW	S48°E	222	0.22 m		C	9.46 m	C	10 mm		E	D		E	C	В
61	12.18 m	Diaclasa	57°SW	S47°E	223	0.18 m		D	9.31 m	C	5 mm)	D	D	1 2 5 1	C	В

_		mo Non		. B O B	D + DO			mo	CPE		001	~			DEC EN					200	200	0 (6						Secretary and		300 = 1/200	400	202	_
		TO NOR	MALIZ	ADO PA	RA TO	DMA D	E DA	CIC	SDE	LAS DIS	CON	111	NUI	DA	DES EN	LEL	M	ACIZ				DICI			naws	ki y	Gon	zalez	Vall	ejos	, 199	<i>)</i> 0)	_
NOMB UBICA DOMP	RE DE TESI CIÓN IIO ESTRUC	IS	UTM	: CARRET : PROGRE : INICIO I	TERA PUE SIVAS 018	NTE COLI 8+708,20 - 0.9633 N,	LPA - 181720 456653	YAN 0.18 0.908	ACANCE	ÁNICAS D IA	EL ÍND	ICE:	SLOP		ASS RATI		n.s.n	.m.		DISCO ROCK ESTA	ONTIP QUA CIÓN		DES DESIG MECÁ	EN L GNAT NICA			RQI RQI EG03	95- 4 9% = 1 1% = 9; ILIA 03	00 *		· * (0).1 À +	- 1)
	DE RASTR			: 8.95 MET																FECH								JBRE 2	021				
ALTUI	E ROC	LUD		: 8.95 MET		ONE - PET	ROGE	AFL	A DE RO	CA EN SEC	INF	DEL C	AD							FIEMI	PO					3	TEM	PLADO					
		in the second	ORIENT				ACIA!	_			RSIST	_			A	BER	TUR	A		RU	GOS	DAD	1	REI	LENC		ALT	ERAC	ÓN		AGU	UA	
Ϋ́Ω	DE DA	RA RA	0		70	H			8 ()	z		A 0			AS		1							1-	- 8	=	- 2	- B	g at			3 9	
NRO. DISCONTINUIDAD	DISTANCIA A DIRECCION DE DISCONTINUIDAD	ESTRUCTURA F: Falla D: Diaclasa	BUZAMIENTO	RUMBO	DIRECCIPON BUZAMIENTO	LONGITUD METROS	A:>2m B:062-	D: 0.0-2 III	D: 0.06-0.2 m E: <0.06 m	LONGITUD EN METROS	 	D: 1-5 m long.	D: 10-20 m	E: >20 m long	LONGITUD E METROS	A: Cerr	B: < 0.1 mn	C. v.1 - 1.0 mm D: 1-5 mm	E > 5 mm	A: Muy rug.	C: Lig. Rug.	D: Lisa	E: Espejo rana A: Limpio	B: Duro < 5mm	C: Duro > 5mm D: Suave < 5mm	Λ	A: Sana B: Lie: Alterada	C: Mod. Alterada	E. Descompuesta	A: Seco	B: Húmedo C: Moiado	D. Goteo	E. Flujo
1	0.00 m	Diaclasa	11°NE	N0°W	90	0.00 m				1.99 m				-	-	-	-	- -	- E		-	D D	- -	-		Ē		c	-	-		_	-
2	0.23 m 0.43 m	Diaclasa Diaclasa	11°NE 13°NE	N0°W	90	0.23 m 0.20 m	8 8	- 0		2.55 m		В	-	\vdash	10 mm		+	86.8	E	7 93	28 - 2	D	+	\vdash		E		C	-		C		\vdash
4	0.64 m	Diaclasa	11°NE	N0°W	90	0.21 m		(2.01 m		В			10 mm		\perp		E			D				E		C			C	3	
5	0.90 m	Diaclasa	12°NE	N0°W	90	0.26 m		0		3.24 m	+	(\Box	20 mm		\perp	\perp	E			I)	+	\vdash	_	E		C		\vdash	C		\vdash
7	1.14 m 1.34 m	Diaclasa Diaclasa	11°NE 11°NE	N0°W	90 90	0.24 m 0.20 m		0		4.24 m 2.24 m		В	-	Н	20 mm 20 mm	1	+	-	E		8	D	+	+	_	E	3 5	C		Н	C		\vdash
8	1.57 m	Diaclasa	10°NE	N0°W	90	0.23 m		10		2.53 m		В	+	\vdash	20 mm		+	+	E			D	_	+		E		C		Н	C		\vdash
9	1.78 m	Diaclasa	11°NE	N0°W	90	0.21 m		(1.96 m		В	(0)	-	20 mm	-	-	-	E			D				В		C			C		-
10	1.99 m 2.23 m	Diaclasa Diaclasa	11°NE 13°NE	N0°W	90	0.21 m 0.24 m		0		2,52 m 1,98 m		В	-	-	10 mm		+	+	E			D	-	+	-	E	-	C		\vdash	C		\vdash
12	2.43 m	Diaclasa	11°NE	N0°W	90	0.24 m	-	0		3.22 m	1 1	0	2		10 mm	1	+	-	E	-	-	D	_	+	-	E	-	c	-		C		\vdash
13	2.64 m	Diaclasa	12°NE	N0°W	90	0.21 m		(4.22 m		(2		20 mm				E	1	1	D			- 3	E		C	1		C		
14	2.85 m	Diaclasa	11°NE	N0°W	90	0.21 m		(2.22 m		В	_	Н	20 mm	-	-	-	E	_		D	-	+		E	-	C	-	Н	C		\vdash
16	3.11 m 3.35 m	Diaclasa Diaclasa	11°NE 11°NE	N0°W	90	0.26 m 0.24 m		0		2.50 m 1.93 m		B	-	\vdash	20 mm 10 mm		+	-	E		5	D	+	1	_	E		C	-	Н	C		\vdash
17	3.60 m	Diaclasa	13°NE	N0°W	90	0.25 m		Č		1.98 m			1		10 mm				E		2.	D				E.		C			Č		
18	3.84 m	Diaclasa	11°NE	N0°W	90	0.24 m		(1.89 m		В			10 mm		\perp		Е			D				E		C			C		
19	4.04 m	Diaclasa	12°NE	N0°W	90	0.20 m		(2.23 m			+	Н	20 mm		\perp		E			D	1	+		E		C			C		\vdash
20	4.25 m 4.46 m	Diaclasa Diaclasa	11°NE 11°NE	N0°W	90 90	0.21 m 0.21 m	-	(1.95 m 3.15 m		В	-	-	20 mm	-	+	+	E			D	-	+	_	E	-	C			C		
22	4.72 m	Diaclasa	11°NE	N0°W	90	0.26 m		1		2.50 m	1 1	в	-	\vdash	20 mm		+		E	- 1		D	_	+	-1-	E		č			C		\vdash
23	4.96 m	Diaclasa	11°NE	N0°W	90	0.24 m		(1.93 m		В			10 mm				Е	1 8		D				E		C	3 7 3		C		
24	5.18 m	Diaclasa	10°NE	N0°W	90	0.22 m		(4.15 m	Н.	(\vdash	20 mm		-		E			D	_	\perp	_	E	_	C			C		_
25 26	5.39 m 5.62 m	Diaclasa Diaclasa	11°NE	N0°W	90 90	0.21 m 0.23 m		0		2.15 m 2.24 m		В			10 mm 10 mm	-	-	-	E			D	-	+	_	E	-	C		\vdash	C		×
27	5.83 m	Diaclasa	13°NE	N0°W	90	0.23 m		10		2.54 m		В	_		10 mm		+		E			D			_	E		č			C		
28	6.07 m	Diaclasa	11°NE	N0°W	90	0.24 m		(2	2.00 m		В			10 mm		$^{+}$		Е			D				E		C			C		
29	6.28 m	Diaclasa	12°NE	N0°W	90	0.21 m		(3.20 m		(20 mm		\perp		E			D				E		C			C		
30	6.49 m	Diaclasa	11°NE	N0°W	90	0.21 m	4 4	(4.20 m	—	(2		20 mm		-		E			D D	_	\perp		E		C			C		
31	6.71 m 6.92 m	Diaclasa Diaclasa	11°NE	N0°W	90	0.22 m 0.21 m	-	- 6		2.20 m 2.52 m		В	_	\vdash	20 mm 20 mm	-	+	+-	E	-		D	+	+	_	E	-	6	-		- 0		\vdash
33	7.12 m	Diaclasa	11°NE	N0°W	90	0.20 m		1		2.11 m		В	+	\vdash	20 mm		+		E		3 3	D	+	\vdash	_	E		č	3	\vdash	Č		\vdash
34	7.33 m	Diaclasa	12°NE	N0°W	90	0.21 m		(2.23 m		В			20 mm				E			D				Ē		C			C	1	
35	7.55 m	Diaclasa	10°NE	N0°W	90	0.22 m		(2.53 m		В			20 mm				E			D				E		C			C		
36	7.75 m 7.96 m	Diaclasa Diaclasa	11°NE 11°NE	N0°W N0°W	90 90	0.20 m 0.21 m		0		1.96 m 2.52 m	- 1	В	-	-	20 mm 10 mm	-	-	-	E			D	+	+	_	E		C		\vdash	C		-
38	8.22 m	Diaclasa	11°NE	N0°W	90	0.21 m	1 1 1	10		2.50 m		В	+	\vdash	20 mm		+	+	E			D	+	+	_	E		č		\vdash	C	_	\Box
39	8.46 m	Diaclasa	11°NE	N0°W	90	0.24 m		C		1.93 m	Ti				10 mm				E	- 11		D				E		Č			Č		
40	8.71 m	Diaclasa	13°NE	N0°W	90	0.25 m		(1.98 m		В			10 mm		T		E	4-8	ğ —	D				E		C	3		C		
41	8.95 m	Diaclasa	11°NE	N0°W	90	0.24 m			21	1.89 m	1 1	В			10 mm				E			D		1		E		C			C	2	

ANEXO 06: Instrumento de investigación 03: Guía de observación para ensayo de resistencia de la roca con el método del martillo de rebote (ISRM – 2009)

DETERMINACIÓN DEL ÍNDICE DE REBOTE UTILIZANDO EL DISPOSITIVO MARTILLO DE SCHMIDT

PROYECTO : "APLICACIÓN DE LAS CONDICIONES GEOMECÁNICAS DEL ÍNDICE SLOPE MASS RATING EN LA ESTABILIDAD

DEL TALUD EN CARRETERA PUENTE COLLPA - YANACANCHA"

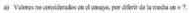
: BACH. FANNY VERÓNICA CANDIOTTI DUEÑAS SOLICITADO

FECHA DE EMISION: 12 de octubre del 2021

: Zona 02 en estación geomecánica EG01, Red Vial Vecinal JU - 816. UBICACIÓN

COORDENADAS

ESTACIÓN GEOMECÁNICA EGRI	ESTE	NORTE	COTA
ZONA 82	456637.8327 m	8657709:8565 m	3734.80 ma.c.m


TIPO DE MUESTRA : IN - SITU - CARA DEL TALUD

PRESENCIA DE AGUA : Ligeramente húmedo

TIPO DE ROCA : Roca calcárea detonada GRADO DE ALTERACIÓN: Ligeramente alterada

PENTO	E. ENSAYO	Nº TOMA	NRO DE DISPARO	REBUTES TIPO N	PROMEDIO REBOTES TIPO N	Valor que differe de la mediana	INDICE DE REBOTES TIPO L	FACTOR DE CORRECCIÓN	PROMEDIO DE REBOTES TIPO L CORREGIDO	RESISTENCIA DE LA ROCA	Aceptación del Emayo
		1	1	42		-3.900	28				
		2	1	42		-3.900	28				
		3	- 12	42		-3.900	28				
		4	-1	33		5.100	21				
		5	1	33		5.100	21				
		6	1	38		0.100	25		38.01		
		7	1	38		0.100	25				асертаво
	Malla de 30 cm x 30 cm y espacio interno de cuadrados de	8	1	37	38.10	1.100	24	1.53			
		9	1	39		-0.900	26				
EG-01		10	1	39		-0.900	26			62.80±30 Mpa	
ZONA 02		11	1.	32		6.100	20		38,01	62.802.30 Mpa	
		12	1	43		-4.900	29				
		13	1	43		-4.900	29				
		14	T.	41		-2.900	27				
		15	1	38		0.100	25				
		16	1	38		0.100	25				
		17	-1	35		3.100	22				
		18	1	37		1.100	24				
		19	1	37		1.100	24				
		20	1	35		3.100	22				
			20								


PARÂMETROS DE ACEPTACIÓN DE ENSAYO

- b) Los valores de la mediana se aproximaron al Nro, entero más cercano
- c) Ángulo de disparo
- d) Tipo de martillo:
- e) Energia de impacto del martillo :
 f) Dureza estándar del yunque de calibración :
- g) Peso estándar del yunque de calibración : h) Promedio de los diez lecturas tomadas en el yunque de calibración

i) El ensayo se realizó en la cara del talad, por ser una superficie sin compactar
 j) Se transformaron los rebotes con martillo N a rebotes con martillo L.(Ayday y
 Göktan, 1992)

NOTA: LA RESISTENCIA ROCOSA EN LA CARA DEL TALUD DE LA ESTACIÓN GEOMECÁNICA EG-01 ES 62.80 Mpa.

Ing. Civil Edwin Peña Dueñas ASSOR TENICO OF 195410 ESPECIALISTA EN MECANICA DE SUELOS. CONCLETO, GEOTECNIA / GEOLOGIA

DETERMINACIÓN DEL ÍNDICE DE REBOTE UTILIZANDO EL DISPOSITIVO MARTILLO DE SCHMIDT

: "APLICACIÓN DE LAS CONDICIONES GEOMECÁNICAS DEL ÍNDICE SLOPE MASS RATING EN LA ESTABILIDAD DEL TALUD EN CARRETERA PUENTE COLLPA – YANACANCHA" PROYECTO

: BACH, FANNY VERÓNICA CANDIOTTI DUEÑAS SOLICITADO

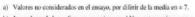
FECHA DE EMISIÓN: 12 de octubre del 2021

: Zona 01 en estación geomecánica EG01, Red Vial Vecinal JU - 816.

COORDENADAS

TIPO DE ROCA

ESTACIÓN GEOMECÁNICA EGM	ESTE	NORTE	COTA
ZONA 01	456631 9792 m	8657712.8858 m	3733.50 ms.n.m


TIPO DE MUESTRA : IN - SITU - CARA DEL TALUD

: Roca calcárea detonada

PRESENCIA DE AGUA : Ligeramente húmedo GRADO DE ALTERACIÓN: Ligeramente alterada

PUNTO	E. ENSAYO	Nº TOMA	NRO. DE DISPARO	REBOTES TIPO N	PROMEDIO REBOTES TIPO N	Valor que difiere de la necliona	INDICE DE REBOTES TIPO L	FACTOR DE CORRECCIÓN	PROMEDIO DE RESOTES TIPO L CORREGIDO	RESISTENCIA DE LA ROCA	Acoptación del Ensayo
		1	1	39		-1.90	26				
		2	1	39		-1.90	26				
		3	1	35		2.10	22		36.78		
		4	1	35		2.10	22				
		5	1	37		0.10	24			59.80±30 Mpa	ACEPTADO
		6	1	36		1.10	23	1.53			
	meeting are	7	1	38	37.10	-0.90	25				
		8	1	38		-0.90	25				
		9	1	37		0.10	24				
EG-01		10	1	37		0.10	24				
ONA 01		11	1	40		-2.90	26				
	cuadrados de	12	1	33		4,10	21				
	1	13	1	36		1.10	23				
		14	1	34		3.10	22				
		15	1	34		3.10	22				
		16	1	40		-2.90	26				
		17	1	41		-3.90	27				
		18	1	41		-3.90	27				
		19	1	36		1.10	23				
		20	1	36		1.10	23				

PARÂMETROS DE ACEPTACIÓN DE ENSAYO

b) Los valores de la mediana se aproximaron al Nro, entero más cercano

c) Ángulo de disparo d) Tipo de martillo : e) Energia de impacto del martillo :

f) Dureza estándar del yunque de calibración : g) Peso estàndar del yunque de calibración : h) Promedio de los diez lecturas tomadas en el yunque de calibración i) El ensayo se realizó en la cara del talud, por ser una superficie sin compactar

naron los rebotes con martillo N a rebotes con martillo L_i(Ayday y

Göktan, 1992)

Martillo tipo N 2.207 Nm 52 16 kg (RN-7.124)/1.249

NOTA: LA RESISTENCIA ROCOSA EN LA CARA DEL TALUD DE LA ESTACIÓN GEOMECÁNICA EG-01 ES 59.80 M

Ing. Civil Edwin Pena Dueñas ASSOR TÉNNOD CIP 145416 ESPECIALETA EN MECHALCA DE SUELDS. CONDUZTO, GEOTECNIA ? GEOLOGIA

GEOLUMAS SAC.

DETERMINACIÓN DEL ÍNDICE DE REBOTE UTILIZANDO EL DISPOSITIVO MARTILLO DE SCHMIDT

PROYECTO : "APLICACIÓN DE LAS CONDICIONES GEOMECÁNICAS DEL ÍNDICE SLOPE MASS RATING EN LA ESTABILIDAD

DEL TALUD EN CARRETERA PUENTE COLLPA - YANACANCHA*

SOLICITADO : BACH. FANNY VERÓNICA CANDIOTTI DUEÑAS

FECHA DE EMISIÓN: 12 de octubre del 2021

UBICACIÓN : Zona 01 en estación geomecánica EG02, Red Vial Vecinal JU - 816.

COORDENADAS

ESTACIÓN GEOMECÁNICA EGIZ	ESTE	NORTE	COTA
ZONA 01	456642.4715 m	8657706.6925 m	3735 m.s.n.m

TIPO DE MUESTRA : IN - SITU - CARA DEL TALUD

PRESENCIA DE AGUA : Ligeramente húmedo

TIPO DE ROCA : Roca calcárea detonada

GRADO DE ALTERACIÓN: Ligeramente alterada

PUNTO	E. ENSAYO	Nº TOMA	NRO, DE DISPARO	INDICE DE REBOTES TIPO N	PROMEDIO REBOTES TIPO N	Value que diffiere de la mediana	INDICE DE REBOTES TIPO L	FACTOR DE CORRECCIÓN	PROMEDIO DE REBOTES TIPO L CORREGIDO	RESISTENCIA DE LA ROCA	Aceptación del Emuyo
		1	1	35		-0.150	22				
		2	1	35		-0.150	22				
	3	3	.1	32		2.850	20				
		4	- 1	31		3.850	19				
		5	1	34		0.850	22				
		6	1	34		0.850	22				
		7	1	34		0.850	22				ACEPTADO
		8	1	37	34.85	-2.150	24	1.53			
	Malla de 4"X5" y espacio interno de cuadrados de	9	1	35		-0.150	22				
EG02		10	1	35		-0.150	22		34.02	51.30±30 Mpa	
ONA 01		11	1	36		-1.150	23		34.02	этэмээ мра	
		12	1	36		-1.150	23				
		13	1	34		0,850	22				
		14	1	34		0.850	22				
		15	-1	:37		-2.150	24				
		16	1	37		-2.150	24				
		17	1	34		0.850	22				
		18	1	36		-1.150	23				
		19	1	36		-1.150	23				
		20	3	35		-0.150	22				
			20							•	

PARÂMETROS DE ACEPTACIÓN DE ENSAYO

b) Los valores de la media se aproximaron al Nro. entero más cercano

c) Ángulo de disparo
d) Tipo de martillo :
e) Energia de impacto del martillo :
f) Dureza estándar del yunque de calibración :
g) Peso estándar del yunque de calibración :

1) Dureza estandar del yunque de calibración:
2) Peso estindar del yunque de calibración:
3) Peso estindar del yunque de calibración:
4) El ensayo se realizió en la cara del taltad, por ser una superficie sin compactar
5) Se transformaron les rebotes con martillo N a rebotes con martillo La(Ayday y
68ktan, 1992)

: 16 kg : 79.7 : 'RL- (RN-7.124)/1.249

Martillo tipo N

2.207 Nm

22 19855885

NOTA: LA RESISTENCIA ROCOSA EN LA CARA DEL TALUD DE LA ESTACIÓN GEOMECÁNICA EG-01 ES 51.30 Mpa.

JR. 28 DE OCTUBRE Nº 429 EL TAMBO HUANCAYO (ALTURA DEL PUENTE CARRION)
ESTUDIO DE MECÁNICA DE SUELOS, CONCRETO Y ASFALTO.

RUC. 20568764995,

Ing. Civil Edwin Peña Dueñas

**SPECIAL PRINCO CON 148-16

CONCT.-ITO. GEOTECNIA / GEOLGOS.

CEL 968111156, RPM #968111156

CEL 971337776, RPM #971337776

DETERMINACIÓN DEL ÍNDICE DE REBOTE UTILIZANDO EL DISPOSITIVO MARTILLO DE SCHMIDT

: "APLICACIÓN DE LAS CONDICIONES GEOMECÁNICAS DEL ÍNDICE SLOPE MASS RATING EN LA ESTABILIDAD PROYECTO

DEL TALUD EN CARRETERA PUENTE COLLPA - YANACANCHA"

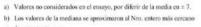
SOLICITADO : BACH. FANNY VERÓNICA CANDIOTTI DUEÑAS

FECHA DE EMISIÓN: 12 de octubre del 2021

UBICACIÓN : Zona 02 en Estación geomecánica EG02, Red Vial Vecinal JU - 816.

COORDENADAS :

ESTACIÓN GEOMECÁNICA EGI2	ESTE	NORTE	COTA
ZONA 82	456653.9085 m	8657700.9633 m	3735 m.s.n.m


TIPO DE MUESTRA : IN - SITU - CARA DEL TALUD

PRESENCIA DE AGUA : Ligeramente húmedo GRADO DE ALTERACIÓN: Ligeramente alterada

TIPO DE ROCA : Roca calcárea detonada

PUNTO	E. ENSAVO	Nº TOMA	NRO, DE DISPARO	INDICE DE REBOTES TIPO N	PROMEDIO REBOTES TIPO N	Valor que differe de la mediana	INDICE DE REBOTES TIPO L	FACTOR DE CORRECCIÓN	PROMEDIO DE REBOTES TIPO L CORREGIDO	RESISTENCIA DE LA ROCA	Aceptación del Ensayo
		1	-1	35		10.781	22				
		2	1.	35		10.781	22				
		3	1	31		13.984	19				
		4	1	31		13.984	19				
		5	1	33		12.383	21				
		6	1	32		13.183	20				
		7	.1	34		11.582	22				ACEPTADO
	Malla de 30 cm x 30 cm y espacio interno- de cuadrados de 1°	8	1.	34	33.10	11.582	22	1.53			
		9	1	33		12.383	21				
EG02		10	1	33		12.383	21		31.88	46.25 ± 30 Mpa	
ONA 01		11	1	36		9.981	23		31.00	40.25 = 50 Mpa	
		12	1	29		15.585	18				
		13	1	32		13.183	20				
		14	1	30		14.785	18				
		15	1	30		14.785	18				
		16	1	36		9.981	23				
		17	- 1	37		9.180	24				
		18	1	37		9.180	24				
		19	1	32		13.183	20				
		20	1	32		13.183	20				
			20								

PARÁMETROS DE ACEPTACIÓN DE ENSAYO

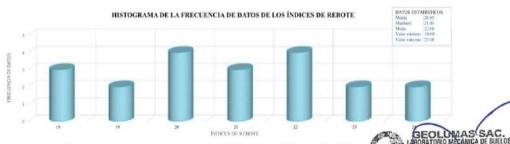
c) Ángulo de disparo d) Tipo de martillo:

e) Energia de impacto del martillo :

processor de l'impacto de marino:

Dureza estándar del yunque de calibración:

Peso estándar del yunque de calibración:


Promedio de los diez lecturas tomadas en el yunque de calibración

El ensayo se realizó en la cara del talud, por ser una superficie sin compactar

j) Se transformaron los rebotes con martillo N a rebotes con martillo L.(Ayday y Gőktan, 1992)

Martillo tipo N 2.207 Nm 52 16 kg 79.7

(RN-7.124)/1.249 20.79743795

NOTA: LA RESISTENCIA ROCOSA EN LA CARA DEL TALUD DE LA ESTACIÓN GEOMECÁNICA EG-01 ES 46.25 Mpg.

JR. 28 DE OCTUBRE N° 429 EL TAMBO HUANCAYO (ALTURA DEL PUENTE CARRION)
ESTUDIO DE MECÁNICA DE SUELOS, CONCRETO Y ASFALTO.

RUC. 20568764995, CEL 968111156, RPM #968111156 CEL 971337776, RPM #971337776

Ing. Civil Edwin Peña Dueñas ASESOR TECNICO CIP 145/16 ESPECIALISTA EN MICCAMCA DE SUELOS, CONCLETO, GEOTECNIA / GEOLOGIA

DETERMINACIÓN DEL ÍNDICE DE REBOTE UTILIZANDO EL DISPOSITIVO MARTILLO DE SCHMIDT

: "APLICACIÓN DE LAS CONDICIONES GEOMECÁNICAS DEL ÍNDICE SLOPE MASS RATING EN LA ESTABILIDAD DEL TALUD EN CARRETERA PUENTE COLLPA – YANACANCHA" PROYECTO

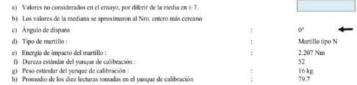
: BACH, FANNY VERÓNICA CANDIOTTI DUEÑAS SOLICITADO

FECHA DE EMISIÓN: 12 de octubre del 2021

: Zona 01 en estación geomecánica EG03, Red Vial Vecinal JU - 816. UBICACIÓN

COORDENADAS

ESTACIÓN GEOMECÁNICA EGIJ	ESTE	NORTE	COTA	
ZONA 01	456604.8211 m	8652695.5534 m	3735 m.s.n.m	


TIPO DE MUESTRA : IN-SITU - CARA DEL TALUD

PRESENCIA DE AGUA : Ligeramente húmedo

TIPO DE ROCA : Roca calcárea detonada GRADO DE ALTERACIÓN: Moderadamente alterada

PENTO	E. ENSAYO	N° TOMA	NRO. DE DISPARO	REBOTES TIPO N	PROMEDIO REBOTES TIPO N	Valor que differe de la mediana	ENDICE DE REBOTES TIPO L	FACTOR DE CORRECCIÓN	PROMEDIO DE REBOTES TIPO L CORREGIDO	RESISTENCIA DE LA ROCA	Aceptación del Ensay
		1	1	35		1.650	22				
		2	1.	35	1	1.650	22				
		3	1:	38		-1.350	25				
		4	1	39		-2.350	26				
		5	1	40		-3.350	26				
		6	1	38		-1.350	25				
		7	1	38		-1.350	25				ACEPTADO
	Malla de 30 cm x 30 cm y espacio interno de cuadrados de -	8	1.	34	36.65	2.650	22	1.53			
		9	1	34		2.650	22				
EG03		10	1	35		1.650	22		36.23	56,60±30 Mpa	
ZONA 01		11	1	35		1.650	22		30.23	30.00±30 Mpa	
		12	1	37		-0.350	24				
	121	13	1	37		-0.350	24				
		14	1	40		-3.350	26				
		15	1.	38		-1.350	25				
		16	1.	38		-1.350	25				
		17	1	35		1.650	22				
		18	1	36		0.650	23				
		19	1	36		0.650	23				
		20	T.	35		1.650	22				
			20								

PARÂMETROS DE ACEPTACIÓN DE ENSAYO

i) El ensayo se realizó en la cara del talud, por ser una superficie sin compactar

j) Se transformaron los rebotes con martillo N a rebotes con martillo L.(Ayday y Göktan, 1992) 'RI--/RN-7 124)/1 249 23.63971177

NOTA: LA RESISTENCIA ROCOSA EN LA CARA DEL TALUD DE LA ESTACIÓN GEOMECÁNICA EG03 ES 56.60 Mpa

JR. 28 DE OCTUBRE N° 429 EL TAMBO HUANCAYO (ALTURA DEL PUENTE CARRION)
ESTUDIO DE MECÁNICA DE SUELOS, CONCRETO Y ASFALTO.

20568764995, RUC.

Ing. Civil Edwin Peña Dueñas
AGESOR TECNICO CEP 148-10
ESPECIALETA EN MISCAIGA DE BUELOS.
CONCT.-ETO, GEOTECNIA / GEOLOGIA CEL 968111156, RPM #968111156 CEL 971337776, RPM #971337776

DETERMINACIÓN DEL ÍNDICE DE REBOTE UTILIZANDO EL DISPOSITIVO MARTILLO DE SCHMIDT

: "APLICACIÓN DE LAS CONDICIONES GEOMECÁNICAS DEL ÍNDICE SLOPE MASS RATING EN LA ESTABILIDAD DEL TALUD EN CARRETERA PUENTE COLLPA – YANACANCHA" PROYECTO

: BACH, FANNY VERÓNICA CANDIOTTI DUEÑAS SOLICITADO

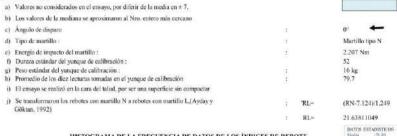
FECHA DE EMISIÓN: 12 de octubre del 2021

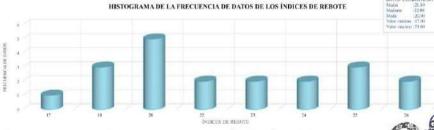
UBICACIÓN : Zona 02 en estación geomecánica EG03, Red Vial Vecinal JU - 816.

COORDENADAS

ESTACIÓN GEOMECÁNICA EGO3	ESTE	NORTE	COTA
ZONA 02	456664.8211 m	8657695.5534 m	3735 m.s.n.m

TIPO DE MUESTRA : IN-SITU - CARA DEL TALUD


PRESENCIA DE AGUA : Ligeramente húmedo


GRADO DE ALTERACIÓN: Moderadamente alterada

TIPO DE ROCA : Roca calcárea detonada

UNTO	E. ENSAYO	N° TOMA	NRO, DE DISPARO	INDICE DE REBOTES TIPO N	PROMEDIO REBOTES TIPO N	Valor que difiere de la mediana	ENDICE DE REBOTES TIPO L	FACTOR DE CORRECCIÓN	PROMEDIO DE REBOTES TIPO L CORREGIDO	RESISTENCIA DE LA ROCA	Aceptación del Encayo
		1	- 1	32		2.150	20				
		2	1	32		2.150	20				
		3	1	28		6.150	17				
		4	i i	38		-3.850	25				
		5	1	39		-4.850	26				
		6	1	37		-2.850	24				ACEPTADO
		7	1	37		-2.850	24				
		8	1	38	34.15	-3.850	25	1.53			
	Malla de 30 cm x 30 cm y- espacio interno de cuadrados de 1"	9	1	38		-3.850	25				
EG03		10	1	32		2.150	20		27.16	48.25±30 Mpa	
DNA 02		11	1	32		2,150	20		33.16	46.25230 Sipa	
		12	1	34		0.150	22				
	950	13	- 1	34		0.150	22				
		14	1	30		4.150	18				
		15	1	39		-4.850	26				
		16	- 1	36		-1.850	23				
		17	1	36		-1.850	23				
		18	1	30		4.150	18				
		19	1	29		5.150	18				
		20	1	32		2.150	20				
			20								

PARÁMETROS DE ACEPTACIÓN DE ENSAYO

NOTA: LA RESISTENCIA ROCOSA EN LA CARA DEL TALUD DE LA ESTACIÓN GEOMECÁNICA EG03 ES 48.25 Mpa.

JR. 28 DE OCTUBRE N° 429 EL TAMBO HUANCAYO (ALTURA DEL PUENTE CARRION) ESTUDIO DE MECÁNICA DE SUELOS, CONCRETO Y ASFALTO.

20568764995. RUC.

CEL 968111156, RPM #968111156 CEL 971337776, RPM #971337776

Ing. Civil Edwin Peña Dueñas ASESOA TEPNICO GE 18516 ESPECIALETA EN MECANICA DE SUELOS. CONCEATO, GEOTEGNIA 7 GEOLOGIA

181

PANEL FOTOGRÁFICO

FOTO 01.- ENSAYO DE ESCLEROMETRIA, "APLICACIÓN DE LAS CONDICIONES GEOMECÁNICAS DEL ÍNDICE SLOPE MASS RATING EN LA ESTABILIDAD DEL TALUD CARRETERA PUENTE COLLPA – YANACANCHA"- ESTACIÓN GEOMECÁNICA 01

FOTO 02.- ENSAYO DE ESCLEROMETRIA, "APLICACIÓN DE LAS CONDICIONES GEOMECÁNICAS DEL ÍNDICE SLOPE MASS RATING EN LA ESTABILIDAD DEL TALUD CARRETERA PUENTE COLLPA – YANACANCHA"- ESTACIÓN GEOMECÁNICA 02

FOTO 03.- ENSAYO DE ESCLEROMETRIA, "APLICACIÓN DE LAS CONDICIONES GEOMECÁNICAS DEL ÍNDICE SLOPE MASS RATING EN LA ESTABILIDAD DEL TALUD CARRETERA PUENTE COLLPA – YANACANCHA"- ESTACIÓN GEOMECÁNICA 03

ANEXO 07: Instrumento de investigación 04: Guía de observación para ensayo de propiedades físicas de la roca (ASTM C97 / C97M-18)

ENSAYO DE PROPIEDADES FÍSICAS DE LA ROCA (ASTM C97 / C97M - 18)

PROYECTO : "APLICACIÓN DE LAS CONDICIONES GEOMECÁNICAS DEL ÍNDICE SLOPE MASS RATING

EN LA ESTABILIDAD DEL TALUD EN CARRETERA PUENTE COLLPA – YANACANCHA"

SOLICITADO : BACH. FANNY VERÓNICA CANDIOTTI DUEÑAS

FECHA DE EMISIÓN: 12 de octubre del 2021

UBICACIÓN : Red Vial Vecinal JU - 816, Estaciones geomecánicas: EG01, EG02 y EG03

ESTACIÓN GEOMECÁNICA	ESTE	NORTE	СОТА
EG01	456631.98 m	8657712.89 m	3733.50 m.s.n.m
EG02	456642.47 m	8657706.69 m	3734.21 m.s.n.m
EG 03	456664.82 m	8657695.55 m	3734.80 m.s.n.m

TIPO DE ROCA : Roca calcárea detonada

I. DATOS DE LA ROCA: EG01

ÍTEM	DESCRIPCIÓN	UNIDAD	MUESTRA 1	MUESTRA 2	MUESTRA 3	MUESTRA 4	MUESTRA 5
1	Peso en el aire del espécimen seco	gr	573.98	573.57	574.12	574.23	573.43
322	Peso en el aire del espécimen saturado Superficialmente Seco	gr	597.68	597.25	598.83	597.95	598.16
3	Peso saturado sumergido del espécimen	gr	370.94	367.78	369.84	367.76	369.48
4	Densidad del agua destilada	gr/cm3	1.00	1.00	1.00	1.00	1.00

II. RESULTADOS

5	% De absorción	9/6	4.13	4.13	4.30	4.13	4.31
6	Gravedad específica		2.53	2.50	2.51	2.49	2.51
7	Den sidad del espécimen	gr/cm3	2.53	2.50	2.51	2.49	2.51

III. RESUMEN DE RESULTADOS EG-01

8	Promedio de porcentaje de absorción de la roca	%	4.20
9	Promedio de gravedad específica de la roca	*	2.51
10	Promedio de densidad de la roca	gr/cm3	2.51

NOTA:

LA ROCA ENSAYADA TIENE UNA DENSIDAD PROMEDIO DE :

2.51 gr/cm3

LA NORMA ASTM C97–18, DETERMINA LAS PROPIEDADES FÍSICAS DE LA ROCA: ABSORCIÓN Y GRAVEDAD ESPECÍFICA A GRANEL DE LA PIEDRA DIMENSIONAL.

SEGÚN LA ISRM (SOCIEDAD INTERNACIONAL DE MECÁNICA DE ROCAS), LAS PROPIEDADES FÍSICAS DE LA ROCA INFLUYEN EN LA DETERMINACIÓN DE LA RESISTENCIA DE LA ROCA CON MARTILLO DE SCHMIDT PARA LA CUAL SE DEBEN ENSAYAR 5 ESPÉCIMENES.

Ing. Civil Edwin Peña Ducñas ASSORTECNICO CIP HASATA ESPECIALISTA EN MECANICA DE SUELOS. CONCTATO, GEOTECMA Y GEOLOGA

ENSAYO DE PROPIEDADES FÍSICAS DE LA ROCA (ASTM C97 / C97M - 18)

PROYECTO : "APLICACIÓN DE LAS CONDICIONES GEOMECÁNICAS DEL ÍNDICE SLOPE MASS RATING

EN LA ESTABILIDAD DEL TALUD EN CARRETERA PUENTE COLLPA - YANACANCHA"

SOLICITADO : BACH. FANNY VERÓNICA CANDIOTTI DUEÑAS

FECHA DE EMISIÓN: 12 de octubre del 2021

UBICACIÓN : Red Vial Vecinal JU – 816, Estaciones geomecánicas: EG01, EG02 y EG03

ESTACIÓN GEOMECÁNICA	ESTE	NORTE	СОТА
EG01	456631.98 m	8657712.89 m	3733.50 m,s.n.m
EG02	456642.47 m	8657706.69 m	3734.21 m.s.n.m
EG03	456664.82 m	8657695.55 m	3734.80 m.s.n.m

TIPO DE ROCA : Roca calcárea detonada

I. DATOS DE LA ROCA: EG02

İTEM	DESCRIPCIÓN	UNIDAD	MUESTRA 1	MUESTRA 2	MUESTRA 3	MUESTRA 4	MUESTRA 5
1	Peso en el aire del espécimen seco	gr	545.78	540.42	543.91	540.96	543.18
100000	Peso en el aire del espécimen saturado Superficialmente Seco	gr	566.59	565.17	565.76	565.75	566.97
3	Peso satumdo sumergido del espécimen	gr	350.94	350.78	350.15	350.84	350.18
4	Densidad del agua destilada	gr/cm3	1.00	1.00	1.00	1.00	1.00

II. RESULTADOS

5	% De absorción	%	3.81	4.58	4.02	4.58	4.38
6	Gravedad especifica		2.53	2.52	2.52	2.52	2.51
7	Densidad del espécimen	gr/cm3	2.53	2.52	2.52	2.52	2.51

III. RESUMEN DE RESULTADOS EG-02

8	Promedio de porcentaje de absorción de la roca	%	4.27
9	Promedio de gravedad específica de la roca		2.52
10	Promedio de densidad de la roca	gr/cm3	2.52

NOTA:

LA ROCA ENSAYADA TIENE UNA DENSIDAD PROMEDIO DE :

2.52 gr/cm3

LA NORMA ASTM C97–18, DETERMINA LAS PROPIEDADES FÍSICAS DE LA ROCA: ABSORCIÓN Y GRAVEDAD ESPECÍFICA A GRANEL DE LA PIEDRA DIMENSIONAL.

SEGÚN LA ISRM (SOCIEDAD INTERNACIONAL DE MECÁNICA DE ROCAS), LAS PROPIEDADES FÍSICAS DE LA ROCA INFLUYEN EN LA DETERMINACIÓN DE LA RESISTENCIA DE LA ROCA CON MARTILLO DE SCHMIDT PARA LA CUAL SE DEBEN ENSAYAR 5 ESPÉCIMENES.

Ing. Civil Edwin Pena Dueñas AESDRITERNO GIP 145416 ESPECIALETA EN MECANICA DE SUELOS. CONCLETO, GECTECHIA / GEOLOGIA

ENSAYO DE PROPIEDADES FÍSICAS DE LA ROCA (ASTM C97 / C97M - 18)

PROYECTO : "APLICACIÓN DE LAS CONDICIONES GEOMECÁNICAS DEL ÍNDICE SLOPE MASS RATING

EN LA ESTABILIDAD DEL TALUD EN CARRETERA PUENTE COLLPA - YANACANCHA"

SOLICITADO : BACH. FANNY VERÓNICA CANDIOTTI DUEÑAS

FECHA DE EMISIÓN: 12 de octubre del 2021

UBICACIÓN : Red Vial Vecinal JU - 816, estaciones geomecánicas: EG01, EG02 y EG03

ESTACIÓN GEOMECÁNICA	ESTE	NORTE	COTA
EG01	456631.98 m	8657712.89 m	3733.50 m.s.n.m
EG02	456642.47 m	8657706.69 m	3734.21 m.s.n.m
EG03	456664.82 m	8657695.55 m	3734.80 m.s.n.m

TIPO DE ROCA : Roca calcárea detonada

I. DATOS DE LA ROCA: EG03

ÍTEM	DESCRIPCIÓN	UNIDAD	MUESTRA 1	MUESTRA 2	MUESTRA 3	MUESTRA 4	MUESTRA 5
1	Peso en el aire del espécimen seco	gr	661.35	662.49	662.23	661.45	662.56
	Peso en el aire del espécimen saturado Superficialmente Seco	gr	690.79	691.14	689.96	690.34	691.07
3	Peso saturado sumergido del espécimen	gr	425.14	425.18	424.75	425.14	424.86
4	Densidad del agua destilada	gr/cm3	1.00	1.00	1.00	1.00	1.00

II. RESULTADOS

5	% De absorción	%	4.45	4.32	4.19	4.37	4.30
6	Gravedad especifica	- 3	2.49	2.49	2.50	2.49	2.49
7	Densidad del espécimen	gr/cm3	2.49	2.49	2.50	2.49	2.49

III. RESUMEN DE RESULTADOS EG-02

8	Promedio de porcentaje de absorción de la roca	%	4.33
9	Promedio de gravedad específica de la roca	-	2.49
10	Promedio de densidad de la roca	gr/cm3	2.49

NOTA:

LA ROCA ENSAYADA TIENE UNA DENSIDAD PROMEDIO DE :

2.49 gr/cm3

LA NORMA ASTM C97–18, DETERMINA LAS PROPIEDADES FÍSICAS DE LA ROCA: ABSORCIÓN Y GRAVEDAD ESPECÍFICA A GRANEL DE LA PIEDRA DIMENSIONAL.

SEGÚN LA ISRM (SOCIEDAD INTERNACIONAL DE MECÁNICA DE ROCAS), LAS PROPIEDADES FÍSICAS DE LA ROCA INFLUYEN EN LA DETERMINACIÓN DE LA RESISTENCIA DE LA ROCA CON MARTILLO DE SCHMIDT PARA LA CUAL SE DEBEN ENSAYAR 5 ESPÉCIMENES.

Ing. Civil Edwin Peña Ducñas ASESOA TECNICO CIP 148416 ESPECIALISTA EN MECANICA DE SUELOS. CONCTATO, GEOTECHIA Y GEOLOGIA

PANEL FOTOGRÁFICO

FOTO 01.- ENSAYO DE PROPIEDADES FÍSICAS, "INFLUENCIA DEL ÍNDICE SLOPE MASS RATING (SMR) EN EL COMPORTAMIENTO DEL TALUD EN RED VIAL VECINAL (JU - 816)"

FOTO 02.- ENSAYO DE PROPIEDADES FÍSICAS DE LA ROCA, "INFLUENCIA DEL ÍNDICE SLOPE MASS RATING (SMM) EN EL COMPORTAMIENTO DEL TALLID EN RED VIAL VECINAL (JU - 816)"- PESADO DE MUESTRAS SUPERFICIALMENTE SATURADA

FOTO 03.- ENSAYO DE PROPIEDADES FÍSICAS DE LAS ROCAS, "INFLUENCIA DEL ÍNDICE SLOPE MASS RATING (SMR) EN EL COMPORTAMIENTO DEL TALUD EN RED VIAL VECINAL (JU - 816)"- SECADO DE MUESTRAS EN HORNO

FOTO 04 - ENSAYO DE PROPIEDADES FÍSICAS DE LAS ROCAS, "INFLUENCIA DEL ÍNDICE SLOPE MASS RATING (SMR) EN EL COMPORTAMIENTO DEL TALUD EN RED VIAL VECINAL (JU - 816)"- PESADO DE MUESTRA SATURADA SUMERGIDA

Ing. Civil Edwin Peña Dueñas ASEGORIFENDO GAP 145416 ESPECIAUSTA EN INFECAURA DE SUELDO. CONCLETO, GEOTECNIA 7 GEOLDOSA

GEOLUMAS SAC

CEL 968111156, RPM #968111156 CEL 971337776, RPM #971337776

ANEXO 08: Instrumento de investigación 05: Guía de observación para Inspección petrográfica de roca en sección delgada (ASTM C1721-21)

PETROGRAFÍA DE ROCA EN SECCIÓN DELGADA (ASTM C1721-21)

PROYECTO : "Aplicación de las condiciones geomecánicas del índice Slope Mass Rating en

la estabilidad del talud carretera puente Collpa - Yanacancha"

ATENCIÓN : Universidad Peruana Los Andes
SOLICITADO : Bach. Fanny Verónica Candiotti Dueñas
PROCEDENCIA : Talud carretera puente Collpa – Yanacancha

FECHA DE EMISIÓN: 12 de octubre del 2021

1. DESCRIPCIÓN DEL ESPÉCIMEN

A continuación, se hace mención de las características del espécimen: M-01

Descripción microscópica:

Roca sedimentaria de textura granular, formada por pocos granos sub-redondeados de cuarzo y minerales diseminados, cementados por calcita esparítica de forma subhedral a anhedral, en menor proporción por dolomita esparítica de forma subhedral. Los óxidos de magnesio alteran los minerales al rellenar vacíos entre los cristales de calcita y dolomita.

Descripción macroscópica:

Se aprecia una roca caliza de origen sedimentario, con una dureza 3 en la escala de Morh, de color gris claro, de textura granular en estratos delgados a medianos, muy compactos, posee alta reacción con el ácido clorhídrico (HCl), debido a su composición mineralógica.

2. RESUMEN

Código o	le especímen	:	M-01
Forma d	le especimen	:	rectangular
Tamaño do senseimon	Inicial	:	3 cm x 2 cm x 1 cm
Tamaño de especímen	Final	:	3 cm x 2 cm x 30 μm
Tine del confeleron	Según su origen geológico	:	Sedimentaria
Tipo del espécimen	Según Folk, (1959)	:	Caliza grainstone
D	ureza	:	3
(Color	1	Gris claro
To	extura	:	Granular
LOCALIZACIÓN	Este		8657705
UTM	Norte	•	456650
			78,03% de calcita
C	·		19.52% de dolomita
Composicio	ón mineralógica	•	2,38% de cuarzo
		15	0.7% de óxido de magnesio
Relació	on con HCL	:	Rápida efervescencia

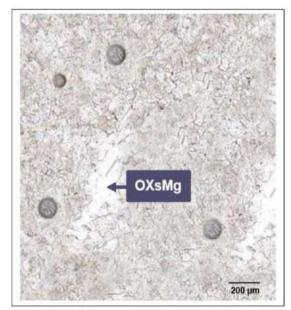
El muestreo, metodología y procedimiento de este ensayo se sustenta en la normativa ASTM C1721–Guía estándar para petrografía de piedras dimensionadas.

Atentamente,


GEOLDMAS SAC.

JABORATURIO MECANICA DE SUELOS

Ing. Civil Edwin Peña Dueñas
APESOR TENDO CO HABIG
ESPECIALETA EN MECANICA DE SUELOS.
CONCLETO, GEOTECNIA 7 GEOLOGIA


PANEL FOTOGRÁFICO

VISTA MICROSCÓPICA 01.- EXAMEN PETROGRÁFICO EN TESIS "APLICACIÓN DE LAS CONDICIONES GEOMECÁNICAS DEL ÍNDICE SLOPE MASS RATING EN LA ESTABILIDAD DEL TALUD CARRETERA PUENTE COLLPA — YANACANCHA": Los cristales de calcita, presentan forma lenticular, subhedrales a anhedrales.

VISTA MICROSCÓPICA 02.- EXAMEN PETROGRÁFICO EN TESIS "APLICACIÓN DE LAS CONDICIONES GEOMECÁNICAS DEL ÍNDICE SLOPE MASS RATING EN LA ESTABILIDAD DEL TALUD CARRETERA PUENTE COLLPA – YANACANCHA": Textura granular de cuarzo (cz) cementado por calcita y dolomita.

VISTA MICROSCÓPICA 03.- EXAMEN PETROGRÁFICO EN TESIS "APLICACIÓN DE LAS CONDICIONES GEOMECÁNICAS DEL ÍNDICE SLOPE MASS RATING EN LA ESTABILIDAD DEL TALUD CARRETERA PUENTE COLLPA — YANACANCHA": Los óxidos de magnesio (OXSMg), rellenan vacíos entre los cristales de calcita y dolomita.

JR. 28 DE OCTUBRE N° 429 EL TAMBO HUANCAYO (ALTURA DEL PUENTE CARRION)
ESTUDIO DE MECÁNICA DE SUELOS, CONCRETO Y ASFALTO. RUC. 20568764995,

ANEXO 09: Validación de los instrumentos de investigación, consentimiento informado e informe de opinión del juicio de expertos.

PROTOCOLO DE CONSENTIMIENTO INFORMADO PARA ENCUESTAS

Estimado/a participante,

Le pido su apoyo en la realización de la investigación "Aplicación de las condiciones geomecánicas del índice Slope Mass Rating en la estabilidad del talud en carretera Puente Collpa – Yanacancha" conducida por el bachiller Fanny Veronica Candiotti Dueñas. Esta tesis es asesorada por el Magister PALOMINO DAVIRÁN Carlos Enrique, docente en la Escuela Académico Profesional de Ingeniería Civil de la Universidad Peruana los Andes. Y tiene como propósito Establecer el resultado de la aplicación de las condiciones geomecánicas del índice Slope Mass Rating (SMR) en la estabilidad del talud en la carretera puente Collpa – Yanacancha. Se le ha contactado a usted en calidad de experto(a). Si usted accede a participar en la validación de los instrumentos utilizados para la elaboración de la presente investigación, se le solicitará responder diversas preguntas sobre el tema que tomarán aproximadamente entre 20 y 30 minutos. La información obtenida será utilizada para la elaboración de una tesis.

Su participación en la investigación es completamente voluntaria y usted puede decidir interrumpirla en cualquier momento, sin que ello le genere ningún perjuicio. Asimismo, participar en esta encuesta no le generará ningún perjuicio académico. Si tuviera alguna consulta sobre la investigación, puede formularla cuando lo estime conveniente.

Su identidad será tratada de manera pública, es decir, el investigador conocerá la identidad de quién completó la encuesta. Asimismo, su información será analizada de manera conjunta con la respuesta de sus colegas. Además, esta será conservada por dos años, contados desde la publicación de los resultados, en la computadora personal del investigador responsable.

Al concluir la investigación, si usted brinda su correo electrónico, recibirá un resumen con los resultados obtenidos y será invitado a la sustentación de tesis en la cual serán expuestos los resultados. Si desea, podrá escribir al correo fannycandiottid@gmail.com para extenderle la tesis completa.

Si está de acuerdo con los puntos anteriores, complete sus datos a continuación:

Nombre	Edwin Peña Dueñas

Fecha : $\frac{J2/J0/2I}{}$

Correo electrónico: edmincip @hotmail-com

Firma del experto :

Ing. Civil Edwin Peña Dueñas
ASESOR TECNICO CEP 148-116
ESPECIALISTA EN MECANICA DE SUELOS,
CONCLETO, GEOTECNIA / GEOLOGIA

191

INFORME DE OPINIÓN – JUICIO DE EXPERTOS PARA LA VALIDACIÓN DEL INSTRUMENTO DE INVESTIGACIÓN

1.6. Tesista ASPECTOS DE L	Guía de observación para toma de datos topográficos (levantamiento topogr : Fanny Verónica Candiotti Dueñas. A VALIDACIÓN		luy (_			ent	e	F		ular				ena			Mu	y bu	ena
INDICADORES	CRITERIOS	1	10711		16		3				41	651	1000		61		71				91	
		5	10	15	20	2	5 3	0 3	5	40	45	50	55	60	65	70	75	80	85	90	95	100
1. Claridad	El vocabulario empleado esta formulado con un lenguaje adecuado para el grupo de investigación Existe coherencia entre el objetivo, problema e hipótesis, así como en las variables, dimensiones o	L	H	L	\vdash	╀	╀	+	+	4	-		_		\vdash	_		L	_	×	\dashv	
2. Coherencia	indicadores de la investigación.					ı	1	1		1					ı	ì					4	
3. Consistencia	Tiene una base teórica y científica así mismo normas que la respaldan	Г	\vdash	Г		T	T	T	T	7					Г				Г		X	
4. objetividad	El instrumento esta expresado en comportamientos y conductas susceptibles a medición y calificación observables	Γ			T	T	T	Ť	T	1									X			
5. aplicabilidad	Los procedimientos para su aplicación y corrección son sencillos	r			\vdash	t	t	t	T	7	\exists									X		
6. Intencionalidad	El instrumento es adecuado para valorar la influencia del índice Slope Mass Rating en e comportamiento del talud					Ī	T	T		1											X	
7. Organización	El orden de los datos y ensayos es adecuado, y lógico	Г				T	T	T	T	1										X		
8. Metodología	La metodología responde al propósito del trabajo de investigación						I	I	I	I											X	
9. Pertinencia	Es útil y adecuado para la investigación						L	L	1	1					$oldsymbol{ol}}}}}}}}}}}}}}}}}$						X	
	El número de ítems y datos es suficiente para medir la variable.	L				L														X		
1	aplicabilidad mentos fueron aplicados correctamente																					
			-							-			-			-	-			-		

PROTOCOLO DE CONSENTIMIENTO INFORMADO PARA ENCUESTAS

Estimado/a participante,

Le pido su apoyo en la realización de la investigación "Aplicación de las condiciones geomecánicas del índice Slope Mass Rating en la estabilidad del talud en carretera Puente Collpa – Yanacancha" conducida por el bachiller Fanny Veronica Candiotti Dueñas. Esta tesis es asesorada por el Magister PALOMINO DAVIRÁN Carlos Enrique, docente en la Escuela Académico Profesional de Ingeniería Civil de la Universidad Peruana los Andes. Y tiene como propósito Establecer el resultado de la aplicación de las condiciones geomecánicas del índice Slope Mass Rating (SMR) en la estabilidad del talud en la carretera puente Collpa – Yanacancha.

Se le ha contactado a usted en calidad de experto(a). Si usted accede a participar en la validación de los instrumentos utilizados para la elaboración de la presente investigación, se le solicitará responder diversas preguntas sobre el tema que tomarán aproximadamente entre 20 y 30 minutos. La información obtenida será utilizada para la elaboración de una tesis.

Su participación en la investigación es completamente voluntaria y usted puede decidir interrumpirla en cualquier momento, sin que ello le genere ningún perjuicio. Asimismo, participar en esta encuesta no le generará ningún perjuicio académico. Si tuviera alguna consulta sobre la investigación, puede formularla cuando lo estime conveniente.

Su identidad será tratada de manera pública, es decir, el investigador conocerá la identidad de quién completó la encuesta. Asimismo, su información será analizada de manera conjunta con la respuesta de sus colegas. Además, esta será conservada por dos años, contados desde la publicación de los resultados, en la computadora personal del investigador responsable.

Al concluir la investigación, si usted brinda su correo electrónico, recibirá un resumen con los resultados obtenidos y será invitado a la sustentación de tesis en la cual serán expuestos los resultados. Si desea, podrá escribir al correo fannycandiottid@gmail.com para extenderle la tesis completa.

Si está de acuerdo con los puntos anteriores, complete sus datos a continuación:

Nombre	:	TUTIC	FREDY	PORRAS	ATYAM	
Fecha	:	24/11/	2021			
Correo electrónico	:	1) parra	5@11p1	a. edu p		
Firma del experto	:					

INFORME DE OPINIÓN – JUICIO DE EXPERTOS PARA LA VALIDACIÓN DEL INSTRUMENTO DE INVESTIGACIÓN

INDICADORES CRITERIOS Many deficiente Deficiente Regular Buena Many buena	 Profesión Título de la tes Universidad Instrumentos a Tesista 	is : Aplicación de las condiciones geomecánicas del índice Slope Mass Rating : Universidad Peruana Los Andes – Sede Huancayo validar : Guía de observación basada en el formato normalizado para la recolección o Guía de observación del ensayo en laboratorio para determinar la resistencia Guía de observación para ensayo de propiedades físicas de la roca (ASTM o Guía de observación para toma de datos topográficos (levantamiento topogr : Fanny Verónica Candiotti Dueñas.	enl de d a de	latos e la ro	abili de la ca c 7M	as di con c	isco: el m	ntini	uidad	les e	en el	mac	izo r	ocos	0				73-14
INDICADORES CRITERIOS 1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 1. Claridad El vocabulario empleado esta formulado con un lenguaje adecuado para el grupo de investigación 2. Coherencia Existe coherencia entre el objetivo, problema e hipótesis, así como en las variables, dimensiones e indicadores de la investigación. 3. Consistencia 1 Tiene una base teórica y científica así mismo normas que la respaldan 4. objetividad 2 Di instrumento esta expresado en comportamientos y conductas susceptibles a mediciór y calificación observables 5. aplicabilidad 6. Intencionalidad 7. Organización 8. Metodología 1 La metodología responde al propósito del trabajo de investigación 8. Metodología 9. Pertinencia 1 El orden de los datos y ensayos es adecuado, y lógico 8. Metodología 1 La metodología responde al propósito del trabajo de investigación 9. Pertinencia 1 El orden de los datos y ensayos es asficiente para medir la variable. OPINIÓN DE LA APLICABILIDAD ES APUCABLE EN ESTABILIZACIÓN DEL TARBO DE ROCA, TRATE PARA CLARRETENS U OTRAS CARRES PROMEDIO DE VALORACIÓN AL 100% 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ASPECTOS DE L	A VALIDACIÓN			page (a)		in a		No Sie							_			otel Class
S 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95			M										6 6			76		married States	COURT BUTCHER
Claridad	INDICADORES	CRITERIOS	1	RESPONDED BY	Section and		DEPOSITOR	1938 HAT 1900	COLUMN TO SERVICE		100		200	Contract of	COLUMN TO SERVICE	SCALORS THE	SHEET STATE		
Existe coherencia entre el objetivo, problema e hipótesis, así como en las variables, dimensiones e inidicadores de la investigación. Consistencia Tiene una base teórica y científica así mismo normas que la respaldan Objetividad El instrumento esta expresado en comportamientos y conductas susceptibles a mediciór y calificación observables aplicabilidad Los procedimientos para su aplicación y corrección son sencillos Intencionalidad El instrumento esta decuado para valorar la influencia del índice Slope Mass Rating en e comportamiento del talud Organización El orden de los datos y ensayos es adecuado, y lógico Metodología La metodología responde al propósito del trabajo de investigación Pertinencia Es útil y adecuado para la investigación Osuficiencia El número de ítems y datos es suficiente para medir la variable. DPINIÓN DE LA APLICABILIDAD ES APLICABLE EN ESTABILIZACIÓN DEL TARBO DE ROCA, TANTO PARA CARRETERAS U OTRAS CARRETERAS OTRAS CARRETERAS U OTRAS C	Claridad	El vocabulario empleado esta formulado con un lenguaie adecuado nara el grano de investigación	-				+	Ŧ			+		Ŧ			+	-	and the Real Property lies	-
indicadores de la investigación. Tiene una base teórica y científica así mismo normas que la respaldan I. objetividad El instrumento esta expresado en comportamientos y conductas susceptibles a mediciór y calificación observables 3. aplicabilidad Los procedimientos para su aplicación y corrección son sencillos 5. Intencionalidad El instrumento esta expresado en comportamiento del función y corrección son sencillos 6. Intencionalidad El instrumento esta decuado para valorar la influencia del índice Slope Mass Rating en e comportamiento del talud 7. Organización El orden de los datos y ensayos es adecuado, y lógico 8. Metodología La metodología responde al propósito del trabajo de investigación 9. Pertinencia Es útil y adecuado para la investigación 9. Pertinencia El número de ítems y datos es suficiente para medir la variable. DPINIÓN DE LA APLICABILIDAD ES APLICABUE EN ESTABILIZA CIÓN DEL TALUD DE ROCA, TANTO PARA CARRETERAS U OTRAS CORRES PROMEDIO DE VALORACIÓN AL 100% 129 Deficiente Deficiente Regular Buena Muy buena 20 21-40 41-60 61-80 80-100			-	+	+	+	+	+	Н		\dashv	+	+	H	\dashv	\dashv	+	+	+
El instrumento esta expresado en comportamientos y conductas susceptibles a mediciór y calificación observables aplicabilidad Los procedimientos para su aplicación y corrección son sencillos Intencionalidad El instrumento esta accusado para valorar la influencia del índice Slope Mass Rating en e comportamiento del talud Organización El orden de los datos y ensayos es adecuado, y lógico Metodología La metodología responde al propósito del trabajo de investigación De Pertinencia Es útil y adecuado para la investigación O. Suficiencia El número de ítems y datos es suficiente para medir la variable. De PINIÓN DE LA APLICABILIDAD ES APLICABLE EN ESTABILIZACIÓN DEL TRUD DE ROCA, TRATE PARA CARRETERAS U OTRAS CERAS PROMEDIO DE VALORACIÓN AL 100% Tay Deficiente Deficiente Regular Buena Muy buena 20 21-40 41-60 61-80 80-100	Concrene	indicadores de la investigación.				1											X		
y calificación observables aplicabilidad Los procedimientos para su aplicación y corrección son sencillos Intencionalidad El instrumento es adecuado para valorar la influencia del índice Slope Mass Rating en e comportamiento del talud Organización El orden de los datos y ensayos es adecuado, y lógico Metodología La metodología responde al propósito del trabajo de investigación Pertinencia Es útil y adecuado para la investigación O. Suficiencia El número de ítems y datos es suficiente para medir la variable. DPINIÓN DE LA APLICABILIDAD ES APLICABILE EN ESTABILIZACIÓN DEL TALUD DE ROCA, TONTO PARA CARRETERAS U OTRAS CORAS PROMEDIO DE VALORACIÓN AL 100% By Deficiente Deficiente Regular Buena Muy buena 20 21-40 41-60 61-80 80-100	. Consistencia	Tiene una base teórica y científica así mismo normas que la respaldan	Г			T	T	Т			T		Т			T)	<
Intencionalidad El instrumento es adecuado para valorar la influencia del índice Slope Mass Rating en e comportamiento del tallud comportamiento del tallud Componitamiento del tallud	objetividad					1	T						T				513	×	
comportamiento del talud Organización El orden de los datos y ensayos es adecuado, y lógico Metodología La metodología responde al propósito del trabajo de investigación Dertinencia Es útil y adecuado para la investigación O Sufficiencia El número de ítems y datos es suficiente para medir la variable. OPINIÓN DE LA APLICABILIDAD ES APLICABLE EN ESTABILIZACIÓN DEL TALÓN DE ROCA, TONTO PARA CARRETERAS U OTRAS CERAS OPROMEDIO DE VALORACIÓN AL 100% BY Deficiente Deficiente Deficiente Regular Buena Muy buena Muy buena Apura Carreteras u otras ceras de la companyo de la c	aplicabilidad					I	T	I			I		I			\Box	×		
Metodología La metodología responde al propósito del trabajo de investigación Pertinencia Es útil y adecuado para la investigación D. Suficiencia El número de ítems y datos es suficiente para medir la variable. PENDINIÓN DE LA APLICABILIDAD ES APLICABLE EN ESTABILIZACIÓN DEL TALON DE ROCA, TANTO PARA CARRETERAS U OTRAS CORAS PROMEDIO DE VALORACIÓN AL 100% BY Deficiente Deficiente Regular Buena Muy buena 20 21-40 41-60 61-80 80-100	Intencionalidad																	>	<
PROMEDIO DE VALORACIÓN AL 100% Proficiente Deficiente Regular Buena Muy buena 20 21-40 41-60 Proficiencia Es útil y adecuado para la investigación A PRICABLE EN ESTABLIZA CIÓN DEL TALUD DE ROCA, TONTO PARA CARRETERAS U OTRAS OGRAS Muy buena 20 APRICABLE DE STABLIZA CIÓN DEL TALUD DE ROCA TONTO PARA CARRETERAS U OTRAS OGRAS PROMEDIO DE VALORACIÓN AL 100% AND Deficiente Deficiente Regular Buena Muy buena 20 AUTRAS OGRAS APRICABLE EN ESTABLIZA CIÓN DEL TALUD DE ROCA TONTO PARA CARRETERAS U OTRAS OGRAS APRICABLE EN ESTABLIZA CIÓN DEL TALUD DE ROCA TONTO PARA CARRETERAS U OTRAS OGRAS APRICABLE EN ESTABLIZA CIÓN DEL TALUD DE ROCA TONTO PARA CARRETERAS U OTRAS OGRAS APRICABLE EN ESTABLIZA CIÓN DEL TALUD DE ROCA TONTO PARA CARRETERAS U OTRAS OGRAS APRICABLE EN ESTABLIZA CIÓN DEL TALUD DE ROCA TONTO PARA CARRETERAS U OTRAS OGRAS APRICABLE EN ESTABLIZA CIÓN DEL TALUD DE ROCA TONTO PARA CARRETERAS U OTRAS OGRAS APRICABLE EN ESTABLIZA CIÓN DEL TALUD DE ROCA TONTO PARA CARRETERAS U OTRAS OGRAS APRICABLE EN ESTABLIZA CIÓN DEL TALUD DE ROCA TONTO PARA CARRETERAS U OTRAS OGRAS APRICABLE EN ESTABLIZA CIÓN DEL TALUD DE ROCA TONTO PARA CARRETERAS U OTRAS OGRAS APRICABLE EN ESTABLIZA CIÓN DEL TALUD DE ROCA TONTO PARA CARRETERAS U OTRAS OGRAS APRICABLE EN ESTABLIZA CIÓN DEL TALUD DE ROCA TONTO PARA CARRETERAS U OTRAS OGRAS APRICABLE EN ESTABLIZA CIÓN DEL TALUD DE ROCA TONTO PARA CARRETERAS U OTRAS OGRAS APRICABLE EN ESTABLIZA CIÓN DEL TALUD DE ROCA TONTO PARA CARRETERAS U OTRAS OGRAS APRICABLE EN ESTABLIZA CIÓN DEL TALUD DE ROCA TONTO PARA CARRETERAS U OTRAS OGRAS APRICABLE EN ESTABLIZA CIÓN DEL TALUD DE ROCA TONTO PARA CARRETERAS U OTRAS OGRAS APRICABLE EN ESTABLIZA CIÓN DEL TALUD DE ROCA TONTO PARA CARRETERAS U OTRAS OGRAS APRICABLE EN ESTABLIZA CIÓN DEL TALUD DE ROCA TONTO PARA CARRETERAS U OTRAS OGRAS APRICABLE EN ESTABLIZA CIÓN DEL TALUD DE ROCA TONTO PARA CARRETERAS U OTRAS OGRAS APRICABLE EN ESTABLIZA CONTO PARA CARRETERAS U OTRAS OGRAS APRICABLE EN ESTABLIZA CONTO PARA CARRETERAS U OTRAS OGRAS													L				1	×	
D. Suficiencia El número de ítems y datos es suficiente para medir la variable. DPINIÓN DE LA APLICABILIDAD ES APLICABLE EN ESTABILIZACIÓN DEL TALOD DE ROCA, TONTO PARA CARRETERAS U OTRAS CORAS PROMEDIO DE VALORACIÓN AL 100% By Deficiente Regular Buena Muy buena 0 21-40 41-60 61-80 80-100			L	Н	_	1	1	1	Ш			_		1		_	_		4
PROMEDIO DE VALORACIÓN AL 100% Try Deficiente Deficiente Regular Buena Muy buena 200 21-40 Al-60 DEL TALBO DE ROCA, TRAJO PARA CARRETERAS U OTRAS CERAS MUY buena 200 21-40 MUY buena 200 80-100	Pertinencia		L		4	4	4	_	Н		4	4	+	\vdash	4	4	_	×	_
PROMEDIO DE VALORACIÓN AL 100% By Deficiente Buena Buena Muy buena 21-40 Al-60 BIO 21-40 DEL TALOD DE ROCA, TANTO PARA CARRETERAS U OTRAS CORAS MUY buena 21-40 Al-60 BO-100	CONTRACTOR OF THE PROPERTY OF		L			L	L	L	Ш				L			丄	丄	>	<
Deficiente Deficiente Regular Buena Muy buena 21-40 41-60 61-80 80-100				Pas	an_		CA	RRI	ETE	RA	5	U	0	TRI	45	(0 08	ZAS	
20 21-40 41-60 61-80 80-100										Γ									
Donas 19													#	8		/		1	
Julio Fredy Porras Mayta	U	21-40 41-00 01-80 80-100										(-	H	m	al	2/	4		
Julio Fredy Porras Mayta										1		X	-		1	0000			
1 \$2.492.23										16		M	ulio	rredy	Por	ras I	layto	1	

ANEXO 10: Estadísticas de las condiciones de las discontinuidades y proyecciones estereográficas con software DIPS

A	DI	De7 n				BASE DE	DATOS DE ESTACIÓN GE	OMECÁNICA	EG01		
_	O1	5/10	6	1 × 64	NOMBRE DE TESIS :	APLICACIÓN DE LAS CONDIC	IONES GEOMECÁNICAS DEL Í	NDICE SLOPE N	IASS RATING EN	LA ESTABILIDAD	DEL
200			Y		UBICACIÓN	ALUD EN CARRETERA PUENT Carretera Puente Colpa, Yanacan	cha				
		^c icience	UPL	A	MUESTRA ESTACIÓN GEOMEC.	Progresivas 18+708.00-18+720.0 EG-01 FECHA: Octubre	2021				
ID	Dip	Dip Direction	Set	ESTRUCTURA	ESPACIAMIENTO (METROS)	PERSISTENCIA (METROS)	ABERTURA (MILÍMETROS)	RUGOSIDAD	RELLENO	ALTERACIÓN	AGUA
1	72	240	1	Diaclasa	0.21 m	10.90 m	9 mm	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
3	68 70	237	1	Diaclasa Diaclasa	0.20 m 0.20 m	10.97 m 10.96 m	5 mm 9 mm	Lisa	suave < 5 mm Suave > 5 mm	Lig. alterada Lig. alterada	Húmedo
4	69	240	1	Diaclasa	0.20 m	10.96 m	9 mm	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
5	70	237	1	Diaclasa	0.19 m	10.95 m	5 mm	Lisa	suave < 5 mm	Lig. alterada	Húmedo
6	69	240	1	Diaclasa	0.21 m	10.95 m	9 mm	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
7	70	245	1	Diaclasa	0.20 m	10.94 m	9 mm	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
9	70 69	240	1	Diaclasa Diaclasa	0.20 m 0.20 m	10.94 m 10.93 m	5 mm 9 mm	Lisa	suave < 5 mm	Lig. alterada Lig. alterada	Húmedo
10	70	240	1	Diaclasa	0.19 m	10.92 m	9 mm	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
11	70	240	1	Diaclasa	0.19 m	10.91 m	9 mm	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
12	68	243	1	Diaclasa	0.20 m	10.88 m	9 mm	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
13	70	245	1	Diaclasa	0.19 m	10.88 m	9 mm	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
14	70	239	1	Diaclasa Diaclasa	0.20 m 0.20 m	10.85 m 10.82 m	9 mm 9 mm	Lisa	Suave > 5 mm Suave > 5 mm	Lig. alterada Lig. alterada	Húmedo
16	70	237	1	Diaclasa	0.20 m	10.79 m	9 mm	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
17	72	238	1	Diaclasa	0.19 m	10.79 m	9 mm	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
18	70	240	1	Diaclasa	0.20 m	10.76 m	9 mm	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
19	71	240	1	Diaclasa	0.20 m	10.73 m	9 mm	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
20	59	239	1	Diaclasa	0.20 m	10.64 m	5 mm	Lisa	suave < 5 mm	Lig. alterada	Húmedo
21	70 70	240	1	Diaclasa Diaclasa	0.21 m 0.21 m	10.55 m 10.46 m	15 mm 15 mm	Lisa	Suave > 5 mm Suave > 5 mm	Lig. alterada Lig. alterada	Húmedo
23	68	241	1	Diaclasa	0.21 m	10.46 m	15 mm	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
24	70	245	1	Diaclasa	0.19 m	10.28 m	15 mm	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
25	70	239	1	Diaclasa	0.19 m	10.19 m	15 mm	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
26	71	240	1	Diaclasa	0.20 m	10.14 m	15 mm	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
27	70	237	1	Diaclasa	0.20 m	10.10 m	15 mm	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
28	72	238	1	Diaclasa Diaclasa	0.20 m 0.20 m	9.92 m 10.94 m	15 mm 9 mm	Lisa	Suave > 5 mm Suave > 5 mm	Lig. alterada Lig. alterada	Húmedo Húmedo
30	72	240	1	Diaclasa	0.21 m	11.01 m	5 mm	Lisa	suave < 5 mm	Lig. alterada	Húmedo
31	68	237	1	Diaclasa	0.21 m	11.00 m	9 mm	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
32	70	235	1	Diaclasa	0.20 m	11.00 m	9 mm	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
33	69	240	1	Diaclasa	0.21 m	10.99 m	5 mm	Lisa	suave < 5 mm	Lig. alterada	Húmedo
34	70	237	1	Diaclasa	0.19 m	10.99 m	9 mm	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
35	69 70	240	1	Diaclasa Diaclasa	0.19 m 0.21 m	10.98 m 10.98 m	9 mm 5 mm	Lisa	Suave > 5 mm suave < 5 mm	Lig. alterada Lig. alterada	Húmedo
37	70	240	1	Diaclasa	0.19 m	10.97 m	9 mm	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
38	69	239	1	Diaclasa	0.21 m	10.96 m	9 mm	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
39	70	240	1	Diaclasa	0.20 m	10.95 m	9 mm	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
40	70	240	1	Diaclasa	0.20 m	10.92 m	9 mm	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
41	68	243	1	Diaclasa	0.20 m	10.92 m	9 mm	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
42	70	245	1	Diaclasa Diaclasa	0.20 m 0.19 m	10.89 m 10.86 m	9 mm	Lisa	Suave > 5 mm Suave > 5 mm	Lig. alterada Lig. alterada	Húmedo Húmedo
44	71	240	1	Diaclasa	0.20 m	10.83 m	9 mm	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
45	70	237	1	Diaclasa	0.20 m	10.83 m	9 mm	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
46	72	238	1	Diaclasa	0.20 m	10.80 m	9 mm	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
47	70	240	1	Diaclasa	0.20 m	10.77 m	9 mm	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
48	71	240	1	Diaclasa	0.20 m	10.68 m	5 mm	Lisa	suave < 5 mm	Lig, alterada	Húmedo
49 50	69 70	239	1	Diaclasa Diaclasa	0.21 m 0.20 m	10.59 m 10.50 m	9 mm 9 mm	Lisa	Suave > 5 mm Suave > 5 mm	Lig. alterada Lig. alterada	Húmedo
51	70	241	1	Diaclasa	0.19 m	10.41 m	9 mm	Lisa		Lig. alterada	Húmedo
52	68	243	1	Diaclasa	0.21 m	10.32 m	9 mm	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
53	70	245	1	Diaclasa	0.21 m	10.23 m	9 mm	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
54	70	239	1	Diaclasa	0.20 m	10.18 m	9 mm	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
55	71	240	1	Diaclasa	0.20 m	10.14 m	15 mm	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
56	70	237	1	Diaclasa	0.20 m	9.96 m	15 mm	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
57 58	72	238	1	Diaclasa Diaclasa	0.20 m 0.21 m	10.98 m 10.95 m	15 mm 15 mm	Lisa	Suave > 5 mm Suave > 5 mm	Lig. alterada Lig. alterada	Húmedo
59	70	237	1	Diaclasa	0.20 m	10.95 m	15 mm	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
60	72	238	1	Diaclasa	0.19 m	10.92 m	9 mm	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
61	70	240	1	Diaclasa	0.20 m	10.89 m	5 mm	Lisa	suave < 5 mm	Lig. alterada	Húmedo
62	10	90	2	Diaclasa	0.21 m	2.22 m	11 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
63	11	90	2	Diaclasa	0.22 m	1.86 m	11 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
64 65	11	90	2	Diaclasa	0.21 m 0.19 m	2.22 m	15 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
66	10	90	2	Diaclasa Diaclasa	0.20 m	2.60 m 2.01 m	15 mm 18 mm	Lisa	Suave > 5 mm Suave > 5 mm	Mod.alterada Mod.alterada	Mojado Mojado
67	11	90	2	Diaclasa	0.21 m	2.20 m	18 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
68	11	90	2	Diaclasa	0.25 m	2.23 m	18 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
	11	90	2	Diaclasa	0.19 m	2.56 m	15 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
69		90	2	Diaclasa	0.19 m	1.89 m	11 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
70	10	-0-14		(1)	2.24		4.4				
70 71	11	90	2	Diaclasa	0.21 m	2.25 m	11 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
70	-	-0-14		(1)	0.21 m 0.19 m 0.20 m	2.25 m 2.63 m 2.04 m	11 mm 15 mm 15 mm	Lisa Lisa Lisa	Suave > 5 mm Suave > 5 mm Suave > 5 mm	Mod.alterada Mod.alterada Mod.alterada	Mojado Mojado Mojado

DIPS

BASE DE DATOS DE ESTACIÓN GEOMECÁNICA EG01

NOMBRE DE TESIS

: APLICACIÓN DE LAS CONDICIONES GEOMECÁNICAS DELÍNDICE SLOPE MASS RATING EN LA ESTABILIDAD DEL TALUD EN CARRETERA PUENTE COLLPA - YANACANCHA
: Carretera Puente Colpa, Yanacaucha
MUESTRA
: Progressivas 18+708.00-18+720.00
ESTACIÓN GEOMEC.
: EG-01 FECHA: Octubre 2021

			JPL		La contraction and the contraction of the	G-01 FECHA: Octibre 20.					-
ID	Dip	Harris and the second second	Set	ESTRUCTURA	ESPACIAMIENTO (METROS)	PERSISTENCIA (METROS)	ABERTURA (MILÍMETROS)	RUGOSIDAD	RELLENO	ALTERACIÓN	AGUA
75	10	90	2	Diaclasa	0.21 m	2.52 m	11 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
76	11	90	2	Diaclasa	0.21 m	2.59 m	11 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
77	11	90	2	Diaclasa	0.21 m	1.90 m	15 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
78	13	90	2	Diaclasa	0.21 m	2.26 m	15 mm	Lisa	Suave > 5 mm	Mod alterada	Mojado
79	10	90	2	Diaclasa	0.22 m	2.64 m	18 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
80	11	90	2	Diaclasa	0.22 m	2.05 m	18 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
81	11	90	2	Diaclasa	0.19 m	2.24 m	18 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
82	11	90	2	Diaclasa	0.19 m	2.53 m	11 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
83	13	90	2	Diaclasa	0.21 m	2.60 m	15 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
84	10	90	2	Diaclasa	0.26 m	1.89 m	18 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
85	11	90	2	Diaclasa	0.26 m	1.81 m	18 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
86	11	90	2	Diaclasa	0.21 m	2.25 m	18 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
87	11	90	2	Diaclasa	0.20 m	2.63 m	15 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
88	10	90	2	Diaclasa	0.25 m	2.55 m	11 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
89	10	90	2	Diaclasa	0.22 m	2.04 m	11 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
90	11	90	2	Diaclasa	0.20 m	2.23 m	11 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
91	11	90	2	Diaclasa	0.19 m	2.52 m	15 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
92	13	90	2	Diaclasa	0.20 m	2.59 m	15 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
93	10	90	2	Diaclasa	0.21 m	2.22 m	18 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
94	13	90	2	Diaclasa	0.20 m	2.26 m	15 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
95	10	90	2	Diaclasa	0.22 m	2.64 m	18 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
96	11	90	2	Diaclasa	0.22 m	2.05 m	18 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
97	11	90	2	Diaclasa	0.25 m	2.24 m	18 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
98	11	90	2	Diaclasa	0.19 m	2.53 m	11 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
99	13	90	2	Diaclasa	0.21 m	2.60 m	15 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
100	10	90	2	Diaclasa	0.21 m	1.89 m	18 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
101	11	90	2	Diaclasa	0.26 m	1.81 m	18 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
102	11	90	2	Diaclasa	0.21 m	2.25 m	18 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
103	11	90	2	Diaclasa	0.20 m	2.63 m	15 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
104	10	90	2	Diaclasa	0.25 m	2.55 m	11 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
105	11	90	2	Diaclasa	0.25 m	1.96 m	11 mm	Lisa	Suave > 5 mm	Mod alterada	Mojado
106	11	90	2	Diaclasa	0.19 m	2.15 m	15 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
107	13	90	2	Diaclasa	0.20 m	2.24 m	15 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
108	10	90	2	Diaclasa	0.19 m	2.51 m	18 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
109	10	90	2	Diaclasa	0.19 m	2.51 m	18 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
110	11	90	2	Diaclasa	0.22 m	1.89 m	18 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
111	10	90	2	Diaclasa	0.25 m	2.55 m	11 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado
112	11	90	2	Diaclasa	0.25 m	1.96 m	11 mm	Lisa	Suave > 5 mm	Mod.alterada	Mojado

DIPS7

NOMBRE DE TESIS UBICACIÓN MUESTRA ESTACIÓN GEOMEC.

BASE DE DATOS DE ESTACIÓN GEOMECÁNICA EG02

: APLICACIÓN DE LAS CONDICIONES GEOMECÁNICAS DEL ÍNDICE SLOPE MASS RATING EN LA ESTABILIDAD DEL TALUD EN CARRETERA PUENTE COLLPA - YANACANCHA : Carretera Puente Colpa, Yanacancha : Progresivas 18-798,80-18-1720.00 ; EG-02 FECHA: Octubre 2021.

ID	Dip	Dip Direction	Set	ESTRUCTURA	ESPACIAMIENTO (METROS)	PERSISTENCIA (METROS)	ABERTURA (MILÍMETROS)	RUGOSIDAD	RELLENO	ALTERACIÓN	AGUA
1	72	240	1	Diaclasa	0.20	10.90	9	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
2	68	237	1	Diaclasa	0.21	10.92	5	Lisa	Suave < 5 mm	Lig. alterada	Hůmedo
3	70	235	1	Diaclasa	0.21	9.98	9	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
4	69	240	1	Diaclasa	0.18	9.56	9	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
5	70	237	1	Diaclasa	0.20	10.20	5	Lisa	Suave < 5 mm	Lig. alterada	Húmedo
6	69	240	1	Diaclasa	0.20	10.25	9	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
7	70	245	1	Diaclasa	0.20	10.45	9	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
8	70	240	1	Diaclasa	0.18	9.84	5	Lisa	Suave < 5 mm	Lig. alterada	Húmedo
9	69	239	1	Diaclasa	0.18	10.92	9	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
10	70	240	1	Diaclasa	0.20	10.92	9	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
11	70	244	1	Diaclasa	0.21	10.91	9	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
12	68	243	1	Diaclasa	0.19	10.88	9	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
13	70	245	1	Diaclasa	0.20	10.88	9	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
14	70	239	1	Diaciasa	0.20	10.85	9	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
15	71	240	1	Diaclasa	0.20	10.82	9	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
16	70	237	1	Diaclasa	0.19	10.79	9	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
17	72	238	1	Diaclasa	0.21	10.79	9	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
18	70	240	1	Diaclasa	0.21	10.76	9	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
19	71	240	1	-	0.18	9.93	9	Lisa			-
	10000	2007000	1510	Diaclasa			5	1753/2T/	Suave > 5 mm	Lig. alterada	Húmedo
20	70	245	1	Diaclasa	0.21	10.63	55	Lisa	Suave < 5 mm	Lig. alterada	Húmedo
21	70	239	1	Diaclasa	0.21	10.54	15	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
22	71	237	1	Diaclasa	0.20	10.46	15	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
23	70	239	1	Diaclasa	0.20	10.37	15	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
24	72	238	1	Diaclasa	0.20	9.97	15	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
25	70	240	1	Diaclasa	0.20	10.19	15	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
26	71	241	1	Diaclasa	0.20	10.14	15	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
27	70	237	1	Diaclasa	0.20	10.10	15	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
28	72	238	1	Diaclasa	0.20	10.12	15	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
29	70	240	1	Diaclasa	0.20	10.81	9	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
30	72	240	1	Diaclasa	0.20	10.88	5	Lisa	Suave < 5 mm	Lig. alterada	Húmedo
31	68	237	1	Diaclasa	0.18	10.87	9	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
32	70	235	1	Diaclasa	0.20	10.87	9	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
33	69	240	1	Diaclasa	0.21	10.86	5	Lisa	Suave < 5 mm	Lig. alterada	Húmedo
34	70	237	1	Diaclasa	0.20	10.86	9	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
35	69	240	1	Diaclasa	0.21	10.85	9	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
36	70	245	1	Diaclasa	0.21	10.85	5	Lisa	Suave < 5 mm	Lig. alterada	Húmedo
37	70	240	1	Diaclasa	0.21	10.83	9	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
38	69	239	1	Diaclasa	0.21	10.82	9	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
39	70	240	1	Diaclasa	0.20	10.81	9	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
40	70	240	1	Diaclasa	0.20	10.79	9	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
41	68	243	1	Diaclasa	0.21	10.79	9	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
42	70	245	1	Diaclasa	0.20	10.76	9	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
43	70	239	1	Diaclasa	0.20	10.73	9	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
44	71	240	1	Diaclasa	0.20	9.68	9	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
45	70	237	1	Diaclasa	0.21	10.68	9	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
46	72	238	1	Diaclasa	0.20	10.66	9	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
47	70	240	1	Diaclasa	0.20	10.57	9	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
48	71	240	1	Diaclasa	0.20	10.48	5	Lisa	Suave < 5 mm	Lig. alterada	Húmedo
49	69	239	1	Diaclasa	0.20	10.39	15	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
50	70	240	1	Diaclasa	0.19	10.30	15	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
51	70	241	1	Diaclasa	0.19	10.22	15	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
52	68	243	1	Diaclasa	0.21	10.12	15	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
53	70	245	1	Diaclasa	0.20	10.14	15	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
54	70	239	1	Diaclasa	0.20	10.14	15	Lisa	Suave > 5 mm		Húmedo
-	-	10000			0.20		200			Lig. alterada	-
55	71	240	1	Diaclasa	STATE OF THE PARTY	10.12	15	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
56	70	237	1	Diaclasa	0.19	9.74	5	Lisa	Suave < 5 mm	Lig. alterada	Húmedo
57	72	238	1	Diaclasa	0.20	10.43	9	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
58	70	241	1	Diaclasa	0.20	10.36	9	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
59	68	243	1	Diaclasa	0.20	10.26	5	Lisa	Suave < 5 mm	Lig. alterada	Húmedo
60	70	245	1	Diaclasa	0.21	10.18	9	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
61	70	239	1	Diaclasa	0.20	10.19	9	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
62	71	240	1	Diaclasa	0.21	10.09	9	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
63	70	237	1	Diaclasa	0.18	10.17	5	Lisa	Suave < 5 mm	Lig. alterada	Húmedo
64	72	238	1	Diaclasa	0.20	10.59	15	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
65	57	224	2	Diaclasa	0.20	10.06	5	Lisa	Suave < 5 mm	Lig. alterada	Húmedo
66	55	223	2	Diaclasa	0.20	10.16	10	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
67	58	222	2	Diaclasa	0.19	10.16	10	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
68	58	228	2	Diaclasa	0.20	10.26	10	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
69	57	225	2	Diaclasa	0.20	10.25	10	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
70	57	228	2	Diaclasa	0.20	10.26	10	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
71	58	228	2	Diaclasa	0.20	10.56	5	Lisa	Suave < 5 mm	Lig. alterada	Húmedo
72	57	220	2	Diaclasa	0.19	10.66	15	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
73	56	222	2	Diaclasa	0.19	10.76	15	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
74	58	218	2	Diaclasa	0.20	10.86	15	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
					10					All Control of the Co	

NOMBRE DE TESIS UBICACIÓN MUESTRA ESTACIÓN GEOMEC.

BASE DE DATOS DE ESTACIÓN GEOMECÁNICA EG02

: APLICACIÓN DE LAS CONDICIONES GEOMECÁNICAS DEL ÍNDICE SLOPE MASS RATING EN LA ESTABILIDAD DEL TALUD EN CARRETERA PUENTE COLLPA - YANACANCHA : Carretera Puente Colpa, Yanacancha : Progresivas 1887/08,00-187-720.00 : EG-02 FECHA: Octubre 2021

ID	Dip	Dip Direction	Set	ESTRUCTURA	ESPACIAMIENTO (METROS)	PERSISTENCIA (METROS)	ABERTURA (MILÍMETROS)	RUGOSIDAD	RELLENO	ALTERACIÓN	AGUA
75	57	223	2	Diaclasa	0.19	10.96	15	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
76	57	224	2	Diaclasa	0.20	11.06	15	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
77	56	228	2	Diaclasa	0.20	10.96	5	Lisa	Suave < 5 mm	Lig. alterada	Húmedo
78	57	223	2	Diaclasa	0.20	10.86	15	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
79	58	218	2	Diaclasa	0.20	10.76	5	Lisa	Suave < 5 mm	Lig. alterada	Húmedo
80	57	220	2	Diaclasa	0.20	10.66	15	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
81	57	223	2	Diaclasa	0.20	10.64	5	Lisa	Suave < 5 mm	Lig. alterada	Húmedo
82	58	225	2		0.20						
		2011		Diaclasa	1977.5	9.92	12	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
83	55	220	2	Diaclasa	0.20	9.89	12	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
84	57	224	2	Diaclasa	0.20	10.60	12	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
85	57	223	2	Diaclasa	0.20	10.00	12	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
86	58	225	2	Diaclasa	0.20	10.76	12	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
87	59	225	2	Diaclasa	0.20	10.12	12	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
88	59	223	2	Diaclasa	0.20	10.01	10	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
89	57	224	2	Diaclasa	0.20	10.11	10	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
90	55	223	2	Diaclasa	0.20	10.11	10	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
91	58	222	2	Diaclasa	0.20	10.21	10	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
92	58	228	2	Diaclasa	0.20	10.20	10	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
93	57	225	2	Diaclasa	0.20	10.21	5	Lisa	Suave < 5 mm	Lig. alterada	Húmedo
94	57	228	2	Diaclasa	0.20	10.51	15	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
95	58	228	2	Diaclasa	0.20	10.61	15	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
96	57	220	2	Diaclasa	0.20	10.71	15	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
97	56	222	2.	Diaclasa	0.20	10.81	15	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
98	58	218	2	Diaclasa	0.20	10.91	15	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
99	57	223	2	Diaclasa	0.20	11.01	5	Lisa	Suave < 5 mm	Lig. alterada	Húmedo
100	57	224	2	Diaclasa	0.20	10.91	15	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
101	56	228	2	Diaclasa	0.19	10.81	5	Lisa	Suave < 5 mm	Lig. alterada	Húmedo
102	57	223	2	Diaclasa	0.20	10.71	15	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
103	58	218	2	Diaclasa	0.19	10.61	5	Lisa	Suave < 5 mm	Lig. alterada	Húmedo
104	57	220	2	Diaclasa	0.20	10.59	12	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
105	57	223	2	Diaclasa	0.20	9.87	12	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
106	58	225	2	Diaclasa	0.21	9.84	12	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
107	55	220	2	Diaclasa	0.20	10.55	12	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
108	57	224	2	Diaclasa	0.20	9.95	12	Lisa	Suave > 5 mm		Húmedo
109	57	223	2	Diaclasa	0.19	10.71	12	Lisa	Suave > 5 mm	Lig. alterada	-
-	58	225	2		0.20	10.07	10			Lig. alterada	Húmedo
110	-		-	Diaclasa		and the second s		Lisa	Suave > 5 mm	Lig. alterada	Húmedo
111	59	225	2	Diaclasa	0.20	9.96	5	Lisa	Suave < 5 mm	Lig. alterada	Húmedo
112	57	-	_	Diaclasa	0.20	10.04	15	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
113	56	222	2	Diaclasa	0.23	10.04	15	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
114	58	218	2	Diaclasa	0.20	10.14	15	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
115	57	223	2	Diaclasa	0.20	10.13	15	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
116	57	224	2	Diaclasa	0.19	10.14	15	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
117	56	228	2	Diaclasa	0.20	10.44	5	Lisa	Suave < 5 mm	Lig. alterada	Húmedo
118	57	223	2	Diaclasa	0.20	10.54	15	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
119	58	218	2	Diaclasa	0.20	10.64	5	Lisa	Suave < 5 mm	Lig. alterada	Húmedo
120	57	220	2	Diaclasa	0.23	10.74	15	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
121	57	223	2	Diaclasa	0.20	10.84	5	Lisa	Suave < 5 mm	Lig. alterada	Húmedo
122	56	222	2	Diaclasa	0.20	10.94	12	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
123	58	218	2	Diaclasa	0.18	10.84	5	Lisa	Suave < 5 mm	Lig. alterada	Húmedo
124	57	223	2	Diaclasa	0.20	10.74	9	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
125	57	224	2	Diaclasa	0.20	10.64	9	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
126	56	228	2	Diaclasa	0.23	10.54	5	Lisa	Suave < 5 mm	Lig. alterada	Húmedo
127	57	223	2	Diaclasa	0.20	10.52	9	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
128	58	218	2	Diaclasa	0.20	9.80	9	Lisa	Suave > 5 mm	Lig. alterada	Húmedo
129	11	90	3	Diaclasa	0.20	2.01	10	Lisa	Suave > 5 mm	Mod. alterada	Mojado
130	13	90	3	Diaclasa	0.20	1.95	10	Lisa	Suave > 5 mm	Mod. alterada	Mojado
131	11	90	3	Diaclasa	0.20	1.91	10	Lisa	Suave > 5 mm	Mod. alterada	Mojado
132	10	90	3	Diaclasa	0.21	2.05	17	Lisa	Suave > 5 mm	Mod. alterada	Mojado
133	11	90	3	Diaclasa	0.20	2.94	17	Lisa	Suave > 5 mm	Mod, alterada	Mojado
134	10	90	3	Diaclasa	0.23	2.24	17	Lisa	Suave > 5 mm	Mod. alterada	Mojado
135	11	90	3	Diaclasa	0.20	3.57	25	Lisa	Suave > 5 mm	Mod. alterada	Mojado
136	10	90	3		0.23	With the same of t	25	Lisa	-		-
-				Diaclasa	-harden	2.24	17	1.55.50.0	Suave > 5 mm	Mod. alterada	Mojado
137	11	90	3	Diaclasa	0.23	2.21	527.5	Lisa	Suave > 5 mm	Mod. alterada	Mojado
138	11	90	3	Diaclasa	0.21	2.22	10	Lisa	Suave > 5 mm	Mod. alterada	Mojado
139	13	90	3	Diaclasa	0.20	2.57	10	Lisa	Suave > 5 mm	Mod. alterada	Mojado
140	11	90	3	Diaclasa	0.20	2.51	10	Lisa	Suave > 5 mm	Mod. alterada	Mojado
141	10	90	3	Diaclasa	0.23	3.57	17	Lisa	Suave > 5 mm	Mod. alterada	Mojado
142	11	90	3	Diaclasa	0.20	2.61	17	Lisa	Suave > 5 mm	Mod. alterada	Mojado
143	11	90	3	Diaclasa	0.21	1.95	10	Lisa	Suave > 5 mm	Mod. alterada	Mojado
144	10	90	3	Diaclasa	0.20	1.91	10	Lisa	Suave > 5 mm	Mod. alterada	Mojado
145	11	90	3	Diaclasa	0.20	2.05	15	Lisa	Suave > 5 mm	Mod. alterada	Mojado
146	10	90	3	Diaclasa	0.21	2.50	17	Lisa	Suave > 5 mm	Mod. alterada	Mojado
147	11	90	3	Diaclasa	0.21	2.21	15	Lisa	Suave > 5 mm	Mod. alterada	Mojado
148	10	90	3	Diaclasa	0.21	2.20	10	Lisa	Suave > 5 mm	Mod. alterada	Mojado
_			_		lastro-		Lanca de la constantina della			The state of the s	

BASE DE DATOS DE ESTACIÓN GEOMECÁNICA EG02

NOMBRE DE TESIS

NOMBRE DE TESIS : APLICACIÓN DE LAS CONDICIONES GEOMECÁNICAS DEL ÍNDICE SLOPE MASS RATING EN LA ESTABILIDAD DEL TALUD EN CARRETERA PUENTE COLLPA - YANACANCHA : Carretera Puente Colpa, Yanacancha MUESTRA : Progresivas 18-708.00-18-720.00 ESTACIÓN GEOMEC : EG-02 FECHA: Octubre 2021

			OF	- Me	ESTACION GLORICE.	. ESPOL PECTOL OCUME	1421				
ID	Dip	Dip Direction	Set	ESTRUCTURA	ESPACIAMIENTO (METROS)	PERSISTENCIA (METROS)	ABERTURA (MILÍMETROS)	RUGOSIDAD	RELLENO	ALTERACIÓN	AGUA
149	13	90	3	Diaclasa	0.20	2.28	10	Lisa	Suave > 5 mm	Mod. alterada	Mojado
150	10	90	3	Diaclasa	0.20	2.24	25	Lisa	Suave > 5 mm	Mod. alterada	Mojado
151	13	90	3	Diaclasa	0.21	2.22	10	Lisa	Suave > 5 mm	Mod. alterada	Mojado
152	11	90	3	Diaclasa	0.23	2.23	15	Lisa	Suave > 5 mm	Mod. alterada	Mojado
153	11	90	3	Diaclasa	0.21	2.23	12	Lisa	Suave > 5 mm	Mod. alterada	Mojado
154	10	90	3	Diaclasa	0.20	1.91	10	Lisa	Suave > 5 mm	Mod. alterada	Mojado
155	11	90	3	Diaclasa	0.23	2.05	14	Lisa	Suave > 5 mm	Mod. alterada	Mojado
156	10	90	3	Diaclasa	0.21	2.50	17	Lisa	Suave > 5 mm	Mod. alterada	Mojado
157	11	90	3	Diaclasa	0.20	2.22	10	Lisa	Suave > 5 mm	Mod. alterada	Mojado
158	10	90	3	Diaclasa	0.21	2.20	8	Lisa	Suave > 5 mm	Mod. alterada	Mojado
159	10	90	3	Diaclasa	0.20	2.20	12	Lisa	Suave > 5 mm	Mod. alterada	Mojado
160	13	90	3	Diaclasa	0.23	2.26	10	Lisa	Suave > 5 mm	Mod. alterada	Mojado
161	10	90	3	Diaclasa	0.20	2.24	12	Lisa	Suave > 5 mm	Mod. alterada	Mojado
162	11	90	3	Diaclasa	0.20	2.22	10	Lisa	Suave > 5 mm	Mod. alterada	Mojado
163	10	90	3	Diaclasa	0.21	2.23	13	Lisa	Suave > 5 mm	Mod. alterada	Mojado
164	10	90	3	Diaclasa	0.23	1.94	16	Lisa	Suave > 5 mm	Mod. alterada	Mojado
165	10	90	3	Diaclasa	0.21	2.08	16	Lisa	Suave > 5 mm	Mod. alterada	Mojado
166	10	90	3	Diaclasa	0.21	2.53	16	Lisa	Suave > 5 mm	Mod. alterada	Mojado
167	10	90	3	Diaclasa	0.20	2.25	24	Lisa	Suave > 5 mm	Mod. alterada	Mojado
168	13	90	3	Diaclasa	0.20	2.20	24	Lisa	Suave > 5 mm	Mod. alterada	Mojado
169	10	90	3	Diaclasa	0.21	2.21	16	Lisa	Suave > 5 mm	Mod. alterada	Mojado
170	10	90	3	Diaclasa	0.20	2.56	9	Lisa	Suave > 5 mm	Mod. alterada	Mojado
171	13	90	3	Diaclasa	0.21	2.50	9	Lisa	Suave > 5 mm	Mod. alterada	Mojado
172	10	90	3	Diaclasa	0.20	3.56	9	Lisa	Suave > 5 mm	Mod. alterada	Mojado
173	11	90	3	Diactasa	0.21	2.60	16	Lisa	Suave > 5 mm	Mod. alterada	Mojado
174	10	90	3	Diaclasa	0.20	1.94	16	Lisa	Suave > 5 mm	Mod. alterada	Mojado
175	13	90	3	Diaclasa	0.21	1.90	9	Lisa	Suave > 5 mm	Mod. alterada	Mojado
176	11	90	3	Diaclasa	0.20	2.04	10	Lisa	Suave > 5 mm	Mod. alterada	Mojado
177	10	90	3	Diaclasa	0.21	2.49	11	Lisa	Suave > 5 mm	Mod. alterada	Mojado
178	10	90	3	Diaclasa	0.22	2.21	8	Lisa	Suave > 5 mm	Mod. alterada	Mojado
179	13	90	3	Diaclasa	0.21	2.26	10	Lisa	Suave > 5 mm	Mod. alterada	Mojado
180	10	90	3	Diaclasa	0.20	2.20	12	Lisa	Suave > 5 mm	Mod. alterada	Mojado
181	11	90	3	Diaclasa	0.20	2.22	10	Lisa	Suave > 5 mm	Mod. alterada	Mojado
182	10	90	3	Diaclasa	0.21	2.09	14	Lisa	Suave > 5 mm	Mod. alterada	Mojado
183	10	90	3	Diaclasa	0.20	2.24	9	Lisa	Suave > 5 mm	Mod. alterada	Mojado
184	10	90	3	Diaclasa	0.21	2.60	20	Lisa	Suave > 5 mm	Mod. alterada	Mojado
185	10	90	3	Diaclasa	0.23	2.53	13	Lisa	Suave > 5 mm	Mod. alterada	Mojado

BASE DE DATOS DE ESTACIÓN GEOMECÁNICA EG03

O DIPS

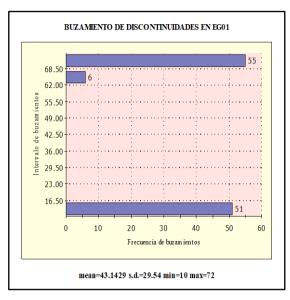
NOMBRE DE TESIS

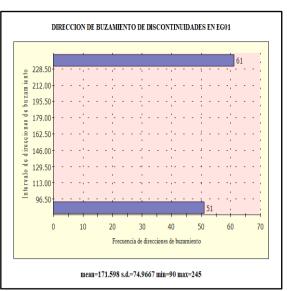
: APLICACIÓN DE LAS CONDICIONES GEOMECÁNICAS DEL ÍNDICE SLOPE MASS RATING EN LA ESTABILIDAD DEL TALUD EN CARRITERA PUENTE COLLPA - YANACANCHA (Carretar Puene Colpa, Yanacancha Progresiva 18-708.00-18-720.00 : EC-413 (Subre 2021)

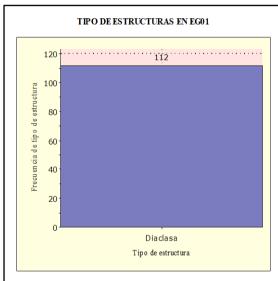
52 57 224 1 Diaclasa 0.21 6.41 10 Lisa Suave > 5 mm 53 57 226 1 Diaclasa 0.22 6.26 10 Lisa Suave > 5 mm 54 57 223 1 Diaclasa 0.18 6.11 10 Lisa Suave > 5 mm 55 56 222 1 Diaclasa 0.20 5.96 10 Lisa Suave > 5 mm 56 52 220 1 Diaclasa 0.21 5.81 10 Lisa Suave > 5 mm 57 58 224 1 Diaclasa 0.18 5.66 5 Lisa Suave > 5 mm 58 57 223 1 Diaclasa 0.22 5.51 10 Lisa Suave > 5 mm 59 56 222 1 Diaclasa 0.22 9.46 10 Lisa Suave > 5 mm 60 57 223 1 Diaclasa			[©] rcience	JPL	A A	ESTACIÓN GEOMEC. : I	FG-03 FECHA: Octubre 20	21				
1	ID	Dip	Dip Direction	Set	ESTRUCTURA	ESPACIAMIENTO (METROS)	PERSISTENCIA (METROS)	ABERTURA (MILIMETROS)	RUGOSIDAD	RELLENO	ALTERACIÓN	AGUA
1	1	57	224	1	Diaclasa	0.22	9.96	10	Lisa	Suave > 5 mm	Mod. Alterada	Húmedo
1	2	57	226	1	Diaclasa	0.22	9.81	10	Lisa	Suave > 5 mm	Mod. Alterada	Húmedo
	3	57	223	1	Diaclasa	0.22	9.66	10	Lisa	Suave > 5 mm	Mod, Alterada	Húmedo
5	4	56	222	1	Diaclasa	0.19	9.51	10	Lisa	Suave > 5 mm	Mod. Alterada	Húmedo
7	5	55	220	1	Diaclasa	0.19	9.36	10	Lisa	Suave > 5 mm	Mod, Alterada	Húmedo
8	6	58	224	1	Diaclasa	0.22	9.21	10	Lisa	Suave > 5 mm	Mod. Alterada	Húmedo
9	7	57	223	1	Diaclasa	0.20	9.06	5	Lisa	Suave < 5 mm	Mod. Alterada	Húmedo
10 88 224 1 Duckstan 0.00 8.51 0.0 Usa Suave 5 mm	8	56	222	1	Diaclasa	0.20	8.91	10	Lisa	Suave > 5 mm	Mod. Alterada	Húmedo
11 15 58 244	9	55	220	1	Diaclasa	0.19	8.76	10	Lisa	Suave > 5 mm	Mod. Alterada	Húmedo
13 58 23 31 1 Sactano 0.18 8.31 10 10 10 10 10 10 10	10	58	224	1	Diaclasa	0.20	8.61	10	Lisa	Suave > 5 mm	Mod. Alterada	Húmedo
19 57 244	11	58	224	1	Diaclasa	0.22	8.46	10	Lisa	Suave > 5 mm	Mod. Alterada	Húmedo
14 57 266	12	58	223	1	Diaclasa	0.18	8.31	10	Lisa	Suave > 5 mm	Mod. Alterada	Húmedo
15 57 23 3 1 Oachae 0.18 7.86 16 Usa Suzve > 5 mm	13	57	224	1	Diaclasa	0.20	8.16	5	Lisa	Suave < 5 mm	Mod. Alterada	Húmedo
15 55 222	14	57	226	1	Diaclasa	0.19	8.01	16	Lisa	Suave > 5 mm	Mod. Alterada	Húmedo
17 15 20	15	57	223	1	Diaclasa	0.18	7.86	16	Lisa	Suave > 5 mm	Mod. Alterada	Húmedo
18 18 224	16	56	222	1	Diaclasa	0.22	7.71	16	Lisa	Suave > 5 mm	Mod. Alterada	Húmedo
19 57 223	17	55	220	1	Diaclasa	0.22	7.56	5	Lisa	Suave < 5 mm	Mod. Alterada	Húmedo
20	18	58	224	1	Diaclasa	0.18	7.41	16	Lisa	Suave > 5 mm	Mod. Alterada	Húmedo
20	19	57	223	1	Diaclasa	0.18	7.26	5	Lisa	Suave < 5 mm	Mod. Alterada	Húmedo
22 57 223	20	56	222	1	Diaclasa	0.22	NAME OF TAXABLE PARTY.	16	Lisa	Suave > 5 mm	Mod. Alterada	Húmedo
22 S 223		-	2000				32000U	0.00	11/2/2015		Mod. Alterada	Húmedo
24 57 224		_		_							Mod. Alterada	Húmedo
24 57 226 1 Dachas 0.19 6.51 16 10 Uisa Suave > 5 mm	-			_	-5001R1B-5				1,71,1175		Mod. Alterada	Húmedo
25	-	-				Lancate Control of th	orientes ex-	and the same of th	4.5-114		Mod. Alterada	Húmedo
26 56 222 1 Diaclasa 0.22 6.21 10 Usa Sauve> 5 mm 77 55 220 1 Diaclasa 0.20 5.91 10 Usa Sauve> 5 mm 28 57 223 1 Diaclasa 0.20 5.76 10 Usa Sauve> 5 mm 31 55 220 1 Diaclasa 0.22 9.56 10 Usa Sauve> 5 mm 31 58 224 1 Diaclasa 0.22 9.41 10 Usa Sauve> 5 mm 31 58 224 1 Diaclasa 0.22 9.41 10 Usa Sauve> 5 mm 31 58 223 1 Diaclasa 0.22 9.41 10 Usa Sauve> 5 mm 34 58 223 1 Diaclasa 0.20 9.11 10 Usa Sauve> 5 mm 36 57 223 1 Diaclasa 0.22		-		-		12772	- Contract - Contract				Mod. Alterada	Húmedo
27 55 220	-	-						J-10			Mod. Alterada	Húmedo
28 52 224 1 1 Diaclass 0.20 5.91 10 0.00 Usa Suave > 5 mm		_							idea		Mod. Alterada	Húmedo
29 57 23 23 1 Diaclasa 0.22 5.76 10 Diaclasa 0.19 5.77 10 Diaclasa 0.19 0.12 0.18 0	-		1000	-			1500000	The state of the s		2.53	Mod. Alterada	Húmedo
30 56 222 1 Diaclass 0.19 9.71 10 Usa Suave > 5 mm 31 55 220 1 Diaclass 0.22 9.56 5 Usa Suave > 5 mm 33 58 224 1 Diaclass 0.22 9.41 10 Usa Suave > 5 mm 33 58 224 1 Diaclass 0.22 9.41 10 Usa Suave > 5 mm 35 57 226 1 Diaclass 0.22 8.81 10 Usa Suave > 5 mm 36 57 226 1 Diaclass 0.22 8.86 5 Usa Suave > 5 mm 38 56 222 1 Diaclass 0.22 8.86 5 Usa Suave > 5 mm 38 56 222 1 Diaclass 0.22 8.85 16 Usa Suave > 5 mm 38 56 224 1 Diaclass <t< td=""><td>3.5.5</td><td>-5.00</td><td>177</td><td>-</td><td></td><td>3577277</td><td></td><td></td><td>550000</td><td>Contract Contract</td><td>Mod. Alterada</td><td>Húmedo</td></t<>	3.5.5	-5.00	177	-		3577277			550000	Contract Contract	Mod. Alterada	Húmedo
31 55 220 1 Diaclasa 0.22 9.56 5 Usa Suave S mm 32 58 224 1 Diaclasa 0.18 9.26 10 Usa Suave S mm 34 58 223 1 Diaclasa 0.18 9.26 10 Usa Suave S mm 34 58 223 1 Diaclasa 0.20 9.11 10 Usa Suave S mm 37 57 226 1 Diaclasa 0.22 8.81 10 Usa Suave S mm 38 56 220 1 Diaclasa 0.22 8.85 16 Usa Suave S mm 39 55 200 1 Diaclasa 0.12 8.86 16 Usa Suave S mm 40 58 224 1 Diaclasa 0.20 8.86 16 Usa Suave S mm 41 57 223 1 Diaclasa 0.21		-	20.00	-			100-010			No. of the second second	Mod. Alterada	Húmedo
32 58 224		_									Mod. Alterada	Húmedo
33 58 224 1 Diaclasa 0.18 9.26 10 Usa Suave > 5 mm 36 58 224 1 Diaclasa 0.19 8.96 10 Usa Suave > 5 mm 36 57 224 1 Diaclasa 0.19 8.96 10 Usa Suave > 5 mm 36 57 223 1 Diaclasa 0.22 8.81 10 Usa Suave > 5 mm 39 55 220 1 Diaclasa 0.20 8.51 16 Usa Suave > 5 mm 40 58 224 1 Diaclasa 0.18 8.36 16 Usa Suave > 5 mm 41 57 23 1 Diaclasa 0.20 8.06 5 Usa Usa Suave > 5 mm 42 56 222 1 Diaclasa 0.20 7.76 5 Usa Usa Suave > 5 mm 42 55 223 1<		12707	555	-		The state of the s			tion in the same of		Mod. Alterada	Húmedo
34 58 223 1 Diaclasa 0.20 9.11 10 Usa Suave > 5 mm 35 57 226 1 Diaclasa 0.22 8.81 10 Usa Suave > 5 mm 37 57 223 1 Diaclasa 0.22 8.66 5 Usa Suave > 5 mm 38 55 223 1 Diaclasa 0.20 8.51 16 Usa Suave > 5 mm 40 58 224 1 Diaclasa 0.20 8.85 16 Usa Suave > 5 mm 40 58 224 1 Diaclasa 0.21 8.21 16 Usa Suave > 5 mm 40 58 224 1 Diaclasa 0.21 8.66 5 Usa Suave > 5 mm 43 57 233 1 Diaclasa 0.22 7.76 5 Usa Usa Suave > 5 mm 46 57 223 1 Diac	-	_		-	- Committee -						Mod. Alterada	Húmedo
35 57 224		-				The state of the s	2-0-1-0-1	The state of the s	20120	-	Mod. Alterada	Húmedo
36 57 226 1 Diaclasa 0.22 8.86 5 Lisa Suave > 5 mm 37 57 23 1 Diaclasa 0.20 8.56 5 Lisa Suave > 5 mm 39 55 220 1 Diaclasa 0.18 8.36 16 Lisa Suave > 5 mm 40 58 224 1 Diaclasa 0.21 8.21 16 Lisa Suave > 5 mm 40 58 224 1 Diaclasa 0.20 8.06 5 Lisa Suave > 5 mm 43 57 223 1 Diaclasa 0.18 7.91 16 Lisa Suave > 5 mm 43 57 223 1 Diaclasa 0.22 7.76 5 Usa Suave > 5 mm 46 57 223 1 Diaclasa 0.22 7.76 5 Usa Suave > 5 mm 47 56 222 1 Diaclasa	-	-		-		1-1-1-1					Mod. Alterada	
37 57 223 1 Diaclasa 0.22 8.66 5 Lisa Suave ≤ S mm 38 56 222 1 Diaclasa 0.20 8.51 16 Lisa Suave ≤ S mm 40 58 224 1 Diaclasa 0.21 8.21 16 Lisa Suave ≤ S mm 41 57 233 1 Diaclasa 0.20 8.06 5 Lisa Suave ≤ S mm 42 56 222 1 Diaclasa 0.22 7.76 5 Lisa Suave < S mm		_		-		10150						Húmedo
38 56 222 1 Diaclasa 0.20 8.51 16 Usa Suave > 5 mm 39 55 200 1 Diaclasa 0.18 8.36 16 Usa Suave > 5 mm 40 58 224 1 Diaclasa 0.20 8.06 5 Usa Suave > 5 mm 41 57 223 1 Diaclasa 0.20 8.06 5 Usa Suave > 5 mm 42 56 222 1 Diaclasa 0.22 7.76 5 Usa Suave > 5 mm 45 52 20 1 Diaclasa 0.22 7.76 5 Usa Suave > 5 mm 45 58 224 1 Diaclasa 0.22 7.76 16 Usa Suave > 5 mm 45 58 224 1 Diaclasa 0.19 7.31 16 Usa Suave > 5 mm 45 52 200 1 Diaclasa 0		-	in the same of the	-	-		- Third Color	The state of the s			Mod. Alterada	Húmedo
39 55 220 1 Diaclasa 0.18 8.36 16 Usa Suave > 5 mm 40 58 224 1 Diaclasa 0.21 8.21 16 Usa Suave > 5 mm 41 57 223 1 Diaclasa 0.20 8.06 5 Usa Suave < 5 mm	-		27,533	7.0	STREET, STREET		CONTROL CONTRO		10000	2555	Mod. Alterada	Húmedo
40 58 224 1 Diaclasa 0.21 8.21 16 Usa Suave > 5 mm 42 56 222 1 Diaclasa 0.20 8.06 5 Usa Suave < 5 mm 43 57 223 1 Diaclasa 0.22 7.76 5 Usa Suave > 5 mm 44 55 220 1 Diaclasa 0.22 7.76 5 Usa Suave > 5 mm 45 58 224 1 Diaclasa 0.22 7.61 16 Usa Suave > 5 mm 46 57 223 1 Diaclasa 0.22 7.61 16 Usa Suave > 5 mm 47 56 222 1 Diaclasa 0.22 7.61 16 Usa Suave > 5 mm 48 55 220 1 Diaclasa 0.22 7.66 16 Usa Suave > 5 mm 49 58 224 1 Diaclasa 0.22 7.66 16 Usa Suave > 5 mm 48 55 220 1 Diaclasa 0.22 7.16 16 Usa Suave > 5 mm 48 55 220 1 Diaclasa 0.22 7.16 16 Usa Suave > 5 mm 48 55 220 1 Diaclasa 0.21 7.01 16 Usa Suave > 5 mm 48 55 220 1 Diaclasa 0.21 7.01 16 Usa Suave > 5 mm 49 58 224 1 Diaclasa 0.20 6.86 10 Usa Suave > 5 mm 50 58 224 1 Diaclasa 0.20 6.86 10 Usa Suave > 5 mm 51 58 223 1 Diaclasa 0.21 6.71 10 Usa Suave > 5 mm 51 58 223 1 Diaclasa 0.21 6.56 10 Usa Suave > 5 mm 52 57 224 1 Diaclasa 0.22 6.71 10 Usa Suave > 5 mm 53 57 224 1 Diaclasa 0.21 6.41 10 Usa Suave > 5 mm 54 57 223 1 Diaclasa 0.21 6.41 10 Usa Suave > 5 mm 55 55 220 1 Diaclasa 0.22 6.75 10 Usa Suave > 5 mm 56 55 220 1 Diaclasa 0.22 6.25 10 Usa Suave > 5 mm 57 58 222 1 Diaclasa 0.22 6.25 10 Usa Suave > 5 mm 58 57 223 1 Diaclasa 0.22 6.25 10 Usa Suave > 5 mm 58 57 223 1 Diaclasa 0.22 6.25 10 Usa Suave > 5 mm 59 56 222 1 Diaclasa 0.21 5.51 10 Usa Suave > 5 mm 58 57 223 1 Diaclasa 0.22 5.51 10 Usa Suave > 5 mm 58 57 223 1 Diaclasa 0.22 5.51 10 Usa Suave > 5 mm 58 57 223 1 Diaclasa 0.22 5.51 10 Usa Suave > 5 mm 59 56 222 1 Diaclasa 0.23 1.99 10 Usa Suave > 5 mm 60 57 223 1 Diaclasa 0.23 1.99 10 Usa Suave > 5 mm 61 11 90 2 Diaclasa 0.21 2.01 10 Usa Suave > 5 mm 62 13 90 2 Diaclasa 0.23 1.99 10 Usa Suave > 5 mm 63 11 90 2 Diaclasa 0.24 4.24 20 Usa Suave > 5 mm 64 11 90 2 Diaclasa 0.25 5.25 10 Usa Suave > 5 mm 65 11 90 2 Diaclasa 0.26 3.24 4.24 20 Usa Suave > 5 mm 66 11 90 2 Diaclasa 0.25 5.25 5 0 Usa Suave > 5 mm 67 10 90 2 Diaclasa 0.25 5 0.25 5 0 Usa Suave > 5 mm 68 11 90 2 Diaclasa 0.25 5 0.25 5 0 Usa Suave > 5 mm		-	10000	-					V1100-00-0		Mod. Alterada	Húmedo
41 57 223 1 Diaclasa 0.20 8.06 5 Lisa Suave < 5 mm 42 56 222 1 Diaclasa 0.18 7.91 16 Lisa Suave > 5 mm 43 57 223 1 Diaclasa 0.22 7.61 16 Lisa Suave > 5 mm 45 58 220 1 Diaclasa 0.22 7.46 16 Lisa Suave > 5 mm 45 58 224 1 Diaclasa 0.22 7.46 16 Lisa Suave > 5 mm 46 57 223 1 Diaclasa 0.22 7.16 16 Lisa Suave > 5 mm 47 56 222 1 Diaclasa 0.22 7.16 16 Lisa Suave > 5 mm 49 58 224 1 Diaclasa 0.20 6.86 10 Lisa Suave > 5 mm 50 58 224 1 Diaclasa	_	_									Mod. Alterada	Húmedo
42 56 222 1 Diaclasa 0.18 7.91 16 Usa Suave > 5 mm 43 57 223 1 Diaclasa 0.22 7.76 5 Usa Suave > 5 mm 44 55 220 1 Diaclasa 0.22 7.61 16 Usa Suave > 5 mm 45 58 224 1 Diaclasa 0.22 7.46 16 Usa Suave > 5 mm 46 57 223 1 Diaclasa 0.22 7.46 16 Usa Suave > 5 mm 47 56 222 1 Diaclasa 0.22 7.46 16 Usa Suave > 5 mm 48 55 220 1 Diaclasa 0.22 7.46 16 Usa Suave > 5 mm 48 55 220 1 Diaclasa 0.21 7.16 16 Usa Suave > 5 mm 49 58 224 1 Diaclasa 0.21 7.16 16 Usa Suave > 5 mm 50 58 224 1 Diaclasa 0.21 7.01 16 Usa Suave > 5 mm 50 58 224 1 Diaclasa 0.21 7.01 16 Usa Suave > 5 mm 50 58 224 1 Diaclasa 0.22 6.86 10 Usa Suave > 5 mm 51 58 223 1 Diaclasa 0.22 6.71 10 Usa Suave > 5 mm 51 58 223 1 Diaclasa 0.22 6.71 10 Usa Suave > 5 mm 52 57 224 1 Diaclasa 0.21 6.56 10 Usa Suave > 5 mm 53 57 226 1 Diaclasa 0.21 6.41 10 Usa Suave > 5 mm 53 57 226 1 Diaclasa 0.21 6.56 10 Usa Suave > 5 mm 54 57 223 1 Diaclasa 0.21 6.41 10 Usa Suave > 5 mm 55 56 222 1 Diaclasa 0.21 6.56 10 Usa Suave > 5 mm 56 55 220 1 Diaclasa 0.21 5.81 10 Usa Suave > 5 mm 57 58 224 1 Diaclasa 0.21 5.81 10 Usa Suave > 5 mm 58 57 223 1 Diaclasa 0.22 5.56 10 Usa Suave > 5 mm 58 57 223 1 Diaclasa 0.20 5.96 10 Usa Suave > 5 mm 58 57 223 1 Diaclasa 0.20 5.96 10 Usa Suave > 5 mm 58 57 223 1 Diaclasa 0.20 5.96 10 Usa Suave > 5 mm 58 57 223 1 Diaclasa 0.21 5.81 10 Usa Suave > 5 mm 58 57 223 1 Diaclasa 0.21 5.81 10 Usa Suave > 5 mm 59 56 222 1 Diaclasa 0.22 5.51 10 Usa Suave > 5 mm 60 57 223 1 Diaclasa 0.22 5.51 10 Usa Suave > 5 mm 61 11 90 2 Diaclasa 0.23 1.99 10 Usa Suave > 5 mm 62 13 90 2 Diaclasa 0.23 1.99 10 Usa Suave > 5 mm 62 13 90 2 Diaclasa 0.23 1.99 10 Usa Suave > 5 mm 63 11 90 2 Diaclasa 0.24 4.24 20 Usa Suave > 5 mm 64 12 90 2 Diaclasa 0.26 3.24 2.0 Usa Suave > 5 mm 65 11 90 2 Diaclasa 0.23 2.3 2.53 2.0 Usa Suave > 5 mm 66 11 90 2 Diaclasa 0.24 4.24 20 Usa Suave > 5 mm 67 10 90 2 Diaclasa 0.25 5.25 5 mm 68 11 90 2 Diaclasa 0.26 5.25 5 mm 69 11 90 2 Diaclasa 0.27 5 mm 69 11 90 0 2 Diaclasa 0.29 5 mm 69 11 90 0 2 Diaclasa 0.29 5 mm 69 11 90 0 2 Diaclasa 0.29 5 mm 69 11 90 0 2 Di	-		133727	-		- Contraction -			A CONTRACTOR OF THE PARTY OF TH		Mod. Alterada	Húmedo
43 57 223 1 Diaclasa 0.22 7.76 5 Uisa Suave < 5 mm 44 55 220 1 Diaclasa 0.22 7.61 16 Uisa Suave > 5 mm 45 58 224 1 Diaclasa 0.22 7.46 16 Uisa Suave > 5 mm 47 56 223 1 Diaclasa 0.22 7.16 16 Uisa Suave > 5 mm 47 56 222 1 Diaclasa 0.22 7.16 16 Uisa Suave > 5 mm 48 55 220 1 Diaclasa 0.21 7.01 16 Uisa Suave > 5 mm 48 55 220 1 Diaclasa 0.21 7.01 16 Uisa Suave > 5 mm 49 58 224 1 Diaclasa 0.20 6.86 10 Uisa Suave > 5 mm 50 58 224 1 Diaclasa 0.20 6.86 10 Uisa Suave > 5 mm 51 58 223 1 Diaclasa 0.22 6.71 10 Uisa Suave > 5 mm 51 58 223 1 Diaclasa 0.22 6.71 10 Uisa Suave > 5 mm 52 57 224 1 Diaclasa 0.21 6.41 10 Uisa Suave > 5 mm 52 57 224 1 Diaclasa 0.21 6.41 10 Uisa Suave > 5 mm 53 57 226 1 Diaclasa 0.22 6.26 10 Uisa Suave > 5 mm 54 57 223 1 Diaclasa 0.22 6.26 10 Uisa Suave > 5 mm 55 55 222 1 Diaclasa 0.21 6.41 10 Uisa Suave > 5 mm 56 55 222 1 Diaclasa 0.22 6.26 10 Uisa Suave > 5 mm 57 58 224 1 Diaclasa 0.22 6.26 10 Uisa Suave > 5 mm 58 57 223 1 Diaclasa 0.21 5.81 10 Uisa Suave > 5 mm 58 57 223 1 Diaclasa 0.21 5.81 10 Uisa Suave > 5 mm 59 56 52 220 1 Diaclasa 0.18 6.11 10 Uisa Suave > 5 mm 59 56 222 1 Diaclasa 0.21 5.81 10 Uisa Suave > 5 mm 60 57 223 1 Diaclasa 0.21 5.81 10 Uisa Suave > 5 mm 60 57 223 1 Diaclasa 0.22 5.51 10 Uisa Suave > 5 mm 60 57 223 1 Diaclasa 0.22 5.55 10 Uisa Suave > 5 mm 60 57 223 1 Diaclasa 0.22 5.55 10 Uisa Suave > 5 mm 60 11 90 2 Diaclasa 0.23 1.99 10 Uisa Suave > 5 mm 60 11 90 2 Diaclasa 0.24 4.24 20 Uisa Suave > 5 mm 61 11 90 2 Diaclasa 0.24 4.24 20 Uisa Suave > 5 mm 61 11 90 2 Diaclasa 0.24 4.24 20 Uisa Suave > 5 mm 61 11 90 2 Diaclasa 0.25 Diaclasa 0.26 3.24 3.24 3.20 Uisa Suave > 5 mm 62 11 90 2 Diaclasa 0.24 4.24 20 Uisa Suave > 5 mm 63 11 90 2 Diaclasa 0.25 Diaclasa 0.26 3.24 3.24 3.20 Uisa Suave > 5 mm 64 11 90 2 Diaclasa 0.25 Diaclasa 0.26 3.24 3.24 3.20 Uisa Suave > 5 mm 65 11 90 2 Diaclasa 0.26 3.25 3.25 3.20 Uisa Suave > 5 mm 65 11 90 2 Diaclasa 0.27 Diaclasa 0.28 3.24 3.24 3.20 Uisa Suave > 5 mm 66 11 90 2 Diaclasa 0.29 Diaclasa 0.29 Diaclasa 0.29 Diaclasa 0.29 Diaclasa 0.29 Diaclasa		-	100000			100000	SIGNAT.		17577		Mod. Alterada	Húmedo
44 55 220		-	100000	-		188 TOTAL	13.03(0)				Mod, Alterada	Húmedo
45 58 224		_		_							Mod. Alterada	Húmedo
46 57 223		-									Mod. Alterada	Húmedo
47 56 222	-	-		-		Market Control of the		1000		-	Mod. Alterada	Húmedo
48 55 220 1 Diaclasa 0.21 7.01 16 Lisa Suave > 5 mm 49 58 224 1 Diaclasa 0.20 6.86 10 Lisa Suave > 5 mm 50 58 224 1 Diaclasa 0.22 6.71 10 Lisa Suave > 5 mm 51 58 223 1 Diaclasa 0.21 6.56 10 Lisa Suave > 5 mm 52 57 224 1 Diaclasa 0.21 6.41 10 Lisa Suave > 5 mm 53 57 226 1 Diaclasa 0.22 6.26 10 Lisa Suave > 5 mm 54 57 223 1 Diaclasa 0.21 6.41 10 Lisa Suave > 5 mm 55 56 222 1 Diaclasa 0.22 6.26 10 Lisa Suave > 5 mm 56 55 220 1 Diaclasa 0.20 5.96 10 Lisa Suave > 5 mm 57 58 224 1 Diaclasa 0.21 5.81 10 Lisa Suave > 5 mm 58 57 223 1 Diaclasa 0.21 5.81 10 Lisa Suave > 5 mm 58 57 223 1 Diaclasa 0.21 5.81 10 Lisa Suave > 5 mm 58 57 223 1 Diaclasa 0.22 5.51 10 Lisa Suave > 5 mm 58 57 223 1 Diaclasa 0.22 5.51 10 Lisa Suave > 5 mm 58 57 223 1 Diaclasa 0.22 5.51 10 Lisa Suave > 5 mm 60 57 223 1 Diaclasa 0.22 5.51 10 Lisa Suave > 5 mm 60 57 223 1 Diaclasa 0.22 5.51 10 Lisa Suave > 5 mm 60 57 223 1 Diaclasa 0.22 5.51 10 Lisa Suave > 5 mm 61 11 90 2 Diaclasa 0.23 1.99 10 Lisa Suave > 5 mm 62 13 90 2 Diaclasa 0.23 1.99 10 Lisa Suave > 5 mm 63 11 90 2 Diaclasa 0.20 2.55 10 Lisa Suave > 5 mm 64 12 90 2 Diaclasa 0.26 3.24 2.01 10 Lisa Suave > 5 mm 65 11 90 2 Diaclasa 0.26 3.24 2.01 10 Lisa Suave > 5 mm 66 11 90 2 Diaclasa 0.24 4.24 20 Lisa Suave > 5 mm 67 10 90 2 Diaclasa 0.20 2.24 4.24 20 Lisa Suave > 5 mm 68 11 90 2 Diaclasa 0.20 2.24 4.24 20 Lisa Suave > 5 mm 68 11 90 2 Diaclasa 0.20 2.24 4.24 20 Lisa Suave > 5 mm 68 11 90 2 Diaclasa 0.20 2.24 5.55 10 Lisa Suave > 5 mm 68 11 90 2 Diaclasa 0.20 2.24 5.55 20 Lisa Suave > 5 mm 68 11 90 2 Diaclasa 0.20 2.24 5.55 20 Lisa Suave > 5 mm 69 11 90 2 Diaclasa 0.20 2.24 5.55 20 Lisa Suave > 5 mm 69 11 90 2 Diaclasa 0.21 5.55 20 Lisa Suave > 5 mm 69 11 90 2 Diaclasa 0.21 5.55 20 Lisa Suave > 5 mm 69 11 90 2 Diaclasa 0.21 5.55 20 Lisa Suave > 5 mm 69 11 90 2 Diaclasa 0.21 5.55 20 Lisa Suave > 5 mm	-	-		-		market	- Contract - Contract		market and a second		Mod. Alterada	Humedo
49 58 224 1 Diaclasa 0.20 6.86 10 Lisa Suave > 5 mm 50 58 224 1 Diaclasa 0.22 6.71 10 Lisa Suave > 5 mm 51 58 223 1 Diaclasa 0.19 6.56 10 Lisa Suave > 5 mm 52 57 224 1 Diaclasa 0.21 6.41 10 Lisa Suave > 5 mm 53 57 226 1 Diaclasa 0.22 6.26 10 Lisa Suave > 5 mm 54 57 223 1 Diaclasa 0.18 6.11 10 Lisa Suave > 5 mm 55 52 222 1 Diaclasa 0.20 5.96 10 Lisa Suave > 5 mm 56 52 220 1 Diaclasa 0.21 5.81 10 Lisa Suave > 5 mm 57 58 224 1 Diaclasa		-									Mod. Alterada	Húmedo
50 58 224 1 Diaclasa 0.22 6.71 10 Lisa Suave > 5 mm 51 58 223 1 Diaclasa 0.19 6.56 10 Lisa Suave > 5 mm 52 57 224 1 Diaclasa 0.21 6.41 10 Lisa Suave > 5 mm 53 57 226 1 Diaclasa 0.22 6.26 10 Lisa Suave > 5 mm 54 57 223 1 Diaclasa 0.18 6.11 10 Lisa Suave > 5 mm 55 56 222 1 Diaclasa 0.20 5.96 10 Lisa Suave > 5 mm 56 55 220 1 Diaclasa 0.21 5.81 10 Lisa Suave > 5 mm 57 58 224 1 Diaclasa 0.22 5.51 10 Lisa Suave > 5 mm 58 57 223 1 Diaclasa	-	_		-							Mod. Alterada	Húmedo
51 58 223 1 Diaclasa 0.19 6.56 10 Lisa Suave > 5 mm 52 57 224 1 Diaclasa 0.21 6.41 10 Lisa Suave > 5 mm 53 57 226 1 Diaclasa 0.22 6.26 10 Lisa Suave > 5 mm 54 57 223 1 Diaclasa 0.18 6.11 10 Lisa Suave > 5 mm 55 56 222 1 Diaclasa 0.20 5.96 10 Lisa Suave > 5 mm 56 52 220 1 Diaclasa 0.21 5.81 10 Lisa Suave > 5 mm 57 58 224 1 Diaclasa 0.18 5.66 5 Lisa Suave > 5 mm 58 57 223 1 Diaclasa 0.22 5.51 10 Lisa Suave > 5 mm 60 57 223 1 Diaclasa				-							Mod. Alterada	Húmedo
52 57 224 1 Diaclasa 0.21 6.41 10 Lisa Suave > 5 mm 53 57 226 1 Diaclasa 0.22 6.26 10 Lisa Suave > 5 mm 54 57 223 1 Diaclasa 0.18 6.11 10 Lisa Suave > 5 mm 55 56 222 1 Diaclasa 0.20 5.96 10 Lisa Suave > 5 mm 56 52 220 1 Diaclasa 0.21 5.81 10 Lisa Suave > 5 mm 57 58 224 1 Diaclasa 0.22 5.51 10 Lisa Suave > 5 mm 58 57 223 1 Diaclasa 0.22 9.46 10 Lisa Suave > 5 mm 60 57 223 1 Diaclasa 0.18 9.31 5 Lisa Suave > 5 mm 60 17 223 1 Diaclasa		-	2000	-		A CONTRACTOR OF THE CONTRACTOR		1715 L	TO THE REAL PROPERTY.		Mod. Alterada	Húmedo
53 57 226 1 Diaclasa 0.22 6.26 10 Lisa Suave > 5 mm 54 57 223 1 Diaclasa 0.18 6.11 10 Lisa Suave > 5 mm 55 56 222 1 Diaclasa 0.20 5.96 10 Lisa Suave > 5 mm 56 520 1 Diaclasa 0.21 5.81 10 Lisa Suave > 5 mm 57 28 224 1 Diaclasa 0.18 5.66 5 Lisa Suave > 5 mm 59 56 222 1 Diaclasa 0.22 5.51 10 Lisa Suave > 5 mm 59 56 222 1 Diaclasa 0.22 9.46 10 Lisa Suave > 5 mm 60 57 223 1 Diaclasa 0.23 1.99 10 Lisa Suave > 5 mm 61 11 90 2 Diaclasa 0.20	_	-	200007			2003		11/0/2	3333	Suave > 5 mm	Mod. Alterada	Húmedo
54 57 223 1 Diaclasa 0.18 6.11 10 Lisa Suave > 5 mm 55 56 222 1 Diaclasa 0.20 5.96 10 Lisa Suave > 5 mm 56 52 220 1 Diaclasa 0.21 5.81 10 Lisa Suave > 5 mm 57 58 224 1 Diaclasa 0.18 5.66 5 Lisa Suave > 5 mm 58 72 223 1 Diaclasa 0.22 5.51 10 Lisa Suave > 5 mm 60 57 223 1 Diaclasa 0.22 9.46 10 Lisa Suave > 5 mm 60 57 223 1 Diaclasa 0.18 9.31 5 Lisa Suave > 5 mm 60 57 223 1 Diaclasa 0.23 1.99 10 Lisa Suave > 5 mm 61 11 90 2 Diaclasa		_								Suave > 5 mm	Mod. Alterada	Húmedo
55 56 222 1 Diaclasa 0.20 5.96 10 Lisa Suave > 5 mm 56 55 220 1 Diaclasa 0.21 5.81 10 Lisa Suave > 5 mm 57 58 224 1 Diaclasa 0.18 5.66 5 Lisa Suave > 5 mm 58 57 223 1 Diaclasa 0.22 5.51 10 Lisa Suave > 5 mm 60 57 223 1 Diaclasa 0.22 9.46 10 Lisa Suave > 5 mm 60 57 223 1 Diaclasa 0.18 9.31 5 Lisa Suave > 5 mm 61 11 90 2 Diaclasa 0.23 1.99 10 Lisa Suave > 5 mm 62 13 90 2 Diaclasa 0.20 2.55 10 Lisa Suave > 5 mm 63 11 90 2 Diaclasa		-									Mod. Alterada	Húmedo
56 55 220 1 Diaclasa 0.21 5.81 10 Lisa Suave > 5 mm 57 58 224 1 Diaclasa 0.18 5.66 5 Lisa Suave > 5 mm 58 57 223 1 Diaclasa 0.22 5.51 10 Lisa Suave > 5 mm 59 56 222 1 Diaclasa 0.22 9.46 10 Lisa Suave > 5 mm 61 11 90 2 Diaclasa 0.23 1.99 10 Lisa Suave > 5 mm 62 13 90 2 Diaclasa 0.20 2.55 10 Lisa Suave > 5 mm 63 11 90 2 Diaclasa 0.21 2.01 10 Lisa Suave > 5 mm 64 12 90 2 Diaclasa 0.26 3.24 20 Lisa Suave > 5 mm 65 11 90 2 Diaclasa	-	-		-	Diaclasa			No. of Contract of		Suave > 5 mm	Mod. Alterada	Húmedo
57 58 224 1 Diaclasa 0.18 5.66 5 Lisa Suave < 5 mm			50000		Diaclasa	40000		230	20000	The state of the state of	Mod. Alterada	Húmedo
58 57 223 1 Diaclasa 0.22 5.51 10 Lisa Suave > 5 mm 59 56 222 1 Diaclasa 0.22 9.46 10 Lisa Suave > 5 mm 60 57 223 1 Diaclasa 0.18 9.31 5 Lisa Suave > 5 mm 61 11 90 2 Diaclasa 0.23 1.99 10 Lisa Suave > 5 mm 62 13 90 2 Diaclasa 0.20 2.55 10 Lisa Suave > 5 mm 63 11 90 2 Diaclasa 0.21 2.01 10 Lisa Suave > 5 mm 64 12 90 2 Diaclasa 0.26 3.24 20 Lisa Suave > 5 mm 65 11 90 2 Diaclasa 0.24 4.24 20 Lisa Suave > 5 mm 66 11 90 2 Diaclasa 0.20 2.24 20 Lisa Suave > 5 mm 67 10 90 2 Diaclasa 0.23 2.53 20 Lisa Suave > 5 mm 68 11 90 2 Dia		-							Lisa	Suave > 5 mm	Mod. Alterada	Húmedo
59 56 222 1 Diaclasa 0.22 9.46 10 Lisa Suave > 5 mm 60 57 223 1 Diaclasa 0.18 9.31 5 Lisa Suave < 5 mm	57	58	224	1	Diaclasa	0.18	5.66	5	Lisa	Suave < 5 mm	Mod. Alterada	Húmedo
60 57 223 1 Diaclasa 0.18 9.31 5 Lisa Suave < 5 mm 61 11 90 2 Diaclasa 0.23 1.99 10 Lisa Suave > 5 mm 62 13 90 2 Diaclasa 0.20 2.55 10 Lisa Suave > 5 mm 63 11 90 2 Diaclasa 0.21 2.01 10 Lisa Suave > 5 mm 64 12 90 2 Diaclasa 0.26 3.24 20 Lisa Suave > 5 mm 65 11 90 2 Diaclasa 0.26 3.24 20 Lisa Suave > 5 mm 66 11 90 2 Diaclasa 0.24 4.24 20 Lisa Suave > 5 mm 66 11 90 2 Diaclasa 0.20 2.24 20 Lisa Suave > 5 mm 67 10 90 2 Diaclasa 0.20 2.24 20 Lisa Suave > 5 mm 68 11 90 2 Diaclasa 0.20 2.35 2.53 20 Lisa Suave > 5 mm 68 11 90 2 Diaclasa 0.23 2.53 20 Lisa Suave > 5 mm 69 11 90 2 Diaclasa 0.21 2.52 10 Lisa Suave > 5 mm	58	57	223	1	Diaclasa	0.22	5.51	10	Lisa	Suave > 5 mm	Mod. Alterada	Húmedo
61 11 90 2 Diaclasa 0.23 1.99 10 Lisa Suave > 5 mm 62 13 90 2 Diaclasa 0.20 2.55 10 Lisa Suave > 5 mm 63 11 90 2 Diaclasa 0.21 2.01 2.01 10 Lisa Suave > 5 mm 64 12 90 2 Diaclasa 0.26 3.24 20 Lisa Suave > 5 mm 65 11 90 2 Diaclasa 0.24 4.24 20 Lisa Suave > 5 mm 66 11 90 2 Diaclasa 0.20 2.24 20 Lisa Suave > 5 mm 67 10 90 2 Diaclasa 0.20 2.24 20 Lisa Suave > 5 mm 68 11 90 2 Diaclasa 0.23 2.53 20 Lisa Suave > 5 mm 68 11 90 2 Diaclasa 0.21 1.96 20 Lisa Suave > 5 mm 69 11 90 2 Diaclasa 0.21 2.52 10 Lisa Suave > 5 mm	59	56	222	1	Diaclasa	0.22	9.46	10	Lisa	Suave > 5 mm	Mod. Alterada	Húmedo
62 13 90 2 Diaclasa 0.20 2.55 10 Lisa Suave > 5 mm 63 11 90 2 Diaclasa 0.21 2.01 10 Lisa Suave > 5 mm 64 12 90 2 Diaclasa 0.26 3.24 20 Lisa Suave > 5 mm 65 11 90 2 Diaclasa 0.24 4.24 20 Lisa Suave > 5 mm 67 10 90 2 Diaclasa 0.20 2.24 20 Lisa Suave > 5 mm 67 10 90 2 Diaclasa 0.20 2.24 20 Lisa Suave > 5 mm 68 11 90 2 Diaclasa 0.23 2.53 20 Lisa Suave > 5 mm 68 11 90 2 Diaclasa 0.21 1.96 20 Lisa Suave > 5 mm 69 11 90 2 Diaclasa 0.21 2.52 10 Lisa Suave > 5 mm	60	57	223	1	Diaclasa	0.18	9.31	5	Lisa	Suave < 5 mm	Mod. Alterada	Húmedo
63 11 90 2 Diaclasa 0.21 2.01 10 Lisa Suave > 5 mm 64 12 90 2 Diaclasa 0.26 3.24 20 Lisa Suave > 5 mm 65 11 90 2 Diaclasa 0.24 4.24 20 Lisa Suave > 5 mm 66 11 90 2 Diaclasa 0.20 2.24 20 Lisa Suave > 5 mm 67 10 90 2 Diaclasa 0.23 2.53 20 Lisa Suave > 5 mm 68 11 90 2 Diaclasa 0.21 1.96 20 Lisa Suave > 5 mm 69 11 90 2 Diaclasa 0.21 2.52 10 Lisa Suave > 5 mm	61	11	90	2	Diaclasa	0.23	1.99	10	Lisa	Suave > 5 mm	Mod. Alterada	Mojado
64 12 90 2 Diaclasa 0.26 3.24 20 Lisa Suave > 5 mm 65 11 90 2 Diaclasa 0.24 4.24 20 Lisa Suave > 5 mm 66 11 90 2 Diaclasa 0.20 2.24 20 Lisa Suave > 5 mm 67 10 90 2 Diaclasa 0.23 2.53 20 Lisa Suave > 5 mm 68 11 90 2 Diaclasa 0.21 1.96 20 Lisa Suave > 5 mm 69 11 90 2 Diaclasa 0.21 2.52 10 Lisa Suave > 5 mm	62	13	90	2	Diaclasa	0.20	2.55	10	Lisa	Suave > 5 mm	Mod. Alterada	Mojado
65 11 90 2 Diaclasa 0.24 4.24 20 Lisa Suave > 5 mm 66 11 90 2 Diaclasa 0.20 2.24 20 Lisa Suave > 5 mm 67 10 90 2 Diaclasa 0.23 2.53 20 Lisa Suave > 5 mm 68 11 90 2 Diaclasa 0.21 1.96 20 Lisa Suave > 5 mm 69 11 90 2 Diaclasa 0.21 2.52 10 Lisa Suave > 5 mm	63	11	90	2	Diaclasa	0.21	2.01	10	Lisa	Suave > 5 mm	Mod. Alterada	Mojado
66 11 90 2 Diaclasa 0.20 2.24 20 Lisa Suave > 5 mm 67 10 90 2 Diaclasa 0.23 2.53 20 Lisa Suave > 5 mm 68 11 90 2 Diaclasa 0.21 1.96 20 Lisa Suave > 5 mm 69 11 90 2 Diaclasa 0.21 2.52 10 Lisa Suave > 5 mm	64	12	90	2	mineral production and the second	incident (co.	trive(c)-join	20	Lisa	The second second second second	Mod. Alterada	Mojado
66 11 90 2 Diaclasa 0.20 2.24 20 Lisa Suave > 5 mm 67 10 90 2 Diaclasa 0.23 2.53 20 Lisa Suave > 5 mm 68 11 90 2 Diaclasa 0.21 1.96 20 Lisa Suave > 5 mm 69 11 90 2 Diaclasa 0.21 2.52 10 Lisa Suave > 5 mm	65	11	90	2	Diaclasa	0.24	4.24	20	Lisa	Suave > 5 mm	Mod. Alterada	Mojado
67 10 90 2 Diaclasa 0.23 2.53 20 Lisa Suave > 5 mm 68 11 90 2 Diaclasa 0.21 1.96 20 Lisa Suave > 5 mm 69 11 90 2 Diaclasa 0.21 2.52 10 Lisa Suave > 5 mm	66	11	90	2	Diaclasa	0.20	12/2/11	20	Lisa		Mod. Alterada	Mojado
68 11 90 2 Diaclasa 0.21 1.96 20 Lisa Suave > 5 mm 69 11 90 2 Diaclasa 0.21 2.52 10 Lisa Suave > 5 mm		_		_							Mod. Alterada	Mojado
69 11 90 2 Diaclasa 0.21 2.52 10 Lisa Suave>5 mm				-			- Control of the Cont	170	777		Mod. Alterada	Mojado
	27.7	-	3377		Marie Control of the	HARON	77.70	- Control of the Cont	-		Mod. Alterada	Mojado
		13	90	2	Diaclasa	0.24	1.98	10	Lisa	Suave > 5 mm	Mod. Alterada	Mojado
71 11 90 2 Diaclasa 0.20 3.22 10 Lisa Suave>5 mm	_	_									Mod. Alterada	Mojado
72 12 90 2 Diaclasa 0.21 4.22 20 Lisa Suave>5 mm	-	-									Mod. Alterada	Mojado
73 11 90 2 Diaclasa 0.21 2.22 20 Lisa Suave>5 mm	_	-	-	-		NAME OF TAXABLE PARTY O	remarks.	10000	-	The second distribution of the second	Mod. Alterada	Mojado
		-		-							Mod. Alterada	Mojado
74 11 90 2 Diaclasa 0.26 2.50 20 Lisa Suave > 5 mm	7.9	4.6	20		niariasa.	VieV	6.30	69	L130.	Anna > 3 mill	Work Airer aga	iviojado

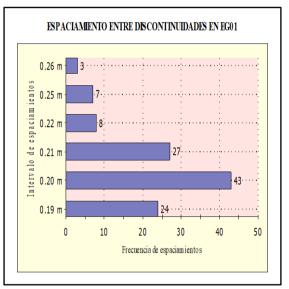
O DIPS

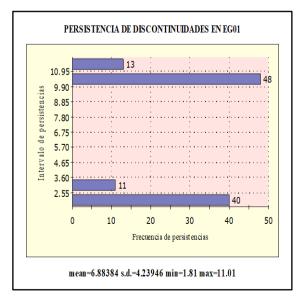
BASE DE DATOS DE ESTACIÓN GEOMECÁNICA EG03

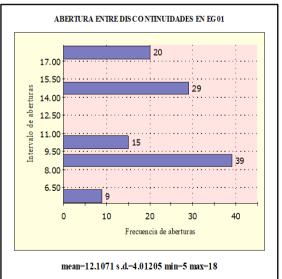

: APLICACIÓN DE LAS CONDICIONES GEÓMECÁNICAS DEL ÍNDICE SLOPE MASS RATING EN LA ESTABILIDAD DEL TALUD EN CARRETERA PUENTE COLLPA – YANACANCHA : Curretera Puente Colpa, Yanacancha : Progresivas 18*708.00-18*720.00 : EG-03 FECHA: Octubre 2021

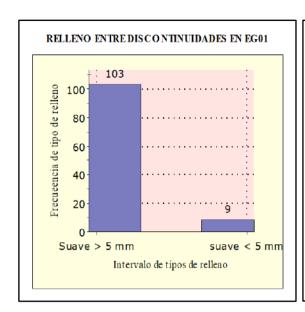

UBICACIÓN MUESTRA ESTACIÓN GEOMEC.

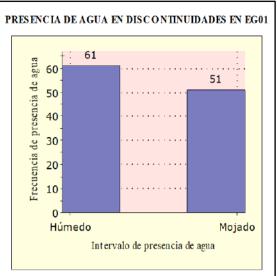

NOMBRE DE TESIS

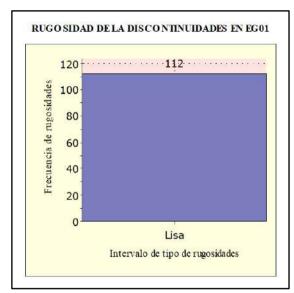

ID	Dip	Dip Direction	Set	ESTRUCTURA	ESPACIAMIENTO (METROS)	PERSISTENCIA (METROS)	ABERTURA (MILÍMETROS)	RUGOSIDAD	RELLENO	ALTERACIÓN	AGUA
75	11	90	2	Diaclasa	0.24	1.93	10	Lisa	Suave > 5 mm	Mod. Alterada	Mojado
76	13	90	2	Diaclasa	0.25	1.98	10	Lisa	Suave > 5 mm	Mod. Alterada	Mojado
77	11	90	2	Diaclasa	0.24	1.89	10	Lisa	Suave > 5 mm	Mod. Alterada	Mojado
78	12	90	2	Diaclasa	0.20	2.23	20	Lisa	Suave > 5 mm	Mod. Alterada	Mojado
79	11	90	2	Diaclasa	0.21	1.95	20	Lisa	Suave > 5 mm	Mod. Alterada	Mojado
80	11	90	2	Diaclasa	0.21	3.15	20	Lisa	Suave > 5 mm	Mod. Alterada	Mojado
81	11	90	2	Diaclasa	0.26	2.50	20	Lisa	Suave > 5 mm	Mod. Alterada	Mojado
82	11	90	2	Diaclasa	0.24	1.93	10	Lisa	Suave > 5 mm	Mod. Alterada	Mojado
83	10	90	2	Diaclasa	0.22	4.15	20	Lisa	Suave > 5 mm	Mod. Alterada	Mojado
84	11	90	2	Diaclasa	0.21	2.15	10	Lisa	Suave > 5 mm	Mod. Alterada	Mojado
85	11	90	2	Diaclasa	0.23	2.24	10	Lisa	Suave > 5 mm	Mod. Alterada	Mojado
86	13	90	2	Diaclasa	0.21	2.54	10	Lisa	Suave > 5 mm	Mod. Alterada	Mojado
87	11	90	2	Diaclasa	0.24	2.00	10	Lisa	Suave > 5 mm	Mod. Alterada	Mojado
88	12	90	2	Diaclasa	0.21	3.20	20	Lisa	Suave > 5 mm	Mod. Alterada	Mojado
89	11	90	2	Diaclasa	0.21	4.20	20	Lisa	Suave > 5 mm	Mod. Alterada	Mojado
90	11	90	2	Diaclasa	0.22	2.20	20	Lisa	Suave > 5 mm	Mod. Alterada	Mojado
91	11	90	2	Diaclasa	0.21	2.52	20	Lisa	Suave > 5 mm	Mod. Alterada	Mojado
92	11	90	2	Diaclasa	0.20	2.11	20	Lisa	Suave > 5 mm	Mod. Alterada	Mojado
93	12	90	2	Diaclasa	0.21	2.23	20	Lisa	Suave > 5 mm	Mod. Alterada	Mojado
94	10	90	2	Diaclasa	0.22	2.53	20	Lisa	Suave > 5 mm	Mod. Alterada	Mojado
95	11	90	2	Diaclasa	0.20	1.96	20	Lisa	Suave > 5 mm	Mod. Alterada	Mojado
96	11	90	2	Diaclasa	0.21	2.52	10	Lisa	Suave > 5 mm	Mod. Alterada	Mojado
97	11	90	2	Diaclasa	0.26	2.50	20	Lisa	Suave > 5 mm	Mod. Alterada	Mojado
98	11	90	2	Diaclasa	0.24	1.93	10	Lisa	Suave > 5 mm	Mod. Alterada	Mojado
99	13	90	2	Diaclasa	0.25	1.98	10	Lisa	Suave > 5 mm	Mod. Alterada	Mojado
100	11	90	2	Diaclasa	0.24	1.89	10	Lisa	Suave > 5 mm	Mod. Alterada	Mojado

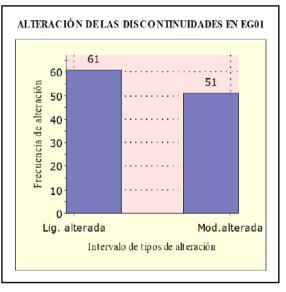

CARACTERÍSTICAS DE LAS DISCONTINUIDADES EN EG01

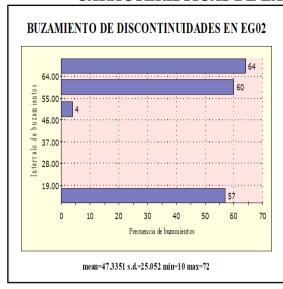


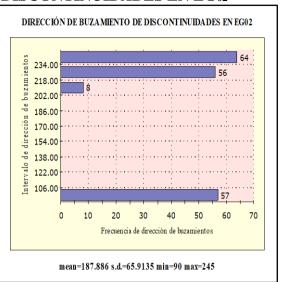


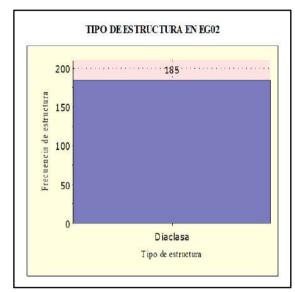


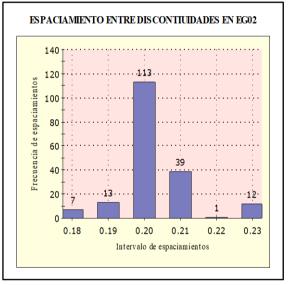


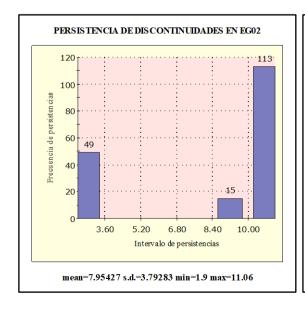


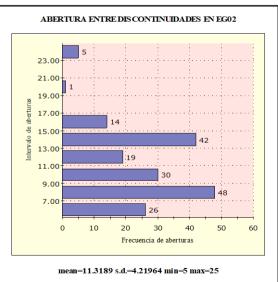


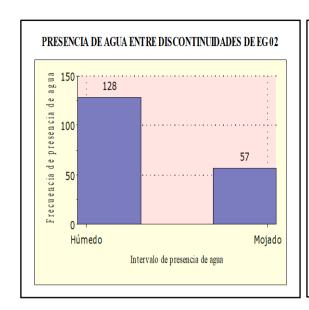


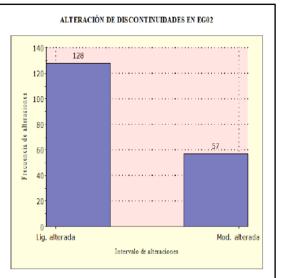


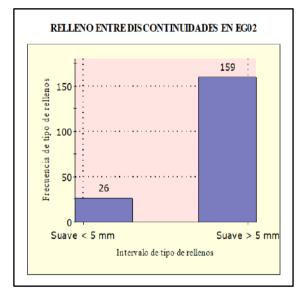


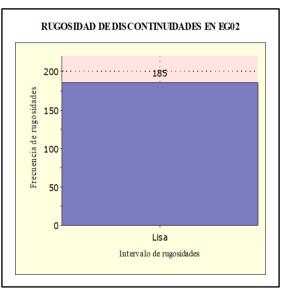

CARACTERÍSTICAS DE LAS DISCONTINUIDADES EN EG₀₂

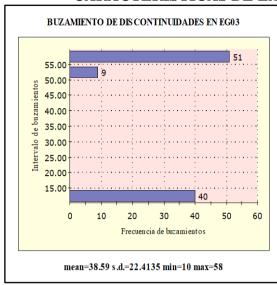


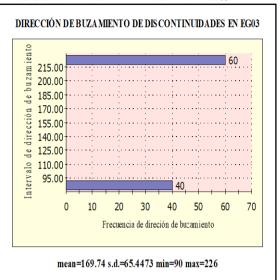


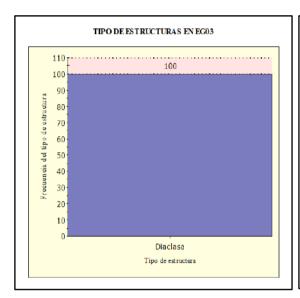


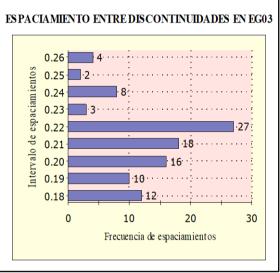


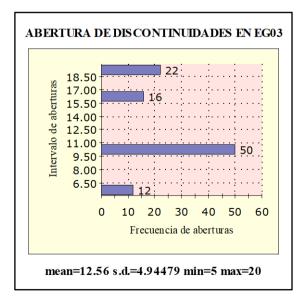


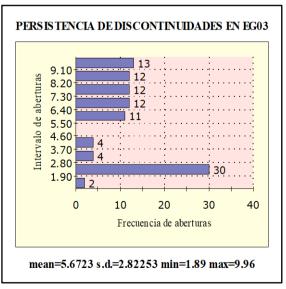


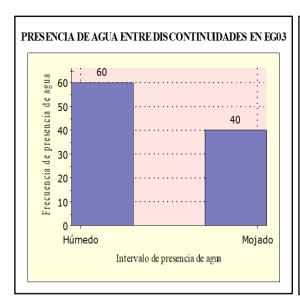


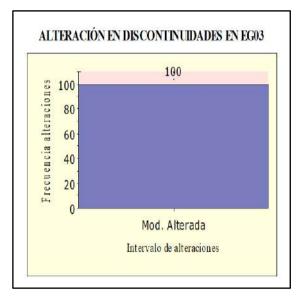


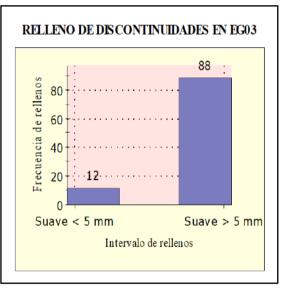


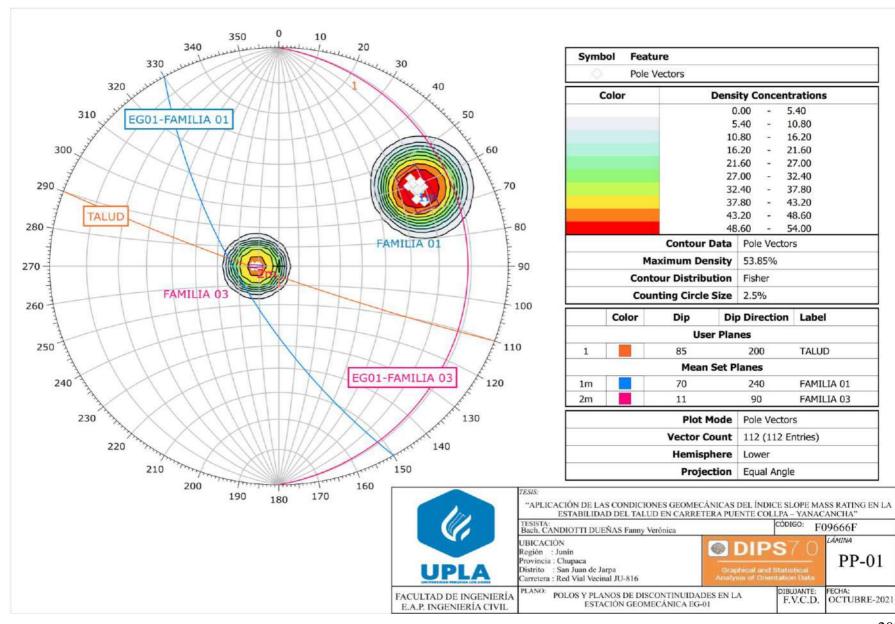

CARACTERÍSTICAS DE LAS DISCONTINUIDADES EN EG03

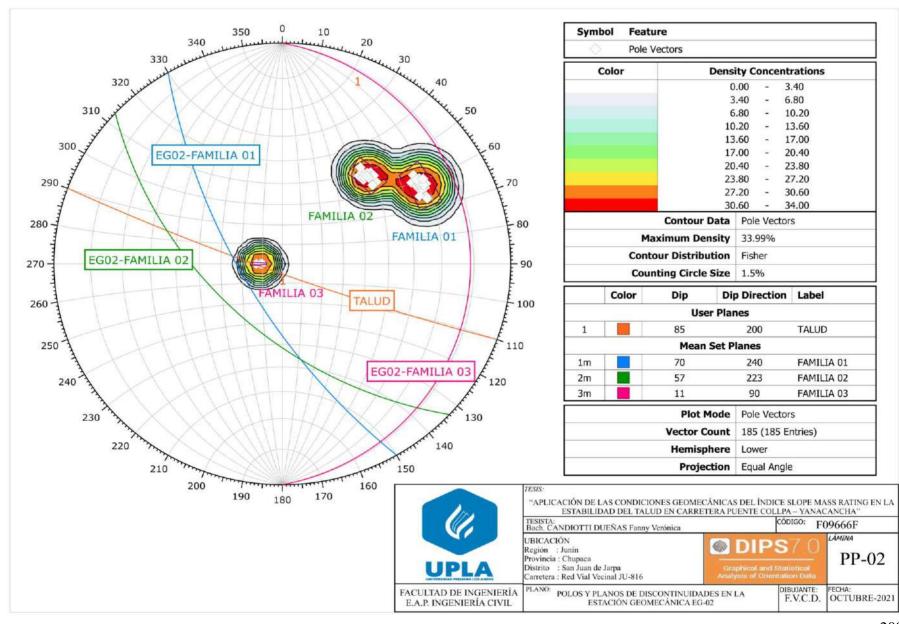


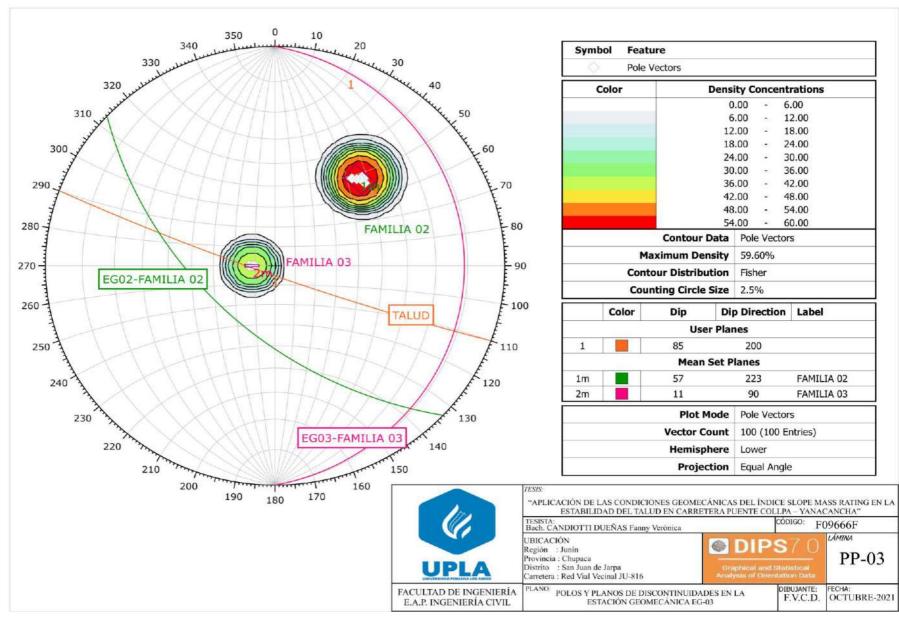


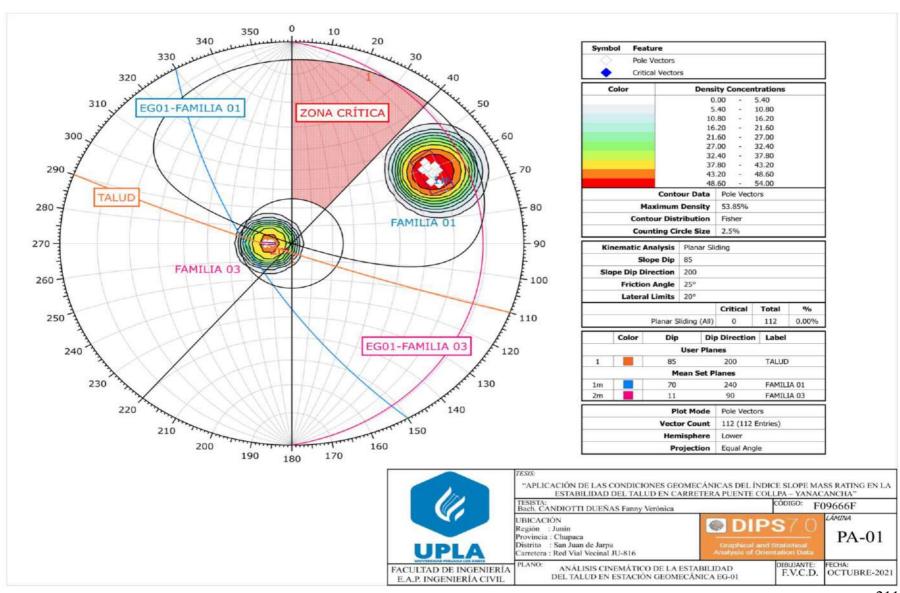


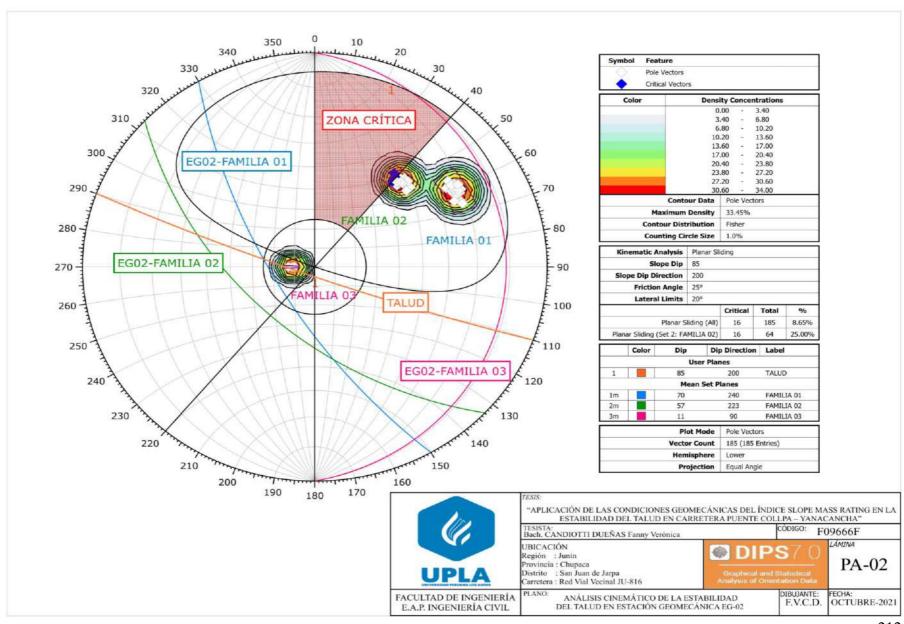


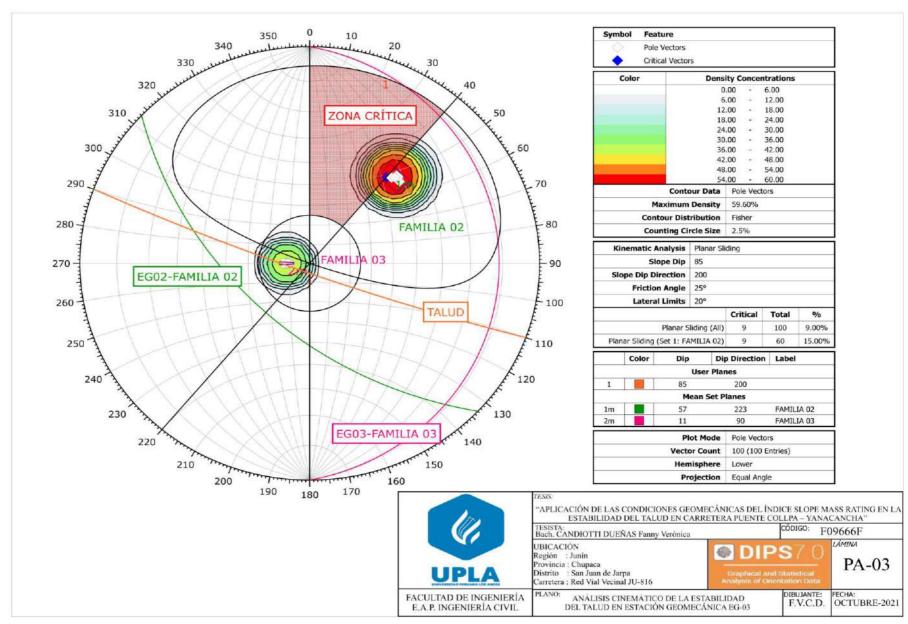












ANEXO 11: Análisis cinemático de la estabilidad del talud con software DIPS

ANEXO 12: Fichas de paráfrasis: Propiedades litológicas de la roca

Dávila Burga, José, 2011, p. 505.

Nro. 01

LITOLOGÍA

Es considerado una ciencia que estudia el origen, evolución y clasificación de las rocas. Su sinónimo es la petrología.

Rojas González Yerman Alberto

Nro. 02

Guía metodológica para el reconocimiento geológico en campo y revisión de los procedimientos de ensayos in situ enfocado en los estudios de suelos realizados en la empresa López hermanos Ltda., 2018, pp. 24 - 45.

LITOLOGÍA

La litología permite identificar los materiales de la zona de estudio: origen, composición mineralógica, textura, coloración, tipo, tamaño de sus partículas. Las características que debe contener el estudio litológico de la roca son: Tipo, nombre de la roca, color, grado de meteorización, textura y nivel de dureza.

Carpio, M., Torre, J. y Fuentes, J. (2019) -

Nro. 03

Investigación de calizas para el desarrollo de la región Junín. INGEMMET, Boletín, Serie

B: Geología Económica, 65, pp. 343, 3 mapas.

MARCO GEOLÓGICO

La formación geológica de Condorsinga abarca los distritos de San Juan de Jarpa - Ahuac, provincia de Chupaca, en estas zonas se observaron rocas calizas de color gris claro y beige con micro—venillas de calcita menores a 1 milímetro. Las calizas son rocas sedimentarias compuestas por carbonato de calcio CACO₃ de media a alta pureza, lo que significa interviene en el proceso de fabricación del cemento y cal hidráulica, además puede usarse para estabilizar infraestructuras viales.

ANEXO 13: Sección 225 del manual de carreteras, mantenimiento o conservación vial e ítem 7.3 del manual de carreteras: túneles y obras complementarias. – Ministerio de transportes y comunicaciones.

SECCIÓN 225

DESQUINCHE MANUAL DE TALUDES

225.1 Descripción

Este trabajo consiste en ejecutar diversas actividades para eliminar los materiales sueltos del talud, regularizar su alineamiento.

El objetivo es evitar manualmente la caída de piedras y de material suelto, que afecten la normal circulación del tránsito, y que pongan en riesgo de accidentes a los usuarios de la vía.

225.2 Materiales

Para la ejecución de esta actividad no se requiere el suministro de materiales.

225.3 Equipos y herramientas

Por lo general, para la ejecución de esta actividad se requiere, herramientas tales como: barretas, picos, lampas, comba, rastrillos, sogas, arnés, carretillas, entre otros.

225.4 Procedimiento de ejecución

El procedimiento general es el siguiente:

- Colocar señales preventivas y dispositivos de seguridad, que garanticen la ejecución segura de los trabajos y el ordenamiento del tránsito sin riesgos de accidentes durante el tiempo requerido.
- 2. El personal debe contar con los uniformes, y todo el equipo de protección personal de acuerdo con las normas establecidas vigentes sobre la materia.
- Tomar fotografías de casos sobresalientes y/o representativos.
- 4. Remover las piedras y material suelto de los taludes, teniendo en cuenta las medidas de seguridad establecidas.
- 5. Limpiar y depositar los materiales excedentes en los DME autorizados.
- Al terminar los trabajos, retirar las señales y dispositivos de seguridad.

225.5 Aceptación de los trabajos

La supervisión aceptara los trabajos cuando compruebe que se han realizado a satisfacción.

225.6 Medición

La medición se realizará por metro cuadrado (m²) con aproximación a la décima, de desquinche manual de taludes, o la correspondiente al indicador de conservación o al indicador de nivel de servicio, según el caso.

225.7 Pago

Se pagará según el precio unitario del contrato o el cumplimiento del indicador de conservación o el indicador de nivel de servicio

Sección	Ítem de pago	Unidad de pago
225	Desquinche manual de taludes	Metro cuadrado (m²)

La suma indicada en cada ítem, o precio unitario, deberá cubrir todos los gastos de equipo, mano de obra y herramientas; incluyendo los costos de carga, descarga y transporte, así como todo aquello que sea necesario para la ejecución satisfactoria de la actividad.

7.3 PERNOS DE ANCLAJE.

7.3.1 TECNOLOGÍA DE PERNOS DE ANCLAJE.

Los pernos de anclaje, constituyen un sistema de sostenimiento que consiste en la introducción de elementos lineales a modo de refuerzo en el terreno. Para ello se perfora y se ancla física o químicamente al terreno, reforzando y contrarrestando la presión que ejerce el terreno sobre la excavación.

Los pernos suelen ser pasivos, unidos y anclados al terreno en toda su longitud, y que entran en servicio sólo cuando el terreno se deforma o desprende alguna cuña arrastrando al perno. Los pernos de anclaje pasivos son los de uso más extendido por su fácil y rápida ejecución permitiendo así que el terreno mantenga sus características. En situaciones de especial atención o como refuerzo también se utilizan pernos activos, los cuales están anclados al terreno por punta, teniendo un fuste libre y una cabeza sujeta al terreno mediante una cabeza y una rosca. La principal diferencia radica en que los pernos activos actúan desde un inicio, ya que el perno se tensa una vez que el anclaje al terreno es efectivo.

Los pernos de anclaje por si solos, pueden considerarse un sistema de sostenimiento, aunque lo habitual es que en la mayoría de ocasiones, se encuentren en combinación con otros elementos de sostenimiento.

Tienen como funciones principales las siguientes:

- ✓ Confinar el terreno, contrarrestando la presión radial
- ✓ Contrarrestar el espaciamiento entre discontinuidades
- ✓ Prevenir la caída potencial de cuñas y bloques

7.3.2 ACCIONES DE REFUERZO.

Los pernos de anclaje se clasifican principalmente en función del elemento lineal de refuerzo y su sistema de anclaje (activo y/o pasivo), produciéndose así gran variabilidad y gran abanico de posibilidades con diferentes soluciones.

A continuación se exponen:

Tabla 7.1 Tipos utilizados de refuerzo

	BARRAS	ACERO CORRUGADO
SEGÚN EL ELEMENTO DE REFUERZO		FIBRA DE VIDRIO
		AUTOPERFORANTE
	CABLES	
	QUÍMICO	CEMENTO
		RESINA
SEGÚN EL SISTEMA DE ANCLAJE	POR FRICCIÓN	TIPO "SPLIT-SET"
		TIPO "SWELLEX"
		EXPANSIÓN EN PUNTA

7.3.2.1 Mediante barras

Los pernos de barras de acero corrugado son las más comunes en obra y consiste en la introducción de una barra de acero corrugado normalmente de diámetros 25 o 32 mm, a lo largo de una perforación en el terreno.

Manual de Carreteras: Página 149

La perforación de los anclajes se realiza habitualmente mediante el Jumbo, que, según los modelos, su longitud no exceda los 5 m.

El diámetro de perforación debe ajustarse a la barra según el sistema de anclaje, se utiliza un sistema de anclaje químico, normalmente mediante lechada de cemento o en base a resinas, que se rellenan inyectándose a presión en el espacio anular, comprendido entre la barra y el terreno, recomendándose reinyecciones para asegurar un relleno completo.

Este sistema requiere de la colocación de un tubo de inyección, otro de respiración a lo largo de la barra y colocar un tapón (tape) que obture todo el sistema en la boca de la perforación, asegurándose que la barra quede centrada y embebida dentro de la lechada y no en la base.

El anclaje químico, en base a resinas de poliéster, es una solución mucho más extendida y que en cuestión de minutos el perno de anclaje puede estar trabajando.

Las resinas vienen encapsuladas en cartuchos de aproximadamente unos 30 cm en diferentes diámetros, que se adaptan a la perforación del taladro.

El cartucho viene dividido en dos compartimentos, uno es la resina y el otro el catalizador, que al unirse estos dos componentes, se obtiene una mezcla de alta resistencia.

Cuando las longitudes de anclaje son largas (> 5 m) o cuando los terrenos a taladrar son de mala calidad, el taladro no es auto estable y es difícil la introducción de la barra, se utilizan barras autoperforantes, que son barras de acero, con límites elásticos elevados, que disponen de una broca perdida en un extremo, de manera que al mismo tiempo que se perfora el taladro, se introduce la barra.

Cuando surge la necesidad de colocar pernos de anclaje en zonas donde posteriormente se debe de volver a excavar, los pernos de fibra de vidrio son la solución más empleada, ya que son fácilmente retirados sin dañar las herramientas de corte. Su resistencia a tracción es similar a la del acero y su durabilidad es muy alta.

Colocada y anclada la barra al taladro, el anclaje se completa con la colocación de una placa de reparto. En el extremo de la barra que queda fuera del terreno se mecaniza una rosca donde se colocará la placa de reparto que, se ajustará contra el terreno.

7.3.2.2 Mediante cables

Es un sistema no muy extendido, pero si útil en zonas de terrenos de mala calidad o especial atención.

Consta de tres partes diferenciadas: bulbo de anclaje, parte libre y cabeza de reparto. Perforado el taladro y colocado el anclaje, se inyecta solamente el bulbo mediante lechada de cemento, para posteriormente una vez alcanzada la resistencia requerida, tensarlo. Y se coloca la placa de reparto, mediante cuñas se estabiliza la tensión.

ANEXO 14: Certificado de calibración de equipos

ALTA TECNOLOGÍA CON CALIDAD HUMANA AL SERVICIO DEL MUNDO

CERTIFICADO DE CALIBRACIÓN Nº 013-2021 PLF

2021-01-27 Pág.1 de 1

Solicitante:

GEOLUMAS S.A.C.

Dirección:

Jr. 28 de octubre N° 429 El Tambo - Huancayo - Junin

Equipo / Tipo:

Esclerómetro

Fabricante: Modelo: Pinzuar

Serie:

PC-137 1363

Ubicación del Instrumento:

Laboratorio

Patrón de Calibración: Método de Calibración: Yunque Marca Controls

Tomar la fuerza de caida medida sobre un yungue

TABLA DE RESULTADOS	
1	80
2	80
3	79
4	80
5	79
6	79
7	80
8	80
9	80
10	80
Promedio=	79,7
Desviación Estandar =	0,48

Fisc. Juan Carlos Otuspe Morales Supervisor de Laboratorio de Metrologia. PINZUAR LTDA. SUCURSAL DEL PERU

TRAZABILIDAD: Pinzuar Ltda. asegura y mantiene la trazabilidad de los patrones empleados en esta inspección

(*) Este informe expresa fielmente el l'esultado de las mediciones l'ealizadas y se refiere al momento y condiciones en que se realizaron.
Pinzuar Ltda. Sucursal del Perú no se l'esponsabiliza de los perjuicios que puedan derivarse del uso inadecuado del instrumento y/o le información contenida en este documento.

CERTIFICADO DE CALIBRACIÓN

Nº108 1 de 2

N° 0128/2021

LABORATORIO DE CALIBRACIÓN

Cliente: Instrumento: GRUPO UNION ASESORES SOCIEDAD ANÓNIMA CERRADA

ESTACION TOTAL

Fecha de emisión: 12/09/2021

Proxima calibración: 11/03/2021

RUC: 20600570693 TOPCON-Marca:

Modelo: ES-105 Serie:

GZ1006

ESPECIFICACIONES TÉCNICAS SEGÚN FABRICANTE					
Precisión del EDM	AV)	Compensador centralizado de cuadruple eje:			
0m - 500m :		2mm + 2ppm	dos ejes:		colimación Hz
>500m:	160	3mm + 2ppm	dos ejes:		índice vercita
Abertura libre del objetivo:	1	40mm	Resolución nivel electrónico);	1"
Telescopio imagen directa:	25	30x	Plomada laser:		
Lectura mínima		1"/5"	Precisión	7.7	1,5mm a 1.5m de altura
Precisión angular		5"	Diámetro		2,5mm a 1.5m dealtura

AJUSTE DEL EQUIPO

Rotación EDM

ESTADO VISIBLE DEL EQUIPO		PANEL DE CONTROL		
Color	OK	Leyenda de teclado	OK	
Limpieza	OK	Condición física	-OK	
Estado físico/mecánico	OK	Funciones de teclad	o OK	

MECÁNICA DEL EQUIPO Rotación horizontal

Nivel esférico OK Tornillos nivelantes DK Condición física/mecánica OK

	REVISIÓN		
Puntero laser	OK -	Doble centro	OK
Plomada laser	OK .	Error vertical	OK
Perpendicularidad	OK	Error horizontal	OK

PATRÓN DE MEDIDAS ANGULARES			
Ángulo Hz	00°00'00"	Rot-Der	180° 00' 00"
Ángulo V	90° 00' 00"	Rot-Der	270° 00' 00"
Ángulo de elevación	60° 00' 00"	Depresión	120° 00' 00"

VALORES ANGULARES INICIALES LEÍDOS EN EL INSTRUMENTO			
Ángulo Hz	00, 00, 00,	Rot-Der	180" 00' 10"
Ángulo V	90° 00' 00"	Rot	270° 00' 07"
Muñones V	60° 00' 00"	Rot -	300° 00' 06"
Muñones Hz	00° 00' 00"	Rot	180° 00' 05"

EL INSTRUMENTO SE ENCUENTRA REVISADO, CALIBRADO, AJUSTADO Y VERIFICADO. SE TOMÓ COMO REFERENCIA EL ESTÁNDAR DE LA NORMA ISO: 17123 "OPTICS AND OPTICAL INSTRUMENT", POR LA CUAL SE GARANTIZA SU CORRECTO Y NORMAL FUNCIONAMIENTO.

VALORES ANGULARES A CORREGIR		
Angulo Hz	00° 00' 10"	
Vertical V	OC* OO' 07"	
Muñones V	00° 00' 06"	
Muñanes Hz	OC° DO' O5"	-

PRECISIO	ON ANGULAR		
Grados *	Minutos 1	Segundos	11
00°	00'	05	
00"	00'	05"	

VALORES ANGULARES FINALES LEÍDOS EN EL INSTRUMENTO			
Angulo Hz	00°00'00"	Rot-Der	180° 00' 00"
Angulo V	90° 00' 00"	Rot	270° 00' 00"
Muñones V	60° 00' 00"	Rot	300° 00' 00"
Muñanes Hz	00° 00' 00"	Rot.	180° 00' 00"

DESVIACIÓN ANGULAR FINAL

+02" + 02" Δ +02"

+ 02"

Psj. Rojas #130 - Huancayo, Celular: 974467554 - 988908866 serviciotecnico@geomeo

Nº128 2 de 2

CONDICIONES AMBIENTALES DE LABORATORIO

Temperatura:

15°C con variación +/- 1°C

Presión atmosférica:

751 mmHg con variación de +/- 0.5 mmHg

Humedad relativa: 64%

OBSERVACIONES: Por medio de la presente certificamos que el producto descrito ha sido verificado y cumple con las especificaciones establecidas por el fabricante detallado en el manual de usuario. Los resultados del presente documento, son validos únicamente para el equipo calibrado y se refieren al momento y condiciones ambientales en que fueron ejecutadas las mediciones.

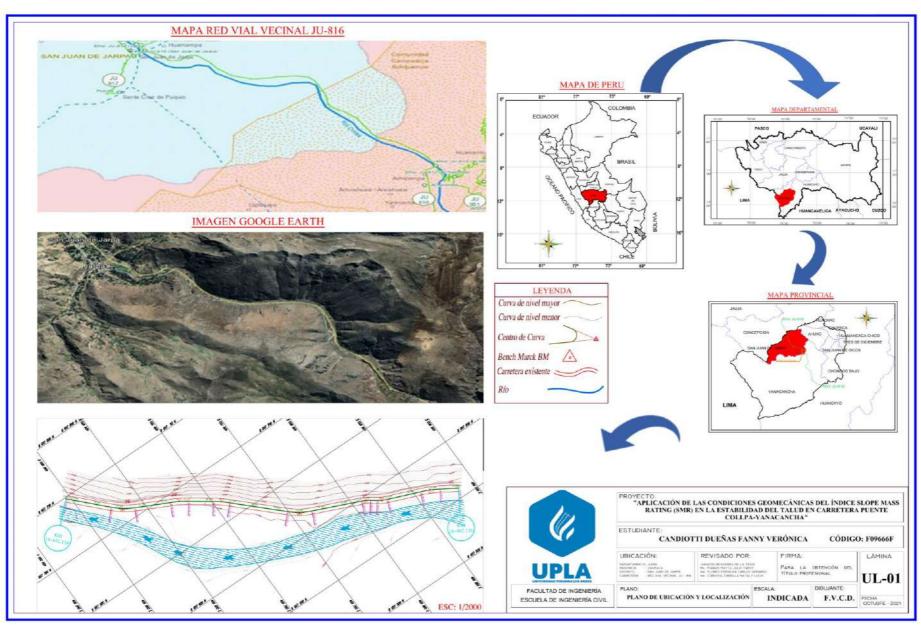
TRAZABILIDAD DE LA VERIFICACIÓN

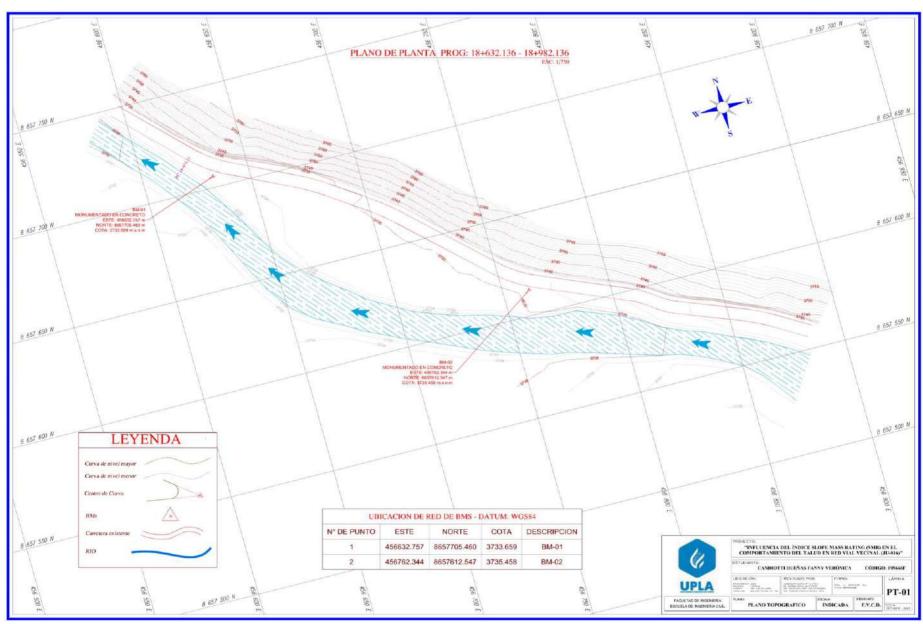
Equipo utilizado como patrón:

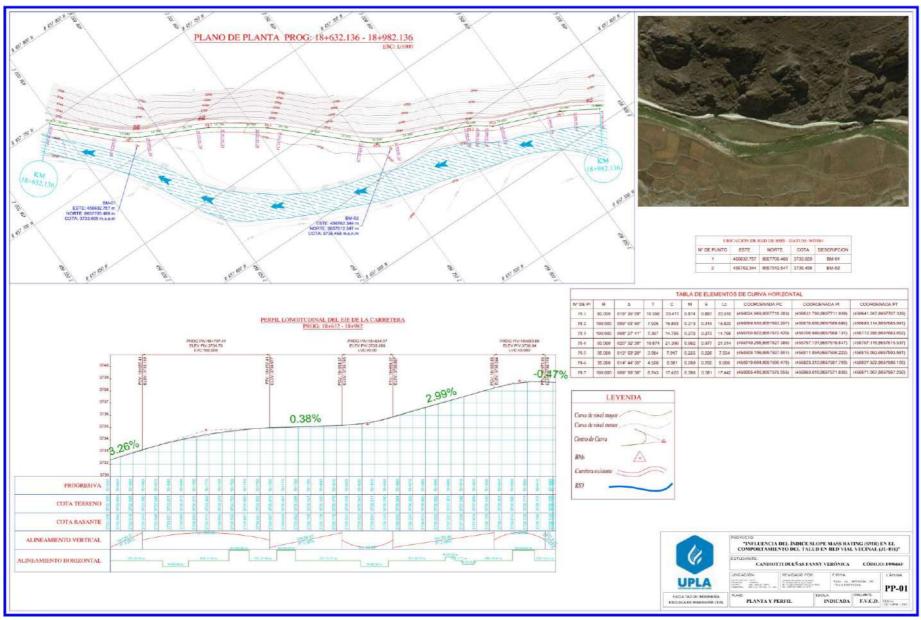
Set de Colimadores. Marca Sanzhun W550-4; Serie N° BM2903 Teodolito MecánicoWILD-T1A, Serie N°95453. Nivei Automático Topcon AT-B2, Serie N°90837. Micrómetro de placas paralelas Sokkia OM5, con Serie N° 7001660.

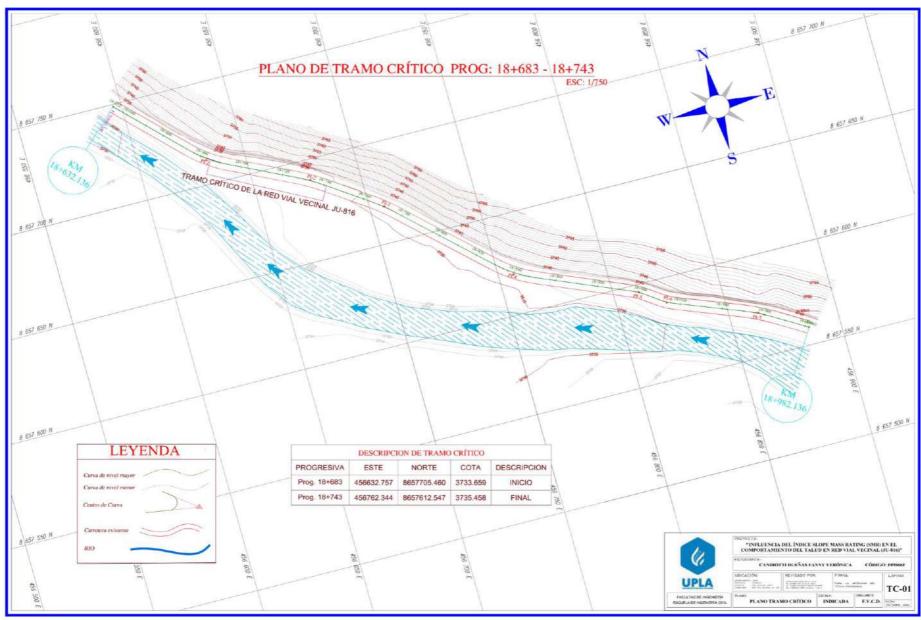
Colimador SANZHUN W550-4; con Telescopios de 32x cuyo retículo esta enfocado al infinito, el grosor de sus trazos esta dentro de 1", consta de 04 tubos cada uno con doble retículo en plataforma fija, con distancia de enfoque infinito, distancia focal de 550mm, apertura efectiva de 55mm y 3" de campo de visión, es revisado periodicamente con un Teodolito WILD-T1A precisión 1", con método de lectura directa-inversa y refrendado con un Nivel Automático Topcón Modelo AT-32 de 32x con Micrometro de Placas Paralelas de Precisión 0.5mm nivelación doble de 1km.

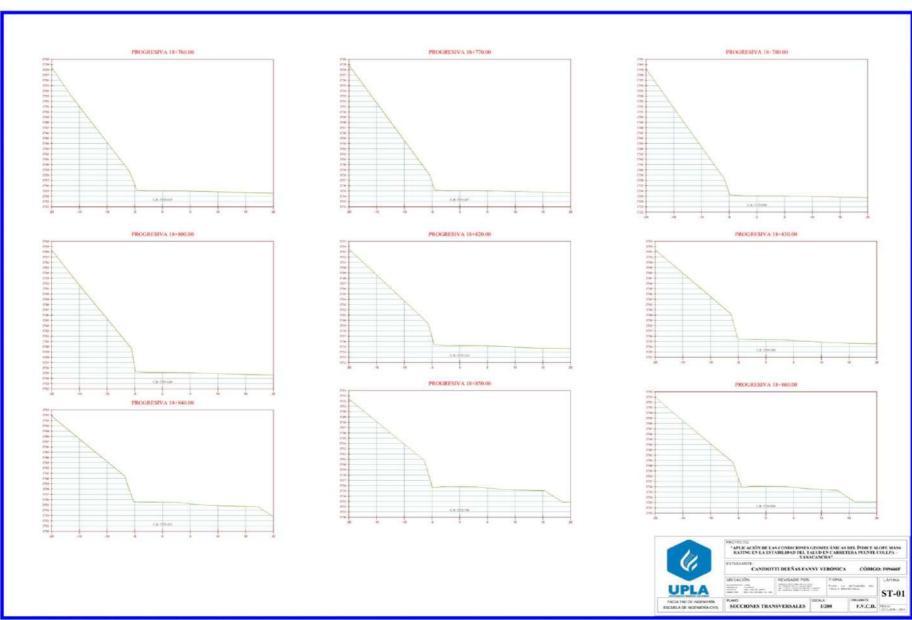
NOTA:

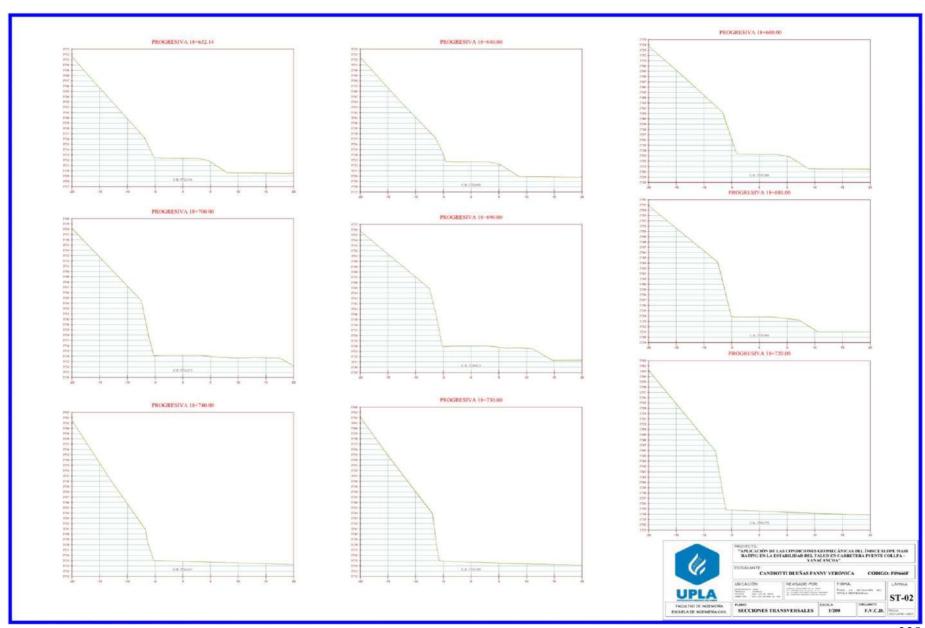

- 1.- ANTES DE SALIR DE OFICINA ESTE EQUIPO HA SIDO REVISADO, SE ENCUENTRA EN PERFECTO ESTADO Y FUNCIONAMIENTO.
- 2.- EL CLIENTE ES RESPONSABLE DEL TRANSPORTE DEL INSTRUMENTO Y USO DEL CERTIFICADO.
- 3.- GEOMEDIS S.A.C. NO SE RESPONSABILIZA DE LOS PERIUICIOS QUE PUEDA OCASIONAR EL USO INADECUADO DEL INSTRUMENTO VERIFICADO.
- 4.- GEOMEDIS S.A.C. NO SE RESPONSABILIZA POR POSIBLES DAÑOS CAUSADOS POR MALA MANIPULACION Y/O TRANSPÓRTE INAPROPIADO DEL INSTRUMENTO. EL CLIENTE ES RESPONZABLE DEL CUIDADO Y USO ADECUADO DEL EQUIPO.

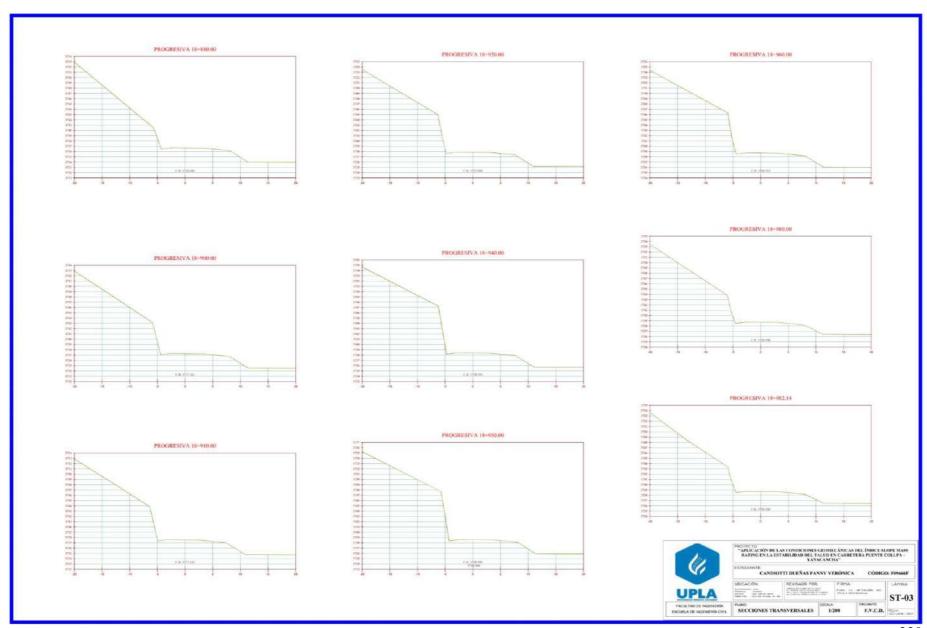




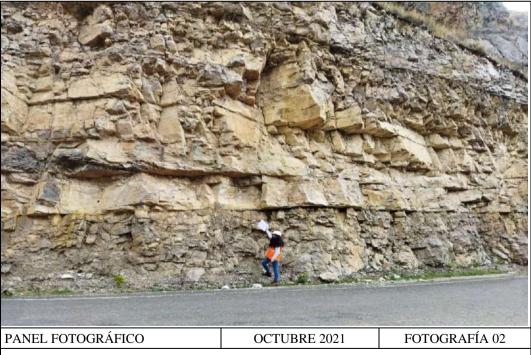


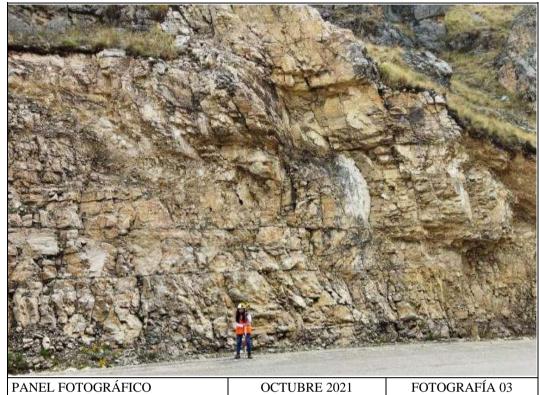

ANEXO 15: Planos

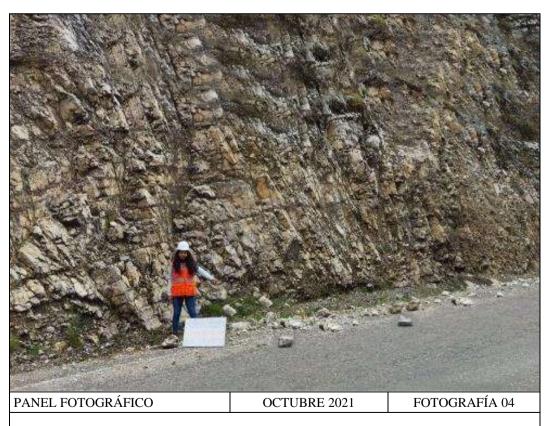








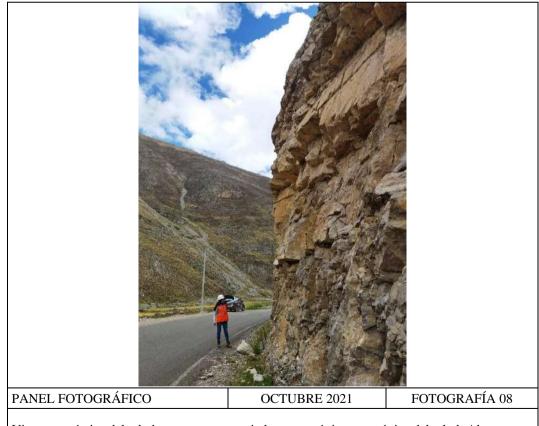

ANEXO 16: Panel fotográfico de la aplicación de los instrumentos de investigación

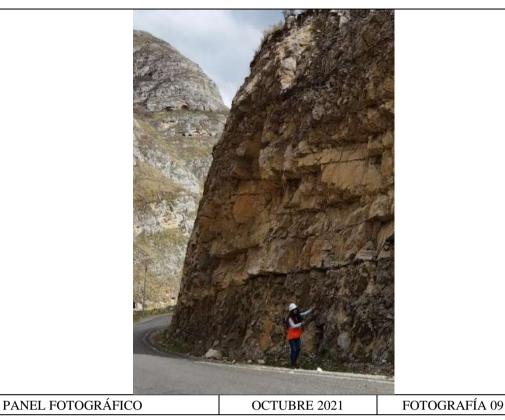

Vista panorámica de la estación geomecánica EG_{01} del talud en estudio entre las progresivas del km 18+683 al 18+695.20, donde se aprecia las discontinuidades y la composición mineralógica tipo caliza color beige y gris claro.

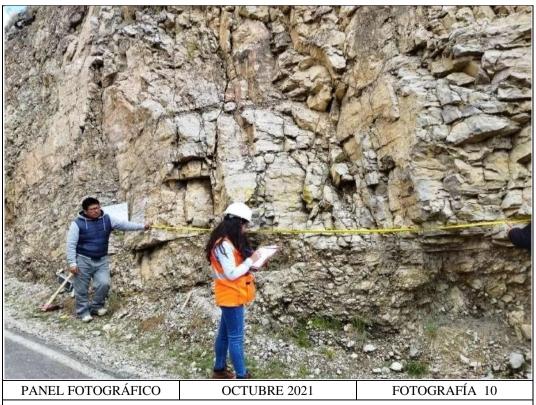
Vista panorámica de la estación geomecánica EG_{02} del talud en estudio entre las progresivas del km 18+695.20 al 18+708, donde se aprecia las discontinuidades y la composición mineralógica tipo caliza color beige y gris claro.

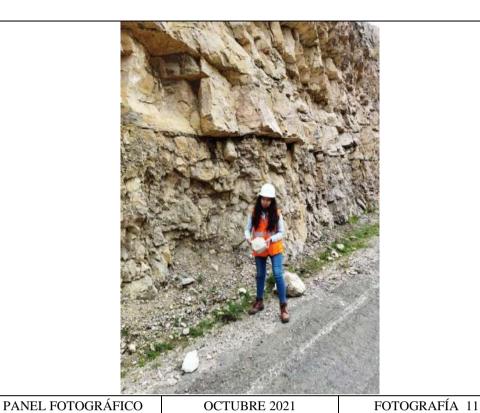
Vista panorámica de la estación geomecánica EG₀₃ del talud en estudio entre las progresivas del km 18+708 al 18+720.18, donde se aprecia las discontinuidades y la composición mineralógica tipo caliza color beige y gris claro.

Caída de rocas en la Carretera puente Coll
pa – Yanacancha, en la progresiva del Kilómetro $018\!+\!720.$


Levantamiento topográfico en la Carretera puente Collpa – Yanacancha en la progresiva 018+690.


Levantamiento topográfico – Prismeo para realizar Cambio de estación, debido al relieve del terreno.


Visamiento de puntos topográficos con la estación total en el área de estudio, desde el primer cambio de estación.


Vista panorámica del talud en corte, se aprecia la característica geométrica del talud: Altura.

Vista panorámica del talud en corte, se aprecia la característica geométrica del talud: pendiente o buzamiento.

Trazado de la línea de rastreo (mayor a 3 metros y menor a diez veces el espaciamiento) y la contabilización del número de discontinuidades en el macizo rocoso que compone al talud en estudio.

Toma de muestras in situ de roca con medidas mayores a 15 cm x 15 cm por estaciones geomecánicas para determinación de la densidad y absorción de la roca según norma internacional ASTM C97-18.

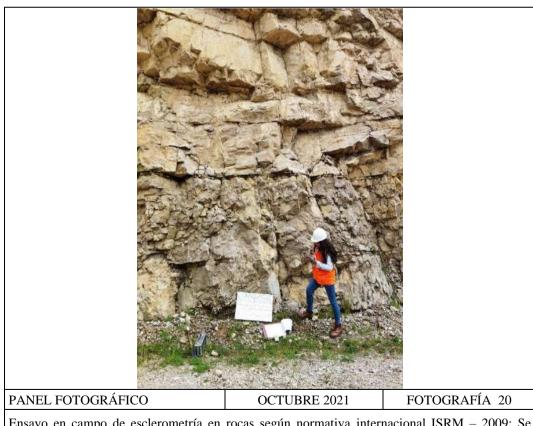
Especímenes para ensayo de propiedades físicas de roca en laboratorio según norma ASTM C97-18, obtenidas a partir de las muestras de fragmentos rocosos tomados en campo; se aprecian muestras de dimensiones entre 2 cm a 3 cm.

Secado de la roca en horno durante 48 horas para cálculo del porcentaje de absorción de la roca según normativa internacional ASTM C97-18.

Registro del peso de las muestras secas 30 minutos después del enfriamiento, para cálculo del porcentaje de absorción de la roca según normativa internacional ASTM C97-18.

Registro del peso de los especímenes saturados superficialmente secos, para cálculo de la gravedad específica de las rocas según normativa internacional ASTM C97-18.

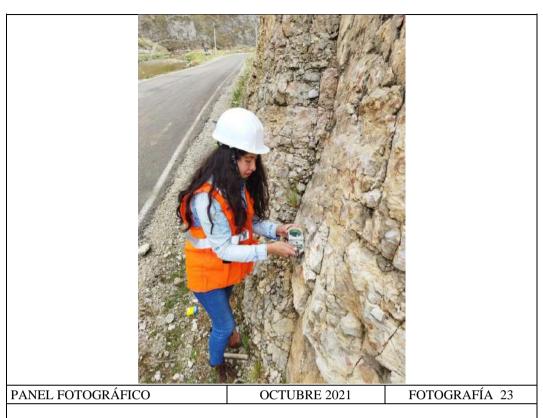
Registro del peso de los especímenes saturados y sumergidos en agua destilada, para cálculo de la gravedad específica de las rocas según normativa internacional ASTM C97-18.


Ensayo en campo de esclerometría en rocas según normativa internacional ISRM – 2009: Se observa la preparación de la superficie planas y lisas al lijarlas con la piedra abrasiva.

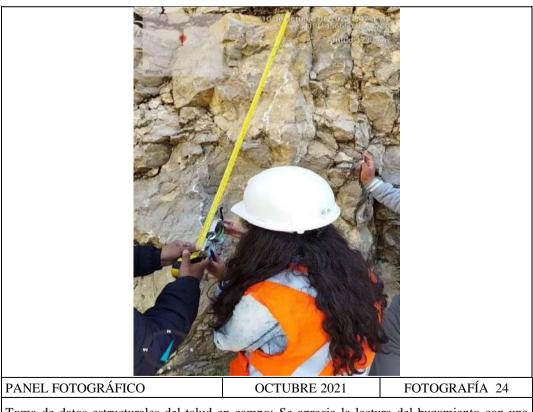
Ensayo en campo de esclerometría en rocas según normativa internacional ISRM-2009 Se observa el trazado de la malla de 4 columnas por 5 filas con tiza sobre la superficie del talud para tomar el número de rebotes.

Ensayo en campo de esclerometría en rocas según normativa internacional ISRM – 2009: Aplicación del martillo de rebotes tipo "N" perpendicularmente a la superficie del talud en estación geomecánica 02.

Ensayo en campo de esclerometría en rocas según normativa internacional ISRM -2009: Se observa la lectura y registro del número de rebotes en estación geomecánica EG_{01}


PANEL FOTOGRÁFICO OCTUBRE 2021 FOTOGRAFÍA 21

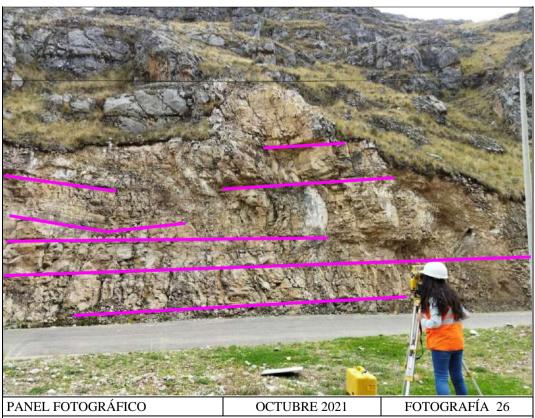
Ensayo en campo de esclerometría en rocas según normativa internacional ISRM – 2009: Se observa la lectura y registro del número de rebotes en estación geomecánica EG₀₂.



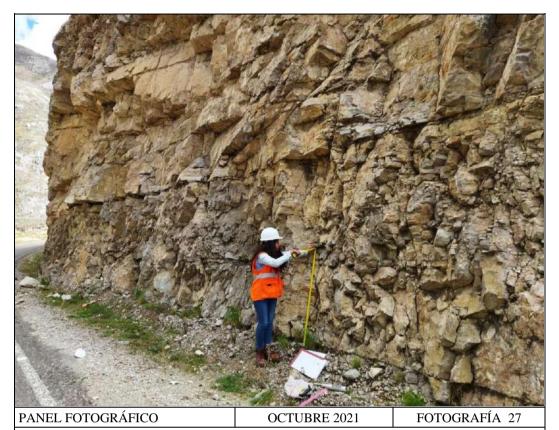
PANEL FOTOGRÁFICO OCTUBRE 2021 FOTOGRAFÍA 22

Toma de datos estructurales de las discontinuidades en campo: Se aprecia la lectura del buzamiento de la discontinuidad con una brújula Brunton.

Toma de datos estructurales de las discontinuidades en campo: Se aprecia la lectura de la dirección de buzamiento de la discontinuidad con una brújula Brunton.

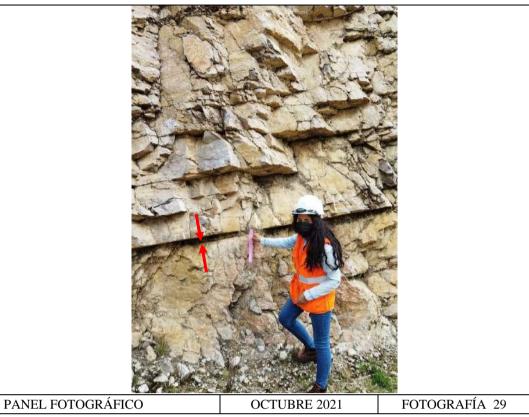


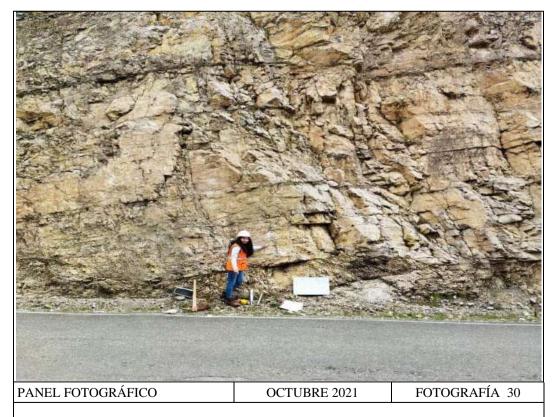
Toma de datos estructurales del talud en campo: Se aprecia la lectura del buzamiento con una brújula Brunton.

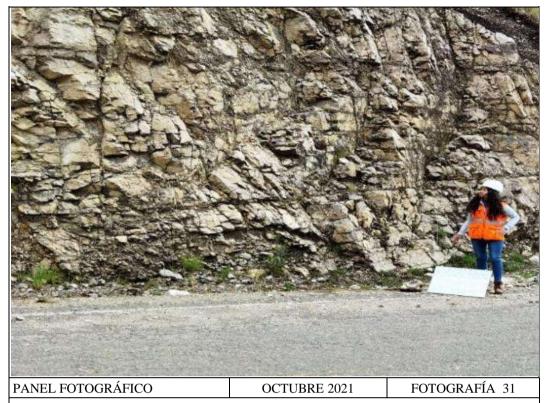


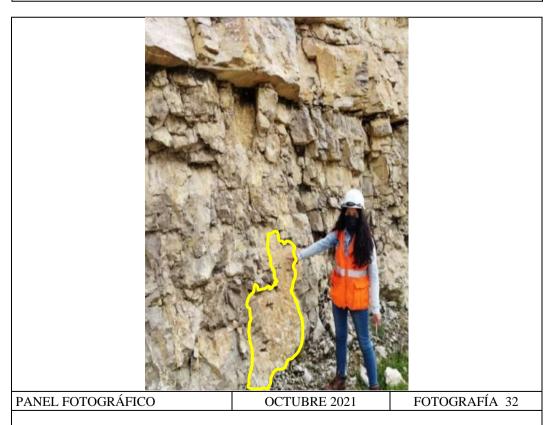
PANEL FOTOGRÁFICO OCTUBRE 2021 FOTOGRAFÍA 25

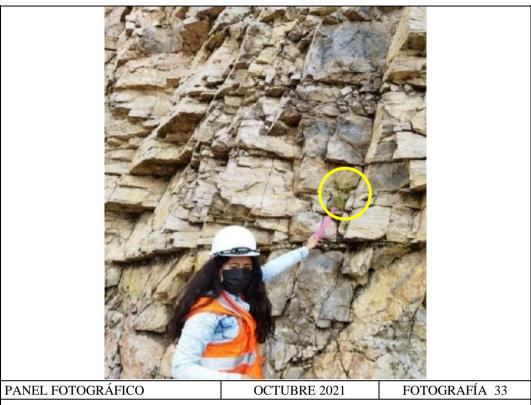
Toma de datos estructurales del talud en campo: Se aprecia la lectura de la dirección de buzamiento con una brújula Brunton.

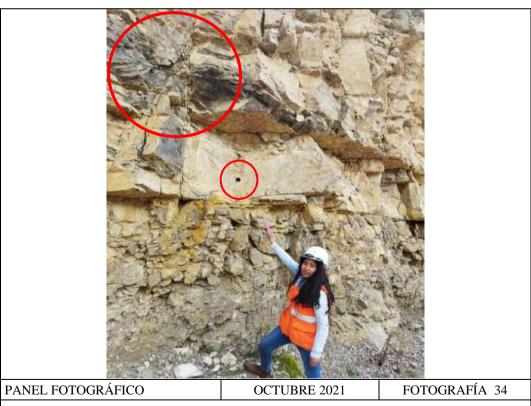

Identificación y medición por altura remota del espaciamiento y persistencias de la familia de discontinuidades 03 en el talud.


Mapeo geomecánico: medición con flexómetro de la persistencia en estación geomecánica EG_{02} en el talud.


Distinción y medición de aberturas e identificación del material de relleno: materiales finos suaves mayor a 5 mm, entre discontinuidades con una regla graduada al milímetro en EG_{01} .


Distinción y medición de aberturas e identificación del material de relleno: materiales finos suaves mayor a 5 mm entre discontinuidades con una regla graduada al milímetro en EG_{02} .


Identificación de rugosidades en la superficie del talud. Se visualiza la superficie ligeramente rugosa perteneciente a la estación geomecánica EG_{02} .


Identificación de rugosidades en la superficie del talud: Se visualiza la superficie moderadamente rugosa perteneciente a la estación geomecánica EG_{03} .

Identificación visual y valoración de la alteración físico—químico en las discontinuidades del macizo rocoso del talud de la carretera puente Collpa—Yanacancha.

Identificación visual y valoración de la alteración por factores biológicos entre las discontinuidades del macizo rocoso del talud de la carretera puente Collpa—Yanacancha.

Identificación visual del método de excavación del talud en la carretera puente Collpa-Yanacancha: fotografías muestran indicios de voladura controlada mediante incursión de taladros al interior del talud en estación geomecánica EG₀₂.

PANEL FOTOGRÁFICO OCTUBRE 2021 FOTOGRAFÍA 35

Identificación visual del método de excavación del talud en la carretera puente Collpa—Yanacancha: fotografías muestran indicios de voladura controlada mediante incursión de taladros al interior del talud en estación geomecánica EG₀₃.

Prueba en laboratorio de efervescencia en rocas calizas mediante aplicación directa del ácido clorhídrico a los bloques rocosos extraídos del talud en estudio.

Prueba en laboratorio de efervescencia en rocas calizas mediante aplicación directa del ácido clorhídrico a los bloques rocosos extraídos del talud en estudio.