UNIVERSIDAD PERUANA LOS ANDES FACULTAD DE INGENIERÍA

ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

TESIS

PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUANCAYO - 2023

PARA OPTAR EL TÍTULO PROFESIONAL DE INGENIERO CIVIL

Autor: Bach. TURCO ALEJO, Kevin Andres

Asesores:

- Dr. Tiber Joel Cano Camayo
- Mg. Lidia Leonor Almonacid Ordoñez

Línea De Investigación Institucional: Nuevas Tecnologías y Procesos

HUANCAYO - PERÚ 2024

HOJA DE CONFORMIDAD DE JURADOS

Dr. Rube	én Dario Tapia Silguera
	PRESIDENTE
Mg. Fabi	ian Brañez Alcides Luis
	JURADO
Mg. Pautra	at Egoavil Henry Gustavo
	JURADO
Mg Córde	ova Zorrilla Nataly Lucia
wig. Cord	JURADO

DEDICATORIA

A Dios por hacer posible que cada meta y objetivo planteado se cumpla y sea de mucha alegría para mí y mis seres queridos.

A mis padres por confiar en mí, por inculcarme valores y darme motivación constante.

A Marlit por ser el soporte diario para afrontar las dificultades presentadas en la vida.

Bach. Turco Alejo Kevin Andrés

AGRADECIMIENTO

A todos los profesionales que contribuyeron en mi preparación académica, desde mis primeros años hasta la culminación de mi vida universitaria.

A mis maestros de la UPLA, ya que, con su guía y experiencia laboral, hicieron posible que sea un ingeniero civil competente y útil para la sociedad peruana.

Bach. Turco Alejo Kevin Andrés

CONSTANCIA DE SIMILITUD

N ° 0076 - FI -2024

La Oficina de Propiedad Intelectual y Publicaciones, hace constar mediante la presente, que la **TESIS**; Titulado:

PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, **HUANCAYO - 2023**

Con la siguiente información:

: BACH, TURCO ALEJO KEVIN ANDRES Con Autor(es)

Facultad : INGENIERÍA

: INGENIERÍA CIVIL Escuela Académica

: DR. TIBER JOEL CANO CAMAYO Asesor(a) Metodología

: MG. LIDIA LEONOR ALMONACID ORDOÑEZ Asesor(a) Tematico

Fue analizado con fecha 14/02/2024; con 117 págs.; con el software de prevención de plagio (Turnitin); y con la siguiente configuración:

Excluye Bibliografía. X Excluye citas. X Excluye Cadenas hasta 20 palabras. X

Otro criterio (especificar)

El documento presenta un porcentaje de similitud de 19 %.

En tal sentido, de acuerdo a los criterios de porcentajes establecidos en el artículo N°15 del Reglamento de uso de Software de Prevención de Plagio Versión 2.0. Se declara, que el trabajo de investigación: Si contiene un porcentaje aceptable de similitud.

Observaciones:

En señal de conformidad y verificación se firma y sella la presente constancia.

Huancayo, 19 de febrero de 2024.

DR. HILARIO ROMERO GIRON

JEFE (e)

Oficina de Propiedad Intelectual y Publicaciones

CONTENIDO

HOJA DE CO	ONFORMIDAD DE JURADOS	ii
DEDICATOR	RIA	iii
AGRADECIN	MIENTO	iv
CONTENIDO)	v
CONTENIDO	D DE TABLAS	viii
CONTENIDO	D DE FIGURAS	X
RESUMEN		xii
ABSTRACT.		13
	CIÓN	
CAPÍTULO I		16
PLANTEAM	IENTO DEL PROBLEMA	16
1.1. Des	cripción de la realidad problemática	16
1.2. Dela	imitación del problema	18
1.2.1.	Espacial	18
1.2.2.	Temporal	20
1.2.3.	Económica	21
1.3. For	mulación del problema	21
1.3.1.	Problema General	21
1.3.2.	Problemas Específicos	21
1.4. Just	ificación	21
1.4.1.	Social	21
1.4.2.	Teórica	22
1.4.3.	Practico	22
1.4.4.	Metodológica	22
1.4.5.	Ambiental	22
1.5. Obj	etivos	23
1.5.1.	Objetivo general	23
1.5.2.	Objetivos específicos	23
CAPÍTULO I	I	24
MARCO TEĆ	ÓRICO	24
2.1. Ant	ecedentes	24
2.1.1.	Antecedentes nacionales	24
2.1.2.	Antecedentes internacionales	26
2.2 Rac	es teóricas o Científicas	28

2	2.2.1.	El concreto	28
4	2.2.2.	Componentes del concreto	28
4	2.2.3.	Propiedades del concreto	34
4	2.2.4.	Control de calidad del concreto	35
4	2.2.5.	Normas empleadas en la tesis	40
2.3	. N	1arco conceptual	43
CAPÍ	TULO) III	45
HIPÓ	TESI	S	45
3.1	. Н	lipótesis General	45
3.2	. Н	lipótesis Específica (s)	45
3.3	. V	ariables	46
3.3	.1.	Definición conceptual de la variable	46
3.3	.2.	Definición operacional de la variable	46
3.3	.3.	Operacionalización de las variables	46
CAPÍ	TULO	O IV	48
MET	ODOI	LOGÍA	48
4.1	. N	létodo de Investigación	48
4.2	. T	ipo de Investigación	48
4.3	. N	livel de Investigación	49
4.4	. D	viseño de la Investigación	49
4.5	. P	oblación y muestra	49
4.6	. T	écnicas e Instrumentos de recolección de datos	50
4.7	. T	écnicas de procesamiento y análisis de datos	51
4.8	. A	spectos éticos de la investigación	52
CAPÍ	ÍTULC) V	53
RESU	JLTA	DOS	53
5.1	. D	escripción del diseño tecnológico	53
5.2	. D	Pescripción de resultado	54
5.3	. C	ontrastación de hipótesis	66
CAPÍ	TULO) VI	80
ANÁ	LISIS	Y DISCUSIÓN DE RESULTADOS	80
CON	CLUS	IONES	84
REC	OMEN	NDACIONES	86
REFE	EREN	CIAS BIBLIOGRÁFICAS	87
ANE	XOS		91
a.	Mat	riz de consistencia	92
h	Mat	riz de operacionalización de variables	94

c.	Panel fotográfico	95
d.	Formatos en blanco empleados para los ensayos en Laboratorio	99
e.	Certificados de los ensayos realizados en laboratorio	106
f.	Instrumentos validados por juicio de expertos	154

CONTENIDO DE TABLAS

Tabla 1	28
Porcentaje aproximado de la composición del concreto, en volumen	28
Tabla 2	
Tipos de cemento Portland según la norma ASTM C150	29
Tabla 3	29
Composición principal del cemento Portland.	29
Tabla 4	29
Composición de los óxidos en el cemento Portland	29
Tabla 5	
Clasificación de los agregados según el tamaño de sus partículas	31
Tabla 6	32
Clasificación de los agregados de acuerdo a su densidad	32
Tabla 7	
Especificaciones para impurezas en el agua de mezclado según la norma NTC 3459	32
Tabla 8	33
Cantidad aproximada de aire atrapado según el TMN	33
Tabla 9	47
Operacionalización de las variables	47
Tabla 10	
Distribución de las muestras	50
Tabla 11	53
Dosificación del diseño de mezcla utilizado por la tesis	
Tabla 12	
Resultados de resistencia a compresión a los 7 días, empleando ensayos destructivos y no	
destructivos.	54
Tabla 13	57
Resultados de resistencia a compresión a los 14 días, empleando ensayos destructivos y no	
destructivos.	57
Tabla 14	60
Resultados de resistencia a compresión a los 21 días, empleando ensayos destructivos y no	
destructivos.	60
Tabla 15	
Resultados de resistencia a compresión a los 28 días, empleando ensayos destructivos y no	
destructivos.	63
Tabla 16	
Medidas descriptivas de errores producidos por diversos ensayos de medición de resistencia	
a compresión del concreto en columnas a la edad de 28 días	67
Tabla 17	
Medidas descriptivas de errores producidos por diversos ensayos de medición de resistencia	07
a compresión en columnas de concreto a la edad de 7 días.	68
Tabla 18	
Medidas descriptivas de errores producidas por diversos ensayos de medición de la resistencia	57
a compresión en columnas a la edad de 14 días.	69
Tabla 19	0) 70

Medidas descriptivas de errores producidos por metodo de medición en columnas a la	
edad de 21 días	70
Tabla 20	71
Resultados de prueba ANOVA de muestras independientes de errores de resistencia a	
compresión del concreto a la edad de 28 días.	71
Tabla 21	
Resultados de prueba Dunnet de comparaciones múltiples de errores de resistencia a	
compresión del concreto a la edad de 28 días.	72
Tabla 22	
Resultados de prueba ANOVA de muestras independientes de errores de resistencia a	
compresión del concreto a la edad de 7 días	73
Tabla 23	
Resultados de prueba Dunnet de comparaciones múltiples de errores de resistencia a	
compresión del concreto a la edad de 7 días	73
Tabla 24	
Resultados de prueba ANOVA de muestras independientes de errores de resistencia a la	
compresión del concreto a la edad de 14 días.	75
Tabla 25	
Resultados de prueba Dunnett de comparaciones múltiples de errores de resistencia a	
compresión del concreto a la edad de 14 días.	75
Tabla 26	
Resultados de prueba H de Kruskal Wallis de muestras independientes de errores de	
resistencia a compresión del concreto a la edad de 21 días	77
Tabla 27	
Resultados de comparaciones por parejas de método de prueba H de Kruskal Wallis de	
muestras independientes de errores de resistencia a compresión del concreto a la edad de	
21 días	77
Tabla 28	79
Resultados de prueba de normalidad de Shapiro Wilk de variables por tratamientos	79
Tabla 29	
Resultados de prueba de homogeneidad de varianzas de Levene para resistencia a la	
compresión	79

CONTENIDO DE FIGURAS

Figura 1	19
Localización de laboratorio Group Total Quality Control	19
Figura 2	
Localización de planta de concreto premezclado Oslo.	20
Figura 3	30
Etapas de elaboración del cemento Portland	30
Figura 4	37
Medición tradicional del pulso ultrasónico	37
Figura 5	38
Verificación de media de longitud de trayectoria	38
Figura 6	38
Proceso de medición de la velocidad de pulso ultrasónico	38
Figura 7	55
Resultados de medición de resistencia a compresión a los 7 días mediante el ensayo de	
velocidad de pulso ultrasónico.	55
Figura 8	55
Resultados de medición de resistencia a compresión a los 7 días mediante la extracción	
diamantina	55
Figura 9	56
Resultados de medición de resistencia a compresión a los 7 días empleando el ensayo	
de rotura de testigos de concreto	56
Figura 10	56
Resultados de medición de resistencia a compresión a los 7 días empleando el ensayo	
de rotura de testigos de concreto	56
Figura 11	58
Resultados de medición de resistencia a compresión a los 14 días empleando el ensayo	
de pulso ultrasónico	58
Figura 12	58
Resultados de medición de resistencia a compresión a los 14 días mediante extracción	
diamantinadiamantina	58
Figura 13	59
Resultados de medición de resistencia a compresión a los 14 días empleando el ensayo	
de rotura de testigos de concreto	59
Figura 14	59
Resultados de medición de resistencia a compresión a los 14 días empleando el ensayo	
de esclerometría	59
Figura 15	61
Resultados de medición de resistencia a compresión a los 21 días empleando el ensayo	
de pulso ultrasónico	61
Figura 16	61
Resultados de medición de resistencia a compresión a los 21 días empleando el ensayo de	
extracción diamantina	61
Figura 17	62
Resultados de medición de resistencia a compresión a los 21 días empleando el ensayo de	
rotura de testigos de concreto	62

Figura 18	62
Resultados de medición de resistencia a compresión a los 21 días empleando el ensayo de	
esclerometría	
Figura 19	64
Resultados de medición de resistencia a compresión a los 28 días empleando el ensayo de	
velocidad de pulso ultrasónico	
Figura 20	64
Resultados de medición de resistencia a compresión a los 28 días mediante núcleos de	<i>C</i> 1
perforación diamantina	
Figura 21	65
Resultados de medición de resistencia a compresión a los 28 días empleando el ensayo	
de rotura de testigos de concreto	
Figura 22	65
Resultados de medición de resistencia a compresión a los 28 días empleando el ensayo de	
esclerometría	
Figura 23	66
Curva de desarrollo de la resistencia a compresión, expuestos mediante 4 métodos de	
ensayo	
Figura 24	67
Promedio de errores producidos por diversos ensayos de medición en columnas a la	
edad de 28 días.	
Figura 25	68
Promedio de errores producidos por diversos ensayos en la medición de resistencia a la	
compresión en columnas de concreto a la edad de 7 días.	68
Figura 26	69
Promedio de errores producidos en la medición de la resistencia a compresión en	
columnas empleando variedad de ensayos a la edad de 14 días	69
Figura 27	70
Promedio de errores producidos por método de medición en columnas a la edad de	
21 días	70
Figura 28	72
Comparación de diagrama de cajas por método de medición de errores de resistencia a	
compresión a los 28 días.	72
Figura 29	74
Comparación de diagrama de cajas por método de medición de errores de resistencia a	
compresión a los 7 días.	74
Figura 30	
Comparación de diagrama de cajas por método de medición de errores de resistencia a	
compresión a los 14 días.	76
Figura 31	
Comparación de diagrama de cajas por método de medición de errores de resistencia a	
compresión a los 21 días.	78

RESUMEN

La tesis titulada: "Precisión en la medición de la resistencia del concreto en columnas empleando el ensayo de pulso ultrasónico, Huancayo - 2023", fijo como propósito: Determinar la precisión de la medición de la resistencia a compresión del concreto en columnas, Huancayo - 2023, en tal sentido formuló como problema: ¿Cuál es la precisión en la medición de la resistencia a compresión en columnas empleando el ensayo de pulso ultrasónico, Huancayo 2023?, planteó como hipótesis: El pulso ultrasónico produce menor error en la medición de resistencia a compresión del concreto en columnas, Huancayo 2023. La tesis uso el método científico, investigación tipo básico, con nivel descriptivo – correlacional y diseño experimental, la población lo conformaron concretos con f'c=245 kg/cm², y la muestra fueron 12 columnas y 64 testigos de concreto. Los resultados indicaron que, el método de pulso ultrasónico resulta ser más preciso para evaluar el f'c en comparación a los métodos de rotura y esclerometría. Concluyendo que, a la edad de 28 días se determinó que empleando los ensayos de velocidad de pulso ultrasónico y diamantina producen el mismo error en la medición de resistencia a la compresión y estos errores son menores en comparación con los demás métodos (esclerometría y rotura de testigos).

Palabras claves: resistencia a compresión del concreto, pulso ultrasónico, diamantina, rotura de probetas y esclerometría

ABSTRACT

The thesis titled: "Precision in measuring the strength of concrete in columns using the ultrasonic pulse test, Huancayo - 2023", fixed as purpose: Determine the precision of measuring the compressive strength of concrete in columns, Huancayo - 2023, in this sense formulated as a problem: What is the precision in measuring the compressive strength in columns using the ultrasonic pulse test, Huancayo 2023?, proposed as a hypothesis: The ultrasonic pulse produces less error in the resistance measurement compression of concrete in columns, Huancayo 2023. The thesis used the scientific method, basic type research, with a descriptive-correlational level and experimental design, the population was made up of concrete with f'c=245 kg/cm2, and the sample was 12 columns and 64 concrete witnesses. The results indicated that the ultrasonic pulse method turns out to be more accurate to evaluate the f'c compared to the breakage and sclerometry methods. Concluding that, at the age of 28 days, it was determined that using the ultrasonic and diamond pulse velocity tests produce the same error in the measurement of compressive strength and these errors are smaller compared to the other methods (sclerometry and core breakage).

Keywords: compressive strength of concrete, ultrasonic pulse, diamond, specimen breakage and sclerometry

INTRODUCCIÓN

La tesis en estudio trata sobre la evaluación del f'c en columnas de concreto ubicados en Planta Paraje Auquispuquio – Mayopampa s/n, distrito de Sicaya, provincia de Huancayo, departamento de Junín, el proceso de investigación inició con la caracterización de los áridos, elaboración de diseñó de mezcla, observación del proceso constructivo y medición de la resistencia real del concreto (in situ) mediante el ensayo de velocidad de pulso ultrasónico, esclerometría, extracción diamantina y rotura de probetas. Es de importancia valuar la resistencia real del concreto para verificar si el concreto vertido cumple con los exigencias de resistencia especificada (f'c) para la estructura, ya que la calidad y cantidad de materiales, mano de obra, condiciones climatológicas y rendimiento intervienen en los valores del f'c, de ahí que el método empleado para monitorearlo debe ser preciso, ello genera interés ya que existe una variedad de ensayos, siendo el más empleado el de rotura de testigos, pero este no representa la resistencia real, por ello se genera un vació en su evaluación.

Los objetivos de la tesis consisten en determinar la precisión de la medición del f'c del concreto en columnas empleando el ensayo de pulso ultrasónico y compararlos con los métodos diamantinos, esclerometría y rotura de probetas a la edad de 7, 14, 21 y 28 días. El tipo de investigación fue básica, con enfoque cuantitativo, nivel descriptivo-correlacional, ya que se podrá estimar el f'c del concreto empleando la VPU, el diseño de la investigación es experimental.

Para una mejor compresión de la indagación este se dividió en 6 capítulos, tal como se esboza a continuidad:

Capítulo I: Consiste en exponer la realidad problemática, enunciación de problema general y específicos, también lo acompañará la limitación de la indagación, justificación y objetivos.

Capítulo II: Desenvuelve a la base teórica, empezando por la descripción de los antecedentes nacionales e internacionales, definición de términos empleados por el tesista.

Capítulo III: Plantea a las hipótesis de carácter general y específicos, asimismo define a las variables conceptualmente y operacionalmente.

Capítulo IV: Trata sobre la metodología de investigación, en ella explica que tipo, nivel, enfoque y diseño se ha ejecutado en la tesis.

Capítulo V: Detalla a cada uno de los objetivos alcanzados según los objetivos, tanto a nivel descriptivo como inferencial. Al concluir la tesis se pretende difundir el uso de VPU para monitorear el f'c real de elementos estructurales, logrando así una mayor precisión en la medición de la calidad de los materiales.

Capítulo VI: consiste en detallar la discusión de resultados

Finiquita la tesis mostrando las conclusiones, sugerencias, referencias bibliográficas y todos los anexos que sustenten a la exploración.

Bach. Kevin Andrés Turco Alejo

CAPÍTULO I PLANTEAMIENTO DEL PROBLEMA

1.1. Descripción de la realidad problemática

A nivel internacional, destaca que el material más requerido en la construcción es el concreto, es así que tanto su consumo como su estudio van en aumento con el pasar de los días, este último se debe a que el concreto presenta características variables según cada proyecto, como por ejemplo se tienen concretos autocompactantes, concretos ligeros, concreto de alta resistencia inicial, concretos porosos, entre otros. Pero la pregunta es ¿Por qué existe gran variedad de concretos?, a lo que la respuesta es simple, existe versatilidad de concretos a razón de que los requerimientos en obra y necesidades humanes son diferentes, de ahí que la tecnología del concreto tiene la responsabilidad de ofrecer concretos que cumplan cada solicitud de obra. Estas aseveraciones han generado nuevas interrogantes tales como: ¿Cómo saber que el concreto que empleo es de calidad?, ¿El concreto de obra cumplirá con las estipulaciones de norma?, ¿Será posible que el concreto cumpla con términos de referencia?, todas esas interrogantes se resumen en: ¿Cómo verificar la calidad del concreto?, ante ello se han creado un sinfín de ensayos que verifiquen y expongan sus peculiaridades físicas y mecánicas, estos son: ensayo de asentamiento, ensayo de contenido de vacíos, ensayo de temperatura, ensayo de tiempo de fragua,

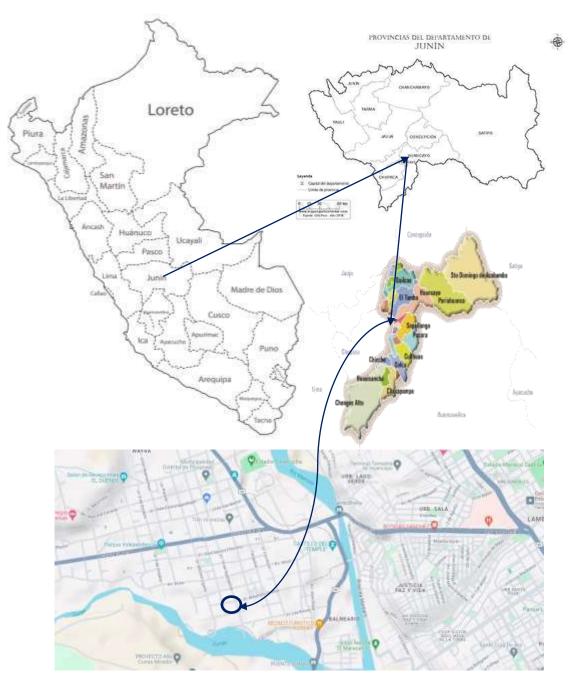
ensayo del f'c, ensayo de esclerometría, ensayo de pulso ultrasónico, entre otros. De ellos destaca el control del f'c del concreto, ya que este es un indicador de calidad y productividad.

A nivel nacional (Perú) se emplean las pruebas de: f'c en testigos de concreto cilíndrico, prueba de compresión en núcleos de concreto, martillo de rebote, VPU y métodos NDT combinados, todas estas pruebas responden a solicitudes en particular, de ellas se destaca el método de prueba estándar para la VPU del concreto, ya que con el avance de la tecnología de transductores se puede obtener resistencias del concreto in situ, es decir ya no se extraen núcleos ni se elaboran muestran representativas, sino que se obtienen resistencias del concreto colocado en obra, su ejecución se conoce como ensayo no destructivo y se respalda en la norma ASMT C 597 (Standard Test Method for Pulse Velocity Through Concrete).

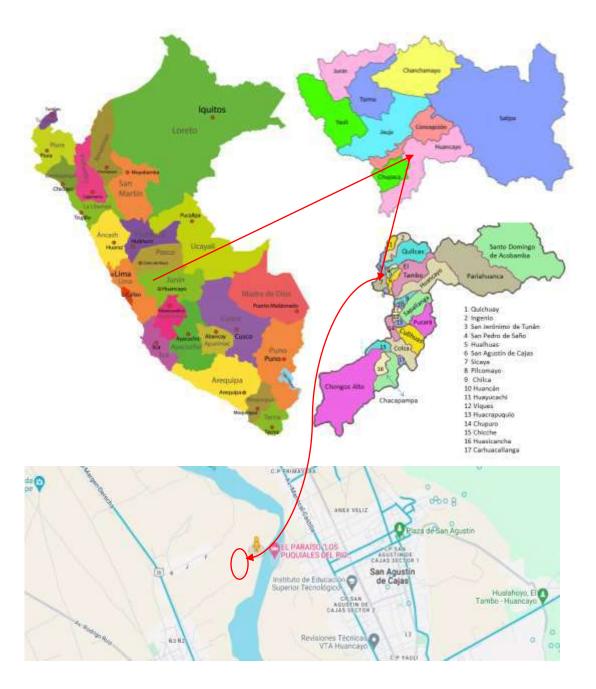
Al ser un ensayo muy poco difundido se crean dudas, tales como: ¿Por qué debería controlar la calidad del concreto empleando la prueba de velocidad ultrasónica?, ¿Será posible que la prueba de velocidad ultrasónica represente la resistencia real del concreto?, ¿Qué ventajas trae usar la prueba de velocidad ultrasónica?, ante ello los estudios han demostrado que, el pulso ultrasónico debe emplearse porque tiene elevada confiabilidad y el medio de propagación de las ondas emite un valor representativo con baja dispersión, no solo permite determinar la resistencia sino otras propiedades del concreto como: densidad y contenido de vacíos del concreto en estado endurecido. Y demostrado que es una prueba que permite hacer un control en obra y que disminuye el impacto negativo al medio ambiente, ya que no afecta con la producción de concreto ni la expulsión de material fracturado, se propone masificar el uso de la prueba de velocidad ultrasónica.

Estudios como los de Valencia et al. (2013) lograron determinar la correlación entre el f'c y la VPU en concreto simple, concluyendo que, los valores de resistencia dependen de las características propias de los materiales y condiciones a las que se expone la mezcla de concreto. De igual forma la indagación de Gonzales et al. (2017) quienes lograron encontrar la correlación entre el f'c y la VPU en concreto convencional, afirmando que, el ensayo no destructivo (velocidad de pulso ultrasónico) exhibe altos valores de coeficientes de determinación (r²), ratificando la

dependencia entre el f'c y VPU. Dichas investigaciones han demostrado que al efectuar una prueba no destructiva se logra valorar la resistencia in situ del concreto.


A nivel local, para el caso del departamento de Junín, no existe reportes ni base de datos de se hayan efectuado ensayos de control in situ mediante el pulso ultrasónico, ello se debe a que es un ensayo moderno y que necesita ser estudiado.

En relación a la problemática mundial, nacional, regional y local, el problema es evidente, se requieren estudios modernos que permitan evaluar la calidad de los concretos vertidos en los elementos estructurales, y que estos guarden correlación con la resistencia a compresión real.


1.2. Delimitación del problema

1.2.1. Espacial

La indagación involucró dos etapas, la primera en laboratorio y la segunda en obra. La primera se ubica en Av. Leoncio Prado s/n – Pilcomayo – Huancayo – Junín, la segunda fase se desplegó en Planta Paraje Auquispuquio – Mayopampa s/n, distrito Sicaya, provincia Huancayo, departamento Junín.

Figura 1 *Localización de laboratorio Group Total Quality Control.*Fuente: Google Imágenes (2023).

Figura 2 *Localización de planta de concreto premezclado Oslo.*Fuente: Google Imágenes (2023).

1.2.2. Temporal

El tiempo requerido para las pruebas de laboratorio, proceso constructivo y control de calidad en obra involucró un periodo de 2 meses, iniciando el 15 de setiembre del 2023 y culminando el 15 de noviembre del 2023, poniendo en conocimiento que sólo se evaluó a las columnas de sección cuadrada de 50 cm x 50 cm.

1.2.3. Económica

Todos los gastos concernientes a la tesis han sido asumidos al 100% por el indagador.

1.3. Formulación del problema

1.3.1. Problema General

¿Cuál es la precisión en la medición de la resistencia a compresión en columnas empleando el ensayo de pulso ultrasónico, esclerometría y rotura de probetas respecto al ensayo de diamantina, Huancayo 2023?

1.3.2. Problemas Específicos

- a) ¿Cuál es la precisión en la medición de la resistencia a compresión en columnas empleando esclerometría, rotura de probetas y pulso ultrasónico respecto al ensayo de diamantina, a la edad de 7 días?
- b) ¿Cuál es la precisión en la medición de la resistencia a compresión en columnas empleando esclerometría, rotura de probetas y pulso ultrasónico respecto al ensayo de diamantina, a la edad de 14 días?
- c) ¿Cuál es la precisión en la medición de la resistencia a compresión en columnas empleando esclerometría, rotura de probetas y pulso ultrasónico respecto al ensayo de diamantina, a la edad de 21 días?

1.4. Justificación

1.4.1. Social

La justificación social radica en que la tesis brinda a la población beneficios y utilidades, de forma que pueden ser fundamento para proyectos sociales y económicos (Carrasco, 2008 pág. 120).

Al medir el f'c del concreto empleando el método de VPU se realizó un control de calidad permanente in situ, es decir se lograron reducir los tiempos y costos en obra, ya que al conocer los valores de resistencia real se puede incrementar la productividad en obra como por ejemplo reduciendo los tiempos de desencofrado.

1.4.2. Teórica

Los argumentos teóricos se basan en el hecho de que los hallazgos pueden generalizarse y sumarse al conocimiento científico y utilizarse para superar lagunas cognitivas (Carrasco, 2008 pág. 119).

Todas las pruebas en laboratorio se ejecutaron cumpliendo los requerimientos normativos de la NTP y ASTM, de esa forma los resultados obtenidos se pueden replicar, haciendo hincapié que al utilizar el ensayo de pulso ultrasónico se obtiene valores confiables del f'c del concreto

1.4.3. Practico

La justificación practica se refiere a indagaciones que resuelven problemas prácticos (Carrasco, 2008 pág. 119).

El desarrollo de este trabajo se basa en pruebas de laboratorio utilizando un formato de laboratorio como herramienta de recolección de datos. El método del pulso ultrasónico es el más preciso, ya que utiliza sensores para medir las ondas que atraviesan la estructura en un momento determinado, calculando su valor y teniendo en cuenta el valor de la tensión de compresión en el hormigón.

1.4.4. Metodológica

Se dice que una investigación exhibe una justificación metodológica cuando los métodos, técnicas, procedimientos e instrumentos diseñados presentan validez y confiabilidad y que al ser replicados resultan ser eficaces, afirmando que pueden estandarizarse lo obtenido en la investigación (Carrasco, 2008 pág. 119).

La determinación de la precisión de las mediciones de la resistencia a la compresión del concreto como prueba no destructiva resultan ser una metodología de control de calidad en obra.

1.4.5. Ambiental

Al efectuar un control de calidad a través de pruebas no destructivas se reducen los desechos y desperdicios dados por la industria de la

construcción, siendo este último el tercero a nivel mundial en la emisión de dióxido de carbono y generador del efecto invernadero. Demostrando así que al realizar el monitoreo del f'c empleando VPU se es amigable con el medio ambiente.

1.5. Objetivos

1.5.1. Objetivo general

Determinar la precisión de la medición de la resistencia a compresión del concreto en columnas empleando el ensayo de pulso ultrasónico, esclerometría y rotura de probetas respecto al ensayo de diamantina, Huancayo 2023.

1.5.2. Objetivos específicos

- a) Determinar la precisión de la medición de la resistencia a compresión del concreto en columna empleando pruebas de esclerometría, rotura de probetas y pulso ultrasónico respecto al ensayo de diamantina, a la edad de 7 días.
- b) Determinar la precisión de la medición de la resistencia a compresión del concreto en columna empleando pruebas de esclerometría, rotura de probetas y pulso ultrasónico respecto al ensayo de diamantina, a la edad de 14 días.
- c) Determinar la precisión de la medición de la resistencia a compresión del concreto en columna empleando pruebas de esclerometría, rotura de probetas y pulso ultrasónico respecto al ensayo de diamantina, a la edad de 21 días.

CAPÍTULO II MARCO TEÓRICO

2.1. Antecedentes

2.1.1. Antecedentes nacionales

- a. Lipa (2018) realizó la tesis de posgrado en la que propone una nueva metodología de detección de vacíos internos en concreto armado empleando ondas de ultrasonido. Concluyendo que, para determinar los vacíos del concreto armado mediante ultrasonido es necesario emplear un equipo detector de metales, ya que las barras de acero aparecen en los escaneos. El dispositivo puede detectar eficazmente esferas de 50 mm en concreto armado con un 81.25% de probabilidad al analizar cintas con acero a distancias mayores o iguales a 150 mm en la misma dirección de escaneo o distancias laterales de acero mayores o iguales a 100 mm (Lipa, 2018).
- b. Chávez et al. (2019) realizaron la tesis de grado donde aseguraron que, el trabajo desarrollado se inicia en el laboratorio con la elaboración, muestreo y vigilancia de diseños estándar de CS y CAC, a partir de ello se inicia la indagación en: tamaños de los áridos, relación agua/cemento, prosigue la fabricación de especímenes y finiquita en

la valoración de la resistencia a compresión de cada muestra. Concluyendo que, se logran adquirir resultados confiables sobre la medición de la resistencia a compresión a partir del uso del pulso ultrasónico (Chávez, y otros, 2019).

- c. Callaymara et al. (2019) efectuaron una tesis de grado para validar el ensayo de pulso ultrasónico y triaxial para determinar la densidad y resistencia de concretos hidráulicos empleando agregados de la cantera de Cunyac. Concluyeron que, al usar el agregado de la cantera Cunyac se caracteriza por tener un TMN de 3/4", con el cual se elaboraron probetas de 4x8 pulgadas, la aproximación cúbica esta dada por R²=0.9838, siendo el error de 7.87 %, obteniendo la ecuación: r = 1.2014 * 10-6* v3 1.3928 * 10-2* v2 + 5.3787 * 101* v 6.9056 * 104, donde v= velocidad de pulso ultrasónico (Callaymara, y otros, 2019).
- d. Siancas (2021), realizó la tesis de grado con el propósito determinar la resistencia a la compresión del concreto empleando ensayos destructivos y no destructivos. En lo metodológico efectuó una indagación con diseño descriptivo y cuantitativo. Concluyendo que, los ensayos no destructivos poseen fuerte correlacional lineal positiva. Los hallazgos de los métodos destructivos y no destructivos utilizados para determinarlos no tienen relación, y sus propiedades suelen variar según factores, por lo que no alcanzan la resistencia establecida de 210 kg/cm² (Siancas, 2020).
- e. Masías (2021), desarrollo la tesis de grado en la que concluye que, es posible estimar los valores de resistencia a compresión a partir de los ensayos de velocidad de pulso ultrasónico, para el caso del f'c=175 kg/cm2 se tiene la siguiente ecuación: f'c=0.1966 (VPU) 413.45 (R2=0.9921), para el caso del f'c=210 kg/cm² se tiene la siguiente ecuación: f'c=0.2277 (VPU) 502.6 (R²=0.9938) y para el caso del f'c=280 kg/cm² se tiene la siguiente ecuación: f'c=0.2828 (VPU) 669.94 (R²=0.9944), así mismo se detectó que el tipo de cemento y el diseño de mezcla interfiere en la correlación (Masías, 2021).

2.1.2. Antecedentes internacionales

- a. Jaramillo et al. (2023) ejecutaron el artículo científico en la que afirman que, al evaluar la confiabilidad del ensayo de VPU mediante su comparación con el ensayo de esclerometría y la rotura de testigos de concreto, los resultados indicaron que, la mejor correlación se da mediante la ecuación polinómica de segundo grado, el coeficiente de determinación del concreto C1, mostró R² = 0.714. Para concreto C2, R² = 0.8936. Para el concreto C3, R² = 0.9369. Concluyendo que, las mediciones realizadas con la velocidad de pulso ultrasónico revelan una buena categorización de calidad de los concretos como excelente y una correlación de dependencia fuerte, siendo los porcentajes de error presentes en la ecuación analítica dentro del ±10%.
- b. Herrera et al. (2023), desarrollaron el artículo científico cuyo objetivo fue: determinar el comportamiento de la resistencia a compresión de concretos con 21 MPa cuando son adicionado con carnaza. Usó una metodología cuantitativa, con alcance descriptivo interpretativo correlacional. Los resultados indicaron que, la adición de carnaza incide negativamente en los valores de resistencia a compresión del concreto, llegando a una reducción de hasta el 30% respecto a la muestra patrón, por otro lado, se encontró que existe correlación entre la velocidad de pulso ultrasónico y el f°c. Concluyendo que, al adicionar la carnaza en altos porcentajes en concretos de 21 MPa puede limitar su aplicación en algunas estructuras, sugiriendo que existe necesidad de realizar estudios más amplios y detallados sobre el uso de la velocidad de pulso ultrasónico como herramienta para evaluar la calidad del concreto.
- c. Ospina et al. (2020) desarrollaron un artículo científico en el que lograron estimar la evolución del daño mecánico del concreto SFRC a través de la velocidad de pulso ultrasónico en relación a los valores de resistencia a flexión, obtenido ecuaciones con pronóstico. La metodología se basó en un modelo experimental, iniciando con la recopilación de información de concreto fibro-reforzado, se guido a

la elaboración del diseño de mezcla, siguió las pruebas experimentales y finiquito analizando los resultados. Concluyendo que, cuando un elemento de concreto es sometido a daños mecánicos, sus fisuras aumentarán y, en consecuencia, disminuirá su densidad; esta propiedad se puede medir por la velocidad del pulso de propagación; por lo tanto, la predicción de la integridad del estado físico de un elemento encontrado será predecible, permitiéndonos saber si una estructura particular está en peligro de colapsar o está cerca de colapsar.

- d. Solís (2021) desarrollo una investigación cuyo objetivo fue observar la influencia de las barras de acero de refuerzo a través de la velocidad medida en columnas de tres edificios. Para tal fin, consideró como muestra a 25 columnas. Los resultados indicaron que la velocidad media fue de 3.491 a 3.653 m/s. Se concluyó que las velocidades medias medidas en el estudio oscilaron entre 3.491 y 3.653 m/s, representando una variación de aproximadamente el 10% (respecto al valor más bajo). Con base en estos índices, se estima que dos de cada tres edificios aún no han alcanzado su resistencia de diseño.
- e. Torres et al. (2020) desarrollaron la tesis de grado cuyo objetivo fue determinar modelos de correlación de regresión lineal entre la resistencia a compresión, compresión diametral y ensayos de velocidad de pulso ultrasónico y esclerometría en un concreto simple. Usó una metodología experimental explicativa. Concluyendo que, se puede deducir que conociendo el diseño de mezcla de la muestra o concreto podríamos realizar una estimación de su resistencia, utilizando un equipo de ultrasonido y la ecuación de correlación que obtuvimos para dicho diseño de mezcla sin necesidad de emplear ensayos destructivos. Pero en nuestro caso no fue viable ya que los coeficientes de determinación de las rectas, R², fueron muy bajos y por lo tanto no es viable utilizar las ecuaciones (Torres, y otros, 2020).

2.2. Bases teóricas o Científicas

2.2.1. El concreto

El concreto consta de un componente aglutinante (cemento Portland), agregados, agua y ocasionalmente aditivos, cuando se endurece adquiere una capacidad alta de resistir esfuerzos a compresión (Asociación Colombiana de Productores de Concreto, 2010 pág. 1).

La RAE asevera que el término "concreto" proviene del inglés concrete, refiriéndose al hormigón, este se define como: material resultante de la mezcolanza de agua, arena, grava y cemento, y que al endurecer es capaz de adquirir la capacidad de resistir esfuerzos (Matallana, 2019 pág. 23). Los componentes del concreto pueden dosificarse en volumen de la siguiente forma:

Tabla 1 *Porcentaje aproximado de la composición del concreto, en volumen.*

Con aire atrapado naturalmente (%)	Compo	nentes	Con aire incluido intencionalmente (%)
0.5 a 3 7 a 15 16 a 21	Pasta de cemento	Aire Cemento Agua	4 a 8 7 a 16 14 a 18
25 a 30		Arena o agregado fino	25 a 30
25 a 50	Agregados	Grava o agregado grueso	30 a 50

Fuente: El concreto. Fundamentos y Nuevas Tecnologías, de Matallana (2019).

2.2.2. Componentes del concreto

Cemento Portland

Es un cemento hidráulico que se origina por la pulverización del Clinker y yeso, se componen de un 5% de caliza y añadiduras de proceso, en donde se equilibran la composición química y física (Matallana, 2019 pág. 42). Pueden clasificarse en cinco tipos, tal como se describe a continuidad:

Tabla 2 *Tipos de cemento Portland según la norma ASTM C150.*

Tipo de cemento	Uso	Ejemplo de uso
I	Cuando no es requerido ninguna de las propiedades especiales de los otros cementos.	Estructuras de concreto en general como vigas, columnas, losas y muros entre otras, dónde no son requeridas propiedades especiales de los demás cementos.
п	Cuando precisa moderada resistencia a los sulfatos o merado calor de hidratación	Estructuras de drenaje, donde las concentraciones de sulfatos en aguas subterráneas son moderadas. Estructuras de masa considerable, como en muros de contención o cimentaciones masivas. Aguas freáticas o de infiltración, con moderadas concentración de sulfatos.
III	Cuando se requieren altas resistencias iniciales.	En estructuras donde hay que desformaletar pronto, como estructuras industrializadas, o cuando la estructura debe ponerse al servicio rápidamente.
IV	Cuando es necesario bajo calor de hidratación.	Para estructuras de concreto masivo, como grandes presas, donde existen diferencias de temperatura entre el interior y la parte externa de la estructura.
v	Cuando necesita alta resistencia a los sulfatos.	Para estructuras en contacto con suelos o aguas con alto contenido de sulfatos.

Fuente: El concreto. Fundamentos y Nuevas Tecnologías, de Matallana (2019).

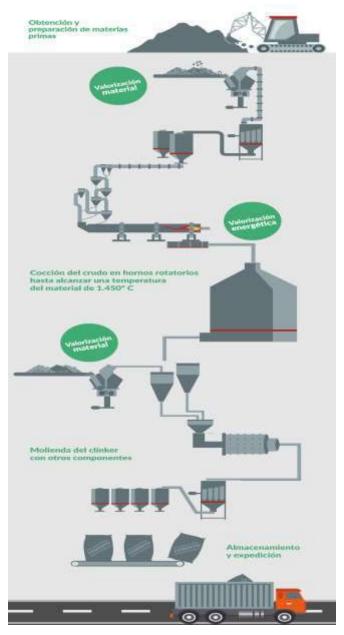
Los compuestos fundamentales del cemento Portland son:

Tabla 3 *Composición principal del cemento Portland.*

Nombre	Fórmula química
Sílice (anhídrico silícico)	SiO2
Cal (óxido cálcico)	CaO
Alúmina (óxido alúmino)	Al2O3
Óxido férrico	Fe2O3

Fuente: Naturaleza y Materiales del Concreto, de Rivva (2000).

La composición de los óxidos en el cemento se da en:


Tabla 4 *Composición de los óxidos en el cemento Portland.*

Nombre	Fórmula química
CaO	60% al 67%
SiO2	17% al 25%
Al2O3	3% al 8%
Fe2O3	0-5% al 6%

Fuente: Naturaleza y Materiales del Concreto, de Rivva (2000).

Los procesos de fabricación del cemento Portland inician con la obtención de materia prima (piedra caliza), estas se extraen de las canteras y son trasladadas a las fábricas. Ya estando en la fábrica se hace la disminución de tamaño de las piedras calizas y las arcillas, hasta obtener tamaños de 5 a 10 mm. Procede los procesos de homogeneización, en esta etapa se mezclan

las arcillas y calizas trituradas, esto se da mediante bandas transportadoras hasta obtener partículas que tengan diámetros de 0.5 mm. Continua la etapa de clinkerización, aquí la mezcla homogeneizada es llevada a hornos con temperaturas que oscilan de 1450°C a 1600°C, con ello se logra la fusión de los granos, obtenido el denominado Clinker quien se caracteriza por tener diámetros de 1 a 3 cm. Prosigue la etapa de enfriamiento el cual permita su manipulación, sigue la molienda y agregado final. Finiquita con su empaquetado y distribución (Becosan, 2021).

Figura 3 *Etapas de elaboración del cemento Portland.*Fuente: Fundación CEMA (2023).

Los agregados

Los agregados para el concreto, son en su mayoría inertes, conformados por áridos naturales o artificiales (triturados) y que al sumarse con la pasta dan origen al concreto (Matallana, 2019 pág. 63). Los áridos pueden clasificarse según su origen, tamaño y densidad.

Según su origen pueden ser naturales o artificiales, para el primer caso estas provienen de rocas ígneas, metamórficas o sedimentarias como resultado de la intemperie, erosión y arrastre del agua, con ello se da origen a la piedra, grava, arenas, arcillas y limos (Matallana, 2019 pág. 64). En cuanto a los agregados artificiales estos se originan por procesos industriales (Matallana, 2019 pág. 65). De acuerdo a su tamaño pueden ser agregado grueso y agregado fino, tal como la tabla contigua lo describe.

Tabla 5Clasificación de los agregados según el tamaño de sus partículas.

Tamaño (mm)	Mayor a 50	Entre 50 y 19,0	Entre 19,0 y 4,75	Entre 4,75 y 2,36	Entre 2,36 y 0,42	Entre 0,42 y 0,074	Entre 0,074 y 0,002	Menor a 0,002
Denominación	Piedra	Grava	Gravilla	Arena Gruesa	Arena media	Arena fina	Limo	Arcilla
	Agregado Grueso			Agregado Fino				ón muy na
Recomendación	Material bueno para producir concreto.			Material bueno para producir concreto.				rial no endable.

Fuente: El concreto: Fundamentos y Nuevas Tecnologías, de Matallana (2019).

Por su densidad pueden considerarse en liviano, normal y pesado, tal como lo describe la tabla contigua:

Tabla 6 *Clasificación de los agregados de acuerdo a su densidad.*

Clasificación del		proximada m3)	Variedades más comunes de los	Ejemplo de uso	
agregado	Agregado	Concreto	agregados		
Liviano	Agregado fino Menor que 1120 Agregado grueso menor que 880	1440 a 1840	Arcillas termo expandidas, pizarras o esquistos expandidos, escorias de horno, piedra pómez, perlita, diatomita	Concretos estructurales, aislamientos de ruido calor; rellenos de bajo peso.	
Normal	1120 a 3300	2000 a 2600	Arena, grava, piedra triturada, Clinker, escoria de fundición	Estructuras de concreto de peso normal en general. Concreto para	
Pesado	Mayor que 3300	Mayor que 2600	Barita, hierro, limonita, magnetita, limadura de acero, hematita.	macizos de anclaje; protección contra radiaciones, refugios antiaéreos.	

Fuente: El concreto: Fundamentos y Nuevas Tecnologías, de Matallana (2019).

El agua

El agua cumple dos funciones en el concreto, uno como componente de la misma y la segunda como curado. El agua en la mezcla ocupa aproximadamente el 15% del volumen del concreto, cumpliendo dos funciones principales, la primera consiste en hidratar al cemento para que esta se desenvuelva como material aglutinante y la segunda es proporcionar fluidez a la mezcla (Matallana, 2019 pág. 85). El agua como material de curado, hace que se requiera un adicional de agua luego de que el concreto haya finiquitado su fraguado, por lo menos durante 7 días.

Tabla 7 *Especificaciones para impurezas en el agua de mezclado según la norma NTC 3459.*

	Impureza	Límite		
Orgánicas	Aguas con color oscuro, olor pronunciado, lama y algas visibles o en formación de color verde o café.	Para su aceptación se deben hacer ensayos de fraguado y resistencia.		
	Iones de calcio, magnesio, sodio, potasio, bicarbonatos, sulfato (SO ₄ ²), cloruros (Cl), Nitrato (NO ³) y carbonato (co ₃ ²)	Contenido total combinado, máximo 2.000 mg/l.		
Inorgánicas	Cloruros	La tabla C.4.3.1 de la NSR 10, establece los valores límites para el contenido total de cloruros.		
	Sulfatos	Máximo 3.000 mg/l como SO4; 1000 mg/l como SO3 (4% ppc)		
	Álcalis: contenido combinado	Na2O + 0.658K2O < 600 ppm.		
	Sólidos totales	0.5 kg/l.		

Fuente: El concreto: Fundamentos y Nuevas Tecnologías, de Matallana (2019).

Aire

El aire resulta ser un componente naturalmente atrapado o incluido de forma intencional, de ahí que aquel que ha sido atrapado de forma natural no genere propiedades indeseables, de ahí que se debe tener cuidado con los procesos de compactación de modo que se expulse el aire atrapado (Matallana, 2019 págs. 91, 92).

Tabla 8 *Cuantía aproximada de aire atrapado según el TMN*

TMN	% promedio		
Pulgadas	mm	aproximado de aire atrapado	
3/8	9.5	2.7	
1/2	12.6	2.5	
3/4	19	2	
1	25	1.7	
1 1/2	37.5	1.5	
2	50	1	
3	75	0.3	
6	150	0.2	

Fuente: El concreto: Fundamentos y Nuevas Tecnologías, de Matallana (2019).

Aditivos para el concreto

El ACI 116R define a los aditivos como materiales disímiles al agua, cemento, áridos y fibras, que al adicionarse como componentes del concreto durante o antes del mezclado intervienen en el comportamiento de la mezcla (Matallana, 2019 pág. 99).

La norma NTC 1299 cataloga a los aditivos como reductores de agua y controladores del tiempo de fragua en:

Tipo A: reductores de agua.

Tipo B: retardadores de fragua.

Tipo C: acelerantes de fragua.

Tipo D: reductores de agua y retardantes.

Tipo E: reductores de agua y acelerantes.

Tipo F: reductores de agua de alto rango.

Tipo G: reductores de agua de alto rango y retardantes.

Los aditivos reductores de agua también se denominan plastificantes, mientras que los superplastificantes, así como los superplastificantes y retardadores (tipo F y G), se denominan superplastificantes(Matallana, 2019 pág. 100).

2.2.3. Propiedades del concreto

Propiedades en estado fresco del concreto

En estado fresco el concreto debe ser capaz de ser colocado con facilidad, además son las características en estado fresco las que influyen en la etapa endurecida del concreto, dichas propiedades son:

- Manejabilidad o trabajabilidad: representa el nivel de compacidad, cohesividad, plasticidad y consistencia, una forma de medirla es mediante el ensayo de asentamiento de la mezcla de concreto (Asociación Colombiana de Productores de Concreto, 2010 pág. 100).
- Segregación: es la predisposición que exhiben las partículas gruesas a separarse por falta de cohesividad (Asociación Colombiana de Productores de Concreto, 2010 pág. 108).
- Exudación: es una forma de sedimentación, por la que el agua de la mezcla tiende a elevarse sobre la superficie del concreto que acaba de ser colocado (Asociación Colombiana de Productores de Concreto, 2010 pág. 109).
- Masa unitaria: sus valores dependen del TM, granulometría y densidad de los áridos, cantidad de aire, contenido de agua y cemento (Asociación Colombiana de Productores de Concreto, 2010 pág. 110).

 Contenido de aire: esta peculiaridad se encuentra en todos los concreto, ubicado en los poros no saturables de los áridos y constituyendo burbujas dentro delv concreto (Asociación Colombiana de Productores de Concreto, 2010 pág. 110).

Propiedades en estado endurecido del concreto

En la fase fresca del concreto debe ser capaz de ser colocado con facilidad, Las peculiaridades en estado endurecido representan la capacidad que tiene el concreto en soportar grandes esfuerzos a comprensión, estos valores dependen de la resistencia de la pasta endurecida, resistencia de los áridos y adherencia entre los agregados y la pasta (Asociación Colombiana de Productores de Concreto, 2010 pág. 119).

- Resistencia a compresión: Una forma de medir el f°c es a través de probetas cilíndricas, en las que los procesos de fabricación y ensayos son regulados por la NTP. Las dimensiones de la probeta deben estar en relación 1:2 (diámetro: altura).
- Resistencia a flexión: La propiedad de resistencia a flexión del concreto es conocido como módulo de rotura o MR, adquiere importancia en estructuras de concreto simple, como por ejemplo losas de pavimento y pisos industriales, su ejecución se regula en la norma ASTM C31 (Matallana, 2019 pág. 122).

2.2.4. Control de calidad del concreto

Ensayos destructivos

Por lo general se emplean para evaluar el f°c, para el caso nacional se emplea la norma NTP 339.059 regula la obtención de muestras diamantinas, por otro lado, la norma NTP 339.034 determina la capacidad de soporte a esfuerzos de compresión del concreto mediante especímenes de concreto.

Ensayos no destructivos

Los ensayos no destructivos son una alternativa para evaluar estructuras permitiendo obtener información clave sobre el desempeño del material, sin comprometer físicamente la estructura.

Las pruebas no destructivas son un método alternativo para evaluar estructuras que pueden proporcionar información crítica sobre las propiedades del material sin dañar la estructura.

Los ensayos no destructivos pueden ser:

a. Martillo de rebote

Es una prueba que se sustenta en el esclerómetro, este se caracteriza por imponer un impacto de energía cinética sobre una determinada área '(0.0255 m²), consiguiendo un valor adimensional que mediante tablas permite estimar la resistencia del concreto.

Este ensayo se solicita varias condiciones de aplicación y también presenta diversidad de factores que inciden en los resultados, entre ellos la influencia del ambiente de la barra sobre el agregado grueso, contenido de humedad, porosidad, tipo de acabado y forma manipulada, etc. La pérdida del pH del concreto también puede alterar el efecto rebote.

b. Método de madurez

Este es un método para evaluar el f'c del concreto basado en la temperatura, edad y tiempo de fragua que muestra la mezcla.

c. Pulso ultrasónico

Este método se basa en NTP 339.237, NTC 4325 y BS 1881 Parte 203 o ASTM C597, que trata sobre ondas que recorren a través del concreto. La transferencia se realiza mediante unos dispositivos llamados "transductores", que se encargan de transmitir la energía y convertirla en un valor numérico de la velocidad de la onda en el hormigón, expresada en m/s. El resultado de la prueba es la frecuencia del pulso obtenida, que luego se correlaciona para establecer el valor de una resistencia particular. Los valores obtenidos

representan el grado de compactación de la mezcla de hormigón y, por tanto, son valores típicos en la literatura sobre indicadores de rendimiento. La porosidad del concreto tiene un papel importante porque afecta a los resultados obtenidos, no por ensayos defectuosos sino simplemente secuela de irregularidades que no consienten moverse con rapidez.

El método tradicional reside en usar un dispositivo para la prueba ultrasónica accediendo a medir la velocidad de propagación del pulso ultrasónico a través del concreto, también consiente determinar la presencia de vacíos o grietas y las variaciones en las propiedades en el tiempo. La configuración de pulso optimizada proporciona un mayor rango de transmisión a niveles de voltaje más bajos. La combinación automática de voltaje del transmisor y ganancia del receptor garantiza una recepción óptima del nivel de señal, asegurando mediciones precisas y estables.

Figura 4 *Medición tradicional del pulso ultrasónico*Fuente: Proceq (2023).

Para este caso se requieren los siguientes datos

- Densidad del concreto (ρ) = 2400 kg/m³
- Modulo dinámico de Poisson (v) = 0.20
- Longitud de trayectoria = 0.50 m

Figura 5 *Verificación de media de longitud de trayectoria*Fuente: Propia (2023).

Figura 6 *Proceso de medición de la velocidad de pulso ultrasónico*Fuente: Propia (2023).

Por ejemplo, se realizaron las siguientes lecturas:

Velocidad 1: 3230 m/s

Velocidad 2: 3229 m/s

Velocidad 3: 3224 m/s

Se tomo en consideración el promedio de las 3 velocidades

Velocidad de pulso ultrasónico es: 3227.67 m/s

Al tener los valores de longitud de trayectoria y velocidad, se puede verificar el tiempo en el que el pulso ultrasónico atraviesa al concreto

$$V = \frac{l}{t}$$

$$1000000 \qquad \text{us} \qquad \rightarrow \qquad \qquad 1 \qquad \text{s}$$

$$84.69791078 \qquad \text{us} \qquad \rightarrow \qquad \qquad T \qquad \qquad \text{(s)}$$

$$T = \qquad 8.4698E-05 \qquad \text{s}$$

Constatando así el tiempo de 0.0000846979 s

El cálculo del módulo de elasticidad se obtiene de la siguiente forma:

$$v = \sqrt{\frac{E}{\rho} \left(\frac{1 - v}{(1 + v)(1 - 2v)} \right)}$$

$$E = pv^{2} \frac{(1+v)(1-2v)}{(1)} - v$$

Encontrando que el módulo de elasticidad es de 22502.51 MPa

Teniendo ya los valores de módulo de elasticidad se puede estimar los valores de resistencia a compresión, la formula a emplear es:

$$E = 4700\sqrt{f'c}$$

$$f'c = (E/4700)^2$$

Convirtiendo a kg/cm² se tiene un f'c= 233.74 kg/cm²

2.2.5. Normas empleadas en la tesis

ACI 211.1

Manual técnico que dosifica los elementos del concreto tradicional.

ASTM C 127

Estándares para determinar la densidad y absorción de partículas de agregado grueso. Según este ensayo no se pueden utilizar agregados ligeros.

ASTM C 29

El propósito de esta normativa es conocer el PUC y PUS de los áridos. Afecta a áridos de hasta 125 mm de tamaño nominal.

ASTM C 31

De acuerdo con esta norma, los especímenes cilíndricos y las vigas fabricadas a partir de muestras típicas de concreto hormigón recién colocado deben fabricarse y curarse adecuadamente.

ASTM C 78

El objetivo de la norma es fijar la resistencia a la flexión del concreto empleando una viga de carga sencilla de un tercio.

ASTM C 143

Los ordenamientos para el cálculo del revenimiento del hormigón hidráulico están establecidos por esta norma, tanto en el laboratorio como en la obra.

ASTM C 39

Se debe instaurar instrucciones estándar para medir el f'c de muestras cilíndricas de concreto, como cilindros y núcleos perforados. Sólo se emplea en concreto con una densidad mayor a 50 lb/ft3.

ASTM C 192

Contiene instrucciones para hacer muestras de concreto que se pueden preparar y curar utilizando concreto que se puede reforzar con barras o vibraciones bajo el control exacto de los materiales y las condiciones de prueba.

NTP 339.183

Esta norma prueba rigurosamente los materiales y propiedades del concreto vibrado o consolidado con barras de refuerzo como se especifica en la Norma Nacional. Además, el documento también describe formas de preparar y curar.

NTP 339.035

Norma peruana que describe los pasos a seguir para obtener el revenimiento del concreto a base de cemento Portland, tanto en laboratorio como en obra.

NTP 339.034

Esta norma aclara los requisitos para establecer el extracto de diamantina del concreto y el f'c de muestras de concreto cilíndrico, es aplicable para concretos con una densidad mayor a 800 kg/m3.

NTP 400.012

Norma que define el procedimiento de tamizado de áridos para establecer la distribución de tamaño de partículas entre finas y gruesas.

NTP 400.022

Normativa que narra los procedimientos para el cálculo del peso específico y % de absorción del agregado fino.

NTP 400.021

Para las partículas de agregado grueso, se utiliza una norma que narra los procedimientos para fijar la gravedad específica y la absorción.

NTP 400.037

Esta norma estipula la gradación (granulometría) y los requisitos de calidad de los agregados finos y gruesos.

NTP 400.017

Norma que permite estimar el PUC y PUS de los agregados empleados para mezclas de concreto. El tamaño nominal máximo de los áridos que se pueden ensayar mediante este método es de 125 mm.

NTP 334.009

El cemento Portland Tipo I, Tipo II, Tipo II (MH), Tipo III y Tipo V deberá cumplir con los requerimientos de esta norma.

NTP 339.088

La presente norma establece los requerimientos de constitución y rendimiento del agua utilizada en la producción del concreto hidráulico. Describe las fuentes de agua, acepta las especificaciones y especifica los intervalos de prueba para evaluar las fuentes de agua solas o en combinación.

NTP 339.033

Esta norma narra los ordenamientos para fabricar vigas y especímenes cilíndricos a partir de muestras representativas de concreto fresco y curarlas en preparación para su uso en proyectos de construcción. Después de realizar cualquier cambio en la proporción de mezcla en el lugar de trabajo, como agregar agua de mezcla y aditivos, se debe recolectar el concreto utilizado para el muestreo.

2.3. Marco conceptual

a. Concreto

Es una mezcla de agua, aire, cemento Portland, árido grueso, árido fino y aire (Abanto, 2009).

b. Cemento

Producto artificial, que al adicionarle agua y agregados puede formar una masa endurecida, es el Clinker quien otorga componentes como cal, alúmina, fierro y sílice (Abanto, 2009).

c. Agregado fino

Es la arena natural o artificial que pasa por la malla 3/8" y que cumple con la normativa ASTM C 33 (Rivva, 2014).

d. Agregado grueso

Material retenido en la malla N°4 y que se somete a los lineamientos de la normativa NTP 400.037 (Rivva, 2014).

e. Aditivos

Sustancias incorporadas al concreto con el fin de intervenir en sus propiedades, de modo que se cumplan parámetros solicitados (Abanto, 2009).

f. Resistencia a compresión

Propiedad mecánica del concreto que simboliza la capacidad de soporte que tiene un elemento estructural.

g. Velocidad de pulso ultrasónico

Es una técnica no destructiva que consiente conocer el estado interno de la estructura, permitiendo determinar la porosidad del hormigón mediante el vuelo de ondas ultrasónicas.

h. Ensayos destructivos

Son un conjunto de pruebas realizadas de forma que se respete el material. Su estructura, función y forma original no se ven afectadas, por lo que sus beneficios permanecen intactos una vez finalizado el estudio.

i. Ensayos no destructivos

Son una agrupación de pruebas que se ejecutan de forma respetuosa con los materiales, es decir. sin afectar su estructura, funciones y forma original de manera que sus beneficios permanezcan intactos una vez finalizado el estudio.

CAPÍTULO III HIPÓTESIS

3.1. Hipótesis General

El pulso ultrasónico produce menor error en la medición de resistencia a compresión en columnas en comparación a los métodos de esclerometría y rotura de probetas respecto al ensayo de diamantina, Huancayo 2023.

3.2. Hipótesis Específica (s)

- a) El pulso ultrasónico produce menor error en la medición de resistencia a compresión en columnas a los 7 días de edad en comparación a los métodos de esclerometría y rotura de testigos respecto al ensayo de diamantina, Huancayo 2023.
- b) El pulso ultrasónico produce menor error en la medición de resistencia a compresión en columnas a los 14 días de edad en comparación a los métodos de esclerometría y rotura de testigos respecto al ensayo de diamantina, Huancayo 2023.
- c) El pulso ultrasónico produce menor error en la medición de resistencia a compresión en columnas a los 21 días de edad en comparación a los métodos

de esclerometría y rotura de testigos respecto al ensayo de diamantina, Huancayo 2023.

3.3. Variables

3.3.1. Definición conceptual de la variable

Resistencia a compresión del concreto

Es la propiedad mecánica más importante del concreto, ya que define la capacidad que tiene para soportar una carga por unidad de área, generalmente se expresa en kg/cm² o MPa (CEMEX).

3.3.2. Definición operacional de la variable

Resistencia a compresión del concreto

Para poder valorar la resistencia a compresión del concreto se hace necesario realizar pruebas, estas pueden ser de carácter destructivo y no destructivo, para el primer caso se usa esclerometría o pulso ultrasónico, para el segundo caso se usarán diamantina y rotura de probetas, y para determinar cuál de ellas es la más precisa se evaluará la resistencia a compresión a la edad de 7, 14, 21 y 28 días.

3.3.3. Operacionalización de las variables

Tabla 9 *Operacionalización de las variables*

Variables	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Unidad de medida	Metodología e Instrumentos
		Para poder valorar la		I1: Número de repeticiones	Unidad	Fichas de observación y
		resistencia a compresión del	Ensayo de esclerometría	I2: Índice de rebote (estimación del f'c)	Kg/cm ²	evaluación
	mecánica más	concreto se hace necesario realizar pruebas, estas pueden ser de carácter	Ensayo de resistencia a compresión del concreto	I1: Dosificación de los componentes del concreto (agregados, cemento, aditivos, agua)	kg	Visita a campo, medición, ficha de observación y evaluación
	importante del concreto, ya que	el destructivo y no le destructivo para el		I2: Carga máxima	Kg	Fichas de evaluación
Resistencia	define la capacidad	primer caso se usa		I3: Peso de la unidad	kg	Fichas de evaluación
a compresión	que tiene para soportar una carga	esclerometría o pulso		I4: Esfuerzo a compresión	kg/cm ²	Fichas de evaluación
del concreto	por unidad de área,	ultrasónico, para el	Extracción diamantina	I1: Esfuerzo a compresión	kg/cm ²	Fichas de evaluación
der concreto	generalmente se expresa en kg/cm2	segundo caso se usarán diamantina y rotura de		I1: Esfuerzo a compresión	kg/cm ²	Visita a campo, medición, ficha de observación y evaluación
	o MPa (Cemex, 2019).	probetas, y para determinar cuál de	Ensayo velocidad de	I2: Longitud de recorrido	Mm	Fichas de evaluación
	2017).	ellas es la más precisa se evaluará la resistencia a compresión a la edad de 7, 14, 21 y 28 días.	pulso ultrasónico	I3: Tiempo de recorrido	mm	Fichas de evaluación

CAPÍTULO IV METODOLOGÍA

4.1. Método de Investigación

El método científico se basa en la búsqueda de nuevos hechos, explicar nuevas relaciones, describir nuevas características y exhibir información desconocida por la ciencia (Carrasco, 2008 pág. 35).

La tesis usó el método científico, puesto que, a partir de la evaluación del f'c empleando métodos destructivos y no destructivos en columnas de concreto se eligió que el ensayo con pulso ultrasónico resultado ser más precisa

4.2. Tipo de Investigación

La investigación básica, también conocida como investigación fundamental, es una investigación encaminada a la búsqueda de nuevos conocimientos. No tiene objetivos prácticos específicos, y su único propósito es recopilar información sobre la realidad para enriquecer el conocimiento científico o proponer leyes (Sánchez, y otros, 2015 pág. 36).

La presente tesis fue tipo básica ya que recolectó los datos de la medición de la resistencia a compresión del concreto mediante pruebas destructivas y no destructivas para verificar cuál de ellas es la más precisa, así mismo resulta ser fundamento científico para que se propague el uso de la velocidad de pulso ultrasónico como indicador del f'c in situ del concreto.

4.3. Nivel de Investigación

La investigación descriptiva se sustenta en la narración de un fenómeno o situación bajo un determinado tiempo y espacio, es decir recogen información real y actual del fenómeno (Hernández, y otros, 2014).

La indagación correlacional es aquella que emplea un método no experimental para medir a dos variables, es decir estudia y valora la relación estadística entre ellas sin la influencia de ninguna variable (Baena, 2014).

La tesis usó un nivel descriptivo correlacional, ya que en primera instancia narró los resultados alcanzados, y continuó la comparación de valores de resistencia empleando varios métodos, eligiendo cuál de los métodos es la más precisa.

4.4. Diseño de la Investigación

Se nombra diseño experimental cuando una investigación busca solucionar problemas de interés científico en el campo experimental (Carrasco, 2008 pág. 62).

La tesis midió el f'c del concreto mediante las pruebas de rotura de probetas, esclerometría, extracción diamantina y pulso ultrasónico, al comparar los valores se encontró que el pulso ultrasónico exhibe valores muy similares a los obtenidos por la extracción diamantina, de ahí que se concluye que esta prueba es más precisa en comparación a rotura y esclerometría.

4.5. Población y muestra

En una indagación, la población se refiere al conjunto de elementos que forman parte del espacio territorial que interviene en la pregunta de investigación (Carrasco, 2008 pág. 238).

La población lo conformó el concreto con f'c= 245 kg/cm² fabricado en la Planta Concretera Oslo localizado en Auquispuquio – Mayopampa s/n, distrito de Sicaya, provincia Huancayo, departamento Junín.

Un muestreo no probabilístico o dirigido es aquel que selecciona los casos en estudio sin consideras la probabilidad sino las particularidades de la exploración (Hernández, y otros, 2014 pág. 209).

La muestra es parte de la población, debe poseer características de ella, debe ser seleccionada de forma adecuada de forma que exhiba representatividad (Baena, 2014).

La muestra lo conformaron 12 columnas de concreto y 64 testigos de concreto, en las que, las columnas permitieron medir la resistencia a compresión con ensayos no destructivos tales como esclerometría y pulso ultrasónico, mientras que los testigos permitieron medir la propiedad de resistencia mediante pruebas destructivas del f'c mediante especímenes cilíndricos y la extracción de núcleos diamantinos que también fueron sometidos a esfuerzos de compresión.

Tabla 10
Distribución de las muestra

Distribución d						
Ensayos ejecutados para medir resistencia a compresión			Edad de	Descripción		
		7 días	14 días	21 días	28 días	Descripcion
Pruebas	Rotura de probetas	8	8	8	8	Cantidad de especímenes
destructivas	Extracción diamantina	8	8	8	8	estudiados
Pruebas no destructivas	Esclerometría	3	3	3	3	Cantidad de
	Pulso ultrasónico	3	3	3	3	columnas estudiadas

4.6. Técnicas e Instrumentos de recolección de datos

Técnicas

- Caracterización de los componentes del concreto
- Elaboración de diseño de mezcla
- Ejecución de pruebas destructivas en laboratorio
- Toma de datos
- Control de resistencia real empleando la VPU.

Instrumentos

Fichas de recolección de datos (formatos en laboratorio).

4.7. Técnicas de procesamiento y análisis de datos

Los datos logrados se procesaron mediante el software Microsoft Excel y se utilizó la estadística inferencial para confirmar o rechazar las hipótesis (software SPSS v26), pero en general se involucró tres etapas.

Etapa 1: Pre campo

- Toma de muestras de las canteras (agregados que serán empleados en obra).
- Escoger la metodología de diseño de mezcla más indicada para la obra.
- Verificación de los instrumentos por juicio de expertos.

Etapa 2: Campo

- Caracterización de los componentes del concreto.
- Elaboración del diseño de mezcla teórico.
- Ensayos destructivos del concreto.
- Obtención de diseño de mezcla práctico.
- Observación del proceso constructivo de las columnas en obra.
- Monitoreo de la resistencia a compresión empleando VPU.

Etapa 3: Gabinete

- Organización de los datos recolectados.
- Interpretación y análisis de datos.
- Emisión de figuras y tablas (ver en el capítulo de resultados).

- Redacción de informe final de tesis.

4.8. Aspectos éticos de la investigación

Todos los datos presentados en el artículo son consistentes con los datos obtenidos de pruebas de laboratorio y de campo, y de manera similar se reconoce la autoría de investigaciones previas en este trabajo.

CAPÍTULO V RESULTADOS

5.1. Descripción del diseño tecnológico

La presente tesis demuestra que la medición del f'c del concreto es más precisa al desarrollar el ensayo de velocidad de pulso ultrasónico, en comparación a los métodos de esclerometría y rotura de probetas, ya que pudo obtener valores semejantes a los de extracción diamantina.

Para poder alcanzar los propósitos planteados por la tesis, se hizo necesario elaborar un diseño de mezcla con f'c=245 kg/m², en donde se obtuvo la siguiente dosificación:

Tabla 11Dosificación del diseño de mezcla utilizado por la tesis.

Descripción	Dosis por m³ de concreto	Unidades
Cemento Andino Tipo I	374	Kg
Agua (Planta Oslo)	200	L
Arena Gruesa (cantera Sicaya)	1076	Kg
Piedra chancada (cantera Sicaya)	752	Kg
Sikament-400PE	3.44	Kg

Con ello se elaboraron 12 columnas de sección cuadrada de 50 cm x 50cm de altura de 3.00 m, asimismo se fabricaron 32 testigos de concreto y se extrajeron 32 muestras diamantadas, todas ellas con la intención de medir el f'c a los 7, 14, 21 y 28 días.

5.2. Descripción de resultado

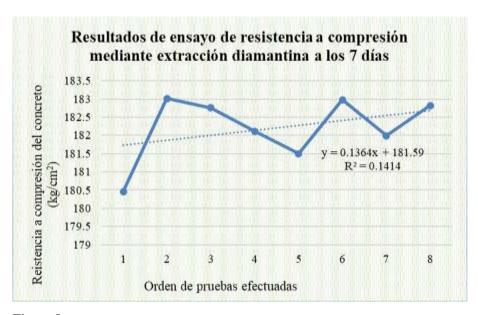
En estado fresco el concreto exhibió un asentamiento de 5 ½ pulgadas y contenido de aire en estado fresco de 1.10%, peso unitario de 2330 kg/m³.

Con el propósito de alcanzar el objetivo específico 1: Determinar la precisión de la medición de la resistencia a compresión del concreto en columna empleando el pulso ultrasónico, a la edad de 7 días.

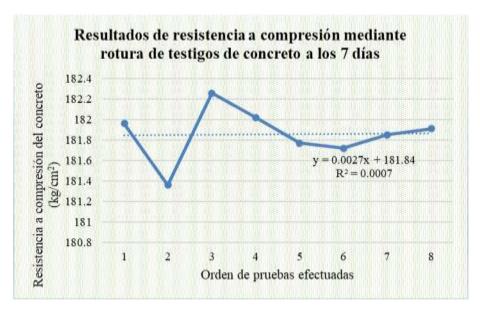
Los datos recolectados fueron:

Tabla 12Resultados de resistencia a compresión a los 7 días, empleando ensayos destructivos y no destructivos.

Descripción	Edad 7 días		
Tipo de medición	Promedio	Valor porcentual, respecto al valor diamantina	
Pulso ultrasónico	174.43	95.73%	
Diamantina	182.21	100.00%	
Rotura de testigos	181.86	99.81%	
Esclerometría	202.88	111.35%	


Nota. Los resultados provienen del promedio aritmético de 8 muestras ensayadas

En base a los resultados encontrados en la tabla 14, se puede apreciar que, a la edad de 7 días mediante la prueba de extracción diamantina, y bajo sometimiento de cargas a compresión de los núcleos se obtiene un f'c de 182.21 kg/cm², de ellos el más cercanos resulta ser la rotura de testigos, quien varía en 0.19% respecto al ensayo de diamantina, siendo el más lejano el ensayo de esclerometría quien tiene una variación del 11.35%.


Figura 7Resultados de medición de resistencia a compresión a los 7 días mediante el ensayo de velocidad de pulso ultrasónico.

Fuente: Propia (2023).

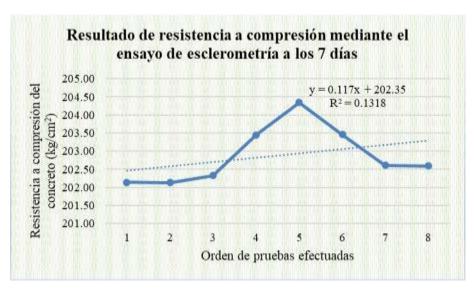


Figura 8Resultados de medición de resistencia a compresión a los 7 días mediante la extracción diamantina

Fuente: Propia (2023).

Figura 9Resultados de medición de resistencia a compresión a los 7 días empleando el ensayo de rotura de testigos de concreto
Fuente: Propia (2023).

Figura 10Resultados de medición de resistencia a compresión a los 7 días empleando el ensayo de rotura de testigos de concreto
Fuente: Propia (2023).

Evaluando la figura 7, figura 8, figura 9 y figura 10, se concluye que la ecuación para estimar la resistencia a compresión a los 7 días depende del tipo de ensayo con el que se midió, son:

- Y=0.068X+174.4 (Pulso ultrasónico)

- Y=0.1364X+181.59 (Diamantina)
- Y=0.0027X+181.84 (Rotura de testigos)
- Y=0.117X+202.35 (Esclerometría)

Con el propósito de alcanzar el objetivo específico 2: Determinar la precisión de la medición de la resistencia a compresión del concreto en columna empleando el pulso ultrasónico, a la edad de 14 días.

La información recolectada fue:

Tabla 13Resultados de resistencia a compresión a los 14 días, empleando ensayos destructivos y no destructivos.

Descripción	Edad 14 días		
Tipo de medición	Promedio	Valor porcentual, respecto al valor diamantina	
Pulso ultrasónico	219.37	99.49%	
Diamantina	220.50	100.00%	
Rotura de testigos	223.93	101.56%	
Esclerometría	228.58	103.67%	

Nota. Los resultados provienen del promedio aritmético de 8 muestras ensayadas

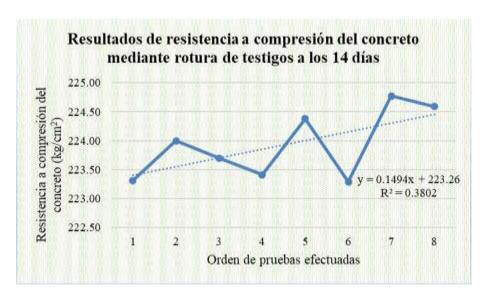

En base a los resultados encontrados en la tabla 13, se puede apreciar que, a la edad de 14 días mediante la prueba de extracción diamantina, y bajo sometimiento de cargas a compresión de los núcleos se obtiene una resistencia a compresión de 220.50 kg/cm2, de ellos el más cercanos resulta ser pulso ultrasónico, quien varía en 0.51% respecto al ensayo de diamantina, siendo el más lejano el ensayo de esclerometría quien tiene una variación del 3.67%.

Figura 11Resultados de medición de resistencia a compresión a los 14 días empleando el ensayo de pulso ultrasónico
Fuente: Propia (2023).

Resultados de resistencia a compresión del concreto mediante extracción diamantina a los 14 días 221.5 Resistencia a compresión del 221 concreto (kg/cm²) 220.5 220 y = -0.1162x + 221.02 $R^2 = 0.1729$ 219.5 219 218.5 218 2 6 1 Orden de pruebas efectuadas

Figura 12Resultados de medición de resistencia a compresión a los 14 días mediante extracción diamantina
Fuente: Propia (2023).

Figura 13Resultados de medición de resistencia a compresión a los 14 días empleando el ensayo de rotura de testigos de concreto

Fuente: Propia (2023).

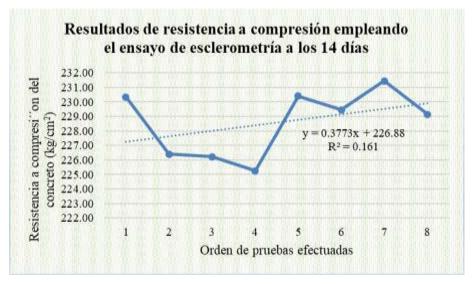


Figura 14
Resultados de medición de resistencia a compresión a los 14 días empleando el ensayo de esclerometría
Fuente: Propia (2023).

Evaluando la figura 11, figura 12, figura 13 y figura 14, se concluye que la ecuación para estimar la resistencia a compresión a los 14 días depende del tipo de ensayo con el que se midió, son:

- Y=0.305X+217.99 (Pulso ultrasónico)
- Y=-0.1162X+221.02 (Diamantina)
- Y=0.1494X+223.26 (Rotura de testigos)

Y=0.3773X+226.88 (Esclerometría)

Con el propósito de alcanzar el objetivo específico 3: Determinar la precisión de la medición de la resistencia a compresión del concreto en columna empleando el pulso ultrasónico, a la edad de 21 días.

Los valores encontrados de resistencia a compresión mediante diversos ensayos fueron:

Tabla 14Resultados de resistencia a compresión a los 21 días, empleando ensayos destructivos y no destructivos.

Descripción	Edad 21 días		
Tipo de medición	Promedio	Valor porcentual, respecto al valor diamantina	
Pulso ultrasónico	234.77	100.52%	
Diamantina	233.56	100.00%	
Rotura de testigos	236.39	101.21%	
Esclerometría	247.70	106.05%	

Nota. Los resultados provienen del promedio aritmético de 8 muestras ensayadas

En base a los resultados encontrados en la tabla 14, se puede apreciar que, a la edad de 21 días mediante la prueba de extracción diamantina, y bajo sometimiento de cargas a compresión de los núcleos se obtiene una resistencia a compresión de 233.56 kg/cm2, de ellos el más cercanos resulta ser pulso ultrasónico, quien varía en 0.52% respecto al ensayo de diamantina, siendo el más lejano el ensayo de esclerometría quien tiene una variación del 6.05%.

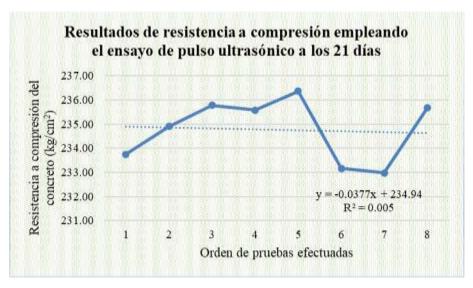


Figura 15
Resultados de medición de resistencia a compresión a los 21 días empleando el ensayo de pulso ultrasónico
Fuente: Propia (2023).

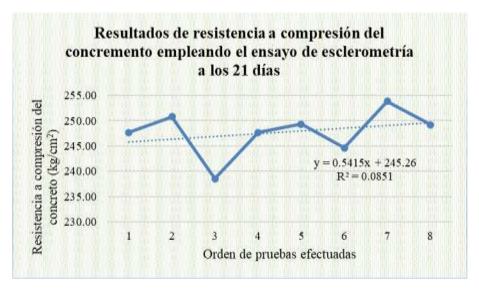


Figura 16Resultados de medición de resistencia a compresión a los 21 días empleando el ensayo de extracción diamantina
Fuente: Propia (2023).

Figura 17Resultados de medición de resistencia a compresión a los 21 días empleando el ensayo de rotura de testigos de concreto

Fuente: Propia (2023).

Figura 18Resultados de medición de resistencia a compresión a los 21 días empleando el ensayo de esclerometría
Fuente: Propia (2023).

Evaluando la figura 15, figura 16, figura 17 y figura 18, se concluye que la ecuación para estimar la resistencia a compresión a los 21 días depende del tipo de ensayo con el que se midió, son:

- Y=-0.0377X+234.94 (Pulso ultrasónico)
- Y=-0.1025X+234.02 (Diamantina)

- Y=0.0082X+236.36 (Rotura de testigos)
- Y=0.5415X+245.26 (Esclerometría)

Con el propósito de alcanzar el objetivo general, se evaluaron pruebas a la edad de 28 días: Determinar la precisión de la medición de la resistencia a compresión del concreto en columnas empleando el ensayo de pulso ultrasónico, Huancayo 2023.

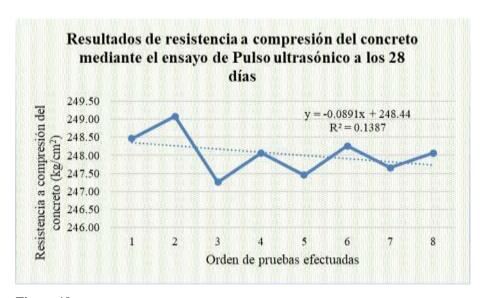
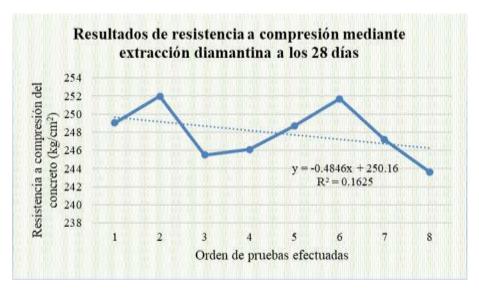

Los resultados alcanzados fueron:

Tabla 15Resultados de resistencia a compresión a los 28 días, empleando ensayos destructivos y no destructivos.

Descripción	Edad 21 días		
Tipo de medición	Promedio	Valor porcentual, respecto al valor diamantina	
Pulso ultrasónico	248.04	100.02%	
Diamantina	247.98	100.00%	
Rotura de testigos	251.84	101.56%	
Esclerometría	283.41	114.29%	


Nota. Los resultados provienen del promedio aritmético de 8 muestras ensayadas

En base a los resultados encontrados en la tabla 15, se puede apreciar que, a la edad de 28 días mediante la prueba de extracción diamantina, y bajo sometimiento de cargas a compresión de los núcleos se obtiene una resistencia a compresión de 247.98 kg/cm2, de ellos el más cercanos resulta ser pulso ultrasónico, quien varía en 0.02% respecto al ensayo de diamantina, siendo el más lejano el ensayo de esclerometría quien tiene una variación del 14.29%.

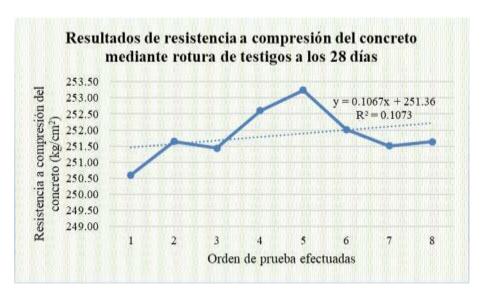


Figura 19Resultados de medición de resistencia a compresión a los 28 días empleando el ensayo de velocidad de pulso ultrasónico

Fuente: Propia (2023).



Figura 20Resultados de medición de resistencia a compresión a los 28 días mediante núcleos de perforación diamantina
Fuente: Propia (2023).

Figura 21Resultados de medición de resistencia a compresión a los 28 días empleando el ensayo de rotura de testigos de concreto

Fuente: Propia (2023).

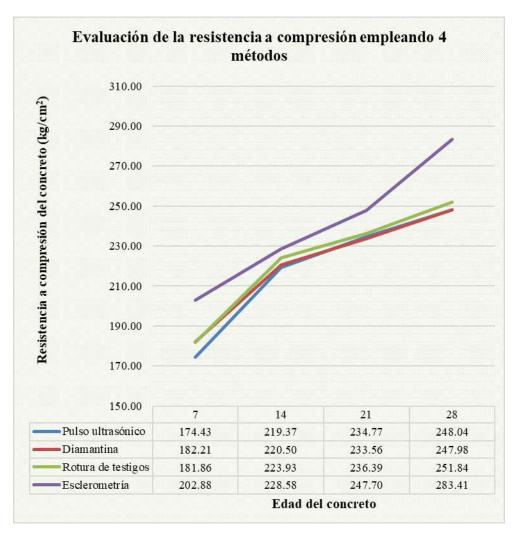


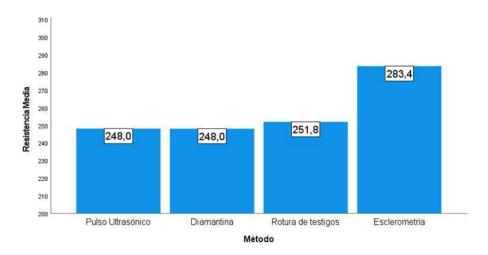
Figura 22Resultados de medición de resistencia a compresión a los 28 días empleando el ensayo de esclerometría
Fuente: Propia (2023).

Evaluando la figura 19, figura 20, figura 21 y figura 22, se concluye que la ecuación para estimar la resistencia a compresión a los 28 días depende del tipo de ensayo con el que se midió, son:

- Y=-0.0891X+248.44 (Pulso ultrasónico)
- Y=-0.4846X+250.16 (Diamantina)

- Y=0.1067X+251.36 (Rotura de testigos)
- Y=-0.1927X+284.27 (Esclerometría)

Figura 23Curva de desarrollo de la resistencia a compresión, expuestos mediante 4 métodos de ensayo Fuente: Propia (2023).

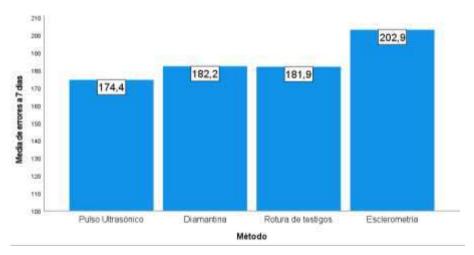

5.3. Contrastación de hipótesis

Se observa (Tabla 16) que la media de errores producidos por el método Pulso ultrasónico (media = 248.04) es ligeramente mayor que el método de Diamantina (media = 247.98) y son los métodos que obtienen menor error de medición de resistencia a la compresión promedio de las columnas con tiempo de secado de 28 días (Figura 22=. Sin embargo, Pulso ultrasónico son los que muestran menos error (desviación estándar = 0,58) y con menor variación (Coeficiente de variación =

0.24% < 20%) lo que indica que los errores de medición son menores con poca variación.

Tabla 16Medidas descriptivas de errores producidos por diversos ensayos de medición de resistencia a compresión del concreto en columnas a la edad de 28 días

		28 días		
		Media	Desviación estándar	Coeficiente de variación
Grupo	Pulso Ultrasónico	248.04	0.58	0.24
	Diamantina	247.98	2.94	1.19
	Rotura de testigos	251.84	0.80	0.32
	Esclerometría	283.41	3.48	1.23


Figura 24Promedio de errores producidos por diversos ensayos de medición en columnas a la edad de 28 días.

En la Tabla 17 se observa que la media de errores producidos por el método Pulso ultrasónico y Rotura de testigo son los que producen menor error al medir la resistencia a la compresión en columnas con 7 días de edad. Sin embargo, el método Pulso ultrasónico (media = 174,43) produce menos error que el método de rotura de testigo (media = 181,86). Además, a pesar que Pulso ultrasónico muestran mayor variación en la cantidad de errores de medición (desviación estándar = 0.23) estos son homogéneos o con menor variación (Coeficiente de variación = 0.23% < 20%) lo que indica que los errores de medición son menores con poca variación.

Tabla 17

Medidas descriptivas de errores producidos por diversos ensayos de medición de resistencia a compresión en columnas de concreto a la edad de 7 días.

			7 días	
		Media	Desviación estándar	Coeficiente de variación
	Pulso Ultrasónico	174,43	0,40	0,23
	Diamantina	182,16	0,94	0,51
Grupo	Rotura de testigos	181,86	0,26	0,14
	Esclerometría	202,88	0,79	0,39

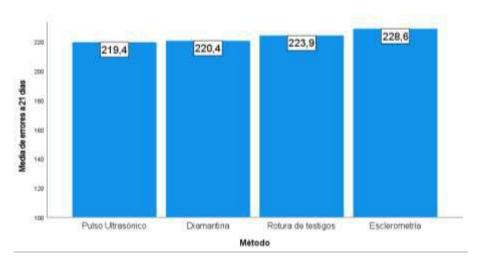


Figura 25 *Promedio de errores producidos por diversos ensayos en la medición de resistencia a la compresión en columnas de concreto a la edad de 7 días.*

En la Tabla 18 se observa que la media de errores producidos por el método Pulso ultrasónico y Diamantina son los que también producen menor error al medir la resistencia a la compresión en columnas con 14 días de edad. Sin embargo, el método Pulso ultrasónico (media = 219.37) produce menos errores que el método de Diamantina (media = 220.38). Además, los errores producidos con Pulso ultrasónico muestran mayor dispersión (desviación estándar = 0.38) sin embargo esta variación es muy homogénea (Coeficiente de variación = 0.38% < 20%) lo que indica que los errores de medición son menores con poca variación.

Tabla 18Medidas descriptivas de errores producidas por diversos ensayos de medición de la resistencia a compresión en columnas a la edad de 14 días.

			14 días	
		Media	Desviación estándar	Varianza
	Pulso Ultrasónico	219,37	0,83	0,38
Grup	Diamantina	220,38	0,68	0,31
0	Rotura de testigos	223,93	0,59	0,27
	Esclerometría	228,58	2,30	1,01

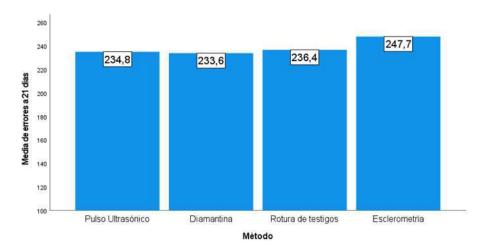


Figura 26Promedio de errores producidos en la medición de la resistencia a compresión en columnas empleando variedad de ensayos a la edad de 14 días.

Se observa (Tabla 19) que la media de errores producidos por Pulso ultrasónico (media = 234.77) y Diamantina (media = 233.56) son los métodos que obtienen menores errores de resistencia a la compresión promedio de los testigos con tiempo de secado de 21 días. Sin embargo, los errores producidos con el método Pulso ultrasónico son los que muestran menos variación (desviación estándar = 1.31) y con menor variación (Coeficiente de variación = 1.71% < 20%).

Tabla 19Medidas descriptivas de errores producidos por método de medición en columnas a la edad de 21 días

			21 días	
		Media	Desviación estándar	Varianza
	Pulso Ultrasónico	234,77	1,31	1,71
Grupo	Diamantina	233,56	2,29	5,25
	Rotura de testigos	236,39	0,13	0,02
	Esclerometría	247,70	4,55	20,68

Figura 27Promedio de errores producidos por método de medición en columnas a la edad de 21 días

PRUEBA DE HIPÓTESIS

Para realizar las pruebas de hipótesis planteadas en la investigación y determinar la diferencia significativa entre los métodos de medición (grupos independientes), se aplicaron dos pruebas de contrastación de hipótesis. Cuando todos los grupos siguen distribución normal (primera prueba), se aplicó con la prueba paramétrica de análisis de varianza (ANOVA) de muestras independientes, (ver Anexo, prueba de normalidad). Además, para determinar el método o métodos que muestran diferencia significativa se aplicó la prueba T3 de Dunnett debido que las varianzas son diferentes (ver prueba de igualdad de varianzas de Levene).

Cuando al menos uno de los métodos no sigue distribución normal (segunda prueba), se aplicó la prueba no paramétrica H de Kruskal Wallis (ver prueba de normalidad) y para determinar la diferencia significativa entre los métodos, se aplicó la prueba de Bonferroni

Se utilizó al software estadístico SPSS en la versión 28.

HIPÓTESIS GENERAL

Para contrastar la hipótesis general planteada como, "El pulso ultrasónico produce menor error en la medición de resistencia a compresión en columnas en comparación a los métodos de diamantina, esclerometría y rotura de probetas, Huancayo 2023", se contrastó las siguientes hipótesis:

H0: No existe diferencia significativa en la producción de error en la medición de resistencia a la compresión de columnas de 28 días de edad entre los diferentes métodos de medición.

H1: Al menos uno de los métodos de medición es diferente en la producción de error en la medición de resistencia a la compresión de columnas de los 28 días de edad.

La Tabla 20, muestra los resultados de la prueba ANOVA y se contrastó que el promedio de error en la medición de resistencia en alguno de los métodos de medición es diferente (Valor $p = 0.00 < 0.05 = \alpha$, se rechaza H0).

Tabla 20Resultados de prueba ANOVA de muestras independientes de errores de resistencia a compresión del concreto a la edad de 28 días.

	Suma de cuadrados	Gl	Media cuadrática	F	Valor p.
Entre grupos	7063,558	3	2354.519	433.147	0.000
Dentro de grupos	152,204	28	5.436		
Total	7215,762	31			

Al realizar la comparación por pares, se determinó que con los métodos Pulso ultrasónico y Diamantina producen el mismo error en la medición de resistencia a la compresión (Valor p=1>0,05, no se rechaza Ho: $\mu i=\mu j$) y estos errores son menores (figura 26) en comparación con los demás métodos con los cuales si muestran diferencia significativa (Valor p<0,05, se rechaza Ho: $\mu i=\mu j$).

Tabla 21Resultados de prueba Dunnet de comparaciones múltiples de errores de resistencia a compresión del concreto a la edad de 28 días.

(I) Grupo	(J) Grupo	Diferencia de medias (I-J)	Error estándar	Valor p.
	Diamantina	,05625	1,06130	1,000
Pulso Ultrasónico	Rotura de testigos	-3,80000*	,34941	,000
	Esclerometría	-35,36875*	1,24685	,000
Diamantina	Rotura de testigos	-3,85625*	1,07856	,037
Diamantina	Esclerometría	-35,42500*	1,61116	,000
	Pulso Ultrasónico	$3,80000^*$,34941	,000
Rotura de testigos	Diamantina	3,85625*	1,07856	,037
	Esclerometría	-31,56875*	1,26157	,000
	Pulso Ultrasónico	35,36875*	1,24685	,000
Esclerometría	Diamantina	35,42500*	1,61116	,000
	Rotura de testigos	31,56875*	1,26157	,000

^{*.} La diferencia de medias es significativa en el nivel 0.05.

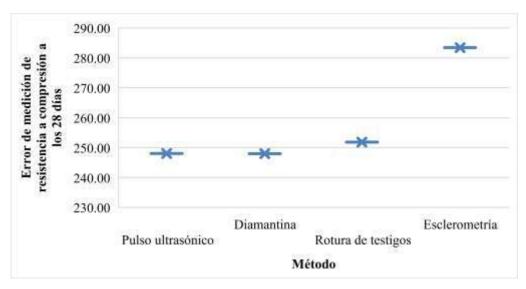


Figura 28

Comparación de diagrama de cajas por método de medición de errores de resistencia a compresión a los 28 días.

HIPÓTESIS ESPECÍFICAS

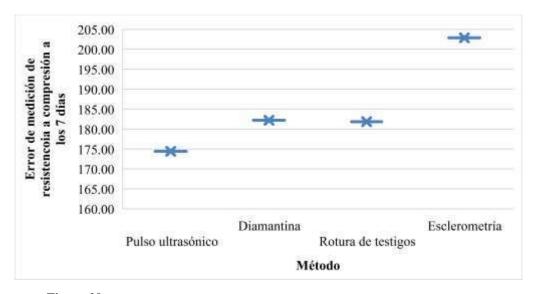
HIPÓTESIS ESPECÍFICA 1

Para contrastar la hipótesis específica planteada como, "El pulso ultrasónico produce menor error en la medición de resistencia a compresión en columnas a los 7 días de edad, Huancayo 2023", se plantearon las siguientes hipótesis estadísticas:

H0: No existe diferencia significativa en la producción de error en la medición de la resistencia a la compresión en columnas a los 7 días de edad entre los diferentes métodos de medición.

H1: Al menos uno de los métodos de medición es diferente en la producción de error en la medición de la resistencia a la compresión en columnas a los 7 días de edad.

La Tabla 22, muestra los resultados de la prueba ANOVA y se contrastó que el promedio de error en la medición de la resistencia en alguno de los métodos de medición es diferente (Valor $p = 0.0 < 0.05 = \alpha$, se rechaza H0).


Tabla 22Resultados de prueba ANOVA de muestras independientes de errores de resistencia a compresión del concreto a la edad de 7 días

		Suma de cuadrados	gl	Media cuadrática	F	Sig.
7 días	Entre grupos	3591,932	3	1197,311	2774,615	,000
	Dentro de grupos	12,083	28	,432		
	Total	3604,015	31			

Al realizar la comparación por pares, se determinó que el método Pulso ultrasónico produce menor error en la medición de resistencia a la compresión (figura 27) en comparación con los demás métodos con los cuales muestra diferencia significativa (Valor p < 0.05, se rechaza Ho: $\mu i = \mu j$).

Tabla 23Resultados de prueba Dunnet de comparaciones múltiples de errores de resistencia a compresión del concreto a la edad de 7 días

Variable dependiente	(I) Grupo	(J) Grupo	Diferencia de medias (I-J)	Error estándar	Valor p.
	Pulso	Diamantina	-7,73250	,35967	,000
	Ultrasónico	Rotura de testigos	-7,42750	,16845	,000
	Utilasoffico	Esclerometría	-28,45250	,31270	,000
	Diamantina	Pulso Ultrasónico	7,73250	,35967	,000
		Rotura de testigos	,30500	,34348	,926
7 4/22		Esclerometría	-20,72000	,43288	,000
7 días	Rotura de	Pulso Ultrasónico	7,42750	,16845	,000
		Diamantina	-,30500	,34348	,926
	testigos	Esclerometría	-21,02500	,29393	,000
		Pulso Ultrasónico	28,45250	,31270	,000
	Esclerometría	Diamantina	20,72000	,43288	,000
		Rotura de testigos	21,02500	,29393	,000

Figura 29Comparación de diagrama de cajas por método de medición de errores de resistencia a compresión a los 7 días.

HIPÓTESIS ESPECÍFICA 2

Para contrastar la hipótesis específica planteada como, "El pulso ultrasónico produce menor error en la medición de resistencia a compresión en columnas a los 14 días de edad, Huancayo 2023", se plantearon las siguientes hipótesis estadísticas:

H0: No existe diferencia significativa en la producción de error en la medición de la resistencia a la compresión en columnas a los 14 días de edad entre los diferentes métodos de medición.

H1: Al menos uno de los métodos de medición es diferente en la producción de error en la medición de resistencia a la compresión en columnas a los 14 días de edad.

La Tabla 24, muestra los resultados de la prueba ANOVA y se contrastó que el promedio de error de resistencia a los 14 días de edad es diferente en alguno de los métodos de medición (Valor $p = 0.00 < 0.05 = \alpha$, se rechaza H0).

Tabla 24Resultados de prueba ANOVA de muestras independientes de errores de resistencia a la compresión del concreto a la edad de 14 días.

		Suma de cuadrados	gl	Media cuadrática	F	Sig.
	Entre grupos	416,522	3	138,841	81,492	,000
14 días	Dentro de grupos	47,705	28	1,704		
	Total	464,226	31			

En la comparación por pares, se determinó que con los métodos Pulso ultrasónico y Diamantina muestran los mismos niveles de error de resistencia a la compresión (Valor p = 0.098 > 0.05, no se rechaza Ho: $\mu i = \mu j$) y son menores (figura 30) en comparación con los demás métodos con los cuales si muestran diferencia significativa (Valor p < 0.05, se rechaza Ho: $\mu i = \mu j$).

Tabla 25Resultados de prueba Dunnett de comparaciones múltiples de errores de resistencia a compresión del concreto a la edad de 14 días.

		Cor	mparaciones múltij	oles		
Varia deper	ble idiente	(I) Grupo	(J) Grupo	Diferencia de medias (I-J)	Error estándar	Valor p.
			Diamantina	-1,01750	,38056	,098
		Pulso Ultrasónico	Rotura de testigos	-4,56625	,36151	,000
			Esclerometría	-9,21625	,86583	,000
		Diamantina ett Rotura de	Pulso Ultrasónico	1,01750	,38056	,098
			Rotura de testigos	-3,54875	,31970	,000
14	T3		Esclerometría	-8,19875	,84922	,000
días	Dunnett		Pulso Ultrasónico	4,56625	,36151	,000
		testigos	Diamantina	3,54875	,31970	,000
			Esclerometría	-4,65000	,84086	,003
			Pulso Ultrasónico	9,21625	,86583	,000
		Esclerometría	Diamantina	8,19875	,84922	,000
			Rotura de testigos	4,65000	,84086	,003

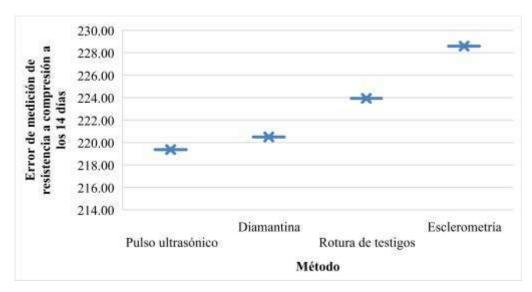


Figura 30 Comparación de diagrama de cajas por método de medición de errores de resistencia a compresión a los 14 días.

HIPÓTESIS ESPECÍFICA 3

Para contrastar la hipótesis específica planteada como, "El pulso ultrasónico produce menor error en la medición de resistencia a la compresión en columnas a los 21 días de edad, Huancayo 2023", se plantearon las siguientes hipótesis estadísticas:

H0: La distribución del error en la medición de la resistencia a la compresión en columnas a los 21 días de edad entre los diferentes métodos de medición es el mismo.

H1: La distribución del error en la medición de la resistencia a la compresión en columnas a los 21 días de edad es diferente en al menos uno de los métodos.

Con los resultados obtenidos (Tabla 26), se afirma que existe diferencia en la distribución de errores en la medición de la resistencia a la compresión en columnas de 21 días de edad (valor $p = 0.00 < 0.05 = \alpha = Nivel de significancia, se rechaza H0).$

Tabla 26Resultados de prueba H de Kruskal Wallis de muestras independientes de errores de resistencia a compresión del concreto a la edad de 21 días.

N total	32
Estadístico de prueba	24.428a
Grado de libertad	3
Valor p (prueba bilateral)	,000

a. Las estadísticas de prueba se ajustan para empates.

En la comparación por pares entre los métodos de medición (Tabla 27) se encontró que los errores producidos por los métodos Pulso ultrasónico y Diamantina y Rotura de testigo son los menores (ver Figura 29) en la medición de la resistencia a la compresión y son significativamente diferente con el método de esclerometría (valor $p = 0.0 < 0.05 = \alpha$ = Nivel de significancia, se rechaza H0).

Tabla 27Resultados de comparaciones por parejas de método de prueba H de Kruskal Wallis de muestras independientes de errores de resistencia a compresión del concreto a la edad de 21 días.

Método 1-Método 2	Estadístico de prueba	Desv. Error	Desv. Estadístico de prueba	Sig.	Sig. ajustadaª
Diamantina-Pulso Ultrasónico	1,813	4,688	,387	,699	1,000
Diamantina-Rotura de testigos	-11,500	4,688	-2,453	,014	,085
Diamantina-Esclerometría	-20,437	4,688	-4,359	,000	,000
Pulso Ultrasónico-Rotura de	-9,687	4,688	-2,066	,039	,233
testigos					
Pulso Ultrasónico-Esclerometría	-18,625	4,688	-3,973	,000	,000
Rotura de testigos-Esclerometría	-8,937	4,688	-1,906	,057	,340

Cada fila prueba la hipótesis nula que las distribuciones de la Muestra 1 y la Muestra 2 son iguales.

Se visualizan las significaciones asintóticas (pruebas bilaterales). El nivel de significación es de 050

a. Los valores de significación se han ajustado mediante la corrección Bonferroni para varias pruebas.

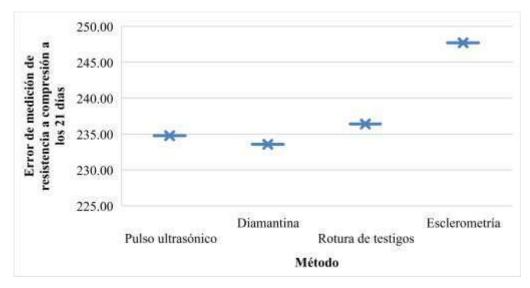


Figura 31 Comparación de diagrama de cajas por método de medición de errores de resistencia a compresión a los 21 días.

PRUEBA DE NORMALIDAD

Para realizar la prueba de normalidad de la variable en los diferentes tratamientos en análisis se aplicó la prueba no paramétrica de Shapiro Wilk dado que cada grupo contiene muestras menores de 50. Se plantearon las siguientes hipótesis

H0: La variable i en los tratamientos j siguen distribución normal.

H1: La variable i en los tratamientos j no siguen distribución normal.

Donde:

i = Pulso ultrasónica, Diamantina, Rotura d testigos de concreto y
 Esclerometría

j = 21 días, 28 días

Se probó que sólo la rotura de los testigos de concreto de 21 días no se ajusta a una distribución normal (Valor $p=0.002<0.05=\alpha$, se rechaza H0), las demás variables en cada grupo siguen distribución normal (Valor $p>0.05=\alpha$, no se rechaza H0).

Tabla 28Resultados de prueba de normalidad de Shapiro Wilk de variables por tratamientos

		Sh	apiro-Wilk	ζ.
	Grupo	Estadístico	gl	Sig.
7 días	Pulso Ultrasónico	0.788	8	0.021
	Diamantina	0.865	8	0.135
	Rotura de testigos	0.961	8	0.817
	Esclerometría	0.873	8	0.163
14 días	Pulso Ultrasónico	0.942	8	0.632
	Diamantina	0.915	8	0.388
	Rotura de testigos	0.897	8	0.271
	Esclerometría	0.900	8	0.290
21 días	Pulso Ultrasónico	0.889	8	0.228
	Diamantina	0.901	8	0.294
	Rotura de testigos	0.694	8	0.002
	Esclerometría	0.922	8	0.447
28 días	Pulso Ultrasónico	0.969	8	0.887
	Diamantina	0.956	8	0.767
	Rotura de testigos	0.948	8	0.688
	Esclerometría	0.894	8	0.253

PRUEBA DE HOMOGENEIDAD DE VARIANZAS

Para probar la homogeneidad o igualdad de varianzas se aplicó la prueba de Levene basado en media, que plantea las siguientes hipótesis:

Ho: Las varianzas de los diferentes tratamientos son iguales u homogéneas $(\sigma_{\rm P}^2=\sigma_{\rm D}^2=\sigma_{\rm R}^2=\sigma_{E}^2)$

H1: Al menos una de las varianzas de los diferentes tratamientos no es igual u es heterogéneas

Se probó, que las varianzas de resistencia a la compresión, de los diferentes tratamientos son heterogéneos (Valor p > $0.05 = \alpha$, se rechaza H0).

Tabla 29Resultados de prueba de homogeneidad de varianzas de Levene para resistencia a la compresión

		de Levene	gl1	gl2	Valor p.
7 días	Se basa en la media	4,706	3	28	0.009
14 días	Se basa en la media	12,184	3	28	0.000
28 días	Se basa en la media	9,290	3	28	0.000

CAPÍTULO VI ANÁLISIS Y DISCUSIÓN DE RESULTADOS

En base a los datos expuestos en la indagación se afirma que, el ensayo de pulso ultrasónico es más cercano a los valores de extracción de núcleos diamantinos a la edad de 14, 21 y 28 días para medir la resistencia a compresión en comparación con los ensayos de esclerometría y rotura de probeta. Mientras que, a la edad de 7 días, el ensayo en rotura de testigos resulta ser más cercano a los valores obtenidos mediante los ensayos de extracción de núcleos diamantados en comparación a los ensayos de pulso ultrasónico y esclerometría.

Evaluando la figura 19, figura 20, figura 21 y figura 22, se concluye que la ecuación para estimar la resistencia a compresión a los 28 días depende del tipo de ensayo con el que se midió, son:

- Y=-0.0891X+248.44 (Pulso ultrasónico)
- Y=-0.4846X+250.16 (Diamantina)
- Y=0.1067X+251.36 (Rotura de testigos)
- Y=-0.1927X+284.27 (Esclerometría)

Al determinar la precisión de la medición de la resistencia a compresión del concreto en columna empleando el pulso ultrasónico a la edad de 7 días, se obtiene que, el ensayo de resistencia a compresión en especímenes con pulso ultrasónico es más preciso en comparación a los métodos de rotura de probetas y esclerometría, ya que los valores obtenidos sólo difieren en 0.19% del método de extracción de núcleos diamantados.

Evaluando la figura 7, figura 8, figura 9 y figura 10, se concluye que la ecuación para estimar la resistencia a compresión a los 7 días depende del tipo de ensayo con el que se midió, son:

- Y=0.068X+174.4 (Pulso ultrasónico)
- Y=0.1364X+181.59 (Diamantina)
- Y=0.0027X+181.84 (Rotura de testigos)
- Y=0.117X+202.35 (Esclerometría)

Dichas aseveraciones coinciden con los buenos resultados obtenidos por Jaramillo et al. (2023), quienes midieron la confiabilidad de la velocidad de pulso ultrasónico en la validación de resistencia a compresión de concretos adicionados con fibra de acero y polipropileno, ya que los porcentajes de error presentes en la ecuación analítica están en ±10%. También concuerda con Herrera et al. (2023) quienes lograron obtener valores de resistencia a compresión del concreto empleando el registro de velocidad de pulso ultrasónico para concretos adicionados carnaza. Al mismo tiempo Ospino et al. (2020) afirma que, es posible evaluar el estado físico de una estructura y así predecir si esta se encuentra en colapso.

Al determinar la precisión de la medición de la resistencia a compresión del concreto en columna empleando el pulso ultrasónico a la edad de 14 días, se obtiene que, el ensayo de medición de la resistencia a compresión empleando pulso ultrasónico resulta ser más precisa en comparación a rotura de probetas y esclerometría, ya que los valores obtenidos sólo difieren en 0.51%.

Evaluando la figura 11, figura 12, figura 13 y figura 14, se concluye que la ecuación para estimar la resistencia a compresión a los 14 días depende del tipo de ensayo con el que se midió, son:

- Y=0.305X+217.99 (Pulso ultrasónico)
- Y=-0.1162X+221.02 (Diamantina)
- Y=0.1494X+223.26 (Rotura de testigos)
- Y=0.3773X+226.88 (Esclerometría)

Dichos resultados también son compartidos por Solís et al. (2021) quien logro medir la resistencia de columnas de concreto de 3 edificios, logrando identificar cuál de ellas no cumple con la resistencia a compresión especificada. Pero difiere de Torres et al. (2020) quienes no lograron medir la resistencia a compresión diametral mediante los ensayos de velocidad de pulso ultrasónico ya que el coeficiente de determinación obtuvo valores muy bajos.

Al determinar la precisión de la medición de la resistencia a compresión del concreto en columna empleando el pulso ultrasónico a la edad de 21 días, se obtiene que, el ensayo de medición de la resistencia a compresión empleando pulso ultrasónico resulta ser más precisa en comparación a rotura de probetas y esclerometría, ya que los valores obtenidos sólo difieren en 0.52%.

Evaluando la figura 15, figura 16, figura 17 y figura 18, se concluye que la ecuación para estimar la resistencia a compresión a los 21 días depende del tipo de ensayo con el que se midió, son:

- Y=-0.0377X+234.94 (Pulso ultrasónico)
- Y=-0.1025X+234.02 (Diamantina)
- Y=0.0082X+236.36 (Rotura de testigos)
- Y=0.5415X+245.26 (Esclerometría)

Esto es compartido por Lipa (2018) quien logra determinar el porcentaje de vacíos con una probabilidad del 81.25%. Igualmente se comparte buenos resultados con Chávez et al. (2019) quienes lograron obtener valores confiables al medir la resistencia a compresión de concretos autocompactantes empleando la velocidad de pulso ultrasónico. De igual manera Callaymara et a. (2019) logro medir los valores de densidad y resistencia de

concretos con f'c=140, 175, 210, 280 y 350 kg/cm2. También se concuerda con Masias (2021) quien logro estimar la resistencia del concreto empleando la velocidad de pulso ultrasónico. Esto no es compartido por Siancas (2020) quien al medir la resistencia a compresión de una edificación empleando diamantina, esclerometría y ultrasonido, a razón de que, sus valores son muy variables.

CONCLUSIONES

- 1. A la edad de 28 días, al evaluar la resistencia a compresión del concreto con f'c=245 kg/cm² se afirma que, al realizar la comparación por pares, se determinó que con los métodos Pulso ultrasónico y Diamantina producen el mismo error en la medición de resistencia a la compresión (Valor p = 1 > 0,05, no se rechaza Ho: μi = μj) y estos errores son menores en comparación con los demás métodos con los cuales si muestran diferencia significativa (Valor p < 0,05, se rechaza Ho: μi = μj). En base a los resultados encontrados a la edad de 28 días mediante la prueba de extracción diamantina, y bajo sometimiento de cargas a compresión de los núcleos se obtiene una resistencia a compresión de 247.98 kg/cm², de ellos el más cercanos resulta ser pulso ultrasónico, quien varía en 0.02% respecto al ensayo de diamantina, siendo el más lejano el ensayo de esclerometría quien tiene una variación del 14.29%.</p>
- 2. A la edad de 7 días, al evaluar la resistencia a compresión del concreto con f'c=245 kg/cm² se afirma que, al realizar la comparación por pares, se determinó que el método Pulso ultrasónico produce menor error en la medición de resistencia a la compresión en comparación con los demás métodos con los cuales muestra diferencia significativa (Valor p < 0,05, se rechaza Ho: μi = μj). En base a los resultados encontrados se puede apreciar que, a la edad de 7 días mediante la prueba de extracción diamantina, y bajo sometimiento de cargas a compresión de los núcleos se obtiene una resistencia a compresión de 182.21 kg/cm², de ellos el más cercanos resulta ser la rotura de testigos, quien varía en 0.19% respecto al ensayo de diamantina, siendo el más lejano el ensayo de esclerometría quien tiene una variación del 11.35%.</p>
- 3. A la edad de 14 días, al evaluar la resistencia a compresión del concreto con f'c=245 kg/cm² se afirma que, en la comparación por pares, se determinó que con los métodos Pulso ultrasónico y Diamantina muestran los mismos niveles de error de resistencia a la compresión (Valor p = 0,098 > 0,05, no se rechaza Ho: μi = μj) y son menores en comparación con los demás métodos con los

cuales si muestran diferencia significativa (Valor p < 0,05, se rechaza Ho: μ i = μ j). En base a los resultados se puede apreciar que, a la edad de 14 días mediante la prueba de extracción diamantina, y bajo sometimiento de cargas a compresión de los núcleos se obtiene una resistencia a compresión de 220.50 kg/cm², de ellos el más cercanos resulta ser pulso ultrasónico, quien varía en 0.51% respecto al ensayo de diamantina, siendo el más lejano el ensayo de esclerometría quien tiene una variación del 3.67%.

4. A la edad de 21 días, al evaluar la resistencia a compresión del concreto con f'c=245 kg/cm² se afirma que, la comparación por pares entre los métodos de medición se encontró que los errores producidos por los métodos Pulso ultrasónico y Diamantina y Rotura de testigo son los menores en la medición de la resistencia a la compresión y son significativamente diferente con el método de esclerometría (valor p = 0,0 < 0,05 = α = Nivel de significancia, se rechaza H0). En base a los resultados encontrados se puede apreciar que, a la edad de 21 días mediante la prueba de extracción diamantina, y bajo sometimiento de cargas a compresión de los núcleos se obtiene una resistencia a compresión de 233.56 kg/cm², de ellos el más cercanos resulta ser pulso ultrasónico, quien varía en 0.52% respecto al ensayo de diamantina, siendo el más lejano el ensayo de esclerometría quien tiene una variación del 6.05%.</p>

RECOMENDACIONES

- Se sugiere que se siga ensayando la precisión del pulso ultrasónico en la medición de resistencia a compresión del concreto con otros requerimientos de diseño tales como: relación agua/cemento, f'c, asentamiento y tamaño máximo nominal del agregado grueso, otros elementos estructurales, etc.
- 2. Se recomienda poner a prueba la precisión de medición del pulso ultrasónico en proyectos con edad desconocida y a mayores edades, ya que la presente tesis, sólo estudio a la edad de 7, 14, 21 y 28 días.
- Los encargados de control de calidad del concreto deben incorporar en su dossier de calidad la prueba de velocidad de pulso ultrasónico ya que de esta forma se reduce el porcentaje de desecho de material de construcción (pruebas destructivas).
- 4. Para casos donde no exista una contramuestra del concreto que ha sido colocado en obra, se sugiere realizar la prueba de pulso ultrasónico, a modo de que se pueda estimar de forma precisa los valores de resistencia a compresión.

REFERENCIAS BIBLIOGRÁFICAS

Abanto, Flavio. 2009. Tecnología del concreto. Lima: San Marcos, 2009. 978-612-302-060-6.

ARQHYS.COM. Fraguado del concreto. [En línea] [Citado el: 28 de Febrero de 2023.] https://www.arqhys.com/construccion/concreto-fraguado.html.

ASOCEM. 2022. Asocem. [En línea] 16 de Setiembre de 2022.

http://www.asocem.org.pe/estadisticas-nacionales/reporte-estadistico-mensual-diciembre-2021.

Asocem. 2022. Cerreteras Pan-Americanas. [En línea] 17 de Junio de 2022. [Citado el: 27 de Febrero de 2023.] https://www.carreteras-pa.com/noticias/la-demanda-de-cemento-en-peru-crece-un-5-en-

mayo/#:~:text=Los%20despachos%20de%20cemento%20en,Nacional%20del%20Cemento%20(A socem)..

Asociación Colombiana de Productores de Concreto. 2010. *Materiales, Propiedades y Diseño de Mezclas.* Colombia : ASOCRETO, 2010. Vol. I. 978-958-8564-03-6.

—. **2010.** *Tecnología del Concreto: Materiales, Propiedades y Diseño de Mezclas.* Colombia : ASOCRETO, 2010.

Baena, Guillermina. 2014. *Metodología de la investigación.* México : Patria, 2014. 978-607-744-003-1.

Becosan. 2021. Cemento Portland. [En línea] 21 de Abril de 2021. [Citado el: 3 de Febrero de 2024.] https://www.becosan.com/es/cemento-portland/.

Callaymara, Rita y Navarro, Euler. 2019. Determinación de la densidad y resistencia con ultrasonido y triaxial para concreto f'c= 140, 175, 210, 280 y 350 kg/cm2 con agregados de la cantera de Cunyac. Cusco: Universidad Nacional de San Antnio Abad del Cusco, 2019.

Carrasco, Sergio. 2008. *Metodología de la investigación cientpifica: Pautas metodológicas para diseñar y elaborar el proyecto de investigación.* Segunda. Lima: San Marcos E.I.R.L., 2008. 978-9972-38-344-1.

Cemex. 2019. ¿Por qué se determina la resistencia a la compresión en el concreto? [En línea] 5 de Abril de 2019. [Citado el: 28 de Febrero de 2023.] https://www.cemex.com.pe/-/-por-que-se-determina-la-resistencia-a-la-compresion-en-el-concreto-.

CEMEX. Cemex. [En línea] [Citado el: 11 de Diciembre de 2022.] https://www.cemex.com/es/productos-servicios/productos/cemento.

Cemex. 2019. Hablando de Cemento Portland. [En línea] 19 de Junio de 2019. [Citado el: 27 de Febrero de 2023.] https://www.cemex.com.pe/-/hablando-de-cementos-portland.

Chávez, Danae y Soncco, Stacy. 2019. Análisis comparativo de las propiedades físicas y mecánicas del concreto de resistencia f'c=210 kg/cm2 y concreto autocompactable en función de la velocidad de pulso ultrasónico – Cusco 2019. Cusco: Universidad Andina del Cusco, 2019.

Confiabilidad de la velocidad de pulso ultrasónico para análisis y comparación de la resistencia a compresión de concreto convencional con adición de fibra de acero y polipropileno. **Jaramillo, Honorio y Yoctun, Roberto. 2023.** 1, Lima: Revista Gaceta Técnica, 31 de Mayo de 2023, Vol. XXIV, págs. 2-21. 2477-9539.

COTECNO. Medición del contenido de aire en hormigón. [En línea] [Citado el: 28 de Febrero de 2023.] https://www.cotecno.cl/medicion-del-contenido-de-aire-en-hormigon-mediante-el-metodo-de-aire-a-

presion/#:~:text=El%20contenido%20de%20aire%20del,inversamente%20proporcional%20a%20la%20presi%C3%B3n..

Determinación del comportamiento de resistencia a la compresión del concreto de 21 MPa comparado con el registro de velocidad de pulso ultrasónico al adicionar carnaza. Herrera, José, Galvis, Cristian y Amariles, Cristhian. 2023. s.l.: Universidad Libre Seccional Pereira, 2023.

Evaluación de columnas de concreto con la técnica de ultrasonido. **Solís, Rómel. 2021.** 1, s.l.: Ingeniería y Desarrollo, 2021, Vol. XXXIX. 2145-9371.

Evolución del daño mecánico del concreto SFRC sometido a flexión mediante el análisis de la velocidad del pulso ultrasónico. **Ospina, Miguel, Lizarazo, Juan y Salas, Andrés. 2020.** 1, s.l.: INGE CUC, 2020, Vol. XVI, págs. 205-216.

GCP Applied Technologies. 2021. Controlando los tiempos de fraguado del concreto. [En línea] 4 de Mayo de 2021. [Citado el: 02 de Marzo de 2023.] https://gcpat.mx/es-la/about/news/blog/controlling-concrete-setting-times.

Gomá, F. 1979. *El cemento Portland y otros aglomerantes*. Barcelona : Editores técnicos asociados, 1979. 84-7146-192-7.

Gonzales, Miguel y Muñoz, Victor. 2017. Estimación de la correlación entre la resistencia cilíndrica a la compresión y la velocidad de pulso ultrasónico en el concreto convencional. Pimentel: Universidad Señor de Sipán, 2017.

Gutiérrez, Libia. 2003. *El concreto y otros materiales para la construcción.* Manizales : Universidad Nacional de Colombia Sede Manizales, 2003. 958-9322-82-4.

Hernández, Roberto, Fernández, Carlos y Baptista, Pilar. 2014. *Metodología de la Investigación*. México: McGRAW-HILL INTERAMERICANA, 2014. 978-1-4562-2396-0.

Instituto Nacional de Estadística e Informática. Consumo interno de cemento creció 2,25% en abril de 2022. [En línea] [Citado el: 03 de Marzo de 2023.]

https://m.inei.gob.pe/prensa/noticias/consumo-interno-de-cemento-crecio-225-en-abril-de-2022-13716/.

Lipa, Leonel. 2018. *Metodología para la detección de vacíos en muros de concreto armado por medio del pulso ultrasónico.* Lima : Pontificia Universidad Católica del Perú, 2018.

Masías, David. 2021. Estudio experimental para evaluar la correlación de resultados de resistencia entre los ensayos de rotura y velocidad de pulso ultrasónico en concreto simple. Piura : Universidad Nacional de Piura, 2021.

Matallana, Ricardo. 2019. *El concreto: Fundamentos y nuevas tecnologías.* s.l. : Constructora Concreto, 2019. 978-958-57497-3-3.

—. **2019.** *El concreto: Fundamentos y Nuevas Tecnologías.* Bogotá: Cosntructora Conconcreto, 2019. 978-958-57497-4-0.

Ministerio de Transportes y Comunicaciones. 2016. *Manual de Ensayo de Materiales.* Lima : MTC, 2016.

Ñaupas, Humberto, y otros. 2014. *Metodología de la investigación cuantitativa-cualitativa y redacción de la tesis.* Bogotá : Ediciones de la U, 2014. 978-958-762-188-4.

Optimization of gradation and fineness modulus of naturally fine sands for improved perfomance as fine aggregate in concrete. Sabih, Gauhar, Tarefder, Rafiqul y Jamil, Syed. 2016. 2016, Vol. 145, págs. 66-73.

Pasquel, Enrique. 1993. *Tópicos de tecnología del concreto*. Lima : Colegio de Ingenieros del Perú, 1993.

Probacons. Concreto con aire incluido. [En línea] [Citado el: 28 de Febrero de 2023.] https://www.probacons.com/concreto-con-aire-incluido/#:~:text=El%20aire%20incluido%20en%20el,concreto%20y%20despu%C3%A9s%20del%20curado..

Resistencia a Flexión del concreto. National Mixed Concrete Association. s.l.: NRMCA.

Rios, Bryan. 2020. Comparación de las propiedades físicas y mecánicas del concreto f'c= 210 kg/cm2, elaborado a base de cemento Tipo ICO y Gu, Trujillo - 2020. Trujillo : Universidad Privada del Norte, 2020.

Rivva, Enrique. 2014. *Diseño de mezclas*. Segunda. Lima : Instituto de la Construcción y Gerencia, 2014.

- —. 2012. Diseño de Mezclas. Lima: s.n., 2012.
- —. 2014. Materiales para el concreto. Lima: Instituto de la Construcción y Gerencia, 2014. Vol. I.
- —. 2014. Materiales para el concreto. Lima: Instituto de la Construcción y Gerencia, 2014.
- —. **2000.** *Naturaleza y Materiales del concreto*. Primera. Lima : Capítulo Peruano del American Concrete Institute, 2000.

Sánchez, Diego. 2001. *Tecnología del concreto y del mortero*. Colombia : Bhandar Editores LTDA., 2001. 958-9247-04-0.

Sánchez, Hugo y Reyes, Carlos. 2015. *Metodología y Diseños en la Investigación Científica.* Lima: Visión Universitaria, 2015. 9972-9695-3-3.

Siancas, Dainer. 2020. Determinación de la resistencia del concreto del pabellón 3A – de la I.E. 14787 Victor Raúl Haya de la Torre, usando la diamantina, el esclerómetro y el equipo de ultrasonido. Piura : Universidad Nacional de Piura, 2020.

Tamayo, Mario. 2003. *El Proceso de la Investigación Científica*. México: Limusa, 2003. 968-18-5872-7.

Tesis y Masters. Tesis y Masters. [En línea] [Citado el: 01 de Marzo de 2023.] https://tesisymasters.mx/instrumentos-de-recoleccion-de-datos/#:~:text=Una%20t%C3%A9cnica%20o%20instrumento%20de,fen%C3%B3menos%20que%20se%20desean%20conocer..

Torre, Ana. 2004. *Curso Básico de Tecnología del Concreto*. Lima : Universidad Nacional de Ingeniería, 2004.

Torres, Piedad y Ojeda, Miguel. 2020. Análisis experimental para determinar modelos de correlación entre los ensayos de resistencia a compresión, compresión diametral (tracción indirecta) y los ensayos velocidad de pulso ultrasónico y esclerometría en concreto simple. Cartagena de Indias: Universidad de Cartagena, 2020.

UCA. Universidad Centroamericana José Simeon Cañas. [En línea] [Citado el: 02 de Marzo de 2023.] https://www.uca.edu.sv/mecanica-estructural/materias/materialesCostruccion/guiasLab/ensayoCemento/Fraguado%20incial%20y%2 0final%20del%20cemento.pdf.

UJAEN. Portal de investigación de la Universidad de Jaén. [En línea] http://www.ujaen.es/investiga/tics_tfg/enfo_cuanti.html#:~:text=La%20investigaci%C3%B3n%20 cuantitativa%20es%20aquella,las%20propiedades%20y%20fen%C3%B3menos%20cuantitativos..

Valencia, Gabriela y Ibarra, Miguel. 2013. Estudio experimental para determinar patrones de correlación entre la resistencia a compresión y la velocidad de pulso ultrasónico en concreto simple. Lima: Pontificia Universidad Católica del Perú, 2013.

Westreicher, Guillermo. Econopedia. [En línea] [Citado el: 28 de Febrero de 2023.] https://economipedia.com/definiciones/metodo-cientifico.html.

ANEXOS

a. Matriz de consistencia

PROBLEMA	OBJETIVOS	HIPÓTESIS	VARIABLES	METODOLOGÍA
PROBLEMA GENERAL	OBJETIVO GENERAL	HIPÓTESIS GENERAL		
				<u>MÉTODO DE</u>
¿Cuál es la precisión en la medición de		El pulso ultrasónico produce menor	Variable:	<u>INVESTIGACIÓN</u>
la resistencia a compresión en	de la resistencia a compresión del	error en la medición de resistencia a	Resistencia a	Científico
columnas empleando el ensayo de	concreto en columnas empleando el	compresión en columnas en	compresión del	
pulso ultrasónico, esclerometría y	ensayo de pulso ultrasónico,	comparación a los métodos de	concreto	TIPO DE
rotura de probetas respecto al ensayo	esclerometría y rotura de probetas	esclerometría y rotura de probetas		<u>INVESTIGACIÓN</u>
de diamantina, Huancayo 2023?	respecto al ensayo de diamantina,	respecto al ensayo de diamantina,		Básica
	Huancayo 2023.	Huancayo 2023.		
PROBLEMAS ESPECÍFICOS	OBJETIVOS ESPECÍFICOS	<u>HIPÓTESIS ESPECÍFICAS</u>		NIVEL DE
a. Determinar la precisión de la				<u>INVESTIGACIÓN</u>
medición de la resistencia a	a. Determinar la precisión de la	a. El pulso ultrasónico produce		Descriptivo correlacional
compresión del concreto en	medición de la resistencia a	menor error en la medición de		
columna empleando pruebas de	compresión del concreto en	resistencia a compresión en		<u>DISEÑO DE</u>
esclerometría, rotura de probetas	columna empleando pruebas de	columnas a los 7 días de edad en		<u>INVESTIGACIÓN</u>
y pulso ultrasónico respecto al	esclerometría, rotura de probetas	comparación a los métodos de		Experimental
ensayo de diamantina, a la edad	y pulso ultrasónico respecto al	esclerometría y rotura de		
de 7 días.	ensayo de diamantina, a la edad	testigos respecto al ensayo de		
b. Determinar la precisión de la	de 7 días.	diamantina, Huancayo 2023.		
medición de la resistencia a	b. Determinar la precisión de la	b. El pulso ultrasónico produce		
compresión del concreto en	medición de la resistencia a	menor error en la medición de		
columna empleando pruebas de	compresión del concreto en	resistencia a compresión en		
esclerometría, rotura de probetas	columna empleando pruebas de	columnas a los 14 días de edad		
y pulso ultrasónico respecto al	esclerometría, rotura de probetas	en comparación a los métodos		
ensayo de diamantina, a la edad		de esclerometría y rotura de		
de 14 días.	ensayo de diamantina, a la edad	testigos respecto al ensayo de		
c. Determinar la precisión de la	de 14 días.	diamantina, Huancayo 2023.		
medición de la resistencia a	c. Determinar la precisión de la	c. El pulso ultrasónico produce		
compresión del concreto en	medición de la resistencia a	menor error en la medición de		
columna empleando pruebas de	compresión del concreto en	resistencia a compresión en		
esclerometría, rotura de probetas	columna empleando pruebas de	columnas a los 21 días de edad		

y pulso ultrasónico respecto al	esclerometría, rotura de probetas	en comparación a los métodos	
ensayo de diamantina, a la edad	y pulso ultrasónico respecto al	de esclerometría y rotura de	
de 21 días.	ensayo de diamantina, a la edad	testigos respecto al ensayo de	
	de 21 días.	diamantina, Huancayo 2023.	

b. Matriz de operacionalización de variables

Variables	Definición conceptual	Definición operacional	Dimensiones	Indicadores	Unidad de medida	Metodología e Instrumentos	
	Es la propiedad	Para poder valorar la		I1: Número de repeticiones	Unidad		
	mecánica más importante del	resistencia a compresión del	Ensayo de esclerometría	I2: Índice de rebote (estimación del f'c)	Kg/cm ²	Fichas de observación y evaluación	
	concreto, ya que define la capacidad que tiene para soportar una carga	concreto se hace necesario realizar pruebas, estas pueden ser de carácter	Ensayo de resistencia a	I1: Dosificación de los componentes del concreto (agregados, cemento, aditivos, agua)	kg	Visita a campo, medición, ficha de observación y evaluación	
Resistencia	por unidad de área, generalmente se	destructivo y no destructivo, para el	compresión del concreto	compresion del concreto	I2: Carga máxima	Kg	Fichas de evaluación
a	expresa en kg/cm2	primer caso se usa		I3: Peso de la unidad	kg	Fichas de evaluación	
compresión	o MPa (Cemex,	esclerometría o pulso		I4: Esfuerzo a compresión	kg/cm ²	Fichas de evaluación	
del concreto	2019).	ultrasónico, para el	Extracción diamantina	I1: Esfuerzo a compresión	kg/cm ²	Fichas de evaluación	
		segundo caso se usarán diamantina y rotura de		I1: Esfuerzo a compresión	kg/cm ²	Visita a campo, medición, ficha de observación y evaluación	
		probetas, y para determinar cuál de	Ensayo velocidad de	I2: Longitud de recorrido	Mm	Fichas de evaluación	
	I CHAS ES LA HIAS DICCISA I	pulso ultrasónico	I3: Tiempo de recorrido	mm	Fichas de evaluación		

c. Panel fotográfico

Imagen 01: Apreciación general del proceso de vaciado del concreto en los cimientos de las columnas.

Imagen 02: Vista general del proceso de vertido del concreto en las columnas ubicadas en la Planta de Premezclado Oslo.

Imagen 03: Proceso de encofrado de las columnas de sección cuadrada de 50 cm x 50 cm.

Imagen 04: Vista general de la columna desencofrada.

Imagen 05: Proceso de extracción de núcleos diamantinos de la columna C-1.

Imagen 06: Proceso de extracción de núcleos de concreto de la columna C-2.

Imagen 07: Vista general de núcleos extraídos de las columnas C-5, C-6 y C-7.

Imagen 08: Vista general del proceso del ensayo de resistencia a compresión en especímenes cilíndricos.

Imagen 09: Vista general del proceso de encofrado de la columna C-10.

Imagen 10: Vista general del proceso de vertido de concreto en la zapata de la columna C-12.

del proceso del ensayo de peso específico del agregado grueso (NTP 400.021)

d. Formatos en blanco empleados para los ensayos en Laboratorio

LABORATORIO DE ENSAYOS DE MATERIALES, SUELOS Y ASFALTO

CERTIFICADO :	
CLIENTE	
PROYECTO :	
FECHA DE ENSAYO :	
FECHA DE EMISION :	

ENSAYO PARA DETERMINAR LA VELOCIDAD DE PULSO A TRAVÉS DEL CONCRETO NTP 339.237 2012 (revisada el 2017)

ПЕМ	IDENTIFICACIÓN DEL ESPÉCIMEN	DISTANCIA DE CARAS DE LOS TRANSDUCTORES	VELOCIDAD DE PULSO ULTRASONICO (V _I)	VELOCIDAD DE PULSO ULTRASONICO (V ₂)	VELOCIDAD DE PULSO ULTRASONICO (V _I)
	//	cm.	m/s	m/s	m/s
Nº1					
N°2	1				
N'3					
N*4			Liffma	/	
N°5					
N*6					
N*7					
N°8					

^{*} EL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL L'ABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD (GUÍA PERUANA INDECOPI: GP:004: 1993)

_	ENSAYO: CARAC	CTERÍSTICAS DEL AGREGA (MTC E 108 - 2000; A	NDOS - CONTI STM D 2216)	ENIDO DE	HUMEDAD	
	DATOS DE	EL AGREGADO ;				
	PROCEDENCIA:			TIPO:		
	CDI	TENIDO DE HUMEDAD (W	%) - AGREGAD	O FINO		7)
N°		ATOS	UND	M-1	M-2	M-3
1	PESO DEL RECIPIENTE	A	81			9
2	PESO DE LA TARA + PM	W 8	gr	300		
3	Pron	8-A	gr			1
4	Passi	C	gr		122	
-	11	CALCULO				
100	CONTENIDO DE HUME	DAD ((B-A)-C)/C	%		THOUSAND IN	
5			%			
- 0	PROMILDIO DE MOEST	Ara (As hirometrici				
	CONT	TENIDO DE HUMEDAD (W %	- AGREGADO	GRUESO	8	
N'		ATOS	UND	M-1	M-2	M-3
1	PESO DEL RECIPIENTE/		gr			100000
2			Br .		1	
3	PMN	8-A	ar I			
4		C	g/			
		CÁLCULO				
-	Parameter and the same and the				1	
6			% %		-	-
		Psss: Peso de la Mu	estra Saturado	Superficie	ilmente Seco.	
	Th.					
R	esponsable del Ensayo		Respo	onsable o	del Laboratori	0
R	esponsable del Ensayo		Respo	onsable e	del Laboratori	0

ANTERA:					LUGAR	
ECHA DE	ENSAYO:				TESISTA	
	GRANULOM	ETRÍA		n	PO:	CARÁCTERÍSTICAS FÍSICAS
TA	MIZ	P. RETENIDO		% ACUM	ULADO	MÓDULO DE FINEZA (%)
NÚMERO	ABER. (mm)	(Kg.)	% RETENIDO	RETENDO	PASANTE	DENSIDAD ESPECÍFICA (kg/m3)
2"	50.00					% HUMEDAD
1.1/2"	37.50					% ABSORCIÓN
1"	25.00			d.		% MATERIAL < N° 200
3/4"	19.00					P.U.S. (kg/m3)
1/2"	12.50	100				P.U.C. (kg/m3)
3/8"	9.50					FORMA
N*4	4.75					TEXTURA
N*8	2.36					TIPO DE ROCA
N° 15	1.18					% MATERIAL < N° 200
N* 30	0.59					% PARTÍCULAS LIGERAS
N*50	0.30		- 2			% ARCILLA Y PART. DESM.
N° 100	0.15					
N° 200	0.07					
FONDO	0.00					
TO	TAL.			MÓDULO DE FREIRA		
ota: Para	ag. Gruesos,	en los tamice	s donde no ex		esidere 100% d	+ 815 + 816 + 830 + 850 + 8100) / 100 e retenido acumulado en cada uno

	DATOS DEL AGREGAT	DO:				
	CANTERA :			1177		
	The state of the s			LUGAR:	6	
	FECHA DE ENSAYO:	31		THE REAL PROPERTY.) TT	
	PESO ESI	PECÍFICO - AG	REGADO FIN	0		
N°	DATOS	- A-1885 19 - 19 K	UND	M-1	M-2	M
1	Psss + TARA	A	gr		1 10	
2	PMSH + TARA	В	gr	1)0		
3	PESO DE LA TARA	C	gr			
4	Pass Prince 4 Apple	A-C	gr		(1, 1)	
5	PASH P. HOLD + DOOR + NUTTED	8-C	gr			
6	VOLÚMEN DESPLAZADO	D	cm3			
		CÁLCULO	0			
7	PESO ESPECÍFICO	(B-C)/D	gr/cm3		94. 1	
8	PROMEDIO DE MUESTR	IAS	gr/cm3			
	2022 0220	ricico - Age	EGADO GRUE	so		
N*	DATOS	CIFICO HOIL	UND	M-1	M-2	M
1	PWSH + TERE	A	gr			
2	PSSS 4 * Propti	8	gr			
3	Psss SUMERGIDO + CANASTA		gr	*		
4	PESO DE LA CANASTILLA		gr	100		
5	Rest SUMERGIDO P. 10/80	C	gr			
		CÁLCULO	0			
			1 2 2		-	
6	PESO ESPECÍFICO	A/(B-C)	gr/cm3	4-1		

Av. Leoncio Prado N° 340 Pilcomayo - Huancayo e-mail: gagcespress@gmail.com

=3

	: CARACTERÍSTICAS DEL AGR	EGADO - PE VTP 400.017			OMPACTAD	0
	DATOS DEL AGREGADO:					
	CANTERA			LUGAR:	EMPH)	
	CANTERA : FECHA DE ENSAYO:			LUGAN.	41 (41)	
	FECHA DE ENSATO:			1		
	PESO L	UNITARIO SU	ELTO			
N*	DATOS		UND	M-1	M-2	M-3
1	PESO DEL RECIPIENTE	A	kg			
2	PESO DEL RECIPIENTE + MUESTRA	8	kg			1
3	PESO DE LA MUESTRA	B-A	kg			
4	VOLÚMEN DEL RECIPIENTE	С	m3		0 1	
		CÁLCULO				
5	PESO UNITARIO SUELTO(P.U.S.)	(B-A)/C	kg/m3	01-6-17-6		
6	PROMEDIO DE MUESTRAS (P.U.		kg/m3	(Triper		
	PESO UNIT	TARIO COMP.	ACTADO			
N°	DATOS	9	UND	M-1	M-2	M -3
1	PESO DEL RECIPIENTE	A	kg			1
2	PESO DEL RECIPIENTE + MUESTRA	В	kg			
3	PESO DE LA MUESTRA	B-A	kg	200	VI 11	
4	VOLÚMEN DEL RECIPIENTE	C	m3			
		CÁLCULO				
5	PESO UNITARIO COMPACTADO(P.U.C.)	(B-A)/C	kg/m3	(C) #2 (S)		-
6	PROMEDIO DE MUESTRAS (P.U		kg/m3	DO DESTRUCTION	100	
		Peso de la M Peso de la M		al Homo. ado Superficia	almente Seco	
	11		Responsal	ble del Labor	atorio	
Re	sponsable del Ensayo					

SOUCITANTE (Empresa) RUC (Cancella el entasyo) OBRA UBICACIÓN DE LA OBRA OBSERVACIÓN REPRESENTANTE DNI: Telef: Firma: **Entrega Informe: Probens de concreto 3 dias habbile a partir de la Fed **No Henur la zona sombreada, solo para personal LEM Nº* IDENTIFICACIÓN DE LA MUESTRA FECHA DIÁmetro Alture Rosa (Re.) CARGA ANTASA TIPO DE MATRIAL TIPO DE			10030	S	OUCITUD	DE SERVI	CIO			Código		
SOLICITANTE (Empresa) RUC (Cancels el entayo) OBRA UBICACIÓN DE LA OBRA OBSERVACIÓN REPRESENTANTE DNI: Telef: Firma: - Entrega Informer Probesa de concreto 3 dias habiles a partir de la Fed - No flenur la quena sambreada, sulte para personal LEM N° IDENTIFICACIÓN DE LA MUESTRA Obtención Ensayo (cm) (cm) Réasa (Kg.) ANDESSA (Kg.) A				ENSAYO D			OMPRES	IÓN	-	1		
RUC (Cancella el ensayo) OBSERVACIÓN REPRESENTANTE DNI: Telef: Firma: * Entrega Reformer Problems de concreto 3 dins habilies a partir de la Fed * Va Renur la zona sembroada, solo paro porsonal LEM Obtención Ensayo (cm) DENTIFICACIÓN DE LA MUESTRA Obtención Ensayo (cm) DENTIFICACIÓN DE LA MUESTRA Obtención Ensayo (cm) DENTIFICACIÓN DE LA MUESTRA Obtención Ensayo (cm) RESERVACIÓN ABURE GENERACIÓN ABURE ABURE CARGA MÁZIMA (leg/emz) FRACTU		SOLICITANTE (Empresa		1	222037	_	_	=			
UBICACIÓN DE LA OBRA OBSERVACIÓN REPRESENTANTE DNI: Telef: Firma: * Entrega Informer Problem de concreto 3 dins hábil Testigos Dumentinos 7 dins abilities a partir de la Fect * No Renne la gran sombrevada, solo pure personal LEM N* IDENTIFICACIÓN DE LA MUESTRA Obtención Enseyo (cm) Diámetro (cm) Mosas (Rg.) Alture (cm) Mosas (Rg.) Alture (cm) Alture (cm) Mosas (Rg.) Alture (cm) Diámetro (cm) Diá												
OBSERVACIÓN REPRISENTANTE DNI: Telef: Firma: Entrega Informer Problems de conscreto 3 dias habilies a partir de la Fed Nº IDENTIFICACIÓN DE LA MUESTRA FECHA Obtención Ensayo (cm) Alture Médicas (Rg.) Alture Alture Alture Médicas (Rg.) Alture Alture Médicas (Rg.) Alture Alture Médicas (Rg.) Alture Alture Alture Médicas (Rg.)		OBRA			-							
REPRESENTANTE DNI: Telef: Firma: - Entrega Informe: Problems de concreto 3 dias hábil Testigos Diametinos 7 dias hábiles a partir de la Fed No filemen la zona sambreada, safe poro personal LEM No filementa CAROA Obtención Ensayo (cm) (cm) Resa (Re.) Advisos (Regima) FRACTU		UBICACIÓN DE	LA OBRA								_	_
DNI: Telef: Firma: Entrega Informe: Problem- de concreto 3 días hábil Testigos Damentinos 7 días hábiles a partir de la Test Testigos Damentinos 7 días hábiles a partir de la Test Testigos Damentinos 7 días hábiles a partir de la Test Nº IDENTIFICACIÓN DE LA MIUESTRA FECHA Obteneson Ensayo (cm) Diámetro Alture Récasa (Rg.) MÁXDINA (RM) MÁZDINA (RM) RACTU												
Entrega Informe: Problem & constrete 3 this hability apartir de la Fed No Resur la zona sombreada, solo para personal LEM. No Resur la zona sombreada, solo para personal LEM. Obtención Ensayo (cm) (cm) Réas (Rg.)		REPRESENT		DNI:		Telef:	_		Firma			
New IDENTIFICACIÓN DE LA MUESTRA Obtención Enseyo (cm) (cm) Soose (Rg.) MÁXIMA (RM) MÁXIMA (Rg/tm2) PRACTU	Tipo de	icipality.	mili	THE	17-1		• Entre	ga Info	rmer	Probens de o	onereno 3 di	as hábile
Determination of the muestra Obtained Ensero (cm) (cm) Resea (Rg.) MAXIMA (RM) (Rg/cm2) FRACTU	Table.					4	No Res	is Diam ure he zo	ettimo eta sa	s 7 dias kabi mbreada, solo	para persai	de la Fech nal LEM.
	N° E	DENTIFICACIÓN DE LA M	MESTRA	-		CONTRACTOR S	************************************	Mosa	(Kg.)		MÁXIMA	TAPO DE FRACTUR
	1	ed Sitte								- 10		
	-		_					-	-	-		-
	+											
	-											
	+		-	-				-	-	-		
					-		_		-			
									-		-	
			-	-					-		-	<u> </u>
	-		_		-		-		-			4
									\dashv			
					25							
			-			-	-		+	-	- 1	
								-				
	-		-		-		-				-	
	1											

e. Certificados de los ensayos realizados en laboratorio

LABORATORIO DE ENSAYOS DE MATERIALES, SUELOS Y CONCRETO

N° DE CERTIFICADO:

CLIENTE: Bach, TURCO ALEJO KEVIN ANDRES

TESIS: "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUANICAYO - 2023" PROYECTO:

SOLICITANTE: Bach, TURCO ALEJO KEVIN ANDRES

CANTERA A.F.: SICAYA CANTERA A.G.: SICAYA

FECHA DE ENSAYO: lunes, 25 de Setiembre de 2023 viernes, 29 de Setiembre de 2023 FECHA DE EMISION:

CÓDIGO: NTP 339.185

TITULD: Método de emayo p

DATOS	UND	M1	M2	M3
PESO DEL RECIPIENTE/TARA	9	91	92	90
PESO DE LA TARA + PMN	9	591.0	592.0	590.0
PMN	g	500.0	500.0	500.0
PMSH	g	493.5	493.0	492.8
CONTENIDO DE HUMEDAD	×	1.323	1.416	1.471
PROMEDIO DE MUESTRAS (WHISMEIRO)	*	1.40		

CONTENIDO DE HUMEDA	D (W %) - AGREGADO GI	RUESO 1/2"			
DATO5	UND	M1	M2	M3	
PESO DEL RECIPIENTE/TARA	g	105	106	105	
PESO DE LA TARA + PMN	9	605.0	606.0	605.0	
PMN	g	500.0	500.0	500.0	
PMSH	g	494.8	494.1	495.0	
CONTENIDO DE HUMEDAD	%	1.053	1.198	1.006	
PROMEDIO DE MUESTRAS (WPROMEDIO)	*	1.09			

EL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD (GUÍA PERUANA INDECOPI: GP: 004:1993)

LABORATORIO DE ENSAYOS DE MATERIALES, SUELOS Y CONCRETO

Nº DE CERTIFICADO: TAKA/CH/002

Bach, TURCO ALEJO KEVIN ANDRES CLIENTE:

TESIS: "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CÓNCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUANCAYO - 2023" PROYECTO:

Bach, TURCO ALEJO KEVIN ANDRES SOLICITANTE:

CANTERA A.F.: SICAYA SICAYA CANTERA A.G.:

lunes, 25 de Setembre de 2023 : FECHA DE ENSAYO: FECHA DE EMISION: viernes, 29 de Setiembre de 2023.

PESO UNITARIO SUELTO IPESO UNITARIO COMPACTADO CARACTERIZACION DE AGREGADOS

CÓDIGO: NTP 400.017

TITULO: Método de ensayo para determinar el peso unitario del agregado.

PESO UNITARIO SUELTO-AGR	EGADO FINO		
I. PESO UNITARIO SUELTO SECO - PUSS	MI	M2	M3
PESO DEL RECIPIENTE (Kg)	2.12	2.12	2.12
PESO DE LA MUESTRA SUELTA + RECIPIENTE (Kg)	6.49	6.48	6.48
PESO DE LA MUESTRA SUELTA (Kg)	4.37	4.36	4.36
VOLUMEN DEL RECIPIENTE (m³)	0.00283	0.00283	0.00283
PESO UNITARIO SUELTO SECO	1543	1541	1538
PESO UNITARIO SUELTO SECO	1541		
ULTIMO REPORTE (PESO UNITARIO)	· ·	1540	/AT

PESO UNITARIO COMPACTADO-AGR	EGADO FINO			
IL PESO UNITARIO COMPACTADO SECO - PUCS	M1	M2	M3	
PESO DEL RECIPIENTE (Kg)	2.12	2.12	2.12	
PESO DE LA MUESTRA COMPACTADA + RECIPIENTE (Kg)	6.69	6.67	6.70	
PESO DE LA MUESTRA COMPACTADA (Kg)	4.57	4.55	4.58	
VOLUMEN DEL RECIPIENTE (m³)	0.00283	0.00283	0.00283	
PESO UNITARIO COMPACTADO SECO	1615	1608	1617	
PESO UNITARIO COMPACTADO SECO	1613			
ULTIMO REPORTE (PESO UNITARIO)	1610			

EL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO. SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD (GUÍA PERUANA INDECOPI: GP; 004:1993)

N° DE CERTIFICADO: TAKA/CH(000

CUENTE: Baith TURCO ALEJO KEVIN ANDRES

TESIS: "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUANICAYO -2023" PROYECTO:

SOLICITANTE Bach, TURCO ALEJO KEVIN ANDRES

SICAVA CANTERA A.F. CANTERA A.G.: SICAYA

FECHA DE ENSAYO: lunes, 25 de Setembre de 2023 FECHA DE EMISION wernes, 29 de Setiembro de 2023

GRANULOMETRIA CARACTERIZACIÓN DE AGREGADOS

C0060 NTF 400.012

TITULO: Supra Persana Persana (Granulate

ESO MILES	THA	2658.3					
		GRANULO	HUSO:	Arena Gruen			
TAMIZ	DIAMETRO DEL TAMEZ	PESO RETENIDO (gr)	(%) RETENIDO	(%) RET. ACUM.	(%) Q' PASA	MINIMO	MAXIMO
1/2"	12.700	8.00	0.30	0.30	99,70	100	100
3/8"	9.525	10.00	0.38	0,68	99.32	100	100
N' 4	4.75	65.00	2.45	3.12	96.88	100	95
N° B	2.36	226.00	8.50	11 62	88-38	100	80
N° 16	1.18	434.40	16.34	27.97	72.03	85	50
N° 30	0.59	590.90	22.23	50.19	49.81	60	25
N' 50	0.297	742.30	27.92	78.12	21.88	30	10
N" 100	0.149	450.00	16.93	95.05	4.95	10	2
N° 200	0.07	18.10	0.68	95.73	4.27		1
FONDO	0.000	113.60	4.27	100,00	0.00	3/	

SUMA 2658.30 100.00 M.Fe 2.67

Dispersión de masas= CUMPLE

EL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD (QUÍA PERUANA INDECOPI: 8P: 004:1995)

Charles da Que

N° DE CERTIFICADO: TAKA/CH/004

Bach, TURGO ALEJO NEVIN ANDRES CLIENTE

TESIS, "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUMINCAYO - 2022"

SOLICITANTE: Bach, TURCO ALEJO KEVIN ANDRES

SICAYA CANTERA A.F.: CANTERA A.G.: BICAYA

lunes, 25 de Setembre de 2023 viernes, 29 de Setembre de 2023 FECHA DE ENSAYO: FECHA DE EMISION:

PESO ESPECIFICO CARACTERIZACION DE AGREGADOS

CÓDIGO: NTF 400.022

TITULO: Método de ensaya para dete

PESO ESPECIFICO - AGRE	GADO FINO			
DATOS	UND	M1	M2	ма
PESO DE LA MUESTRA SATURADA SUPERFICIALMENTE SECO	0	500	500	500
PESO FIOLA +AGUA	g.	699.5	699.1	609.2
PESO FIOLA + AGUA+PESO DE LA MUESTRA SSS	-g	998.6	999.4	999.7
PESO DE LA MUESTRA SECA	a	485.3	485.14	484.6
PESO ESPECIFICO DE MUESTRAS	g/cm ¹	2.62	2.43	2.43
PESO ESPECIFICO DE MASA	-		2.42	
PESO ESPECIFICO DE LA MUESTRA SSS	-	2.50		-
PESO ESPECIFICO APARENTE		2.62		
NABSORCION DE MUESTRAS	%	3.03	3.06	3.17
PROMEDIO %ABSORCION	**		3.09	

RESULTADOS:

PESO ESPECIFICO DE MASA	242
PESO ESPECIFICO DE LA MUESTRA SSS	2500
PESO ESPECIFICO APARENTE	262
ABSORCION (%)	3.01

SSS: Saturado Supercialmente Seco

EL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIASE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD (GUÍA PERUANA INDECOPI: GP: 004:1993)

Nº DE CERTIFICADO: TAKAICHIDDS

Bach, TURCO ALEJO KEVIN ANDRES CLIENTE

TESIS "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUANCAYO - 2023" PROYECTO:

SOUCITANTE: Bach, TURCO ALEJO KEVIN ANDRES

SICAYA CANTERA A.F.: CANTERA A.G.: SICAYA

lunes, 25 de Setiembre de 2023 vernes, 29 de Setiembre de 2023 FECHA DE ENSAYO: FECHA DE EMISION:

PESO UNITARIO SUELTO /PESO UNITARIO COMPACTADO CARACTERIZACION DE AGREGADOS

CÓDIGO: NTP 400.017

TITULO: Método de ensayo para determ

PESO UNITARIO SUELTO-AGREGADO GRUESO 1/2"						
I. PESO UNITARIO SUELTO SECO - PUSS	UND	M1	M2	M3		
PESO DEL RECIPIENTE (Kg)	kg	4.14	4.14	4.14		
PESO DE LA MUESTRA SUELTA + RECIPIENTE (Kg)	kg	17.29	17.29	17.29		
PESO DE LA MUESTRA SUELTA (Kg)	kg	13.15	13.14	13.15		
VOLUMEN DEL RECIPIENTE (m³)	m ⁵	0.00944	0.00944	0.00944		
PESO UNITARIO SUELTO SECO	kg/m*	1393	1393	1393		
PESO UNITARIO SUELTO SECO	kg/m³		1393			
ULTIMO REPORTE (PESO UNITARIO)	kg/m ³		1390			

PESO UNITARIO COMPACTADO-A	GREGADO GRUESO	2 1/2"		
II. PESO UNITARIO COMPACTADO SECO - PUCS	UND	M1	M2	M3
PESO DEL RECIPIENTE (Kg)	kg	4.14	4.14	4.14
PESO DE LA MUESTRA COMPACTADA + RECIPIENTE (Kg)	kg	18.49	18.48	18.51
PESO DE LA MUESTRA COMPACTADA (Kg)	kg .	14.35	14.34	14.37
VOLUMEN DEL RECIPIENTE (m³)	m ³	0.00944	0.00944	0.00944
PESO UNITARIO COMPACTADO SECO	kg/m ³	1521	1519	1522
PESO UNITARIO COMPACTADO SECO	kg/m³	100000	1521	
ULTIMO REPORTE (PESO UNITARIO)	kg/m"		1520	

EL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN

N° DE CERTIFICADIO TAKA/CHIOOS

CLIENTE: Bach, TURCO ALEJO KEVIN ANDRES

TESIS "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PILISO ULTRASÓNICO, HUANCAYO - 2023" PROYECTO:

SOLICITANTE: Bach, TUROD ALEJO KEVIN ANDRES

CANTERA A.F.: CANTERA A.G.: SICAYA SICAYA

FECHA DE ENSAYO: kines, 25 de Setembre de 2023

verres, 29 de Setembre de 2023 FECHA DE EMISION:

PESO ESPECIFICO
CARACTERIZACION DE AGREGADOS

CÓDIGO: NTP 400.021

TITULO: Método de enseyo para determinar el peso espezitivo del agragado.

PESO ESPECIFICO - AGREGADO GR	UESO 1/2"			
DATOS	UND	M1	M2	M3
PESO DE LA MUESTRA SECO AL HORNO	g.	1972	1972	1971
PESO DE LA MUESTRA SATURADA SUPERFICIALMENTE SECO	9	2000	2000	2000
PESO DE LA MUESTRA SATURADA SUPERFICIALMENTE SECO SUMERGIDO + CANASTA	g	2068 1	2067.1	2068.1
PESO DE LA CANASTILIA	g	854	853	851
PESO DE LA MUESTRA SATURADA SUPERFICIALMENTE SECO SUMERGIDO	g	1214.1	1214.1	1217.1
PESO ESPECÍFICO DE MASA	g/cm ³	2.509	2.510	2.518
PROMEDIO PESO ESPECÍFICO DE MASA	+3	2.61		
PROMEDIO PESO ESPECÍFICO SSS	27	2.55		
PROMEDIO PESO ESPECÍFICO APARENTE	*0	2.61		
% ABSORCIÓN DE MUESTRAS	%	1.420	1.399	1.471
PROMEDIO % ABSORCIÓN	%		1.43	

RESULTADOS:

PESO ESPECIFICO - AGREGADO GRUESO	1/2"
PESO ESPECIFICO DE MASA	2512
PESO ESPECIFICO DE LA MUESTRA SSS	2548
PESO ESPECIFICO APARENTE	2606
ABSORCION (%)	1.43

SSS Saturado Supercialmente Seco

EL PRESENTE DOCUMENTO NO DEBENÁ REPRODUCINSE SIN AUTORIZACIÓN EXCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD (GUÍA PERUANA INDECOPI: GP: 004:1981)

N' DE CERTIFICADO: TAKA/CH/007

CLIENTE: Baich, TURCO ALEJO KEVIN ANDRES

PROYECTO: TESIS "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ERSAYO DE PUESO ULTRASÓNICO, HUANCAYO - 2022"

SOLICITANTE: BICH, TURGO ALEJO KEVIN ANDRES

CANTERA A.F.: SICAYA
CANTERA A.G.: SICAYA

FECHA DE ENSAYO: lunes, 25 de Selsembre de 2023 FECHA DE EMISION: vernes, 29 de Selsembre de 2023

GRANULOMETRIA CARACTERIZACIÓN DE AGREGADOS

CÓDISO: NTF 400.012

ITULO: Norme Técnice Persana (Granulametria de los Agragados)

ESO MIESTRA	J-1177/2007/11	4396						
	- PARACE PROPERTY		TRÍA			HUSO:	57	
TAMIZ	DIAMETRO DEL TAMEZ	PESO RETENIDO (gr)	(%) RETEMBO	(N) O' PASA MINIMI		мінімо	MAXIMO	
2"	50.800	0.00	0.00	0.00	100.00	100	\$00	
11/2"	38,100	0.00	0.00	0.00	100.00	100	100	
1"	25,400	0.00	0.00	0.00	100.00	100	.95	
3/4"	19.050	248.00	5.64	5.64	94.36	85	65	
1/2"	12.700	1090.20	24.80	30.45	89.55	60	25	
3/8"	9.525	1900.80	43.25	73.69	26.31	44	18	
N*4	4.750	835.60	19.01	92.70	7.30	10	0	
Nº 8	2.360	304.30	6.92	99.62	0.38	5	0	
N* 16	1.180	0.00	0.00	99.62	0.38	0	0	
N" 30	0.590	0.00	0.00	99.62	0.38	0	0	
N" 50	0.297	0.00	0.00	99.62	0.38	0		
N* 100	0.149	0.00	0.00	99.62	0.38	0	0	
FONDO	0.000	16.50	0.38	100.00	0.00	100000		
CONTRACTOR .	SUMA	4395.40	100.00					

M.F= 6.70 [T.M= 3/4" [TMN= 1/2"

EL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIISE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODI SEA EN SU TOTALIDAD (GUÍA PERUANA INDECOPI: GP: 004:1998)

CERTIFICADO: QTQC/TAKA/DM/001

Bach, TURCO ALEJO KEVIN ANDRES SOLICITANTE:

TESIS: "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS PROYECTO:

EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUANCAYO - 2023"

DESCRIPCIÓN: CONCRETO PREMEZCLADO

DISEÑO: fc = 245 kg/cm2 2/10/2023 FECHA DE RECEPCION: 2/10/2023 FECHA DE EMISION:

DISEÑO DADA I M³

MATERIALES	PROCEDENCIA	P. ESPECIFICO	PESO SECO	UND	EQU	TV.
MATEMALES	PROCEDENCIA	ka m				
CEMENTO	ANDINO TIPO I	3150	374	kg	8.80	pies ³
AGUA	PLANTA OSLO	1000	200	kg	200	R
ARENA GRUESA	SICAYA	2425	1076	kg .	0.65	m ³
PIEDRA CHANCADA	SICAYA	2512	752	kg:	0.46	m ³
SIKAMENT - 400PE	SKA	1240	3.44	kg	2.77	1.t
ARE			1.00	- 96		
RELACION A/C	2	6	0.53	14		
SLUMP			5°-7'	Pulg.		
TOTAL			2405	kg/m ³	1	m ¹

DISEÑO PARA (1 bolsa de cemento)

MATERIALES	PROCEDENCIA	P. ESPECIFICO	PESO SECO	UND	EQU	IV.
MATERIALES	PROCEDENCIA	kgim				-
CEMENTO	ANDINO TIPO I	3150	42.5	Rg.	- marent	kg
AGUA	PLANTA OSLO	1000	22.7	kg.	22.73	Lt
ARENA GRUESA	SICAYA"	2425	122.3	kg	2.62	Pio ¹
PIEDRA CHANCADA	SICAYA	2512	85.5	Ng:	1.83	Pio ¹
SIKAMENT - 400PE	SKA	1240	0.4	Ng.	0.34	Lt
ARE			1.00	36		. 36
RELACION A/C			0.53			
SLUMP		G.	5"-7"	Pulg.		Pulg
TOTAL			273	kg	0.11	m ³

LABORATORIO DE ENSAYOS DE MATERIALES, SUELOS Y ASFALTO

CERTIFICADO :	EU- TAK-001
CLIENTE :	Bach. TURCO ALEJO, Kevin Andrés
PROYECTO :	TESIS "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUANCAYO - 2023"
FECHA DE ENSAYO :	lunes, 23 de Octubre de 2023
FECHA DE EMISION :	lunes, 6 de Noviembre de 2023

ENSAYO PARA DETERMINAR LA VELOCIDAD DE PUSO A TRAVÉS DEL CONCRETO NTP 339.237 2012 (revisada el 2017)

ITEM	IDENTIFICACIÓN DEL ESPÉCIMEN	DISTANCIA DE CARAS DE LOS TRANSDUCTORES	VELOCIDAD DE PULSO ULTRASONICO (V ₁)	VELOCIDAD DE PULSO ULTRASONICO (V ₃)	VELOCIDAD DE PULSO ULTRASONICO (V ₃)
		cm.	m/s	m/s	m/s
N*1	COLUMNA 01 - INTERIOR - 01	50.00	3230	3229	3224
N°2	COLUMNA 01 - INTERIOR - 02	50.00	3230	3232	3233
N*3	COLUMNA 01 - INTERIOR - 03	50.00	3229	3238	3237
N*4	COLUMNA D1 - INTERIOR - D4	50.00	3230	3240	3446
N*5	COLUMNA 01 - INTERIOR - 05	50.00	3231	3238	3241
N°6	COLUMNA 01 - INTERIOR - 06	50.00	3228	3225	3224
N*7	COLUMNA 01 - INTERIOR - 07	50.00	3227	3225	3223
N*8	COLUMNA 01 - INTERIOR - 08	50.00	3240	3233	3230

*Medición a los 21 días de edad

^{*} EL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD (GUÍA PERUANA INDECOPI: GP:004: 1993)

LABORATORIO DE ENSAYOS DE MATERIALES, SUELOS Y ASFALTO

CERTIFICADO :	EU-TAK-001
CLIENTE	Buch, TURCO ALEJO, Kevin Andrés
PROYECTO :	TESIS "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUANCAYO - 2023"
FECHA DE ENSAYO :	lunes, 30 de Octubre de 2023
FECHA DE EMISION	lunes, 6 de Noviembre de 2023

ENSAYO PARA DETERMINAR LA VELOCIDAD DE PULSO A TRAVÉS DEL CONCRETO NTP 339.237 2012 (revisada el 2017)

пем	IDENTIFICACIÓN DEL ESPÉCIMEN	DISTANCIA DE CARAS DE LOS TRANSDUCTORES	VELOCIDAD DE PULSO ULTRASONICO (V ₁)	VELOCIDAD DE PULSO ULTRASONICO (V ₁)	VELOCIDAD DE PULSO ULTRASONICO (V ₃)
		cm.	m/s	m/s	m/s
N°1	COLUMNA 01 - INTERIOR - 01	50.00	3279	3278	3275
N°2	COLUMNA 01 - INTERIOR - 02	50.00	3281	3277	3279.33
N°3	COLUMNA 01 - INTERIOR - 03	50.00	3270	3278	3272
N°4	COLUMNA 01 - INTERIOR - 04	50.00	3274	3278	3276
N°5	COLUMNA 01 - INTERIOR - 05	50.00	3274	3273	3275
N-6	COLUMNA 01 - INTERIOR - 06	50.00	3278	3276	3276
N*7	COLUMNA 01 - INTERIOR - 07	50.00	3275	3272	3277
N*8	COLUMNA 01 - INTERIOR - 08	50.00	3276	3272	3280

^{*}Medición a los 28 días

ENSAYO DE ASENTAMIENTO DEL CONCRETO

(Norma de Ensayo NTP 339.035 - ASTM C143)

PROMEDIO DE 3 PROMEDIO DE 3 TEMPERATURA DEL AMBIENTE DEL CONCRETO ("C)	23.00				
PROMEDIO DE 3 TEMPERATURA DEL AMBIENTE (°C)	28:10				
SLUMP PROMEDIO (in)		5112			
SLUMP 1 (in)	5 1/2	5 1/4	5 1/2		
FECHA DE ENSAYO	2/10/2023	2/10/2023	2/10/2023		
(kg/cm²)	245	245	245		
DISENO DE MEZCLA	DISEÑO DE MEZCLA FC 245 KG/CM ² - M1	DISEÑO DE MEZCLA F'C 245 KG/CM ^{2*} - M2	DISEÑO DE MEZCLA FIC 245 KG/CM ² - M3		
ILEM	-	2	m		

: 01-CA-FBIP-001 EXPEDIENTE

GROUP TOTAL QUALITY CONTROL

: Bach, TURCO ALEJO KEVIN ANDRES CLIENTE TESIS "PRECISION EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASONICO, HUANCAYO - 2023* PROYECTO

: 2/10/2023 FECHA DE ELABORACIÓN

: 3/10/2023 FECHA DE EMISIÓN

CONTENIDO DE AIRE - PESO UNITARIO (NTP 339.081 - NTP 339.046)

AIRE	*	12	1.0	111	1.10
RENDIMIENTO		1.00	0.99	1.00	1.00
PUC DISEÑO	Kg/m²	2330	2330	2330	2330
PUCREAL	Kg/m ³	2338	2342	2321	2334
PESO RECIPIENTE + CONCRETO	Kg	19.39	19.32	19.31	19.34
PESO DEL RECIPIENTE	Kg	3.573	3.573	3.573	3.573
VOLUMEN DEL RECIPIENTE	"m	0.0070708	0.0070708	0.0070700.0	0.0070708
FECHA DE VACIADO		2/10/2023	2/10/2023	2/10/2023	2/10/2023
MUESTRA N°		+	2	3	PROMEDIO
DISENO		DISEÑO DE MEZCLA - COLUMNA			

Los ensayos se efectuaron en una PRENBA CMGTFAL, con certificado de calbinación inalizado por la empresa ARSOU GROUP SAC

St. PHESENTE DOCUMENTO NO DEBENÁ

EXPEDIENTE

: TESIS "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUANCAYO - 2023" PROYECTO

: Bach. TURCO ALEJO, Kevin Andrés : lunes, 23 de Octubre de 2023 SOLICITANTE FECHA DE ENSAYO FECHA DE EMISION ± sábedo, 28 de Octubre de 2023

INFORME DE LA REALIZACION DEL METODO DE ENSAYO ESTANDAR PARA ENSAYO CON ESCLEROMETRO BASADO EN ASTM C805/C805 M-08

UBICACIÓN DEL ELEMENTO	1er piso Columna C-01	
FECHA DE VACEADO	9/10/2023	
EDAD DEL CONCRETO	7 dias	
ÁNGULO DE IMPACTO	a=0°	
SISTENCIA A COMPRESION ESPECIFICADA	245 kg/cm ²	
	32	
	32	
	29	
	-30	
	28	
LECTURAS	28	
LECTURAS	30	
	28	
	32	
	29	
	29	
	28	
PROMEDIO DE LECTURAS	29.61	
ESISTENCIA OBTENIDA EN kg/cm²	202.14	

GESENVACIONES

** EL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD (GUÍA PERUANA INDECOPI: GP:094: 1993).

***LOS RESULTADOS DE RESISTENCIA CON EL ENSAYO DE ESCLEROMETRÍA SOLO SON REFERENCIALES, ESTA PRUEBA SOLO MIDE UNIFORMIDAD. PARA TENER UN RESULTADO MÁS REALISTA SE DEBERÁ EJECUTAR ENSAYOS DESTRUCTIVOS

EXPEDIENTE

: TESIS "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUANCAYO - 2023" PROYECTO

: Bach. TURCO ALEJO, Kevin Andrés : lunes, 23 de Octubre de 2023 SOLICITANTE FECHA DE ENSAYO FECHA DE EMISION ± sábedo, 28 de Octubre de 2023

INFORME DE LA REALIZACION DEL METODO DE ENSAYO ESTANDAR PARA ENSAYO CON ESCLEROMETRO BASADO EN ASTM C805/C805 M-08

UBICACIÓN DEL ELEMENTO	1er piso Columna C-01	
FECHA DE VACEADO	9/10/2023	
EDAD DEL CONCRETO	7 dias	
ÁNGULO DE IMPACTO	a=0°	
ESISTENCIA A COMPRESIÓN ESPECIFICADA	245 kg/cm ²	
	30	
	30	
	29	
100	30	
	32	
LECTURAS	26	
LECTORAS	30	
	28	
	32	
	29	
	29	
	30	
PROMEDIO DE LECTURAS	29.61	
RESISTENCIA OBTENIDA EN kg/cm²	202.13	

SEL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD (GUÍA PERUANA INDECOPI: GP:004: 1993).

"LOS RESULTADOS DE RESISTENCIA CON EL ENSAYO DE ESCLEROMETRÍA SOLO SON REFERENCIALES, ESTA PRUEBA SOLO MIDE UNIFORMIDAD. PARA TENER UN RESULTADO MÁS REALISTA SE DEBERÁ EJECUTAR ENSAYOS DESTRUCTIVOS

EXPEDIENTE

: TESIS "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUANCAYO - 2023" PROYECTO

: Bach. TURCO ALEJO, Kevin Andrés : lunes, 23 de Octubre de 2023 SOLICITANTE FECHA DE ENSAYO FECHA DE EMISION ± sábedo, 28 de Octubre de 2023

INFORME DE LA REALIZACION DEL METODO DE ENSAYO ESTANDAR PARA ENSAYO CON ESCLEROMETRO BASADO EN ASTM C805/C805 M-08

IBICACIÓN DEL ELEMENTO	1er piso Columna C-01
FECHA DE VACEADO	9/10/2023
EDAD DEL CONCRETO	7 dias
ÁNGULO DE IMPACTO	a=0°
SISTENCIA A COMPRESION ESPECIFICADA	245 kg/cm ²
	30
	30
	31
100	30
	32
15071000	27
LECTURAS	29
	28
	31
	30
	28
	29
PROMEDIO DE LECTURAS	29.82
ESISTENCIA OBTENIDA EN kg/cm²	202.33

EXPEDIENTE

: TESIS "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUANCAYO - 2023" PROYECTO

: Bach. TURCO ALEJO, Kevin Andrés : lunes, 23 de Octubre de 2023 SOLICITANTE FECHA DE ENSAYO FECHA DE EMISION ± sábedo, 28 de Octubre de 2023

INFORME DE LA REALIZACION DEL METODO DE ENSAYO ESTANDAR PARA ENSAYO CON ESCLEROMETRO BASADO EN ASTM C805/C805 M-08

UBICACIÓN DEL ELEMENTO	1er piso Columna C-01	
FECHA DE VACEADO	9/10/2023	
EDAD DEL CONCRETO	7 dias	
ÁNGULO DE IMPACTO	a=0°	
ESISTENCIA A COMPRESIÓN ESPECIFICADA	245 kg/cm ²	
	32	
	30	
	29	
	30	
	32	
LECTURAS	28	
LECTURAS	29	
	30	
	28	
	30	
	28	
	30	
PROMEDIO DE LECTURAS	29.67	
RESISTENCIA OBTENIDA EN kg/cm²	203.45	

OBSERVACIONES

*EL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA
REPRODUCCIÓN SEA EN SU TOTALIDAD (GUÍA PERUANA INDECOPI: GP:004: 1993).

**LOS RESULTADOS DE RESISTENCIA CON EL ENSAYO DE ESCLEROMETRÍA SOLO SON REFERENCIALES, ESTA PRUEBA
SOLO MIDE UNIFORMIDAD. PARA TENER UN RESULTADO MÁS REALISTA SE DEBERÁ EJECUTAR ENSAYOS DESTRUCTIVOS

EXPEDIENTE

: TESIS "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUANCAYO - 2023" PROYECTO

: Bach. TURCO ALEJO, Kevin Andrés : lunes, 23 de Octubre de 2023 SOLICITANTE FECHA DE ENSAYO FECHA DE EMISION ± sábedo, 28 de Octubre de 2023

INFORME DE LA REALIZACION DEL METODO DE ENSAYO ESTANDAR PARA ENSAYO CON ESCLEROMETRO BASADO EN ASTM C805/C805 M-08

IBICACIÓN DEL ELEMENTO	ter piso Calumna C-01	
FECHA DE VACEADO	9/10/2023	
EDAD DEL CONCRETO	7 dias	
ÁNGULO DE IMPACTO	a=0°	
SISTENCIA A COMPRESIÓN ESPECIFICADA	245 kg/cm ²	
	30	
	30	
	30	
100	30	
	29	
LECTURAS	30	
LECTURAS	31	
	30	
	29	
	30	
	29	
	29	
PROMEDIO DE LECTURAS	29.72	
ESISTENCIA OBTENIDA EN kg/cm²	204.34	

EXPEDIENTE

: TESIS "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUANCAYO - 2023" PROYECTO

 Bach. TURCO ALEJO, Kevin Andrés
 lunes, 23 de Octubre de 2023 SOLICITANTE FECHA DE ENSAYO FECHA DE EMISION ± sábedo, 28 de Octubre de 2023

INFORME DE LA REALIZACION DEL METODO DE ENSAYO ESTANDAR PARA ENSAYO CON ESCLEROMETRO BASADO EN ASTM C805/C805 M-08

UBICACIÓN DEL ELEMENTO	ter piso Columna C-01	
FECHA DE VACEADO	9/10/2023	
EDAD DEL CONCRETO	7 dias	
ÁNGULO DE IMPACTO	a=0°	
ESISTENCIA A COMPRESIÓN ESPECIFICADA	245 kg/cm ²	
	28	
	31	
	28	
	-31	
	31	
LECTURAS	30	
CECTORAS	31	
	30	
	28	
	29	
	31	
	28	
PROMEDIO DE LECTURAS	29.67	
RESISTENCIA OBTENIDA EN kg/cm²	203.46	

EXPEDIENTE

: TESIS "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUANCAYO - 2023" PROYECTO

SOLICITANTE : Bach. TURCO ALEJO, Kevin Andrés : lunes, 23 de Octubre de 2023 FECHA DE ENSAYO FECHA DE EMISION ± sábedo, 28 de Octubre de 2023

INFORME DE LA REALIZACION DEL METODO DE ENSAYO ESTANDAR PARA ENSAYO CON ESCLEROMETRO BASADO EN ASTM C805/C805 M-08

BICACIÓN DEL ELEMENTO	1er piso Columna C-01	
alonatori bee ecement o	the place continues of the	
FECHA DE VACEADO	9/10/2023	
EDAD DEL CONCRETO	7 dias	
ÁNGULO DE IMPACTO	a=0°	
SISTENCIA A COMPRESION ESPECIFICADA	245 kg/cm ²	
	30	
	30	
	30	
	29	
The second secon	28	
	30	
LECTURAS	29	
	30	
	29	
	29	
	32	
	30	
PROMEDIO DE LECTURAS	29.63	
ESISTENCIA OBTENIDA EN kg/cm²	202.61	

SEL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD (GUÍA PERUANA INDECOPI: GP:004: 1993).

"LOS RESULTADOS DE RESISTENCIA CON EL ENSAYO DE ESCLEROMETRÍA SOLO SON REFERENCIALES, ESTA PRUEBA SOLO MIDE UNIFORMIDAD. PARA TENER UN RESULTADO MÁS REALISTA SE DEBERÁ EJECUTAR ENSAYOS DESTRUCTIVOS

EXPEDIENTE

: TESIS "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUANCAYO - 2023" PROYECTO

: Bach. TURCO ALEJO, Kevin Andrés : lunes, 23 de Octubre de 2023 SOLICITANTE FECHA DE ENSAYO FECHA DE EMISION ± sábedo, 28 de Octubre de 2023

INFORME DE LA REALIZACION DEL METODO DE ENSAYO ESTANDAR PARA ENSAYO CON ESCLEROMETRO BASADO EN ASTM C805/C805 M-08

UBICACIÓN DEL ELEMENTO	1er piso Columna C-01
FECHA DE VACEADO	9/10/2023
EDAD DEL CONCRETO	7 dias
ÁNGULO DE IMPACTO	a=0°
SISTENCIA A COMPRESION ESPECIFICADA	245 kg/cm ²
	30
	29
	28
	-30
LECTURAS	30
	31
	30
	30
	30
	26
	30
	32
PROMEDIO DE LECTURAS	29.63
ESISTENCIA OBTENIDA EN kg/cm²	202.59

EXPEDIENTE

: TESIS "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUANCAYO - 2023" PROYECTO

: Bach. TURCO ALEJO, Kevin Andrés : lunes, 23 de Octubre de 2023 SOLICITANTE FECHA DE ENSAYO FECHA DE EMISION ± sábedo, 28 de Octubre de 2023

INFORME DE LA REALIZACION DEL METODO DE ENSAYO ESTANDAR PARA ENSAYO CON ESCLEROMETRO BASADO EN ASTM C805/C805 M-08

UBICACIÓN DEL ELEMENTO	ter piao Columna C-02
FECHA DE VACEADO	9/10/2023
EDAD DEL CONCRETO	14 dias
ÁNGULO DE IMPACTO	a=0°
ESISTENCIA A COMPRESIÓN ESPECIFICADA	245 kg/cm ²
	31
	31
	33
100	32
	31
LECTURAS	31
LECTURAS	32
	33
	33
	33
	29
1	30
PROMEDIO DE LECTURAS	31.57
RESISTENCIA OBTENIDA EN kg/cm²	230.34

SEL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD (GUÍA PERUANA INDECOPI: GP:004: 1993).

"LOS RESULTADOS DE RESISTENCIA CON EL ENSAYO DE ESCLEROMETRÍA SOLO SON REFERENCIALES, ESTA PRUEBA SOLO MIDE UNIFORMIDAD. PARA TENER UN RESULTADO MÁS REALISTA SE DEBERÁ EJECUTAR ENSAYOS DESTRUCTIVOS

EXPEDIENTE

: TESIS "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUANCAYO - 2023" PROYECTO

: Bach. TURCO ALEJO, Kevin Andrés : lunes, 23 de Octubre de 2023 SOLICITANTE FECHA DE ENSAYO FECHA DE EMISION ± sábedo, 28 de Octubre de 2023

INFORME DE LA REALIZACION DEL METODO DE ENSAYO ESTANDAR PARA ENSAYO CON ESCLEROMETRO BASADO EN ASTM C805/C805 M-08

UBICACIÓN DEL ELEMENTO	ter piso Columna C-02
FECHA DE VACEADO	9/10/2023
EDAD DEL CONCRETO	14 dias
ÁNGULO DE IMPACTO	a=0°
ESISTENCIA A COMPRESIÓN ESPECIFICADA	245 kg/cm ²
	32
	32
	31
	30
	31
LECTURAS	32
LECTURAS	32
	31
	31
	31
	31
	32
PROMEDIO DE LECTURAS	31.36
RESISTENCIA OBTENIDA EN kg/cm²	226.40

SEL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD (GUÍA PERUANA INDECOPI: GP:004: 1993),
"LOS RESULTADOS DE RESISTENCIA CON EL ENSAYO DE ESCLEROMETRÍA SOLO SON REFERENCIALES, ESTA PRUEBA SOLO MIDE UNIFORMIDAD. PARA TENER UN RESULTADO MÁS REALISTA SE DEBERÁ EJECUTAR ENSAYOS DESTRUCTIVOS

EXPEDIENTE : ES-TAK-011

: TESIS "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUANCAYO - 2023" PROYECTO

 Bach. TURCO ALEJO, Kevin Andrés
 lunes, 23 de Octubre de 2023 SOLICITANTE FECHA DE ENSAYO FECHA DE EMISION ± sábedo, 28 de Octubre de 2023

INFORME DE LA REALIZACION DEL METODO DE ENSAYO ESTANDAR PARA ENSAYO CON ESCLEROMETRO BASADO EN ASTM C805/C805 M-08

UBICACIÓN DEL ELEMENTO	ter piso Columna C-02
FECHA DE VACEADO	9/10/2023
EDAD DEL CONCRETO	14 dias
ÁNGULO DE IMPACTO	a=0°
SISTENCIA A COMPRESION ESPECIFICADA	245 kg/cm ²
	31
	31
	32
100	- 31
	31
LECTURAS	32
LECTURAS	32
	30
	32
	31
	32
	31
PROMEDIO DE LECTURAS	31.35
RESISTENCIA OBTENIDA EN kg/cm²	226.22

EXPEDIENTE : ES-TAK-012

: TESIS "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUANCAYO - 2023" PROYECTO

: Bach. TURCO ALEJO, Kevin Andrés : lunes, 23 de Octubre de 2023 SOLICITANTE FECHA DE ENSAYO FECHA DE EMISION ± sábedo, 28 de Octubre de 2023

INFORME DE LA REALIZACION DEL METODO DE ENSAYO ESTANDAR PARA ENSAYO CON ESCLEROMETRO BASADO EN ASTM C805/C805 M-08

UBICACIÓN DEL ELEMENTO	1er piso Columna C-02
FECHA DE VACEADO	9/10/2023
EDAD DEL CONCRETO	14 dias
ÁNGULO DE IMPACTO	a=0°
SISTENCIA A COMPRESION ESPECIFICADA	245 kg/cm ²
	31
	31
	31
	- 31
	32
LECTURAL	31
LECTURAS	32
	31
	32
	31
	31
1	32
PROMEDIO DE LECTURAS	31.29
ESISTENCIA OBTENIDA EN kg/cm²	225.25

SEL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD (GUÍA PERUANA INDECOPI: GP:004: 1993).

"LOS RESULTADOS DE RESISTENCIA CON EL ENSAYO DE ESCLEROMETRÍA SOLO SON REFERENCIALES, ESTA PRUEBA SOLO MIDE UNIFORMIDAD. PARA TENER UN RESULTADO MÁS REALISTA SE DEBERÁ EJECUTAR ENSAYOS DESTRUCTIVOS

EXPEDIENTE : ES-TAK-013

: TESIS "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUANCAYO - 2023" PROYECTO

: Bach. TURCO ALEJO, Kevin Andrés : lunes, 23 de Octubre de 2023 SOLICITANTE FECHA DE ENSAYO FECHA DE EMISION ± sábedo, 28 de Octubre de 2023

INFORME DE LA REALIZACION DEL METODO DE ENSAYO ESTANDAR PARA ENSAYO CON ESCLEROMETRO BASADO EN ASTM C805/C805 M-08

UBICACIÓN DEL ELEMENTO	1er piso Columna C-02
FECHA DE VACEADO	9/10/2023
EDAD DEL CONCRETO	14 dias
ÁNGULO DE IMPACTO	a=0°
SISTENCIA A COMPRESION ESPECIFICADA	245 kg/cm ²
	32
	31
	33
No.	-31
	32
LECTURAS	.33
LECTURAS	31
	31
	31
	32
	31
	31
PROMEDIO DE LECTURAS	31.58
RESISTENCIA OBTENIDA EN kg/cm²	230.40

EXPEDIENTE : ES-TAK-014

: TESIS "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUANCAYO - 2023" PROYECTO

: Bach. TURCO ALEJO, Kevin Andrés : lunes, 23 de Octubre de 2023 SOLICITANTE FECHA DE ENSAYO FECHA DE EMISION ± sábedo, 28 de Octubre de 2023

INFORME DE LA REALIZACION DEL METODO DE ENSAYO ESTANDAR PARA ENSAYO CON ESCLEROMETRO BASADO EN ASTM C805/C805 M-08

UBICACIÓN DEL ELEMENTO	ter piso Columna C-02
FECHA DE VACEADO	9/10/2023
EDAD DEL CONCRETO	14 dias
ÁNGULO DE IMPACTO	a=0°
SISTENCIA A COMPRESION ESPECIFICADA	245 kg/cm ²
	31
	31
	32
100	- 32
	31
LECTURAS	32
LECTURAS	32
	32
	32
	31
	31
	31
PROMEDIO DE LECTURAS	31.53
RESISTENCIA OBTENIDA EN kg/cm²	229.45

EXPEDIENTE : ES-TAK-015

: TESIS "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUANCAYO - 2023" PROYECTO

: Bach. TURCO ALEJO, Kevin Andrés : lunes, 23 de Octubre de 2023 SOLICITANTE FECHA DE ENSAYO FECHA DE EMISION ± sábedo, 28 de Octubre de 2023

INFORME DE LA REALIZACION DEL METODO DE ENSAYO ESTANDAR PARA ENSAYO CON ESCLEROMETRO BASADO EN ASTM C805/C805 M-08

UBICACIÓN DEL ELEMENTO	ter piso Columna C-02
FECHA DE VACEADO	9/10/2023
EDAD DEL CONCRETO	14 dias
ÁNGULO DE IMPACTO	a=0°
SISTENCIA A COMPRESION ESPECIFICADA	245 kg/cm ²
	31
	32
	32
	- 31
	32
LECTURAS	32
LECTURAS	31
	31
	32
	31
	33
	32
PROMEDIO DE LECTURAS	31.64
ESISTENCIA OBTENIDA EN kg/cm²	231.45

EXPEDIENTE

: TESIS "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUANCAYO - 2023" PROYECTO

: Bach. TURCO ALEJO, Kevin Andrés : lunes, 23 de Octubre de 2023 SOLICITANTE FECHA DE ENSAYO FECHA DE EMISION ± sábedo, 28 de Octubre de 2023

INFORME DE LA REALIZACION DEL METODO DE ENSAYO ESTANDAR PARA ENSAYO CON ESCLEROMETRO BASADO EN ASTM C805/C805 M-08

UBICACIÓN DEL ELEMENTO	1er piso Columna C-02
FECHA DE VACEADO	9/10/2023
EDAD DEL CONCRETO	14 dias
ÁNGULO DE IMPACTO	a=0°
ESISTENCIA A COMPRESIÓN ESPECIFICADA	245 kg/cm ²
	31
	32
	32
	32
	33
LECTURAS	31
LECTURAS	31
	31
	31
	31
	31
	32
PROMEDIO DE LECTURAS	31.51
RESISTENCIA OBTENIDA EN kg/cm²	229.14

EXPEDIENTE : ES-TAK-017

: TESIS "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUANCAYO - 2023" PROYECTO

: Bach. TURCO ALEJO, Kevin Andrés : lunes, 23 de Octubre de 2023 SOLICITANTE FECHA DE ENSAYO FECHA DE EMISION + sábedo, 28 de Octubre de 2023

INFORME DE LA REALIZACION DEL METODO DE ENSAYO ESTANDAR PARA ENSAYO CON ESCLEROMETRO BASADO EN ASTM C805/C805 M-08

UBICACIÓN DEL ELEMENTO	1er piso Columna C-03
FECHA DE VACEADO	9/10/2023
EDAD DEL CONCRETO	21 dias
ÁNGULO DE IMPACTO	a=0°
ESISTENCIA A COMPRESIÓN ESPECIFICADA	245 kg/cm ²
	33
	34
	33
100	- 32
	32
LECTURAS	33
LECTURAS	33
	33
	32
	33
	33
	33
PROMEDIO DE LECTURAS	32.87
RESISTENCIA OBTENIDA EN kg/cm²	247.70

SEL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD (GUÍA PERUANA INDECOPI: GP:004: 1993).

"LOS RESULTADOS DE RESISTENCIA CON EL ENSAYO DE ESCLEROMETRÍA SOLO SON REFERENCIALES, ESTA PRUEBA SOLO MIDE UNIFORMIDAD. PARA TENER UN RESULTADO MÁS REALISTA SE DEBERÁ EJECUTAR ENSAYOS DESTRUCTIVOS COMO POR EJEMPLO: EXTRACCIÓN DIAMANTINA.
""LA RESISTENCIA DEL ELEMENTO TIENE UNA VARIACIÓN DE UN ± 15%, POR LO QUE DEBERA OBSERVARSE PARA LOS FINES PERTINENTES.

EXPEDIENTE : ES-TAK-018

: TESIS "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUANCAYO - 2023" PROYECTO

: Bach. TURCO ALEJO, Kevin Andrés : lunes, 23 de Octubre de 2023 SOLICITANTE FECHA DE ENSAYO FECHA DE EMISION ± sábedo, 28 de Octubre de 2023

INFORME DE LA REALIZACION DEL METODO DE ENSAYO ESTANDAR PARA ENSAYO CON ESCLEROMETRO BASADO EN ASTM C805/C805 M-08

UBICACIÓN DEL ELEMENTO	1er piso Columna C-03
SBIONOION DEC ECEMENTO	ter pray continue 0:00
FECHA DE VACEADO	9/10/2023
EDAD DEL CONCRETO	21 dias
ÁNGULO DE IMPACTO	a=0°
SISTENCIA A COMPRESIÓN ESPECIFICADA	245 kg/cm ²
	33
	34
	33
	34
	33
LECTURAS	33
LECTURAS	32
	33
	33
	33
	33
	33
PROMEDIO DE LECTURAS	33.08
RESISTENCIA OBTENIDA EN kg/cm²	250.76

EXPEDIENTE : ES-TAK-019

: TESIS "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUANCAYO - 2023" PROYECTO

: Bach. TURCO ALEJO, Kevin Andrés : lunes, 23 de Octubre de 2023 SOLICITANTE FECHA DE ENSAYO FECHA DE EMISION ± sábedo, 28 de Octubre de 2023

INFORME DE LA REALIZACION DEL METODO DE ENSAYO ESTANDAR PARA ENSAYO CON ESCLEROMETRO BASADO EN ASTM C805/C805 M-08

UBICACIÓN DEL ELEMENTO	1er piso Columna C-03
FECHA DE VACEADO	9/10/2023
EDAD DEL CONCRETO	21 dias
ÁNGULO DE IMPACTO	a=0°
ESISTENCIA A COMPRESIÓN ESPECIFICADA	245 kg/cm ²
	33
	32
	32
100	32
	31
LECTURAS	32
LEUTURAS	32
	32
	32
	31
	32
	34
PROMEDIO DE LECTURAS	32.05
RESISTENCIA OBTENIDA EN kg/cm²	236.56

EXPEDIENTE

: TESIS "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUANCAYO - 2023" PROYECTO

: Bach. TURCO ALEJO, Kevin Andrés : lunes, 23 de Octubre de 2023 SOLICITANTE FECHA DE ENSAYO FECHA DE EMISION ± sábedo, 28 de Octubre de 2023

INFORME DE LA REALIZACION DEL METODO DE ENSAYO ESTANDAR PARA ENSAYO CON ESCLEROMETRO BASADO EN ASTM C805/C805 M-08

UBICACIÓN DEL ELEMENTO	1er piao Columna C-03
FECHA DE VACEADO	9/10/2023
EDAD DEL CONCRETO	21 dias
ÁNGULO DE IMPACTO	a=0°
ESISTENCIA A COMPRESIÓN ESPECIFICADA	245 kg/cm ²
	32
	33
	34
LECTURAS	-34
	33
	32
	32
	32
	33
	33
	33
	33
PROMEDIO DE LECTURAS	32.81
RESISTENCIA OBTENIDA EN kg/cm²	247.67

SEL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD (GUÍA PERUANA INDECOPI: GP:004: 1993).

"LOS RESULTADOS DE RESISTENCIA CON EL ENSAYO DE ESCLEROMETRÍA SOLO SON REFERENCIALES, ESTA PRUEBA SOLO MIDE UNIFORMIDAD. PARA TENER UN RESULTADO MÁS REALISTA SE DEBERÁ EJECUTAR ENSAYOS DESTRUCTIVOS

EXPEDIENTE

: TESIS "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUANCAYO - 2023" PROYECTO

: Bach. TURCO ALEJO, Kevin Andrés : lunes, 23 de Octubre de 2023 SOLICITANTE FECHA DE ENSAYO FECHA DE EMISION ± sábedo, 28 de Octubre de 2023

INFORME DE LA REALIZACION DEL METODO DE ENSAYO ESTANDAR PARA ENSAYO CON ESCLEROMETRO BASADO EN ASTM C805/C805 M-08

UBICACIÓN DEL ELEMENTO	1er piso Columna C-03
FECHA DE VACEADO	9/10/2023
EDAD DEL CONCRETO	21 dias
ÁNGULO DE IMPACTO	a=0°
SISTENCIA A COMPRESION ESPECIFICADA	245 kg/cm ²
	33
	33
	32
	- 33
	34
LECTURAS	34
	32
	33
	33
	33
	32
	33
PROMEDIO DE LECTURAS	32.94
ESISTENCIA OBTENIDA EN kg/cm²	249.29

EXPEDIENTE : ES-TAK-022

: TESIS "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUANCAYO - 2023" PROYECTO

: Bach. TURCO ALEJO, Kevin Andrés : lunes, 23 de Octubre de 2023 SOLICITANTE FECHA DE ENSAYO FECHA DE EMISION ± sábedo, 28 de Octubre de 2023

INFORME DE LA REALIZACION DEL METODO DE ENSAYO ESTANDAR PARA ENSAYO CON ESCLEROMETRO BASADO EN ASTM C805/C805 M-08

UBICACIÓN DEL ELEMENTO	1er piso Columna C-03
FECHA DE VACEADO	9/10/2023
EDAD DEL CONCRETO	21 dias
ÁNGULO DE IMPACTO	a=0°
SISTENCIA A COMPRESION ESPECIFICADA	245 kg/cm ²
	34
	34
	32
	- 33
LECTURAS	33
	32
	32
	32
	32
	32
	32
	32
PROMEDIO DE LECTURAS	32.55
RESISTENCIA OBTENIDA EN kg/cm²	244.62

SEL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD (GUÍA PERUANA INDECOPI: GP:004: 1993).

"LOS RESULTADOS DE RESISTENCIA CON EL ENSAYO DE ESCLEROMETRÍA SOLO SON REFERENCIALES, ESTA PRUEBA SOLO MIDE UNIFORMIDAD. PARA TENER UN RESULTADO MÁS REALISTA SE DEBERÁ EJECUTAR ENSAYOS DESTRUCTIVOS

EXPEDIENTE : ES-TAK-023

: TESIS "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUANCAYO - 2023" PROYECTO

 Bach. TURCO ALEJO, Kevin Andrés
 lunes, 23 de Octubre de 2023 SOLICITANTE FECHA DE ENSAYO FECHA DE EMISION ± sábedo, 28 de Octubre de 2023

INFORME DE LA REALIZACION DEL METODO DE ENSAYO ESTANDAR PARA ENSAYO CON ESCLEROMETRO BASADO EN ASTM C805/C805 M-08

UBICACIÓN DEL ELEMENTO	1er piao Columna C-03
FECHA DE VACEADO	9/10/2023
EDAD DEL CONCRETO	21 dias
ÁNGULO DE IMPACTO	a=0°
ESISTENCIA A COMPRESION ESPECIFICADA	245 kg/cm ²
	33
	33
-	33
100	-33
Established to the second seco	34
LECTURAS	34
LECTURAS	33
	34
	33
	33
	34
	34
PROMEDIO DE LECTURAS	33.38
RESISTENCIA OBTENIDA EN kg/cm²	253.84

EXPEDIENTE : ES-TAK-024

: TESIS "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUANCAYO - 2023" PROYECTO

: Bach. TURCO ALEJO, Kevin Andrés : lunes, 23 de Octubre de 2023 SOLICITANTE FECHA DE ENSAYO FECHA DE EMISION ± sábedo, 28 de Octubre de 2023

INFORME DE LA REALIZACION DEL METODO DE ENSAYO ESTANDAR PARA ENSAYO CON ESCLEROMETRO BASADO EN ASTM C805/C805 M-08

UBICACIÓN DEL ELEMENTO	1er piso Columna C-03
FECHA DE VACEADO	9/10/2023
EDAD DEL CONCRETO	21 dias
ÁNGULO DE IMPACTO	a=0°
ESISTENCIA A COMPRESIÓN ESPECIFICADA	245 kg/cm ²
	33
	33
	32
100	- 33
	32
LECTURAS	33
LECTURAS	33
	33
	33
	33
	33
	34
PROMEDIO DE LECTURAS	32.93
RESISTENCIA OBTENIDA EN kg/cm²	249.17

SEL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD (GUÍA PERUANA INDECOPI: GP:004: 1993).

"LOS RESULTADOS DE RESISTENCIA CON EL ENSAYO DE ESCLEROMETRÍA SOLO SON REFERENCIALES, ESTA PRUEBA SOLO MIDE UNIFORMIDAD. PARA TENER UN RESULTADO MÁS REALISTA SE DEBERÁ EJECUTAR ENSAYOS DESTRUCTIVOS

EXPEDIENTE : ES-TAK-025

: TESIS "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUANCAYO - 2023" PROYECTO

SOLICITANTE : Bach. TURCO ALEJO, Kevin Andrés : lunes, 23 de Octubre de 2023 FECHA DE ENSAYO FECHA DE EMISION + sábedo, 28 de Octubre de 2023

INFORME DE LA REALIZACION DEL METODO DE ENSAYO ESTANDAR PARA ENSAYO CON ESCLEROMETRO BASADO EN ASTM C805/C805 M-08

UBICACIÓN DEL ELEMENTO	1er piso Columna C-04
FECHA DE VACEADO	9/10/2023
EDAD DEL CONCRETO	28 dias
ÁNGULO DE IMPACTO	a=0°
ESISTENCIA A COMPRESIÓN ESPECIFICADA	245 kg/cm ²
	37
	35
	36
	36
	36
LECTURAS	36
LECTURAS	36
	36
	36
	35
	36
	35
PROMEDIO DE LECTURAS	35.82
RESISTENCIA OBTENIDA EN kg/cm²	288.20

SEL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD (GUÍA PERUANA INDECOPI: GP:004: 1993).

"LOS RESULTADOS DE RESISTENCIA CON EL ENSAYO DE ESCLEROMETRÍA SOLO SON REFERENCIALES, ESTA PRUEBA SOLO MIDE UNIFORMIDAD. PARA TENER UN RESULTADO MÁS REALISTA SE DEBERÁ EJECUTAR ENSAYOS DESTRUCTIVOS COMO POR EJEMPLO: EXTRACCIÓN DIAMANTINA.
""LA RESISTENCIA DEL ELEMENTO TIENE UNA VARIACIÓN DE UN ± 15%, POR LO QUE DEBERA OBSERVARSE PARA LOS FINES PERTINENTES.

EXPEDIENTE

: TESIS "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUANCAYO - 2023" PROYECTO

: Bach. TURCO ALEJO, Kevin Andrés : lunes, 23 de Octubre de 2023 SOLICITANTE FECHA DE ENSAYO FECHA DE EMISION ± sábedo, 28 de Octubre de 2023

INFORME DE LA REALIZACION DEL METODO DE ENSAYO ESTANDAR PARA ENSAYO CON ESCLEROMETRO BASADO EN ASTM C805/C805 M-08

UBICACIÓN DEL ELEMENTO	ter piso Columna C-04
FECHA DE VACEADO	9/10/2023
EDAD DEL CONCRETO	28 dias
ÁNGULO DE IMPACTO	a=0°
SISTENCIA A COMPRESION ESPECIFICADA	245 kg/cm ²
	35
	35
	34
	36
	35
LECTURAS	35
LECTURAS	35
	35
	35
	35
	35
	36
PROMEDIO DE LECTURAS	35.04
RESISTENCIA OBTENIDA EN kg/cm²	280.42

SEL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD (GUÍA PERUANA INDECOPI: GP:004: 1993).

"LOS RESULTADOS DE RESISTENCIA CON EL ENSAYO DE ESCLEROMETRÍA SOLO SON REFERENCIALES, ESTA PRUEBA SOLO MIDE UNIFORMIDAD. PARA TENER UN RESULTADO MÁS REALISTA SE DEBERÁ EJECUTAR ENSAYOS DESTRUCTIVOS

EXPEDIENTE : ES-TAK-027

: TESIS "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUANCAYO - 2023" PROYECTO

SOLICITANTE : Bach. TURCO ALEJO, Kevin Andrés : lunes, 23 de Oclubre de 2023 FECHA DE ENSAYO FECHA DE EMISION ± sábedo, 28 de Octubre de 2023

INFORME DE LA REALIZACION DEL METODO DE ENSAYO ESTANDAR PARA ENSAYO CON ESCLEROMETRO BASADO EN ASTM C805/C805 M-08

UBICACIÓN DEL ELEMENTO	1er piso Columna C-04
FECHA DE VACEADO	9/10/2023
EDAD DEL CONCRETO	28 dias
ÁNGULO DE IMPACTO	a=0°
ESISTENCIA A COMPRESION ESPECIFICADA	245 kg/cm ²
	37
	36
	35
100	36
	36
EDAD DEL CONCRETO ANGULO DE IMPACTO ISTENCIA A COMPRESIÓN ESPECIFICADA LECTURAS PROMEDIO DE LECTURAS	35
EDAD DEL CONCRETO ANGULO DE IMPACTO INTENCIA A COMPRESIÓN ESPECIFICADA LECTURAS PROMEDIO DE LECTURAS ISISTENCIA OBTENIDA EN	35
	35
	34
	36
	32
	33
EDAD DEL CONCRETO ANGULO DE IMPACTO SISTENCIA A COMPRESIÓN ESPECIFICADA LECTURAS PROMEDIO DE LECTURAS ESISTENCIA OBTENIDA EN	34.93
RESISTENCIA OBTENIDA EN kg/cm²	279.33

SEL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD (GUÍA PERUANA INDECOPI: GP:004: 1993).

"LOS RESULTADOS DE RESISTENCIA CON EL ENSAYO DE ESCLEROMETRÍA SOLO SON REFERENCIALES, ESTA PRUEBA SOLO MIDE UNIFORMIDAD. PARA TENER UN RESULTADO MÁS REALISTA SE DEBERÁ EJECUTAR ENSAYOS DESTRUCTIVOS COMO POR EJEMPLO: EXTRACCIÓN DIAMANTINA.
""LA RESISTENCIA DEL ELEMENTO TIENE UNA VARIACIÓN DE UN ± 15%, POR LO QUE DEBERA OBSERVARSE PARA LOS FINES PERTINENTES.

EXPEDIENTE

: TESIS "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUANCAYO - 2023" PROYECTO

SOLICITANTE : Bach. TURCO ALEJO, Kevin Andrés : lunes, 23 de Oclubre de 2023 FECHA DE ENSAYO FECHA DE EMISION ± sábedo, 28 de Octubre de 2023

INFORME DE LA REALIZACION DEL METODO DE ENSAYO ESTANDAR PARA ENSAYO CON ESCLEROMETRO BASADO EN ASTM C805/C805 M-08

UBICACIÓN DEL ELEMENTO	1er piso Columna C-04		
	of the last of the		
FECHA DE VACEADO	9/10/2023		
EDAD DEL CONCRETO	28 dias		
ÁNGULO DE IMPACTO	a=0°		
ESISTENCIA A COMPRESIÓN ESPECIFICADA	245 kg/cm ²		
	35		
	37		
	35		
LECTURAS	37		
	36		
LECTURAL	36		
LECTURAS	35		
	36		
	36		
	35		
	36		
	36		
ANGULO DE IMPACTO SISTENCIA A COMPRESIÓN ESPECIFICADA LECTURAS PROMEDIO DE LECTURAS	35.82		
RESISTENCIA OBTENIDA EN kg/cm²	288.20		

SEL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD (GUÍA PERUANA INDECOPI: GP:004: 1993).

"LOS RESULTADOS DE RESISTENCIA CON EL ENSAYO DE ESCLEROMETRÍA SOLO SON REFERENCIALES, ESTA PRUEBA SOLO MIDE UNIFORMIDAD. PARA TENER UN RESULTADO MÁS REALISTA SE DEBERÁ EJECUTAR ENSAYOS DESTRUCTIVOS

COMO POR EJEMPLO: EXTRACCIÓN DIAMANTINA.
""LA RESISTENCIA DEL ELEMENTO TIENE UNA VARIACIÓN DE UN ± 15%, POR LO QUE DEBERA OBSERVARSE PARA LOS FINES PERTINENTES.

EXPEDIENTE : ES-TAK-029

: TESIS "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUANCAYO - 2023" PROYECTO

: Bach. TURCO ALEJO, Kevin Andrés : lunes, 23 de Octubre de 2023 SOLICITANTE FECHA DE ENSAYO FECHA DE EMISION ± sábedo, 28 de Octubre de 2023

INFORME DE LA REALIZACION DEL METODO DE ENSAYO ESTANDAR PARA ENSAYO CON ESCLEROMETRO BASADO EN ASTM C805/C805 M-08

UBICACIÓN DEL ELEMENTO	ter piso Columna C-04	
FECHA DE VACEADO	9/10/2023	
EDAD DEL CONCRETO	28 dias	
ÁNGULO DE IMPACTO	a=0°	
ANGULO DE IMPACTO ISTENCIA A COMPRESIÓN ESPECIFICADA LECTURAS	245 kg/cm ²	
	35	
	34	
LECTURAS	35	
	34	
	34	
ESPECIFICADA	35	
	35	
	35	
	37	
	36	
	35	
	35	
PROMEDIO DE LECTURAS ESISTENCIA OBTENIDA EN	35.03	
ESISTENCIA OBTENIDA EN kg/cm²	280.30	

SEL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD (GUÍA PERUANA INDECOPI: GP:004: 1993).

"LOS RESULTADOS DE RESISTENCIA CON EL ENSAYO DE ESCLEROMETRÍA SOLO SON REFERENCIALES, ESTA PRUEBA SOLO MIDE UNIFORMIDAD. PARA TENER UN RESULTADO MÁS REALISTA SE DEBERÁ EJECUTAR ENSAYOS DESTRUCTIVOS COMO POR EJEMPLO: EXTRACCIÓN DIAMANTINA.
""LA RESISTENCIA DEL ELEMENTO TIENE UNA VARIACIÓN DE UN ± 15%, POR LO QUE DEBERA OBSERVARSE PARA LOS FINES PERTINENTES.

EXPEDIENTE

: TESIS "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUANCAYO - 2023" PROYECTO

SOLICITANTE : Bach. TURCO ALEJO, Kevin Andrés : lunes, 23 de Oclubre de 2023 FECHA DE ENSAYO FECHA DE EMISION ± sábedo, 28 de Octubre de 2023

INFORME DE LA REALIZACION DEL METODO DE ENSAYO ESTANDAR PARA ENSAYO CON ESCLEROMETRO BASADO EN ASTM C805/C805 M-08

UBICACIÓN DEL ELEMENTO	1er piso Columna C-04		
FECHA DE VACEADO	9/10/2023		
EDAD DEL CONCRETO	28 dias		
ÁNGULO DE IMPACTO	a=0°		
ESISTENCIA A COMPRESIÓN ESPECIFICADA	245 kg/cm ²		
	35		
	35		
	37		
LECTURAS	35		
	35		
ÁNGULO DE IMPACTO ESISTENCIA A COMPRESIÓN ESPECIFICADA LECTURAS PROMEDIO DE LECTURAS	35		
LECTURAS	36		
	35		
EDAD DEL CONCRETO ANGULO DE IMPACTO ISTENCIA A COMPRESION ESPECIFICADA LECTURAS PROMEDIO DE LECTURAS	35		
	36		
	35		
	36		
ANGULO DE IMPACTO SISTENCIA A COMPRESIÓN ESPECIFICADA LECTURAS PROMEDIO DE LECTURAS ESISTENCIA OBTENIDA EN	35.45		
RESISTENCIA OBTENIDA EN kg/cm²	284.50		

SEL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD (GUÍA PERUANA INDECOPI: GP:004: 1993).

"LOS RESULTADOS DE RESISTENCIA CON EL ENSAYO DE ESCLEROMETRÍA SOLO SON REFERENCIALES, ESTA PRUEBA SOLO MIDE UNIFORMIDAD. PARA TENER UN RESULTADO MÁS REALISTA SE DEBERÁ EJECUTAR ENSAYOS DESTRUCTIVOS

COMO POR EJEMPLO: EXTRACCIÓN DIAMANTINA.
""LA RESISTENCIA DEL ELEMENTO TIENE UNA VARIACIÓN DE UN ± 15%, POR LO QUE DEBERA OBSERVARSE PARA LOS FINES PERTINENTES.

EXPEDIENTE : ES-TAK-031

TESIS "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUANCAYO - 2023" PROYECTO

: Bach. TURCO ALEJO, Kevin Andrés : lunes, 23 de Octubre de 2023 SOLICITANTE FECHA DE ENSAYO FECHA DE EMISION sábado, 28 de Octubre de 2023

INFORME DE LA REALIZACION DEL METODO DE ENSAYO ESTANDAR PARA ENSAYO CON ESCLEROMETRO BASADO EN ASTM C805/C805 M-08

UBICACIÓN DEL ELEMENTO	1er piao Columna C-04		
FECHA DE VACEADO	9/10/2023		
EDAD DEL CONCRETO	26 dias c=0°		
ÁNGULO DE IMPACTO			
ESISTENCIA A COMPRESIÓN ESPECIFICADA	245 kg/cm ²		
	35		
	36		
	36		
The state of the s	35		
	35		
LECTURAS	36		
LECTURAS	36		
	35		
	35		
	35		
	35		
	36		
PROMEDIO DE LECTURAS	35.42		
RESISTENCIA OBTENIDA EN kg/cm²	284.20		

OBSERVACIONES

**LO PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA
REPRODUCCIÓN SEA EN SU TOTALIDAD (GUÍA PERUANA INDECOP): GP:004: 1993).

**LOS RESULTADOS DE RESISTENCIA CON EL ENSAYO DE ESCLEROMETRÍA SOLO SON REFERENCIALES, ESTA PRUEBA SOLO
MIDE UNIFORMIDAD, PARA TENER UN RESULTADO MÁS REALISTA SE DEBERÁ EJECUTAR ENSAYOS DESTRUCTIVOS COMO POR EJEMPLO: EXTRACCIÓN DIAMANTINA.
***LA RESISTENCIA DEL ELEMENTO TIENE UNA VARIACION DE UN ± 15%, POR LO QUE DEBERA OBSERVARSE PARA LOS FINES-PERTINENTES.

EXPEDIENTE

: TESIS "PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PULSO ULTRASÓNICO, HUANCAYO - 2023" PROYECTO

SOLICITANTE : Bach. TURCO ALEJO, Kevin Andrés : lunes, 23 de Octubre de 2023 FECHA DE ENSAYO FECHA DE EMISION ± sábedo, 28 de Octubre de 2023

INFORME DE LA REALIZACION DEL METODO DE ENSAYO ESTANDAR PARA ENSAYO CON ESCLEROMETRO BASADO EN ASTM C805/C805 M-08

BICACIÓN DEL ELEMENTO	1er piso Columna C-04
FECHA DE VACEADO	9/10/2023
EDAD DEL CONCRETO	28 dias
ANGULO DE IMPACTO SISTENCIA A COMPRESIÓN ESPECIFICADA LEGTURAS PROMEDIO DE LECTURAS	a=0°
	245 kg/cm ²
	35
	36
	34
	- 33
	35
	34
LECTURAS	34
	34
	34
	34
	34
	34
PROMEDIO DE LECTURAS	34.21
ANGULO DE IMPACTO ESISTENCIA A COMPRESIÓN ESPECIFICADA LECTURAS	282.10

OBSERVACIONES

**L PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD (GUÍA PERUANA INDECOPI: GP:004: 1993).

**LOS RESULTADOS DE RESISTENCIA CON EL ENSAYO DE ESCLEROMETRÍA SOLO SON REFERENCIALES, ESTA PRUEBA, SOLO MIDE UNIFORMIDAD. PARA TENER UN RESULTADO MÁS REALISTA SE DEBERÁ EJECUTAR ENSAYOS DESTRUCTIVOS COMO POR EJEMPLO: EXTRACCIÓN DIAMANTINA.

***LA RESISTENCIA DEL ELEMENTO TIENE UNA VARIACION DE UN ± 15%, POR LO QUE DEBERA OBSERVARSE PARA LOS FINES PERTINENTES.

101 - TOC - TAKA - 001 CERTIFICADO : Bach, TURCO ALEJO, KEVIN ANDRES PROPIETARIO TESIS PRECISIÓN EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLLMNAS EMPLEANDO EL ENSAYO DE PLA SO ULTRASONICO. HJANCAYO - 2023*

PROYECTO

REALIZADOS Y CURADOS POR EL CUENTE EN LABORATORIO

: jueves, 19 de Octubre de 2023 FECHA DE EMISIÓN

MUESTRED

RESULTADOS DE ENSAYO DE RESISTENCIA A LA COMPRESIÓN AXIAL DE TESTIGOS CILÍNDRICOS DE CONCRETO (Norma de Ensayo ASTM C38/C39M - 20)

Ē	IDENTIFICACIÓN DE LA MUESTRA	7 E	PECHA DE MUESTREO	PECHA DE ENSAYO	EDAD (Diasi)	DIÁMETRO (D) ((cn)	ALTURA (940 (0m)	RELACIÓN (HD)	PACTOR DE CORRECIÓN	969	CARGA MÁXIMA (10)	ESFUERZO COMPRESION AXIAL Hatter	TIPO DE FALLA
-	COLUMBA COL / ROTURA DE TESTIGOS	246	8102023	5202-01-05	~	10.00	20.10	2.0	1.0	3.887	155.89	202.14	N
274	COLUMNA C-01 / ROTURA DE TESTIGOS	245	8100023	1810/2023	2	10.00	20.00	2.0	1.0	3.890	155.89	202.13	N
	COLUMNA C-01 / PSCTLINA DE TESTIDOS	246	\$10002	1610/2023	2	10.00	20:00	2.0	1.0	3.888	155.84	202.33	ND.
*	COLUMNA COL / ROTURA DE TESTIGOS	348	\$10000	16102023	7	10,00	20.10	2.0	1.0	3.891	158.70	203.45	24
*	COLUMNA, C-61 / ROTI, RA DE TESTIGOS	240	S-10/2023	100,00101	1	10.00	20.10	2.0	1.0	3.890	157.39	204.34	-N
	COLUMNA, C-01 / HOTURA DE TESTIGOS	245	9-10/2023	18/18/2023	1	10,00	20.00	2.0	1.0	3.901	156.71	203.46	34
*	COLUMNA C-OF / POTURA DE TESTIDOS	245	0110/2023	16/10/2023	1	10,00	20.10	2.0	1.0	3.903	156.08	202.61	79
.0	COLUMNA COLVROTURA DE TESTIGOS	245	\$10000	16/10/2023	h	10.00	20.10	2.0	10	3.867	158.04	202.59	:01

NOTA:

1) Corru elementins de distribución de carga en los estimmos de las lexiligas as emplearen abrethadibas de Mesprens as confortidad con la Nome ASTM C12314C123143-10*.

EL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCIRSE SIN AUTORIZACIÓ 864-1983;

LABORATORIO DE ENSAYOS DE MATERIALES, SUELOS Y CONCRETO

:01 - TGC - TAKA - 002 CERTIFICADO

Bech, TURCO ALEJO, KEVIN ANDRES PROPIETABLO

TESS PRECISION EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PLUSO ULTRASÓNICO, HUANCAYO - 2027 PROYECTO

REALIZADOS Y CURADOS POR EL CLIENTE EN LABORATORIO MUESTREO

; jueves, 26 de Octubre de 2023 FECHA DE EMISIÓN

RESULTADOS DE ENSAYO DE RESISTENCIA A LA COMPRESIÓN AXIAL DE TESTIGOS CILINDRICOS DE CONCRETO (Norma de Ensayo ASTM CSECSAM - 20)

						mounts of charge As im concount to	-	(A) - 100					
N.	IDENTIFICACIÓN DE LA MUESTRA	Fe Agam)	FECHA DE MJESTREO	FECHA DE ENSAYO	EDAD	DIAMETRO	(D) ALTURA (H)	RELACIÓN (HD)	FACTOR DE CORRECIÓN	PES0 %d	CARGA RAXIMA (KN)	ESTUDIZO COMPRESIÓN AXIAL Ogites ²⁷	THE
-	COLUMNA COLL ROTURA DE TRATIGOS	348	0102023	23/10/2023	22	10.00	20.10	2.0	0.1	3.921	172.00	16,622	2
24	COLUMN COLUMN DE	245	extended	2331042623	2	10.00	20.00	2.0	1.0	3,902	172.53	224.00	24
n	COLUMNA COLTRICTION DE TESTIGOS	348	SZGEDELN	1200001-52	2	10.00	20.00	2.0	1.0	3,900	172.30	223,70	2
4	COLUMNA C-O1 I ROTLING DE YESTIGOS	245	9102023	23/10/2023	2	10.00	20.10	2.0	1.0	3.899	172.08	223.41	2
n	DOLUMAN COLEBOTISH DE TESTIGOS	343	841002003	23000011155	2	10.00	20.10	2.0	1.0	3,905	172.82	224.38	6
	COLUMN C-01 / ROTURA DE TISSTIGOS	245	\$102023	2510/2023	7	10.00	20.00	2.0	1.0	3.906	171.39	223.29	~
*	COLUMNA G-D1 / ROTLEN DG TESTIGOS	248	E202014	23/10/2023	×	10.00	20,10	2.0	1.0	3.912	173.12	224.77	~
	COLUMNA COL/ ROTURA DE TIERTIGOS	345	919/2023	23/10/2023	35	10.00	20.10	2.0	1.0	3,902	172.99	224.58	2

MOTIS.

1. Corro elementos de distribución de usaga en tito estemnos de tos bestigos so empleación almohalditas de Mecones en conformistar con la Harma ASTM C1231/C1231M-10*

EL PRESENTE DOCUMENTO NO DEBERÁ REPRODUCINSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO, SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD (SUÍA PERUMAA INDECIDE GP. 944-193).

LABORATORIO DE ENSAYOS DE MATERIALES, SUELOS Y CONCRETO

: 01 - TQC - TAKA - 003 CERTIFICADO Bech. TURCO ALEJO, KEVIN ANDRES PROPIETABLO

1 TESS PRECISION EN LA NEDICIÓN DE LA RESISTENCIA DEL CONCISETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PLUSO ULTRASÓNICO, HUMANCAYO - 2027 PROYECTO

REALIZADOS Y CURADOS POR EL CLIENTE EN LABORATORIO ; jueves, 2 de Noviembre de 2023 FECHA DE EMISIÓN MUESTREO

RESULTADOS DE ENSAYO DE RESISTENCIA A LA COMPRESIÓN AXIAL DE TESTIGOS CILINDRICOS DE CONCRETO (Morma de Ensayo, ASTM GRECARM - 20)

The Wildestide Part Part							Section Section	1000000						
245 PRIORIZED 201 (10.00) 20.00 2.0 1.0	HEN	DENTIFICACIÓN DE LA MUESTRA	P.R.	FECHA DE MUESTREO	FECHA DE ENSAVO	CDAD	DIÁMETRO (D)	ALTURA (HI) (cm)	RELACIÓN (HD)	FACTOR DE CORRECIÓN	310	CARGA NÀXIMA (KN)	58	PALL A
245 WHERERS 30010-2023 21 10.00 20.00 2.0 1.0 1.896 182.14 245 WHERERS 30110-2022 21 10.00 20.00 2.0 1.0 1.896 182.14 245 WHERERS 30110-2022 21 10.00 20.00 2.0 1.0 1.89.0 182.00 245 WHERERS 30110-2022 21 10.00 20.00 2.0 1.0 3.907 182.10 244 WHERERS 21 10.00 20.00 2.0 1.0 3.938 182.14 245 WHERERS 21 10.00 20.00 2.0 1.0 3.938 182.10 245 WHERERS 20.10 20.00 2.0 1.0 3.938 182.11	-	COLUMNA C-OL / ROTURA DE TESTIDOS	245	E20000140	2010/2023	22	10.00	20.00	2.0	1.0	3.900	182.13	236.48	44
245 entrators 201 10.00 20.00 2.0 1.0 18.88 161.85 246 entrators 3010-2023 21 10.00 20.00 2.0 1.0 1.80.7 182.06 245 entrators 3010-2023 21 10.00 20.00 2.0 1.0 3.921 182.10 245 entrators 3010-2023 21 10.00 20.00 2.0 1.0 3.826 182.10 244 entrators 3010-2023 21 10.00 20.00 2.0 1.0 3.936 182.10 346 entrators 3010-00203 21 10.00 20.10 2.0 1.0 3.936 192.11	e,	COLUMN GOLI NOTURA DE TERMODE	245	9102029	30/10/2023	N	10.00	20.00	2.0	1.0	3,588	182.14	236.48	64
245 BTIGGORD 30TIGGORD 21 10.00 20.30 2.0 1.0 3.907 182.06 245 BTIGGORD 30TIGGORD 27 10.00 20.00 2.0 1.0 3.821 182.10 345 BTIGGORD 30TIGGORD 20.00 20.00 2.0 1.0 3.888 182.14 345 BTIGGORD 27 10.00 20.00 2.0 1.0 3.936 182.10 346 BTIGGORD 27 10.00 20.10 20 1.0 3.936 192.11	er	COCUMIN COLVROTURADS TESTIGOR	245	enterators	30/10/2023	5	10.00	20.00	2.0	1.0	3.880	181.85	236.10	8
245 Britograph 201 10.00 20.00 2.0 1.0 3.821 182.10 246 Britograph 247 10.00 20.00 2.0 1.0 3.888 182.14 246 Britograph 27 10.00 20.00 2.0 1.0 3.936 182.10 246 Britograph 27 10.00 20.00 2.0 1.0 3.936 182.10 246 Britograph 27 10.00 20.10 2.0 1.0 3.936 192.11	4	COLUMNA C-01 / NOTURS, DE TERMODE	245	8302018	3010/2023	N	10.00	20.10	2.0	1.0	3,907		236.36	2
2445 WINDOWS 200 (100) 200 (100) 200 (100) 200 (100) 200 (100) 100 (er.	COLUMN COLI ROTISM DE TESTIGOS	245	K200001HB	30102023	5	10.00	20.00	2.0	1.0	3.921	182,10	236.42	*
245 Britostos Suritocros 21 10.00 20.00 2.0 1.0 3505 162.10	0	COLUMN COLFROTARA DE TERROCE	310	6410/2023	30/10/2023	N	10.00	20.00	2.0	1.0	3.886	1	236.40	107
244 SHOZECS SOFIEZECS 21 10.00 20.10 2.0 1.0 3.924 162.11	*	COLUMNA GOL ROTURA DE TESTIDOR	245	8202023	30/10/2023	N	10.00	20.00	2.0	1.0	3.935	182.10	236.42	5
	0	COLUMN COL/ROTURN DE TIETHOOS	245	8102023	30102023	N	10.00	20.10	2.0	1.0	3,924	162.11	230.43	2

MOTA:
1. Como elementros de distribución de carga en tas estermas de las leságos se emplearan almohasillas de Nespreno en combonidas con la Norma ASTIVICIZZICIZZIDA-HP

EL PRESENTE DOCUMENTO NO GEBERÁ REPRODUCINSE SIN AUTORIZACIÓN ESCRITA DEL LABORATORIO. SALVO QUE LA REPRODUCCIÓN SEA EN SU TOTALIDAD (SUIA PERUANA INDECOR); GP: 04.1931.

LABORATORIO DE ENSAYOS DE MATERIALES, SUELOS Y CONCRETO

: 01 - TOC - TAKA - 004 CERTIFICADO Bach, TURCO ALEJO, KEVIN ANDRES PROPIETARIO TESIS PRECISION EN LA MEDICIÓN DE LA RESISTENCIA DEL CONCRETO EN COLUMNAS EMPLEANDO EL ENSAYO DE PLESO ULTRASONICO, HUANCAYO - 2023" PROYECTO

REALIZADOS Y CURADOS POR EL CLIENTE EN LABORATORIO jueves, 9 de Noviembre de 2023 FECHA DE EMISIÓN MUESTREO

RESULTADOS DE ENSAYO DE RESISTENCIA A LA COMPRESIÓN ANAL DE TESTIGOS CILINDRICOS DE CONCRETO (Norma de Ensayo ASTM C391C38M - 20)

A MA ESPUERZO COMPRESIÓN AXIAL (Agitor" 251.65 252.02 251.51 251.64 250.00 251.44 252.60 253,24 CARGA MAXIMA (1010) 194,11 193.72 193.83 193.62 183 02 193.67 194.06 185.05 F80 3.911 3,912 3,900 3.825 3.924 3.025 3.914 3.900 FACTOR DE CORRECIÓN 3.0 1,0 1.0 1.0 0.0 1,0 1.0 1,0 PELACIÓN 2.0 2.0 5.0 2.0 2.0 20 5.0 5.0 ALTURA (H) (Cm) 20,00 20.00 20.00 20.00 30.00 20.00 20.00 20,10 DIÁMETRO (0) 10.00 10.00 10.00 10.00 10.00 10.00 10,00 10.00 EDAO (Dimit) 23 8 20 2 2 20 8 2 67172023 67112023 671 (2023 PECHA DE ENSAYO 01112025 61112023 6/15/2023 01112023 6210011-9 FECHA DE MUESTREO 9/10/2023 9102023 9/10/2023 0/10/2023 9/10/2023 D/10/2023 9/10/2023 910/2023 Pre (Agrim?) 245 245 345 345 343 245 8 989 COLLARIA COT FROTISA DE TESTIGOS COLLARIA COT FROTISA DE TESTIGOS COLLARIA COT FROTISA DE TESTIGOS TESTIGOS TESTIGOS GOLUMBA C-01-ROTURA DE TESTIGOS DOLUMBA C-01-ROTURA DE TESTIGOS COLLABA C-D1 / HOTUMA DE TESTIBOS COLUMN COL ROTUNOE IDENTIFICACIÓN DE LA MUESTRA MEM

96

O. ė,

amobadillas de Neoprero en conformidad, con la Norma ASTALC123 CC123 M-10-MOTAL

11 Como elementos de distrituición de carga en ins extremos de los testigos se empleanol

11 Como elementos de distrituición de carga en ins.

10

ee OL:

(IIIII)

f. Instrumentos validados por juicio de expertos

			Valoración de 0 a 1
Descripción general			
 Ubicación y localizac 	ión de la etapa de Campo		
Ubicación:	Paraje Auq s/n Sicaya	uispuquio Mayopampa	
Distrito:	El Tambo		100
Provincia	Huancayo		
Departamento	Junin		
II. Tipo de elementro es	ructural		Val Village
Columnas cuadradas			1.00
III. Sección	Altura	Tipo de encofrado	1.00
50x50cm	3.00 m	Metálico	0.00
IV. Resistencia a compre	sión especificada (diseño de n	nezela)	KEEK
Fe=245 kg/cm ²			700
V. Tipo de concreto			A Sec. 1
Premezclado			1.00
Variable: Resistencia a c	ompresión del concreto con	f'c=245 kg/cm ²	
D1: Ensuyo de escleromet	ria		
11: Número de repetis	riones unidades		1,00
12: Îndice de rebote	-		
13: Estimación del l'o			
D2: Ensayo de resistencia cilindricos	a compressión del concreto en	especimenes	
II: Carga máxima	EN		
12: Peso de la unidad	kg		4.00
13: Esfuerzo a compe			
D3: Extracción diamantina			
II: Carga máxima	KN		
12: Peso de la unidad	kg		4.00
13: Esfuerzo a compre			_
D4: Ensayo de velocidad o			
II: Longitud de recon			
12: Tiempo de recorri	21050		4.00
13: Esfaerzo a compe			
10.00	Total de valoración		0.9.00
PRO	MEDIO DE VALORACIÓ	N	4.00
Apelli	dos y Nombres: #dwt	himse bene	
	Profesión: Zuga		
R	egistro CIP No: 198 89	The state of the s	
Cor	reo electrónico: L Lui	pegagner com	
	Celular: 96504	0 102	

EDERN DUST CEPAS NORMEDODIN ON THE

				Valoración de 0 a 1
Des	scripción general		- 0	
t.	Ubicación y localización de la etapa de	e Campo		
	Ubicación:	Paraje Auquis n'n Sicaya	ouquio Mayopampa	
	Distrito:	El Tambo		4.55
	Provincia	Huancayo		400
	Departamento	Junin		
II.	Tipo de elementro estructural	Aller		
	Columnas cuadradas		·	100
III.	Sección	Altura	Tipo de encofrado	4 20020
	50x50cm	3.00 m	Metálico	1.00
IV.	Resistencia a compresión especificada	(diseño de mez	cla)	
	f'c=245 kg/cm ²			1.00
V.	Tipo de concreto			OWNERS.
	Premezclado			100
Var	riable: Resistencia a compresión del co	oncreto con f'e	245 kg/cm ²	
D):	Ensayo de esclerometria			
	II: Número de repeticiones	unidades		
	12: Índice de rebote	+		4.00
	13: Estimación del l'e	kg/cm2		No. of the
	Ensayo de resistencia a compresión del ndricos	concreto en esp	ecimenes	
	11: Carga māxima	KN		0.80
	12: Peso de la unidad	kg		0.30
	13: Esfuerzo a compressión	kg/cm ²		
03:	Extracción diamantina			
	11: Carga máxima	KN		0.85
	12: Peso de la unidad	kg		0.80
	I3: Esfuerzo a compresión	kg/cm²		
D4:	Ensayo de velocidad de pulso ultrasoni	co		
	II: Longitud de recorrido	cm		0.85
	12: Tiempo de recorrido	minutos		~ 33
	D: Esfuerzo a compresión	kg/cm ^T		
	Total de valor	ración		8.5
	PROMEDIO DE VA	LORACIÓN		0.94
	Apellidos y Nombres:	ZANNE ?	hopes Hubes	
	Profesión:	TAGENE	en will	
	Registro CIP No:	222365		
	Correo electrónico:	Waster	HOBHAIL WI	NA.

Carrier Profes Horas

-				Valoración de 0 a 1
Des	scripción general			
I.	Ubicación y localización de la o			
	Ubicación:		puquio Mayopampa	
	Distrito:	s/n Sicaya		1.00
	Provincia .	El Tambo		
	Departamento	Huancayo		
II.	Tipo de elementro estructural	1-hebric		7 a.m. a.m.
-	Columnas cuadradas			0.80
	-2.000000000000000000000000000000000000		Tipo de	
Ш.	Sección	Altura	encotrado	0.70
	50x50cm	3.00 m	Metálico	
IV.	Resistencia a compresión especi	ificada (diseño de mez	cla)	0.50
	f'c=245 kg/cm ²			0.00
V.	Tipo de concreto			0.80
	Premezciado			0.00
	iable: Resistencia a compresión	del concreto con l'e-	-245 kg/cm ²	
DI:	Ensayo de esclerometria	Transfer and the		
Н	11: Número de repeticiones	unidades		
	12: Îndice de rebote		- 1	1.00
na.	13: Estimoción del f'e	kg/cm2		
cilin	Ensayo de resistencia a compresi dricos	on dei concreto en esp	ecimenes	
	II: Carga máxima	KN		1.00
	12: Peso de la unidad	kg		1.00
	13: Esfuerzo a compresión	kg/cm ²		
D3:	Extracción diamantina			
	II: Carga máxima	KN		1.00
	12: Peso de la unidad	kg		1.00
	13: Esfuerzo a compresión	kg/cm ²		
04:	Ensayo de velocidad de pulso ulti	rasónico		
	11: Longitud de recorrido	CUB		4.00
	12: Tiempo de recorrido	minutos		1.00
	13: Esfoerzo a compresión	kg/cm ²		
	Total de	valoración		7.8
	PROMEDIO D	E VALORACIÓN		0.87

Apellidas y Nambres: Contufos Allo VENSIO Pulvo Aquitute

Profesión: INCOLLISTO CIVIL

Registro CIP Nº: G1150

Correo electrónico: flingcomptano del hotamakion

Celular: 164059216

PLINIO CLEMENTE O ALPICKANO VELASCO INVIENTERIO CIVIL. Bieg, de processo de Ingrinerios Nº 61950