UNIVERSIDAD PERUANA LOS ANDES

FACULTAD DE INGENIERÍA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

TESIS:

DESEMPEÑO DE LA MEZCLA ASFÁLTICA EN FRIO CON ADICIÓN DE POLÍMEROS DE ICHU

PARA OPTAR EL TÍTULO

PROFESIONAL DE INGENIERO CIVIL

AUTOR: Bach. David Marcelino PINCO LAYME

ASESOR: Mg. Jesús Iden CARDENAS CAPCHA

LÍNEA DE INVESTIGACIÓN: Nuevas Tecnologías y Procesos

HUANCAYO – PERÚ

2024

HOJA DE CONFORMIDAD DE MIEMBROS DEL JURADO

Ι	r. Rubén Darío		
	Preside	ente	
	Jura	do	
	Jura	do	
	Jura	do	
	lg. Leonel Untiv	D. 2-1	

ASESOR

ING. Mg. JESUS IDEN CARDENAS CAPCHA

DEDICATORIA

A mi bella madre por ser la pieza fundamental en mi vida y en mi educación, por acompañarme con amor y paciencia que la caracterizaba, Magdalena Laime Ponce, que hoy en día me cuida y bendice.

Y también quiero dedicar esta tesis a mi persona por el esfuerzo, dedicación y tiempo que me costo lograr cada peldaño de mi formación profesional.

Bach. Pinco Layme, David Marcelino

AGRADECIMIENTO

Mi reconocimiento y gratitud profunda a mis maestros, que me inculcaron el amor y dedicación a la profesión. Además, por su profesionalismo y dedicación al Mg. Martin Felipe Chumpitaz Camarena quien con su apoyo, consejos y Asesoría logre culminar la presente Tesis.

Bach. Pinco Layme, David Marcelino

CONSTANCIA DE SIMILITUD

N ° 0303 - FI -2024

La Oficina de Propiedad Intelectual y Publicaciones, hace constar mediante la presente, que la **Tesis**; titulada:

DESEMPEÑO DE LA MEZCLA ASFÁLTICA EN FRIO CON ADICIÓN DE POLÍMEROS DE ICHU

Con la siguiente información:

Con Autor(es) : Bach. PINCO LAYME DAVID MARCELINO

Facultad : INGENIERÍA

Escuela Académica : INGENIERÍA CIVIL

Asesor(a) : Mg. JESÚS IDEN CÁRDENAS CAPCHA

Fue analizado con fecha **05/09/2024**; **con 145 págs.**; con el software de prevención de plagio (Turnitin); y con la siguiente configuración:

Excluye Bibliografía.

Excluye citas.

X

Excluye Cadenas hasta 20 palabras.

Otro criterio (especificar)

El documento presenta un porcentaje de similitud de 25 %.

En tal sentido, de acuerdo a los criterios de porcentajes establecidos en el artículo N°15 del Reglamento de uso de Software de Prevención de Plagio Versión 2.0. Se declara, que el trabajo de investigación: *Si contiene un porcentaje aceptable de similitud.*

Observaciones:

En señal de conformidad y verificación se firma y sella la presente constancia.

Huancayo, 05 de septiembre del 2024.

MTRA. LIZÉT DORIELA MANTARI MINCAMI

JEFA

Oficina de Propiedad Intelectual y Publicaciones

INDICE DE CONTENIDOS

DEDICATORIA	IV
AGRADECIMIENTO	V
INDICE DE CONTENIDOS	VI
ÍDICE DE TABLAS	IX
ÍNDICE DE GRÁFICOS	X
ÍNDICE DE FIGURAS	XI
RESUMEN XII	
ABSTRACT	XIII
INTRODUCCIÓN	XIV
CAPÌTULO I	16
EI PROBLEMA DE LA INVESTIGACIÓN	16
1.1. Descripción de la realidad problemática	16
1.2. Formación del problema	18
1.2.1. Problema general	18
1.2.2. Problema Específicos	18
1.3. Justificación	19
1.3.1. Social	19
1.3.2. Teórica	20
1.3.3. Metodología	20
1.4. Objetivos	20
1.4.1. Objetivo general	20
1.4.2. Objetivos específicos	20
CAPITULO II	22
MARCO TEÓRICO	22
2.1 Antecedentes de estudios	22
2.1.1 Antecedentes Nacionales	22
2.1.2 Antecedentes Internacionales	25
2.2 BASES TEORICAS	27
2.2.1 El Asfalto	27
2.2.1.1 La Distribución de los asfaltos	27
2.2.1.1.1 Los Asfaltos Naturales	28

2.2. Marco Conceptual	28
2.2.1. Asfalto	28
2.2.2. Los Asfaltos Manufacturados	30
2.2.3. El Polímero	31
Tipos de Polímeros	32
Su origen:	32
Su composición:	32
2.2.4. El Ichu	33
Usos principales de la fibra de Ichu	35
2.2.5. Superioridad de los Asfaltos Modificados por Polímeros	36
2.2.6. La Estabilidad de las carpetas asfálticas	37
2.2.7. La Durabilidad de carpetas asfálticas	38
2.2.8. La Impermeabilidad de las carpetas asfálticas	38
2.2.9. Trabajabilidad	40
2.2.10. Flexibilidad	41
2.2.11. La Resistencia a la Fatiga	41
2.2.12. Desgaste	42
2.2.13. Tamizado	42
2.2.14. Bienestar de combinaciones asfálticas	42
2.2.15. Permeabilidad	43
CAPITULO III	45
HIPÓTESIS 45	
3.1. Hipótesis General	45
3.2. Hipótesis Específicas	45
3.3. Variables	45
3.3.1 Definición conceptual de la variable	46
3.3.1.1.La Variable Independiente: El polímero del Ichu	46
3.3.1.2. La Variable Dependiente: Desempeño de la Mezclas Asfálticas en frio	46
3.3.1.3. Mezclas Asfálticas	46
3.3.2. Definición operacional de la variable	46
3.3.3 Operacionalización de la variable	47
CAPITULO IV	49
METODOLOGÍA	49
4.1 Método de Investigación	49

4.2.	Tipo de investigación	49
4.3.	Nivel de investigación	50
4.4.	Diseño de la investigación	50
4.5	Población y muestra	51
4.6.	Técnicas e instrumentos de recolección de datos	51
4.7.	Técnicas de procesamiento y análisis de datos	52
4.8	Aspectos éticos de la información	52
4.9	Validez de Instrumento	53
CAPÍTU	JLO V	54
RESUL	TADOS	54
5.3. Con	traste de Hipótesis	70
CAPÍTU	JLO VI	76
ANALIS	SIS Y DISCUSION DE RESULTADOS	76
CONCI	LUSIONES	80
VI.REFI	ERENCIAS BIBLIOGRÁFICAS	83
Anexo N	N° 1 – Matriz de Consistencia	86
Anexo N	N° 2 – Matriz de Operacionalización de Variables	87
Anexo N	N° 2 – Instrumento de Investigación y Constancia de Aplicación	88
Confiabi	ilidad y Validez del Instrumento	109

ÍDICE DE TABLAS

Tabla 1 Causas y Efectos de la Impermeabilidad	39
Tabla 2 Problemas de Trabajabilidad	40
Tabla 3 Resistencia a la Fatiga	42
Tabla 4:Validez de Instrumento	53
Tabla 5: Ensayo del Círculo de Arena- Macro textura	55
Tabla 6: Criterios para califica la seguridad vial tomando en cuenta los valores PT	55
Tabla 7:Porcentaje de Flujo y Estabilidad	56
Tabla 8: Porcentaje de Desgaste	57
Tabla 9:Porcentaje de Impermeabilidad	57
Tabla 10: Diseño patrón que cumple es el de 6.2%,	60
Tabla 11: Peso de los componentes para el asfalto en frio con polímeros de Ichu	61
Tabla 12: Estabilidad y Flujo	63
Tabla 13: Requisitos para mezcla de concreto bituminoso	64
Tabla 14: Ensayo Cántabro – Método Maquina de los Ángeles MTC E515	65
Tabla 15: Datos y Resultados para obtención de la Resistencia al desgaste por Abrasión	67
Tabla 16: Terrenos de arcilla en agregado grueso y fino MTC E 212	68
Tabla 17: Peso del Agua absorbida - impermeabilidad	70
Tabla 18: Correlación de Pearson de Polímero de Ichu vs Desempeño de Mezcla Asfaltica	71
Tabla 19: Correlación de Pearson de Polímero de Ichu vs Estabilidad y Flujo	72
Tabla 20: Correlación de Pearson de Polímero de Ichu vs Desgaste	73
Tabla 21: Correlación de Pearson de Polímero de Ichu vs Impermeabilidad	74

ÍNDICE DE GRÁFICOS

Gráfico: 1: Ventajas de la Adición de Polímeros	36
Gráfico: 2: Rigidez y temperatura en el asfalto	44
Gráfico: 3: DETERMINACION DEL DISEÑO PATRÓN 6.2% DE EMULSIÓN ASFÁLTICA TIPO CSS	57
Gráfico: 4:Variación de Estabilidad Marshall y Asfalto Residual	58
Gráfico: 5:Variación entre Flujo 0.001 y asfalto residual	58
Gráfico: 6 Variación de Cambios de Estabilidad y asfalto Residual	59
Gráfico: 7 Humedad de Absorbida y Asfalto Residual	59
Gráfico: 8Estabilidad y Agua	59
Gráfico: 9 Variación de vacíos totales y Asfalto Residual	60

ÍNDICE DE FIGURAS

Figura 1: Distrito de Apata – anexo Chicche	18
Figura 2: Asfaltita	29
Figura 3: El Asfalto de Lago	29
Figura 4: Asfalto de Roca	30
Figura 5: Cemento Asfaltico	31
Figura 6: Polímeros	32
Figura 7: Pajonales de Festuca Orthophylla	33
Figura 8: Variedad de Stipa Ichu	34
Figura 9: Permeabilidad de los Suelos	43
Figura 10: Ensayo del Círculo de Arena- Macro textura	54
Figura 11: Ensayo del Círculo de Arena- Macro textura	54
Figura 12: Forma de dosificación de la mezcla para cada porcentaje	62
Figura 13; Ensayo - MARSHALL ASTM- D 1559 Modificado Illinois	62
Figura 14: Ensayo Cántabro – Método Maquina de los Ángeles MTC E515	65
Figura 15: Impermeabilidad- Saturación de las muestras- Peso específico Bulk de mezclas	
asfálticas	69
Figura 16: Impermeabilidad- Saturación de las muestras- Peso específico Bulk de mezclas	
asfálticasasfálticas	69

RESUMEN

El estudio de la actual tuvo como objetivo determinar que el polímero de ichu

influya positivamente en el desempeño de la mezcla asfáltica, por lo cual mediante los

ensayos se realizó los análisis de la estabilidad y flujo, desgaste y impermeabilidad, para

ello se adiciono diferentes porcentajes de polímero de ichu de 1%,2% y 3%. Se

concluye que la incorporación y presencia de polímeros de Ichu aumenta la resistencia

en 20%, además el ángulo de fricción y cohesión eleva un 5% fortaleza a tensión y

compresión en la mezcla asfáltica. Finalmente concluimos, la adición de polímero de

Ichu produce efectos positivos en la carpeta asfáltica, considerando el porcentaje optimo

inicia cuando se le adiciona fibra en 1.0% y es ahí donde se encuentra la variación

optimas en los diferentes resultados.

Palabras claves: Polímero de Ichu, mezcla asfáltica, tensión, compresión.

XII

ABSTRACT

The current study aimed to determine that the ichu polymer positively influences

the performance of the asphalt mixture, which is why through the tests the analysis of

stability and flow, wear and impermeability was carried out, for which different

percentages were added. ichu polymer of 1%, 2% and 3%. It is concluded that the

incorporation and presence of Ichu polymers increases resistance by 20%, in addition

the angle of friction and cohesion increases tensile and compression strength in the

asphalt mixture by 5%. Finally we conclude, the addition of Ichu polymer produces

positive effects in the asphalt layer, considering the optimal percentage begins when

fiber is added at 1.0% and that is where the optimal variation is found in the different

results.

Keywords: Ichu polymer, asphalt mixture, tension, compression.

XIII

INTRODUCCIÓN

Las vías de transporte y comunicación entre las ciudades presentan un tránsito más fluido y por tal motivo se requiere el mejoramiento en los materiales que lo componen y la resistencia de dichas vías es de suma importancia, como resultado ante la mencionada necesidad se han generado en el presente muchos estudios sobre aditivos que refuerzan cada vez mejor la carpeta asfáltica, de los diversos aditivos que se están empleando cobra cada vez más importancia la utilización de polímeros de tal forma se lograría configurar una estructura con cualidades de impermeabilidad al agua produciendo una mayor y mejor cohesión entre las partículas.

La tesis titulada "Desempeño De La Mezcla Asfáltica En Frio Con Adición De Polímeros De Ichu" tiene por objetivo determina los cambios al incrementar polímeros de Ichu en la combinación asfáltica en frio mejora las propiedades en la capa asfáltica. Asimismo podemos concluye que la adición del polímero de Ichu en diferentes porcentajes en la muestra patrón influyo positivamente en la mejora de las propiedades mecánicas, es decir su cohesión entre las partículas de la carpeta asfáltica.

Para un mejor desarrollo y entendimiento en el estudio de tesis se estructuro en 5 capítulos, a continuación, se exponen.

El capítulo I, abarca el problema de la investigación en el que llevará a cabo el planteamiento del problema; formulación y sistematización del problema: El Metodológica; Delimitaciones: Espacial, temporal, económica; Limitaciones: Practica o social, Delimitaciones: De la información, económico, Objetivos: Objetivos general, Objetivos específicos.

El capítulo II detallará el marco teórico, se analizará los antecedentes internacionales y nacionales, también se estudiará el marco, definición de términos,

En el capítulo III, contemplará la hipótesis general, hipótesis específicas, variables:

Definición conceptual de una variable, definición operacional de las variables y

operacionalización de las variables.

En el capítulo IV se mencionará la metodología de investigación, tipo de investigación,

nivel de investigación, diseño de la investigación, población y muestra, técnicas e

instrumentos de recolección de datos, aspectos éticos de la información.

El capítulo V detallará el resultado donde se realizó las pruebas y ensayos referidos al

análisis estudios en el laboratorio de la escoria y la resistencia tanto a la compresión y

cohesión como en el ángulo de fricción para un mejor afirmado.

El capítulo VI realizará el análisis y discusión profunda de resultados para comparar y

relacionar con los resultados obtenidos por otros tesistas tanto internacionales como

nacionales.

Finalmente se logra obtener las conclusiones y recomendaciones como las referencias

bibliográficas e incluyendo los anexos correspondientes.

Bach. PINCO LAYME, David Marcelino

ΧV

CAPÌTULO I

El PROBLEMA DE LA INVESTIGACIÓN

1.1. Descripción de la realidad problemática

En nuestra patria en el siglo pasado las carretas pavimentadas utilizaban las carpetas asfálticas tradicionales y no tenían ningún aditivo que refuerce la capacidad de resistencia y más aún la variedad de los climas, de suelos y a un descontrolado paso de vehículos de gran tonelaje ha produce un desgaste de las vías en menor tiempo de lo diseñado. Como sabemos en la actualidad estos asfaltos convencionales usados en el diseño de vías poseen características y propiedades que en el presente no son competentes para complacer las exigencias como consecuencia del crecimiento del flujo vehicular, debido a estos inconvenientes que se presentan buscan alternativas y soluciones contribuyan aumentar las propiedades de los asfaltos además de su comportamiento.

Según (MARCOS Adrián M. ,2008) ,a partir de fines del siglo pasado en el congreso mundial que trato sobre vías y fue realizado en Australia, se presentó ahí como una propuesta el uso del látex en la mayoría de las naciones como desenlace principal debido al costo del petróleo. En todos los lugares de las ciudades alto-andinas y también en nuestro lugar de investigación, la gran cantidad de ómnibus de transporte de pasajeros como aquellos de carga pesada cada vez va en aumento, trayendo consigo el desgaste prematuro de las vías.

Desde ese punto de vista la necesidad que se presenta en dichas ciudades alto andinas se ha asumido la responsabilidad de diseñar una carpeta asfáltica en frio con presencia de polímeros de Ichu el cual aumentará su resistencia, es decir aumento su cohesión entre las partículas de tal manera beneficio en el tiempo de duración de las

mencionadas vías. Por lo que el aumento de la estructura promoverá actividades de gran desplazamiento logísticos incluyendo al transporte pesado, observando que la capacidad de los vehículos que se desplazan por todas nuestras vías ha aumentado exponencialmente, incentivando a las autoridades una impetuosa sagacidad de mantenimiento y sostenimiento de todas las vías, como a los futuros profesionales de ingeniería civil investigaciones sobre mejoramiento y resistencia de las carreteras con aditivos adicionales de tal manera que tenga mayor resistencia y durabilidad las carreteras.

El proyecto se ejecutará en el anexo Chicche, ,distrito de Apata ,provincia de Concepción muy cercano a la laguna de Pomacocha , lugar donde se extraería el Ichu y así se pueda obtener el polímero el cual ayudará a la capa asfáltica en sus diferentes vías, actualmente se encuentra inadecuado por lo que asumiendo la responsabilidad de diseñar una carpeta asfáltica en frio con presencia de polímeros de Ichu aumentará su resistencia contribuyendo a un mejor desempeño.

1.1.1. Delimitación del problema

1.1.1.1 Espacial

La tesis se realizó en la Carretera 24 A, del anexo Chicche, ,distrito de Apata ,provincia de Concepción muy cercano a la laguna de Pomacocha .

Figura 1: Distrito de Apata — anexo Chicche

Fuente: Municipalidad de Apata

1.1.1.2. Temporal

El trabajo de estudio, se realizó y efectuó durante los meses de setiembre a diciembre del 2021.

1.1.1.3. Económico

Con referencia la parte económica dicha investigación genera unos costos que será asumida en si integridad por el tesista.

1.2. Formación del problema

1.2.1. Problema general

¿Cuál es la dosificación optima al incorporar el polímero de Ichu en el desempeño de la mezcla asfáltica en frio?

1.2.2. Problema Específicos

a. ¿De qué manera influye la adición del polímero de Ichu ante la estabilidad y flujo de la mezcla asfáltica en frio?

- b. ¿De qué manera influye la adición de polímero de Ichu en el cambio frente al desgaste de la mezcla asfáltica en frio?
- c. ¿De qué manera influye la adición del polímero de Ichu ante la impermeabilidad en la mezcla asfáltica en frio?

1.3. Justificación

Como consecuencia al problema ya reconocido como lo indicamos líneas arriba y la necesidad de una estabilización de los suelos ha de ser tomado como una prioridad muy importante como solución a esta problemática, se justifica esta investigación, esto nos indica que, con un estudio no muy elevado económicamente, se logra estudiar y demostrar un mejor desempeño de las vías que nos da una conveniencia, firmeza además de economía.

1.3.1. Social

El presente estudio se justica socialmente porque nos consentirá reducir el congestionamiento en la intervención u operación y las potenciales conservación de estas vías y los posibles daños en las carreteras en el menor plazo, esto repercute a la sociedad por que se mejorarán la fluidez de los vehículos y tendrán mayor tiempo de utilidad sin recurrir a reparaciones a las mismas.

Socialmente contribuirá en la economía de la población porque generará menores gastos en el mantenimiento de sus vehículos particulares, de transporte público, de pasajeros y vehículos de transporte pesado. También ayudara y cooperara a incentivar que muchos estudiantes y profesionales a interesarse al estudio de otros aditivos de polímeros, es decir buscar e investigar sobre mejoramiento de la carpeta asfáltica.

1.3.2. Teórica

La investigación realizada se justifica teóricamente por que se estudiará los diferentes tipos de polímeros en las mezclas asfálticas y en nuestro proyecto se utilizará al polímero producido por el Ichu, se empleará ya la teoría existente sobre polímeros como referencia y lo contrastaremos con la obtenida, de tal forma se comprobará que rendirá mayor soporte y duración en las vías a los vehículos pesados debido a la mejor y mayor cohesión las partículas.

1.3.3. Metodología

El presente trabajo de investigación está encuadrado dentro del modelo de la investigación experimental. Se realiza un estudio que este encasillado dentro de un análisis comparativo entre los diferentes tipos de polímeros que se utiliza en la mixtura asfáltica tradicional y otra con la introducción de polímeros obtenidos del Ichu. La información que se recabará sobre los diferentes polímeros como aditivos será muy importante y nos servirá como indicador fundamental para nuestro estudio.

1.4. Objetivos

1.4.1. Objetivo general

Determinar la dosificación optima al incorporar el polímero de Ichu en el desempeño de la mezcla asfáltica en frio.

1.4.2. Objetivos específicos

 a. Determinar la influencia de la adición del polímero de Ichu ante la estabilidad y flujo de la mezcla asfáltica en frio.

- b. Determinar la influencia de la adición de polímero de Ichu en el cambio frente al desgaste de la mezcla asfáltica en frio
- c. Determinar la influencia de la adición del polímero de Ichu ante la impermeabilidad en la mezcla asfáltica en frio

CAPITULO II

MARCO TEÓRICO

2.1 Antecedentes de estudios

En actualidad referida, nuestro estudio se examinará muchos estudios que se han efectuado sobre la utilización de polímeros en el aumento de la resistencia de la carpeta en frio, desde el ámbito nacional como del internacional, reforzara nuestra propuesta de análisis.

2.1.1 Antecedentes Nacionales

Calle, Solanchs y Arce Huahua champi, Moisés (2018), en su tesis denominada "Estabilización con polímero acrílico de la subrasante de la zona puente de Añashuayco para su uso como base y comparación frente a un pavimento convencional", nos indica que :

El principal objetivo fue fortalecer las características mecánicas de la subrasante del puente Añashuayco para usar como base mediante la utilización de polímero acrílico, teniendo como resultado que la mejoría de la subrasante y utilizada como base, descubriéndose incremento hasta el 110% del valor de CBR con dosificación de 1/2 de polímero con respecto al contenido óptimo de humedad, el cual obtiene el valor de CBR de la subrasante a medida que incrementa el polímero se observa una tendencia bilineal, con pendiente mayor desde 1/8 hasta 1/4 de polímero y pendiente menor desde 1/4 hasta ½, siendo el valor de CBR de la subrasante aumentó a 86, el contenido óptimo de polímero, además, se comprobó que el trabajo a compresión del suelo estabilizado al contenido óptimo de polímero es de 13.54 kg/cm2 a siete días de secado y de 20.65 kg/cm2 a los 28 días de secado. Generándose un incremento en el trabajo de compresión de 52.5% en 21 días

Víctor Estrada Escalante (2017) en su tesis denominada "Estudio y Análisis de desempeño de mezclas asfáltica convencional PEN 85/100 plus y combinación asfáltica modificada con polímero tipo SBS PG 70-28", tuvo por objetivo principal la evaluación y el estudio del rendimiento de una combinación asfáltica rectificado con polímero SBS PG 70-28 resulta preferible frente al desempeño proporcionado por una combinación asfáltica convencional PEN 85/100 plus. Por lo que se analizó la primera premisa especifica de disponer el contenido perfecto para ambas mezclas asfálticas, conforme al diseño de mezclas Marshall, como segunda finalidad recabar los valores de la estabilidad que expondrá las combinaciones asfálticas con asfalto convencional PEN 85/100 plus, respecto al asfalto modificado con polímeros SBS PG 70-28. Y finalmente la tercera finalidad busco obtener los valores de flujo que presentaron los 2 modelos de mezclas asfálticas analizadas. Concluyendo que, a utilización de combinación asfáltica convencional, la perjudica los diferentes factores: el volumen de tránsito, exceso de cargas, factores climatológicos, etc. y el uso de una combinación asfáltica modificada con polímero de tipo SBS nos brindara ventajosa respuesta mecánica que una combinación asfáltica convencional, incrementando el desempeño de la carpeta asfáltica y reforzando la vida útil del pavimento. Considerando que los dos bocetos de Mezcla calculan con igual volumen de ligante asfaltico, independiente de su naturaleza", ya que el contenido de ligante asfaltico para ambos modelos, son realmente parecidos, teniendo 6.3% (tabla 4.1) para la asfáltica convencional PEN85/100 Plus y un valor de 6.2% (tabla 4.1) para la asfáltica modificada con polímero SBS PG 70 – 28.Se tuvo en cuenta que la asfáltica modificada con polímero SBS PG 70 -28 nos presentara un elevado nivel de estabilidad", ya que el valor de estabilidad que se obtuvo en la asfáltica 158 modificada con polímero SBS PG 70 -28 (estabilidad igual a 2047 kgf, tabla 4.1) es más elevado que el valor de estabilidad de la asfáltica convencional PEN 85/100 plus

(estabilidad igual a 1382 kgf, tabla 4.1), lo que demuestra una mejor cohesión y adhesividad de la asfáltica modificada con polímero SBS PG 70 -28, la cual repercute posteriormente en el desempeño de la mezcla.

Luis, Carrera, Tony (2017), en su tesis denominada "Influjo de inclusión de partículas de caucho reciclado como agregado en el diseño de combinación asfáltica". Ambos autores considera como principal objetivo determinar la ascendencia y la adhesión del desintegrado de residuos de llantas, sobre las características físicas de combinaciones asfálticas mediante el procedimiento Marshall y poder determinar su utilización en el diseño y la construcción de pavimentos flexibles. Para lograr su principal objetivo se planteó como primera premisa calificar los agregados y todos los materiales a usar. Inmediatamente su segunda premisa fue: Fomentar un método de bosquejo de combinaciones asfálticas en seco para el componente de boceto grano de caucho molido como incrementos de los agregados pétreos y por último su finalidad fue la de conseguir el porcentaje y dosificación optima del triturado de resto de llanta como llenante de mineral utilizando la técnica y el método Marshall. El autor concluye que se constituyó un trámite de boceto con un incremento de un 5% de asfalto 20% de agregado pasa 3/4", 35% triturado pasa ½", 20% de arena lavada zarandeada, otro 20% en arena triturada y un 1.5 % de GCR, al cumplir con los valores de estabilidad y flujo establecidos por la norma MTC. Por lo que reconoció solo las muestras (briquetas) con el 1.5% y 2.0% de caucho reciclado formalizaron con valoraciones mayores de 900kg de equilibrio. Considerando que el porcentaje vacíos de patrones (briquetas) han aumentado a medida que fue incrementada el % de GCR y la valoración de la resistencia a compresión de las muestras (briquetas) reducen con respecto al aumentarse el porcentaje de GCR.

2.1.2 Antecedentes Internacionales

Andrea Castro (2018) en su tesis. "Indagación sobre combinaciones asfálticas en frio 100% recicladas con agregación de residuos sólidos". propuso como objetivo investigar la influencia en las propiedades dinámicas y mecánicas de combinaciones asfálticas en frio 100% recicladas empleando caucho reciclados de llanta y calamina.,por lo que se analizó la influencia en las respuestas dinámicas y mecánicas de las combinaciones recicladas en frio con emulsión asfáltica con incremento de CR y finalmente como tercer objetivo trazado es: Esbozar mezclas reciclada en frio compendiar las buenas prácticas de optimización de los integrantes de la mezcla. Concluyendo que se los criterios de Gmm, Gmb y Gravedad específica aparente minimizan y reducen debido al aumento del caucho, concluimos que dicha herramienta tiene densidad menor a la del RAP por consiguiente al efectuar relevo en masa provoca un fenómeno de apresuramiento en las mezclas. También obtiene que los impactos de patrón de rigidez, con los métodos de compactación usados se encuentra que la inclusión de caucho produce una reducción de este parámetro para las variadas dosificaciones empleadas en las combinaciones. Dicha reducción es más alta en las combinaciones con mayor emulsión (3.45%). Entonces se presume que un mayor contenido de emulsión debido al aumento de la humedad produce una reducción de la cohesión final. Respecto a sus propiedades de capacidades de la calamina : Gmm, Gmb y GE. Se tiene una aparente incrementan por medio aumento de la calamina, entonces podemos conferir que dicho elemento es pesado procedente del desgaste de aceros de densidad mayor a la del RAP y por su granulometría bastante fina (60% pasa el tamiz de 0.425mm), como consecuencia, ejecutar cambio en masa se genera un efecto de densificación en las mezclas.

John Amado (2015) en su tesis "Análisis del sistema de reparación de pavimentos flexibles por inyección neumática de combinaciones asfálticas en frio, tecnología Velocity Patching". Consideró como objetivo principal examinar y distinguir las cualidades peculiares de los arreglos ejecutados a pavimentos flexibles con el sistema Velocity Patching, asumiendo en consideración la forma de colocación de la mezcla y las características físicas de las mismas. Para lo cual se reconoció los atributos de las mezclas asfálticas en frio usadas para ejecutar restauraciones en pavimentos, se examinó las respuestas de las pruebas de laboratorio realizados a la combinación y a los elementos de las mismas, y se consideraró el mecanismo de posición de combinaciones asfálticas en frio para restauración de baches, utilizando la tecnología Velocity Patching Concluyendo en que la granulometría a la mezcla asfáltica, se localizó en frio basado que circularon utilizadas 2 granulometrías distintas en la elaboración de dicha combinación, la 1ra granulometría no se constituyó una faja granulométrica de boceto que aceptara valuar la razón o relación como deben intervenir los fragmentos de los agregados. Un elevado volumen de vacíos de la combinación proporciona el paso de agua y el vapor a través de ella, esta particularidad puede agregarse si el drenaje de la capa es insuficiente lo que redundaría en el deterioro de la misma.

Guevara, M. y Méndez H. ne su tesis "Diseño de combinaciones asfálticas basado en el Método Marshall modificado de la Universidad de Illinois" considera que el principal objetivo es producir una documentación donde se dan a comprender detalles y apariencia más relevantes de una combinación asfáltica densa en frio para calzadas de poca y media intensidad, basado en el método de Marshall modificado de la Universidad de Illinois, concluyendo que las indicaciones técnicas y normas para el bosquejo de combinaciones en frio, están dentro en las indicaciones del Manual Centroamericano de especificaciones, en las construcciones de carreteras y puentes

regionales, allí se instauran sugerencias sobre la utilización de esta clase de combinación en pavimento. También se considera que método combinación en frio está reconocido como la mejor opción de pavimentación, se utilice para sostenimiento frecuente o como carpeta de rodadura, pues perfecciona bienes económicos (en confrontación con el gasto económico que poseen otras combinaciones asfálticas). Por lo que la preferencia ultima de la fuente de componentes (cantera san Diego), ha sido una contribución significativa para la cualidad ultima de la combinación ya que los componentes adiestrados (grava ¾", arena triturada) efectuaron con los requerimientos de la norma validos en cuanto a dureza, limpieza, desgastes, angulosidad y sanidad.

2.2 BASES TEORICAS

2.2.1 El Asfalto

Según el MTC (2008), nos menciona lo siguiente:

El asfalto ese denominado material cementante, de color marrón oscuro a negro, constituido principalmente por betunes de origen natural u obtenidos por refinación del petróleo. El asfalto se encuentra en proporciones variables en la mayoría del crudo de petróleo. Asimismo que es un procedimiento o componente bituminoso su color vario de un color azul noche a un color negro, primeramente, integrado por asfáltenos, resinas y aceite componentes que generan propiedades como consistencia, aglutinación y flexibilidad. Posee características cementantes, cuando se procede a calentarse se reblandece progresivamente hasta lograr una consistencia fluida.

2.2.1.1 La Distribución de los asfaltos

Se les clasifica en 2 grandes grupos los cuales son reconocidos y denominados como:

2.2.1.1.1 Los Asfaltos Naturales

En este grupo de asfaltos podemos mencionar que se han constituido por una manifestación de éxodo de determinados oils naturales y afloraciones en la superficie terrestre, esto sucedió debido a fisuras en el subsuelo y muchos de ellos se encuentras en estado natural, es decir casi puro.

2.2. Marco Conceptual

2.2.1. Asfalto

Según, Molina, N. (2012), también llamado cemento asfáltico, es componente principal de una emulsión asfáltica. Este encuentra presente entre 50% a 75% en volumen denominado porcentaje de residual asfáltico. La química del asfalto es un material compleja, y no es necesario para el caso, examinar todas sus propiedades. Algunas de las propiedades si afectan significadamente la emulsión final, sin embargo, no hay una correlación exacta entre las propiedades del asfalto y la facilidad con que él puede ser emulsionado. Si bien la dureza de la base del cemento asfaltico puede variar, la mayoría de las emulsiones es hecha con asfalto con un rango de penetraciones 6 – 25 mm. (Guevara et al., 2010, p.62-63)

• La Asfaltita

Es un macizo en forma de veta, en este grupo ubicamos a la Gilsonita, la brea lustrosa y la grahamita.

Figura 2: Asfaltita

Fuente: Colegio de Ingeniería civil – México

• El Asfalto de Lago

Se le conoce y ubica como acopios superficiales de asfalto que incluye también mineral delicadamente dividido. Este oíl está en permanente circulación hacia la superficie como emerge se va transformando en asfalto debido a las grandes presiones y la temperatura.

ezi

Figura 3: El Asfalto de Lago

Fuente: Colegio de Ingeniería Civil – México

El Asfalto de Roca

Este tipo de asfalto se le puede hallar y encontrar empapado con algunos restos de esqueletos pétreos naturales y los encontrados en rocas calizas.

Figura 4: Asfalto de Roca

Fuente: Colegio de Ingeniería Civil – México

2.2.2. Los Asfaltos Manufacturados

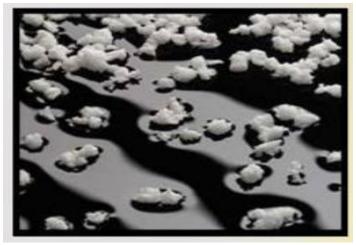
Son aquellos que se originan como subproducto de la destilación del Oíl. En otras palabras, se obtienen a través de la refinación del Oíl.

• El Cemento asfaltico

Estos asfalticos se obtienen de la transformación por destilación del Oíl de tal forma de suprimir los solventes volátiles y fracción de sus aceites.

Figura 5: Cemento Asfaltico

Fuente Colegio de ingeniería civil – México


• Las Emulsiones Asfálticas

Podemos mencionar a las emulsiones asfálticas como componentes asfalticos fluidas muy estables y está compuesto por dos fases de fluidos no miscibles, en la cual una de las fases está establecida por un intermediario emulsificante, otra etapa intermitente por reducidos glóbulos de cemento asfaltico.

2.2.3. El Polímero

Se define el concepto de polímero como los componentes macromoleculares, conformado por uniones de grandes números de moléculas elementales o sencillas, cuya peculiaridad primordial es su alto peso molecular.

Figura 6: Polímeros

Fuente: Colegio de Ingeniería Civil - México

• Tipos de Polímeros

Los polímeros en la actualidad existen variedad de ellos, pero empecemos su clasificación de acuerdo a:

Su origen:

- Los Polímeros Naturales: Podemos identificarlos como aquellos que tienen su origen biológico.
- Los Polímeros Sintetices: Se reconoce a esta variedad de polímeros porque son diseñados y forjados por la mano del hombre.

Su composición:

- Los Polímeros Orgánicos: Son aquellos polímeros que tienen secuencia primordial de partículas de carbono.
- Los Polímeros orgánicos Vinílicos: Son aquellos semejantes a los orgánicos, además ostentan conexiones dobles carbono-carbono también se incorporan aquellos estirenicos.

- Los Polímeros Estructurado no Vinílicos: Son aquellos polímeros que tienen átomos de oxígeno y/o el gas nitrógeno en su secuencia principal, a su vez de tener carbonos.
- Polímeros Inorgánicos: Son aquellos polímeros que en su estructura tienen más componentes como el azufre o el silicio.

2.2.4. El Ichu

Ubicamos bastantes diversidades de ichu en la zona alto andinas, la presente investigación examinaremos solo 3 variedades que son más reconocidas como son:

• Festuca Orthophylla Pilg:

Reconocida científicamente con dicho nombre, correspondiente a la familia Poaceae, más común es conocida con el nombre de Hiru Ichu, paja brava.

Figura 7: Pajonales de Festuca Orthophylla

- Fuente: Villarpando y Lic. Villarpando
- Particularidades biológicas: Tiene espiguillas florales rectas, además brotan al terminar la primavera como en el inicio del verano. Llegan a medir más de 20cm, pero hasta 50 cm. de alto conformando macollos de hojas delgadas color pardo plomizas.
 - o La Fenología: significa que brotan 2 a 3 veces al año.

- La proliferación: Sabemos que todos estos arbustos son fémina y pueden elaborar la semilla realizable, genética gemela sin polinización. Su dominio germinativo es elevado de 89%.
- Las propiedades ecológicas: Están considerablemente expandidos en los lugares altoandina, tiene jerarquía de humedecimiento parcialmente elevados, con manifestación brillante y temperaturas medias de 10°C. Suelos: Mayormente crecen en superficies arenosos a las riveras de los ríos en las zonas alto andinas o pedregosos, podemos observar que extienden en llanuras que están por encima de los 4000 msnm, temporalmente.

• La Stipa Ichu

Pertenece a la casta de las gramíneas, también se le reconoce también comúnmente como Paja Ichu. Además, se le reconoce o ubica como una especie de alta montaña en toda la cordillera americana.

Figura 8: Variedad de Stipa Ichu

Fuente: Animales y plantas del Perú

 Las características biológicas: Se le conoce como una planta perenne, se desarrolla en atados compactos, cultivable, elevada y compactada arrimada, tiene un tamaño mayor a 35 cm hasta 1.3 m de alto, suele tener más de tres nudos con o sin pelos.

 La inflorescencia: Es espiga de flores descubierta y compactada, nevada o grisácea tiene de largo mayores de 15cm hasta 40 cm de largo, su lazo básico con vellos grisáceos.

Espiguilla/Flores: Posee par de brácteas protectoras, tiene de largo mayores a
 6mm, pero menores a 10 mm y menores a 1 mm de ancho, extensamente puntiagudas,
 ápice agudo, semejantes a la primera, pero más larga que la segunda.

 La propagación: Diseminación y florecimiento, mayormente se disgregadas por pepitas; sus productos suelen trasvolar a poco espacio. Poseen un pequeño reducido de retoño, perdurando marchito gran parte del año, tienen un periodo de vida continuo.

El Hábitat: Mayormente esta especie lo encontramos en terrenos cubiertos por
 Pajón, transparentes bosques y zonas intranquilizados, como riveras de senderos.

o Rango altitud: De 2300 a 3400 msnm.

Usos principales de la fibra de Ichu

Conforme a la pluralidad pueden tener distintos y diversas costumbres y utilizaciones como:

• La Festuca orthophylla pilg:

Más conocida comúnmente como Hiru Ichu, regularmente usado en la confección de escoberos, diseños de colchones y principalmente en la elaboración de adobes para la edificación de viviendas.

• Stipa Ichu

Se conoce o llama frecuentemente como Paja Ichu, la utilización común la mencionada especie es que servía de sustento de alimentos para los auquénidos y vacunos, también es consumido en su situación sensible y es aprovechado por los auquénidos a lo largo el pastoreo de verano (puna seca), Además, se le utiliza en la construcción de viviendas combinando ambos tanto el ichu como el barro y así elaborar los adobes.

• Festuca dolichophylla

Más conocido en general como chilliwa, tiene variedad de usos. Se le utiliza en aspecto curativo, también como alimento para la ganadería, utilización en la producción de sustento al vapor, posee múltiples y variedades maneras de uso en la edificación como salvaguarda de muros y techado de casas, también en la elaboración de tintes para teñido.

2.2.5. Superioridad de los Asfaltos Modificados por Polímeros

 En los últimos años va acrecentando la utilización y adición de polímeros en los asfaltos generando ventajas o atributos que lo benefician en el siguiente cuadro observaremos dichas ventajas.

Gráfico: 1: Ventajas de la Adición de Polímeros

Como podemos apreciar en el Gráfico 1, nos permite obtener algunas conclusiones muy importantes si comparamos el asfalto convencional frente al asfalto modificado si adicionamos polímeros y que ha producido y provocado que en la construcción se esté usando cada vez más seguido los distintos tipos de polímeros en beneficio de la capa asfáltica y que presentamos a continuación dichas ventajas.

Podemos identificar la primera ventaja será la diferencia reveladora entre el asfalto modificado con polímeros compatibles e incompatible se puede apreciar en el declive y envejecimiento. Se verifica que los asfaltos modificados es decir aquel que se adiciona polímeros manifiestan una mejor y mayor resistencia al envejecimiento es decir mayor durabilidad.

Se puede confirmar que los asfaltos con adición de polímeros aumentan la vida útil del pavimento hasta el doble y triple inclusive solo con un costo adicional máximo de un 25%. Los asfaltos convencionales a través del tiempo han cumplido con la función que fueron diseñados, pero estos frente al aumento del parque automotor y el incremento del tonelaje de los vehículos de carga se hace necesario modificar e incrementar muchos atributos y propiedades de los asfaltos es por eso que la adición de polímeros en su distinta variedad va ganando mayor adhesión en los diferentes diseños de la carpeta asfáltica ante esta necesidad en la actualidad.

2.2.6. La Estabilidad de las carpetas asfálticas

Según el MTC (2008), define la estabilidad que posee un asfalto en su facultad de resistir alejamiento o desplazamiento y alteración que soportan todas las cargas de los vehículos. Una vía es duradera si el pavimento diseñado es apto a resistir su forma y lisura soportando cargas sucesivas, un mal diseño de un pavimento produce

inestabilidad produce y desarrolla ahuellamiento (surcos o canales) y otras anomalías que nos dan a entender y señalan modificaciones en la mezcla.

Siempre se sugiere y la experiencia lo demuestra que la condición fundamental para la estabilidad es realizar un estudio y análisis completo del tránsito, sabemos que la estabilidad de una mezcla es en relación directa con la coherencia interior y el rozamiento.

2.2.7. La Durabilidad de carpetas asfálticas

Definimos el concepto de durabilidad del pavimento como su destreza para oponerse a elementos del mismo modo disgregación del agregado, alteraciones de las particularidades del asfalto, como también ruptura de placas de asfalto.

Mayormente para mejorar y acrecentar la resistencia de una carpeta asfáltica seria de 3 formas distintas: La primera forma seria utilizando gran cantidad de asfalto, la segunda manera será utilizando una escala o gradación espesa de agregado que sea resistente a la desunión, bosquejar y comprimir la carpeta asfáltica para alcanzar la mejor impermeabilidad. Un aumento en la cantidad de asfalto tendrá como resultado un crecimiento en la durabilidad propiciando en las películas gruesas de asfaltos un retardo y por consiguiente no se envejecen rápidamente y tampoco ocasionan endurecimiento a diferencia de las películas delgadas, propiciando que este asfalto retenga por más tiempo las propiedades iniciales.

2.2.8. La Impermeabilidad de las carpetas asfálticas

Podemos mencionar que la impermeabilidad de una carpeta asfáltica como la oposición a la facilidad que tiene de fluir el aire y el agua dentro de ella o a través de la

misma. La presente propiedad está directamente concerniente con los vacíos de la estructura, es decir con la carpeta asfáltica compactada.

De acuerdo a la teoría sabemos que el nivel de permeabilidad está establecido de acuerdo a la dimensión de los huecos en la combinación asfáltica. Es muy significativo la impermeabilidad en la duración de las carpetas asfálticas compactadas, siempre cuando se ha pavimentado una vía está ya tiene un grado de impermeabilidad lo que se quiere o busca que tenga una mayor y mejor impermeabilidad adicionando ciertos aditivos en nuestro caso polímeros de Ichu.

Tabla 1.- Causas y Efectos de la Impermeabilidad

No se encuentran elementos de	EFECTOS						
tabla de ilustraciones.							
	Generan un temprano deterioro y disgregación, las						
Pequeño contenido de mezcla	películas de asfalto ocasionan en la carpeta.						
asfáltica							
	Cómodamente entran al pavimento tanto el						
Demasiado espacio de vacíos en la	líquido como el aire originando anomalías como						
mezcla asfaltico patrón de diseño	oxidación						
	Ocasiona grandes vacíos en el pavimento la cual						
La Compactación No Adecuada	ocasionara la filtración de los líquidos generando						
	inestabilidad						

Fuente: Pavimentos de mezcla asfáltica en caliente Cap.3, pág. 67 l Asphalt In

2.2.9. Trabajabilidad

El concepto de trabajabilidad está concebido como la comodidad que una determinada mezcla de asfáltica en una vía es ubicada, apretada o compactada. Se dice que la mixtura tiene una excelente trabajabilidad es sencilla de ubicar, colocar, comprimir y compactar.

Es concepto de trabajabilidad y su aplicación puede ser corregido y reformado, para esto basta con modificar los indicadores o parámetros de la mixtura, como puede ser un nuevo modelo de agregado o quizás la granulometría, se observa que la mixtura gruesa (se ubica aquellas mixturas que poseen una elevada proporción de agregado grueso) poseen inclinación al desunirse en el trascurso de su manejo y en algunos casos suele ser muy complicado su compresión o compactación. Otro indicador que afecta a la trabajabilidad sería su alto contenido de relleno. También podemos afirmar que en la Trabajabilidad el asfalto no es la primera y principal causa, pero si influye algún efecto sobre esta.

Tabla 2.- Problemas de Trabajabilidad

Causas	Efectos						
La dimensión máxima de	Área áspera, complicado o difícil de colocar						
partículas grandes							
Bastante agregado gruesos	Quizás son complicados de Comprimir						
Una temperatura bajísima la	Un compuesto sin revestir, las mezclas de baja						
mixtura	duración en áreas ásperas, complicadas de						
	comprimir.						
Bastante arena de tamaño	El desplazamiento de la capa asfáltica debajo de la						

medio	compactadora permaneciendo blanda								
Mínima capacidad de relleno	Mixtura suave, muy absorbente.								
mineral									
Elevado asunto de abarrotado	Carpeta asfáltica muy pegajosa, complicada de								
mineral	conducir, escaso perdurable.								

Fuente: Pavimentos de mezcla asfáltica en caliente. Cap.3

2.2.10. Flexibilidad

Podemos definir como la suficiencia o capacidad de una carpeta asfáltica para ordenarse, de tal manera no agriete, debido actividades, establecimiento progresivo de la subrasante. Esta propiedad es un indicador muy ansiado en toda mezcla asfáltica.

En ocasiones las exigencias de la flexibilidad ingresan en pugna con las condiciones o requisitos de la estabilidad, como consecuencia se debe tratar de buscar un equilibrio de ellos.

2.2.11. La Resistencia a la Fatiga

De acuerdo a su concepto podemos definirlas la oposición o resistencia a la flexión frecuente que está sometida como consecuencia de las cargas de tránsito. Diferentes estudios han demostrado que dichos espacios o vacíos como la viscosidad del asfalto poseen una influencia con respecto a la resistencia u oposición a la fatiga.

Por consiguiente, podemos afirmar que al aumentar el porcentaje de espacios o vacíos aumenta, es puede ser originado debido al diseño o quizás por una mala compactación del terreno la resistencia u oposición a la fatiga del pavimento decrece o disminuye.

2.2.12. Desgaste

Disminución o reducción que un material va poco a poco por su utilización o consumo como consecuencia del roce entre los materiales.

2.2.13. Tamizado

Podemos definirlo como el conjunto de técnica simple que nos facilita separar mezclas, en otras palabras, permite pasar partículas por un tamiz. de diferentes tamaños

Tabla 3.- Resistencia a la Fatiga

causalidad	Consecuencias					
El Escaso capacidad de asfalto	Resquebrajamiento debido al por agotamiento					
Espacios o vacuo elevado de	Deterioro prematuro de la mezcla asfaltico,					
boceto	seguido de quebrantamiento por fatiga					
Poca o falta de compactación	Gastamiento temprano del asfalto, seguido de					
	grieta por fatiga					
Espesor no adecuado de la	Deterioro prematuro del asfalto, consecutivo de					
carpeta asfáltica.	resquebrajamiento por agotamiento.					

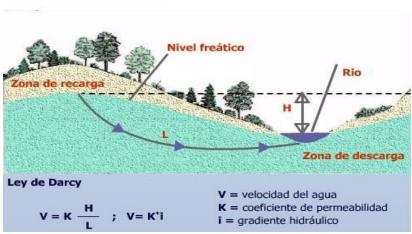
Fuente: Pavimentos de mezcla asfáltica en caliente. Cap.3, pág. 68.

También podemos afirmar que: En la Trabajabilidad el asfalto no es la primera y principal motivo, pero si influye algún efecto sobre esta.

2.2.14. Bienestar de combinaciones asfálticas

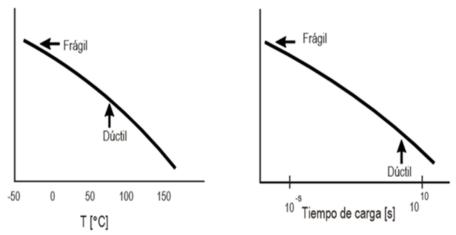
Según Chávez, et al (2014) concluyeron: El mencionado componente colabora y ayuda apuradamente un bienestar y confort tremendo para su realización en expedientes

de rodadura, es usada convenientemente y produce más protección en el instante de desplazarse en una avenida de asfalto. El asfalto natural (llamada comúnmente como brea), según estudios las investigaciones que este material se formó hace miles de años en el pasado.


2.2.15. Permeabilidad

Se define la permeabilidad como la característica o propiedad de los suelos de dejar pasar con facilidad o dificultad un fluido determinado a través de ella sin modificar su composición.

Figura 9: Permeabilidad de los Suelos


Permeabilidad de los suelos: concepto y determinación («in situ» y en laboratorio)

Publicada el 3 abril, 2013 por frankie

Fuente: Geotecnia, reconocimientos y ensayos

Gráfico: 2: Rigidez y temperatura en el asfalto

Fuente: Minaya Ordoñez

Además, Reyes, et al (2013) anotaron lo siguiente: La mezcla asfáltica normalmente nombrado pavimento, se identifica adecuadamente por su actitud en su intervalo de beneficio, sostiene la homogeneidad de sus elementos ejecutando que este alcance una superior firmeza y solidez. Se fundamenta en algunos añadidos de minerales, acomodados en recubrimientos y comprimidos.

Según González (2003) La alteración constante o surcos y huellas de las capas asfálticas, proceden de los pesos cortantes de los automáticos, que en el tiempo de vida favorable la vía estuvo perjudicado por transito muy fluido. Mayormente esto acontece debido al procedimiento común de concreto asfaltico.

CAPITULO III

HIPÓTESIS

3.1. Hipótesis General

La aplicación de polímeros de Ichu influye significativamente en la mezcla asfáltica en frio y así mejora la propuesta para mejorar el desempeño.

3.2. Hipótesis Específicas

- a) La aplicación de polímero de Ichu influye significativamente ante la estabilidad y flujo de la mezcla asfáltica en frio.
- b) La aplicación de polímero de Ichu influye significativamente frente al desgaste de la mezcla asfáltica en frio.
- c) La aplicación de polímero de Ichu influye significativamente ante la impermeabilidad en la mezcla asfáltica en frio

3.3. Variables

Según (Hernandez Sampieri, 2014), Una variable es una propiedad que puede fluctuar y cuya variación es susceptible de medirse u observarse.

3.3.1 Definición conceptual de la variable

3.3.1.1.La Variable Independiente: El polímero del Ichu

Conoce como polímeros a los componentes macromoleculares, logrados sobre la base de moléculas más simples por reacción poliméricas. Como consecuencia podemos decir y afirmar que un polímero es una composición con un alto peso molecular y su estructura se simboliza por la sucesión de diminutas unidades.

3.3.1.2. La Variable Dependiente: Desempeño de la Mezclas Asfálticas en frio

Es un componente muy impermeable tiene gran cohesividad y tiene mucha adherencia, con gran capacidad de soportar y tolerar grandes esfuerzos instantáneo y discurrir debido a la acción cargas continuas. En su contenido químico esta sustancia o asfalto posee químicamente constituyentes de numerosos hidrocarburos.

3.3.1.3. Mezclas Asfálticas

Se dice que esta sustancia asfáltica mayormente es mixtura de asfaltos y combinación de minerales pétreos.

3.3.2. Definición operacional de la variable

Aseguramos que el estudio con referencia de operatividad de la variante se situara de acuerdo a las técnicas, métodos y más aún a la metodología a usar el rendimiento sobre carpeta asfáltica en frio y presencia de los polímeros de Ichu, donde se verificara sus alteraciones la variante dependiente con respecto a la variante principal.

3.3.3 Operacionalización de la variable

Aseguramos que nuestra investigación con referencia a operatividad de la variable se situara de acuerdo a las técnicas, métodos y más aún a la metodología a usar para la resistencia de la carpeta asfáltica en frio con presencia de polímeros de Ichu, donde se verificara sus alteraciones entre ambas variables asumidas.

3.4. OPERACIONALIZACIÓN DE LA VARIABLE

VARIABLE DE LA		DEFINICION	DIMENSIONES	INDICADORES	ESCALA	INSTRUMENTO
INVESTIGACION		CONCEPTUAL				
VARIABLE INDEPENDIENTE	Polímeros de Ichu	polímeros a los componentes macromoleculares, logrados sobre la base de moléculas más simples por reacción poliméricas. Como consecuencia podemos decir y afirmar que un polímero es una composición con un alto peso molecular y su estructura se simboliza por la sucesión de diminutas unidades.	*Dosificación	*Cantidad de Polímero de Ichu *Porcentaje de Polímero de Ichu	De Intervalo	Balanza
VARIABLE DEPENDIENTE	Diseño de mezcla asfáltica en frio	Es un componente muy impermeable tiene gran cohesividad y tiene mucha adherencia, con gran capacidad de soportar y tolerar grandes esfuerzos instantáneo y discurrir debido a la acción cargas continuas. En su contenido químico esta sustancia o asfalto posee químicamente constituyentes de numerosos hidrocarburos.	* Estabilidad * Flujo * Desgaste *Impermeabilidad	* Fluencia Vacíos * Fricción *Erosión * Macro Textura	De intervalo	*Tamices *Máquina de Abrasión los ángeles. * Prensa Marshall. *Moldes

CAPITULO IV

METODOLOGÍA

4.1. Método de Investigación

Método Deductivo

Según Tamayo (2008), el método deductivo consiste en la totalidad de reglas y procesos, con cuya ayuda es posible deducir conclusiones finales a partir de unos enunciados supuestos llamados premisas, si de una hipótesis se sigue una consecuencia y esa hipótesis se da, entonces, necesariamente, se da la consecuencia.

Por lo que se ha determinado que la variable independiente. Además, la variable dependiente con sus respectivos indicadores empezó con el método y técnica adecuados con respecto a la hipótesis y lograr en excelente boceto de mezclas asfálticas con la anexión de polímeros de Ichu. Mientras que en los trabajos realizados se ejecutaron utilizando la técnica de análisis de resultados. Se logró investigar la teoría referente al tema, los conceptos y resultados con referencia a la utilización de polímeros adicionando a la carpeta asfáltica en frio, nos servirá de utilidad como punto de partida.

4.2. Tipo de investigación

Según (Hernández, 2014), El tipo de investigación es aplicada que recibe este porque se caracteriza porque busca la aplicación o utilización de los conocimientos adquiridos, a la vez que se adquieren otros, después de implementar y sistematizar la práctica basada en investigación.

En la investigación se aplicó teorías relacionadas con la estabilización de subrasante el cual adicionamos de polímero de ichu para así buscar una alternativa de

solución, siendo la más importante obtener una buena mezcla asfáltica. Por lo cual se realizará un tipo de investigación: aplicada

4.3. Nivel de investigación

Según Hernández (2016) tiene un nivel de tipo explicativo debido a que nivel establece la causa y efecto del fenómeno estudiado correspondiendo a estudios experimentales..

Las investigaciones detalla las características, las cualidades y los rasgos de individuos, asociaciones, comunidades, objetos o algún otro acontecimiento que se sujete a un estudio. Por lo tanto, exclusivamente intentan cuantificar o acumular difusión de forma emancipada o grupal sobre los pensamientos o las variables que se describen, es decir, su meta u objetivo no es señalar cómo se vinculan ellas, así mismo es explicativo porque a pesar de que más allá de la explicación de pensamientos, fenómenos o del instauración de correspondencia entre calificaciones; por lo tanto, son encaminados a replicar por el origen de los sucesos y acontecimientos físicos o sociales. De la forma que su nombre lo señala, su utilidad se focaliza en manifestar debido a que sucede un acontecimiento y en qué circunstancias se exterioriza o a causa de vincular dos o más variables.

4.4. Diseño de la investigación

Según Finney (1960) afirma que el diseño de un experimento está constituido por la serie de tratamientos seleccionados para hacer comparaciones; la especificación de las unidades a las cuales se aplicaran los tratamientos; las reglas por las cuales se asignaran los tratamientos a las unidades experimentales. Y la especificación de las medidas que van a tomarse de cada unidad (variable dependiente). Por lo tanto es experimental el diseño del trabajo de estudio.

4.5 Población y muestra

• Población

Según (Hernández, 2014), La población es el conjunto de todos los elementos que forman parte del espacio territorial al que pertenece el problema de investigación. La población 70 ejemplares de asfalto las cuales comprenderán 45 con diferentes dosificaciones con polímero de Ichu de 1%,2% y 3% y 25 sin polímero de Ichu, para cada ensayo requerido.

• Muestra

Según (Sampieri, 2014), Es un subgrupo de la población de interés sobre el cual se recolectarán datos, y que tiene que definirse y delimitarse de antemano con precisión, además de que debe ser representativo de la población.

Las muestras serán 27 de tipo no probabilísticas por tal motivo estará integrada por 9 briquetas para porcentaje, de dosificación con polímeros de Ichu de 1%,2% y 3%y 18 briquetas sin ningún porcentaje de polímeros de Ichu, teniendo diferentes muestras de cada porcentaje para cada ensayo de resistencia, las cuales serán comparadas.

4.6. Técnicas e instrumentos de recolección de datos

• Técnicas

Como primera prioridad tuvo consideración una investigación documentaria, es decir recolecto toda la data de fuentes bibliográficas sobre el tema a desarrollar e incluir resúmenes o párrafos que se necesita para elaborar y diseñar el marco teórico tanto referencial como conceptual, es decir puede ser esta información en forma física o

digital que pueden ser de instituciones estatales o privadas y que nos servirán para el análisis de la investigación.

• Instrumentos

Para recabar la información documentaria se optó en utilizar tarjetas de inventarios de datos e información nos servirá por una parte para estructurar la data recabada de las fuentes bibliográficas y también para toda la documentación oficiales recolectadas que pueden ser valorizaciones, concertaciones y correos electrónicos recados en la web. También se incluirá modelos de consulta y entrevistas de tal forma de almacenar toda esta data verbal.

4.7. Técnicas de procesamiento y análisis de datos

• Desarrollo Informatizado trabajo en Excel y Word

Nos permitirá resolver muchas operaciones de cálculos matemáticos y sobre todo estadísticos, gráficos en barras y representaciones asumidos como muestra. Dentro del aspecto del digitado y ordenamiento de presentación de la información textualmente utilizaremos el Word como herramienta.

4.8 Aspectos éticos de la información

Este Trabajo de estudio de tesis tiene como objetivo, meta y finalidad de encontrar una nueva forma de aumentar la resistencia de las carpetas en frio utilizando una variedad de aditivo adicionando a la misma, con el fin de aumentar y mejorar dicha carpeta utilizando el polímero de Ichu. Todo este trabajo el autor confirma que los datos obtenidos son datos reales de campo conservando el principio ético en el trabajo y por

consiguiente el autor asume cualquier compromiso de parte de la universidad en caso de no ser ciertos los datos reportados en el presente estudio y deja que la universidad tome las medidas correspondientes de no ser ciertos y auténticos.

4.9 Validez de Instrumento

Según nos indica (Mejía Edison, 2018) "nos indica que al validar un instrumento de medición o al compararlo con algún criterio externo que pretende medir lo mismo, se considerará la validez como una adecuada conceptualización y operacionalización de la variable y obviamente, existe correspondencia entre ambas

Tabla 4:Validez de Instrumento

RANGO	MAGNITUD
0.8 a1	Muy Alta
0.60 a0.80	Alta
0.41 a 0.60	Moderada
0.21 a 0.40	Baja
0.01-0.20	Muy Baja

Fuente: Introducción a la Investigación

CAPÍTULO V

RESULTADOS

5.1.Se determinó la **dosificación óptima** al incorporar el polímero de Ichu en el desempeño de la mezcla asfáltica en frio.

Figura 10: Ensayo del Círculo de Arena- Macro textura

Fuente: Elaboración propia

Fuente: Elaboración propia

En la figura 10 y 11; describe la forma con la cual se realizó el ensayo de estos respuestas se aprecian en el siguiente cuadro, para este ensayo se consideró solamente la variación de 1% de Ichu debido a que el resto no cumplió con la estabilidad necesaria, El PT o profundidad de textura se calcula con la siguiente formula:

$$PT = \frac{4V}{\pi D^2}$$

Con la siguiente tabla, se puede dar una calificación y así mismo diagnosticar para qué tramos con determinada velocidad se podrían usar, el proceso de ensayo se describe en el panel fotográfico.

Tabla 5: Ensayo del Círculo de Arena- Macro textura

	6.2% de emulsión 1% Ichu										
Vol. de arena (cm3)		10			25		50				
Diámetro de arena esparcida (cm)	9.1	9.3	9.2	24.4	24.5	24.3	41.9	41.7	41.5		
Promedio (cm)	9.2				24.4		41.7				
PT	0.15			0.53			0.37				
Promedio PT	0.4										

Fuente: Elaboración propia

Tabla 6: Criterios para califica la seguridad vial tomando en cuenta los valores PT

CONDICION	CLASIFICACION	RESULTADO DEL DIAGNOSTICO
< 0.2	Muy fina	necesita sostenimiento
$0.2 \le PT \le 0.4$	Fina	Únicamente en partes donde rara vez son mayores de 80km/h (zonas urbanas).
$0.4 \le PT \le 0.8$	Media	En distancias normales con velocidades moderadas de 80 a 120km/h.

$0.8 \le PT \le 1.2$	Gruesa	En las distancias normales con velocidades mayores 120km/h.					
> 1.2	Muy gruesa	Para casos especiales con peligro de deslizamiento.					

Fuente: Elaboración propia

En la Tabla 5 y 6; se muestra los resultados conseguidos después de realizar el ensayo del círculo, aplicado en una superficie de asfalto en frio con 1% de Ichu, solo se realizó en la variación 1% debido a que es el único que se ajusta a los parámetros, cumpliendo así con la estabilidad superior al mínimo. Por lo tanto, se puede señalar los siguientes resultados el promedio PT da como resultado 0.04, encontrándose en una calificación media, en distancias normales, con velocidad moderada de 80 a 120 km/h.

Tabla 7:Porcentaje de Flujo y Estabilidad

	PATRON CON 6,2% EMULSION 0% DE ICHU	CON 1% DE ICHU	CON 2% DE ICHU	CON 3% DE ICHU
Estabilidad promedio de 3 muestras (kg)	928.00	845.70	760.70	647.00
flujo (mm)	3.47	4.06	4.40	4.83
flujo (0.01in)	8.81	10.31	11.18	12.27
Peso específico bulk de la briqueta promedio de 3 muestras (gr)	2.124	2.083	2.067	2.060

Fuente: Elaboración Propia

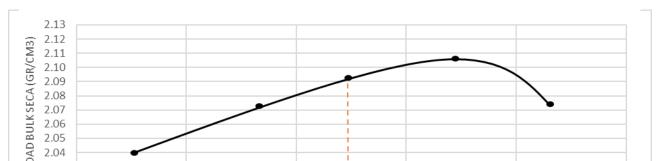
	6.2% de emulsión 0% Ichu			6.2% de emulsión 1% Ichu				de emu 2% Ichu		6.2% de emulsión 3% Ichu		
Muestras	m-1	m-2	m-3	m-1	m-2	m-3	m-1	m-1 m-2 m-3		m-1	m-2	m-3
Peso inicial (gr.)	1150	1140	1148	1035.5	1045.8	1037	1045.5	1036.2	1039.9	1048.4	1055.4	1047.8
Peso final (gr.)	1010	1000	1010	850.2	848.9	850.5	785.2	780.9	775.9	735.6	725.9	725.9
Perdida	140	140	138	185.3	196.9	186.2	260.3	255.3	264	312.8	329.5	321.9
Desgaste (%)	12.2	12.3	12	17.9	18.8	18	24.9	24.6	25.4	29.8	31.2	30.7
Promedio Desgaste (%)		12.15		18.23			24.97			30.59		

Tabla 8: Porcentaje de Desgaste

Fuente: Elaboración Propia

Tabla 9:Porcentaje de Impermeabilidad

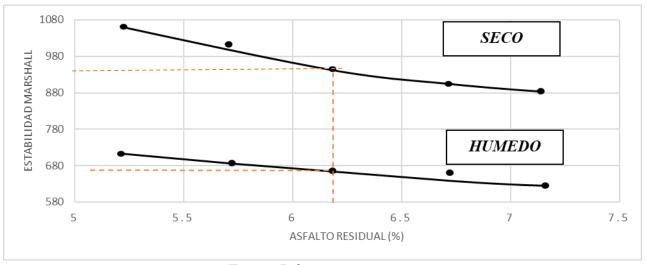
	emu	2% de lsión 0 Ichu		6.2% de emulsión 1% Ichu					e emuls Ichu	ión	6.2% de emulsión 3% Ichu			
Muestras	m-1	m-2	m-3	m-1	m-1 m-2 m			3 m-1 m-2 m-		m-3	m-1	m-2	m-3	
Peso de la briqueta seca al aire (gr.)	1070.2	1065	1055.	8 1150	1148.8	1152.	8 1	148.2	1140.6	1145.:	5 1150.5	1140.9	1145.9	
Peso del agua absorbida (gr)	29.8	33	32.2	5.8	5.7	5.7		6.1	6.3	6	7.4	7.2	7.7	
Promedio de absorción (gr)	•	31.67		5.73			6.13				7.43			


Fuente: Elaboración Propia

Como se puede observar en la tabla 7,8 y 9 los porcentajes varían entre 1%,2% y 3% siendo el **porcentaje optimo el 1%** tanto en flujo y estabilidad, desgaste impermeabilidad.

5.2. Determinar la influencia de la adición del polímero de Ichu ante la estabilidad y flujo de la mezcla asfáltica en frio

Para lograr determinar el diseño patrón con el cual se trabajarían las tres variaciones con Ichu, se hizo uso del método MARSHALL ASTM- D 1559 Modificado Illinois (MS-14 del instituto de asfalto), de las muestras del diseño patrón se obtuvo que el porcentaje óptimo de emulsión asfáltica fue 6,2%, obteniendo los siguientes resultados o características de este diseño patrón, los cuales se muestran el siguiente Gráfico3.


Gráfico: 3: DETERMINACION DEL DISEÑO PATRÓN 6.2% DE EMULSIÓN ASFÁLTICA TIPO CSS

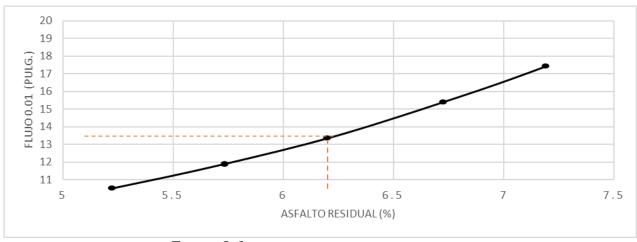
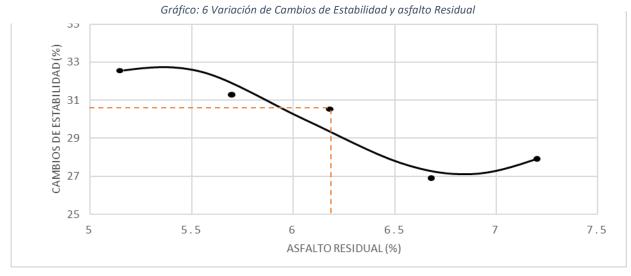
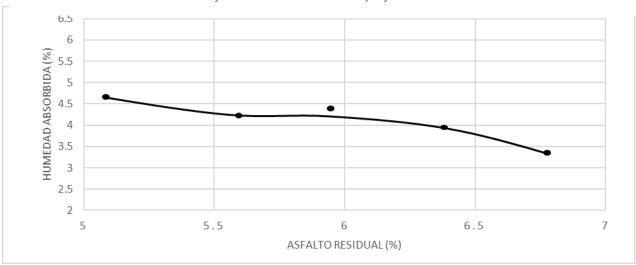

Fuente: Elaboración Propia

Gráfico: 4:Variación de Estabilidad Marshall y Asfalto Residual



Fuente: Informe CIAA SANTA CRUZ GEOTECNIA

Gráfico: 5:Variación entre Flujo 0.001 y asfalto residual



Fuente: Informe CIA SANTA CRUZ GEOTECNIA

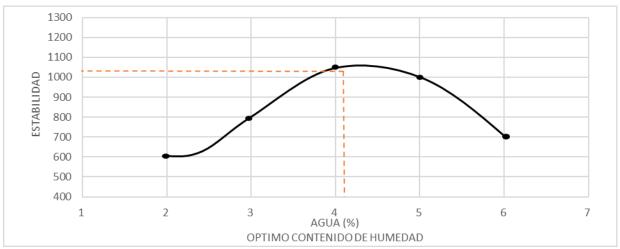

Fuente: Informe CIAA SANTA CRUZ GEOTECNIA

Gráfico: 7 Humedad de Absorbida y Asfalto Residual

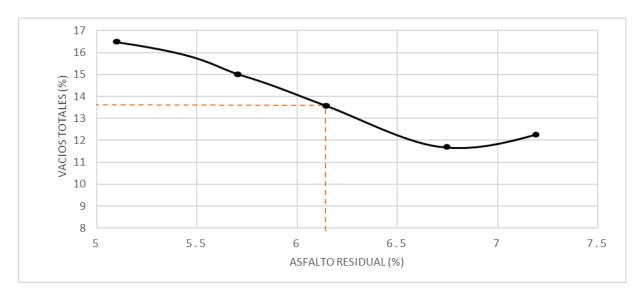

Fuente: Informe CIAA SANTA CRUZ GEOTECNIA

Gráfico: 8Estabilidad y Agua

Fuente: Informe CIA SANTA CRUZ GEOTECNIA

Gráfico: 9 Variación de vacíos totales y Asfalto Residual

Fuente: Informe CIAA SANTA CRUZ GEOTECNIA

% ASFALTO RESIDUAL: % EMULSION ASFALTICA	10,3
% DE AGUA PARA RECUBRIMIENTO	2,0
% CONTENIDO DE AGUA PARA COMPACTACION (2% a 6%)	2,8
TEMPERATURA DE AMBIENTE (°C)	13,5
N.º DE GOLPES	75
% CEMENTO ASFALTICO RESIDUAL (EN PESO DE LOS AGREGADOS)	6,2
DENSIDAD SECA (g/cm3)	2,095
ESTABILIDAD MODIFICADA SECA (kg)	928
ESTABILIDAD MODIFICADA HUMEDA (kg)	670
FLUJO (0.01 pulg.)	13,7
HUMEDAD ABSORBIDA (%)	4,4
TEMPERATURA DE MEZCLA (°C)	13,5
% VACIOS	13,8
	1

Tabla 10: Diseño patrón que cumple es el de 6.2%,

Fuente: Elaboración Propia

Se tiene que el diseño patrón que cumple es el de 6.2%, teniéndose en consideración la tabla de criterios de diseño Marshall el cual menciona que para muestras con compactación de 75 golpes su estabilidad debe de ser no menor a los 815 kg y

habiéndose realizado las muestras para el diseño patrón con 75 golpes, cumple teniendo como estabilidad 928 kg y un flujo de 13,7 in. Estando este dentro del parámetro de 8 a 14 in.

Obtenido el diseño patrón se inició a determinar el volumen en peso, con el cual se trabajó cada variación los cuales fueron conformadas por 3 ejemplares ya incluyendo el Ichu, con la finalidad que promediar los resultados, como peso total de cada muestra se consideró 12.00 gr.

Tabla 11: Peso de los componentes para el asfalto en frio con polímeros de Ichu

VARIACIÓN	Ichu (gr)	Emulsión CSS- 1H (gr)	Agregado grueso (gr)	Agregado fino (gr)	Total (gr)
patrón sin Ichu	0.00	74.4	450.24	675.36	1200.00
1% de Ichu	12.00	74.4	450.24	663.36	1200.00
2% de Ichu	24.00	74.4	450.24	651.36	1200.00
3% de Ichu	36.00	74.4	450.24	639.36	1200.00

Fuente: Elaboración propia.

En la tabla 8 , observamos que la emulsión y Agregado grueso se mantuvieron en todas las variaciones lo que, si vario o cambio fue los pesos de Ichu y el agregado fino, en tal sentido se entiende que el Ichu fue reemplazando al agregado fino y por su tamaño no se pudo considerar como agregado grueso.

Figura 12: Forma de dosificación de la mezcla para cada porcentaje

Fuente: Elaboración propia

En la figura 12, describe la manera en que se realizó la consolidación de cada muestra, el cual fue conformado por agregado grueso, fino, polímeros de Ichu y la emulsión CSS-1H, vertiéndose como último componente la emulsión con ayuda de la balanza el cual indico el peso limite que debió tener cada muestra, el proceso de elaboración de cada muestra se detalla en el panel fotográfico ubicado en los anexos.

5.2. Determinamos que los polímeros de Ichu tienen un vínculo directo y considerable con la estabilidad y flujo el cual se encuentra detallado.

Figura 13; Ensayo - MARSHALL ASTM- D 1559 Modificado Illinois

Fuente: Elaboración propia

En la figura 13 ,describe la forma con la cual se realizó la prueba para precisar la estabilidad y flujo con el instrumento Prensa Marshall, cuyos resultados se encuentran en los informes del laboratorio ver (Anexos), el proceso de ensayo se describe en el panel fotográfico.

Tabla 12: Estabilidad y Flujo

	PATRON CON 6,2% EMULSION 0% DE ICHU	CON 1% DE ICHU	CON 2% DE ICHU	CON 3% DE ICHU
Estabilidad promedio de 3 muestras (kg)	928.00	845.70	760.70	647.00
flujo (mm)	3.47	4.06	4.40	4.83
flujo (0.01in)	8.81	10.31	11.18	12.27
Peso específico bulk de la briqueta promedio de 3 muestras (gr)	2.124	2.083	2.067	2.060

Fuente: Elaboración Propia

Tabla 13: Requisitos para mezcla de concreto bituminoso

Tabla 423-06 Requisitos para mezcla de concreto bituminoso								
	Clas	se de Mezcla						
Parámetro de Diseño	Α	В	С					
Marshall MTC E 504								
1. Compactación, número de golpes por lado	75	50	35					
2. Estabilidad (mínimo)	8,15 kN	5,44 kN	4,53 kN					
3. Flujo 0,01" (0,25 mm)	8-14	8-16	8-20					
4. Porcentaje de vacíos con aire (1) (MTC E 505)	3-5	3-5	3-5					
5. Vacíos en el agregado mineral	<u>Ver 1</u>	Гabla 423-1	0					
Inmersión – Compresión (MTC E 518) 1. Resistencia a la compresión Mpa mín. 2. Resistencia retenida % (mín.)	2,1 75	2,1 75	1,4 75					
Relación Polvo – Asfalto (2)	0,6-1,3	0,6-1,3	0,6-1,3					
Relación Estabilidad/flujo (kg/cm) (3)	1	.700-4.000						
Resistencia conservada en la prueba de tracción indirecta AASHTO T 283		80 Mín.						

Fuente: EG-2013 (Especificaciones Técnicas Generales Para Construcción)

En la tabla 10, se muestran los resultados referentes a la estabilidad, se puede indicar que según EG-2013 (ESPECIFICACIONES TECNICAS GENERALES PARA CONSTRUCCION) Y CRITERIO DE DISEÑO DE MARSHALL la estabilidad mínima es de 8,15 kN convertidos a kilogramos seria 831.07 kg. Por lo tanto, se tiene que para el 1% de Ichu 845.70 kg, para el 2% de Ichu 760.70 kg, para el 3% de Ichu 647.00 kg. Variación o dosificación con 1% de Ichu. Así mismo referente al flujo se tiene para el 1% d Ichu 10.31, para el 2% de Ichu 11.18 y por último para el 3% de Ichu 12.27. Cabe indicar también que existe un parámetro referente al flujo el cual indica que debe estar o encontrarse de 8 a 14 según la EG-2013 (ESPECIFICACIONES TECNICAS GENERALES).

5.3. Se determinó la influencia de la adición de polímero de Ichu en el cambio frente al desgaste de la mezcla asfáltica en frio.

Figura 14: Ensayo Cántabro – Método Maquina de los Ángeles MTC E515

Fuente: Elaboración propia

En la figura 14, describe el equipo que se utilizó para realizar el ensayo, la forma como se procedió fue la siguiente: se pesó la muestra teniendo un peso inicial, luego se introdujo cada muestra por separado, programando la maquina a 300 vueltas, a una velocidad de 33 rpm, al finalizar las vueltas se retiró la muestra y se procedió a controlar su peso final para su posterior calculo, de igual manera se trabajó con 3 ejemplares para cada variación, cuyos resultados se encuentran en los informes del laboratorio ver(Anexos), el proceso de ensayo se describe en el panel fotográfico.

Tabla 14: Ensayo Cántabro – Método Maquina de los Ángeles MTC E515

	6.2%	de emu % Ichu		6.2% de emulsión 1% Ichu		6.2% de emulsión 2% Ichu			6.2% de emulsión 3% Ichu			
Muestras	m-1	m-2	m-3	m-1	m-2	m-3	m-1	m-2	m-3	m-1	m-2	m-3
Peso inicial (gr.)	1150	1140	1148	1035.5	1045.8	1037	1045.5	1036.2	1039.9	1048.4	1055.4	1047.8
Peso final (gr.)	1010	1000	1010	850.2	848.9	850.5	785.2	780.9	775.9	735.6	725.9	725.9
Perdida	140	140	138	185.3	196.9	186.2	260.3	255.3	264	312.8	329.5	321.9
Desgaste (%)	12.2	12.3	12	17.9	18.8	18	24.9	24.6	25.4	29.8	31.2	30.7
Promedio Desgaste (%)		12.15		18.23		24.97			30.59			

Fuente: Informe CIAA SANTA CRUZ GEOTECNIA- Elaboración propia

En la tabla 11, se muestran los porcentajes de desgaste que tiene cada variación, para el diseño patrón se tiene 12.15% de desgaste, para la variación de 1% de Ichu se tiene un desgaste de 18.23%, para la variación de 2% de Ichu se tiene 24.97%, y por último para la variación de 3% de Ichu se tiene 30.59%.

Resistencia al Desgaste por Abrasión

Método Maquina de los Ángeles MTC E 207

Se determinó la fortaleza al desgaste por abrasión tomando una muestra y realizando su respectiva granulometría, la granulometría se hizo con 5000+-10 gr., así mismo se puso el prototipo en el dispositivo durante 15 min. Con una programación de 500 Rev., después se sacó la muestra para tamizarla por la malla N°12 y procedió al pesado para procesar y calcular el porcentaje de desgaste, así mismo de acuerdo a la NORMA ASTM C131 indica que un agregado es apto cuando su desgaste es menor al 50%, los datos recabados de resistencia al desgaste por abrasión del agregado se detallan en el Cuadro N° 4.2-1 donde se exponen:

Tabla 15: Datos y Resultados para obtención de la Resistencia al desgaste por Abrasión

	METODO		PESOS Y GRA	PESOS Y GRANULOMETRIAS EMPLEADOS (gr)			
PASA TAMIZ	RETIENE TAMIZ	А	В	С	D	В	
11/2"	1"	1250+- 25				0	
1"	3/4"	1250+-25				0	
3/4"	1/2"	1250+- 10	2500+10			2510	
1/2"	3/8"	1250+- 10	2500+-10			2500	
3/8"	1/4"			2500+10			
1/4"	N°4			2500+10			
N°4	N°8	14,000			5000+10		
	PESO TOTAL	5000+10	5000+10	5000+-10	5000+10	5010	
N° de esfe	eras	12	11	8	6		
peso de las esferas		390-445	391-445	392-445	393-445		the Monte
		Peso Retenid	o en la Malla N	° 12 (gr)		3850	
		Peso que Pas	a en la Malla N	1160	The state of the s		
		% Desgaste		l° 12 (gr)		23,15	

Fuente: Informe CIAA SANTA CRUZ GEOTECNIA.

En el tabla 12, describe los datos recolectados para la oposición al deterioro por abrasión de estos datos se puede indicar que el porcentaje de desgaste realizado fue de 23.15 %, según lo obtenido se consigue concluir que con un añadido con la resistencia al desgaste, siendo esta menor que el 50 % cumpliendo con la norma ASTM C131. Ver informe (Anexo)

Terrones de Arcilla en Agregado

Terrenos de arcilla en agregado grueso y fino MTC E 212

Se realizó este ensayo con la finalidad de determinar una cantidad cercana de los fragmentos de arcilla, como la de los fragmentos desmenuzables o llamados también como friables en el agregado. Para este ensayo los agregados estuvieron conformados por el elemento que quedo al final como consecuencia de la prueba para la delimitación de suministros más menudos que el tamiz 75 m (No. 200), de acuerdo al método MTC

E202., continuando y concluyendo los procedimientos guiados del compendio de prueba de materiales (EM 2000). Ver informe (Anexo)

Tabla 16: Terrenos de arcilla en agregado grueso y fino MTC E 212

	-			MIII	FSTRA N	° 01	LUNA	. 21/12/2021		
	MUESTRA N° 01 TERRONES DE ARCILLA EN AGREGADO GRUESO MTC E 212									
Pasa	Retiene	peso inicial	peso final	% fraccion	% ret. parcial	M inicial (kg)	M final (kg)	%fracción Terrones	% Parcial Terrones	
1"	3/4"	0	0	O	0	O	0	0	0,00	
3/4"	3/8"	2810	2810	0	29,33	2.810	2.810	0	0,00	
3/8"	4"	1595	1595	0	35,44	1.595	1.595	0	0,00	
4"	Base	30,395			5			0	0,00	
	TE	RRONE	S DE AI	RCILLA E	N AGR	EGADO I	INO M	TC E 212		
MASA II	NICIAL	М	352,52	2	P= % DE T	ERRONES DE	ARCILLA	1		
MASA R	RETENIDA N	R	351,58	3				•		

Fuente: Informe CIAA SANTA CRUZ GEOTECNIA.

OBSERVACIONES : MATERIAL/TRITURADO

En la tabla 13, se muestra los porcentajes de fragmentos de arcilla en el añadido grueso el cual es 0.00%, también se tiene el porcentaje de fragmentos de arcilla en el añadido fino el cual es 0,27 %.

5.4. Se determinó la influencia de la adición del polímero de Ichu ante la

impermeabilidad en la mezcla asfáltica en frio.

Figura 15: Impermeabilidad- Saturación de las muestras- Peso específico Bulk de mezclas asfálticas

Fuente: Elaboración propia

Figura 16: Impermeabilidad- Saturación de las muestras- Peso específico Bulk de mezclas asfálticas

Fuente: Elaboración propia

En la figura 15 y 16 se describe la forma con la cual se realizó el ensayo de, cuyos resultados se encuentran en los informes del laboratorio ver (Anexos), el

proceso de ensayo se describe en el panel fotográfico.

Tabla 17: Peso del Agua absorbida - impermeabilidad

		de em		6.2% de emulsión 1% Ichu		6.2% de emulsión 2% Ichu			6.2% de emulsión 3% Ichu			
Muestras	m-1	m-2	m-3	m-1	m-2	m-3	m-1	m-2	m-3	m-1	m-2	m-3
Peso de la briqueta seca al aire (gr.)	1070.2	1065	1055.8	1150	1148.8	1152.8	1148.2	1140.6	1145.5	1150.5	1140.9	1145.9
Peso del agua absorbida (gr)	29.8	33	32.2	5.8	5.7	5.7	6.1	6.3	6	7.4	7.2	7.7
Promedio de absorción (gr)		31.67			5.73			6.13			7.43	

Fuente: Elaboración propia

En la tabla 14, se observa los resultados del control de núcleos asfálticos para el diseño patrón con 0% de Ichu se tiene un promedio de 31,67 gr., para la variación con 1% de Ichu se tiene 5.73 gr. para la variación con 2% de Ichu se tiene 6.1 3 gr. para la variación con 3% de Ichu se tiene 7.43 gr.

5.3. Contraste de Hipótesis

5.3.1. Prueba de Hipótesis Especifica (Hipótesis A)

En relación con la problemática siguiente: ¿Cuál es la dosificación optima al incorporar el polímero de Ichu en el desempeño de la mezcla asfáltica en frio?, cuyo objetivo es Determinar la dosificación optima al incorporar el polímero de Ichu en el desempeño de la mezcla asfáltica en frio, de la misma manera se plantea la siguiente hipótesis nula (Ho) y la hipótesis alterna (H1), respectivamente:

Hipótesis nula: Ho: NO existe un vínculo directo relevante, entre el desempeño de la combinación asfáltica en frio con referencia a los polímeros de Ichu.

Hipótesis alterna: H1: EXISTE un vínculo directo y relevante entre desempeño de la combinación asfáltica en frio con referencia a los polímeros de Ichu.

Por tanto, en la siguiente tabla se realiza la prueba de hipótesis, aplicando la correlación Pearson, donde se verifica que el índice de correlación entre la sub variable: Porcentaje de Adición de Polímero de Ichu y el Desempeño de la Mezcla Asfáltica es de 0.610^{**} . Asimismo se verifica que el nivel de significancia bilateral es de 0.004, valor menor que el nivel d significación o precisión el cual es menor a la significancia p<0.05.

Tabla 18: Correlación de Pearson de Polímero de Ichu vs Desempeño de Mezcla Asfaltica

Variable Indep Depen.	"r" De Pearson	Polímeros de Ichu	Desempeño de la mezcla Asfáltica
	Correlación de Pearson	1	0,610**
Polímero de Ichu	Sig. (Bilateral)		0.004
	N	20	20
	Correlación de Pearson	0,610**	1
Desempeño de la Mezcla Asfáltica	Sig. (Bilateral)	0,004	
	N	20	20

Fuente: Reporte del Software SPSS

Entonces se rechaza la hipótesis nula y se acepta la hipótesis alterna.

H1: Se comprueba la relación entre el polímero de Ichu y el Desempeño de la Mezcla Asfáltica, evidencian un nivel de significancia menor a 0,05.

3.2. Prueba de Hipótesis Especifica (Hipótesis B)

En relación con la problemática siguiente: ¿De qué manera influye la adición del polímero de Ichu ante la estabilidad y flujo de la mezcla asfáltica en frio?, cuyo objetivo es determinar la influencia de la adición del polímero de Ichu ante la estabilidad y flujo

de la mezcla asfáltica en frio, de la misma manera se plantea la siguiente hipótesis nula (Ho) y la hipótesis alterna (H1), respectivamente:

Hipótesis nula: Ho: En el cumplimiento de la combinación asfáltica en frio NO existe un vínculo directo y relevante entre polímeros de Ichu y la estabilidad y flujo.

Hipótesis alterna: H1: En el desempeño de la combinación asfáltica en frio EXISTE vínculo directo y significativa entre polímeros de Ichu y la estabilidad y flujo.

Por tanto, en la siguiente tabla se realiza la prueba de hipótesis, aplicando la correlación Pearson, donde se verifica que el índice de correlación entre la sub variable: Polímero de Ichu y el Estabilidad Y Flujo es de 0.602**. Asimismo, se verifica que el nivel de significancia bilateral es de 0.003, valor menor que el nivel d significación o precisión el cual es menor a la significancia p<0.05.

Tabla 19: Correlación de Pearson de Polímero de Ichu vs Estabilidad y Flujo

Variable Indep Depen. Dimen 1	"r" De Pearson	Polímeros de Ichu	Estabilidad y Flujo
	Correlación de Pearson	1	0,602**
Polímero de Ichu	Sig. (Bilateral)		0.010
	N	20	20
Estabilidad	Correlación de Pearson	0,602**	1
Y	Sig. (Bilateral)	0,003	
Flujo	Flujo N	20	20

Fuente: Reporte del Software SPSS

Entonces se rechaza la hipótesis nula y se acepta la hipótesis alterna.

H1: Se comprueba la relación entre el polímero de Ichu y la Estabilidad y Flujo evidenciando que su nivel de significancia menor a 0,05.

3.3. Prueba de Hipótesis Especifica (Hipótesis C)

En relación con la problemática siguiente: ¿De qué manera influye la adición de polímero de Ichu en el cambio frente al desgaste de la mezcla asfáltica en frio?, cuyo objetivo es determinar la influencia de la adición de polímero de Ichu en el cambio frente al desgaste de la mezcla asfáltica en frio, de la misma manera se plantea la siguiente hipótesis nula (Ho) y la hipótesis alterna (H1), respectivamente:

Hipótesis nula: Ho: En el actuar de la combinación asfáltica en frio NO existe un vínculo directo e importante entre polímeros de Ichu y desgaste.

Hipótesis alterna: H1: Realizar de la combinación asfáltica en frio EXISTE un vínculo directa e importante entre polímeros de Ichu y desgaste.

Por tanto, en la siguiente tabla se realiza la prueba de hipótesis, aplicando la correlación Pearson, donde se verifica que el índice de correlación entre la sub variable: Polímero de Ichu y el Desgaste es de 0.518**. Asimismo, se verifica que el nivel de significancia bilateral es de 0.019, valor menor que el nivel d significación o precisión el cual es menor a la significancia p<0.05.

Tabla 20: Correlación de Pearson de Polímero de Ichu vs Desgaste

Variable Indep Depen. Dimen 2	"r" De Pearson	Polímeros de Ichu	Desgaste
	Correlación de Pearson	1	0,518*
Polímero de Ichu	Sig. (Bilateral)		0.019
	N	20	20
	Correlación de Pearson	0,518*	1
Desgaste	Sig. (Bilateral)	0,019	
	N	20	20

Fuente: Reporte del Software SPSS

Entonces se rechaza la hipótesis nula y se acepta la hipótesis alterna.

H1: Se comprueba la relación entre el polímero de Ichu y desgaste; evidenciando que

su nivel de significancia menor a 0,05.

3.4. Prueba de Hipótesis Especifica (Hipótesis D)

En relación con la problemática siguiente: ¿De qué manera influye la adición del

polímero de Ichu ante la impermeabilidad en la mezcla asfáltica en frio?, cuyo objetivo

es determinar la influencia de la adición del polímero de Ichu ante la impermeabilidad

en la mezcla asfáltica en frio, de la misma manera se plantea la siguiente hipótesis nula

(Ho) y la hipótesis alterna (H1), respectivamente:

Hipótesis nula: Ho: En el rendimiento de la combinación asfáltica en frio NO existe un

vínculo directa e importante entre polímeros de Ichu e impermeabilidad.

Hipótesis alterna: H1: Rendimiento de la combinación asfáltica en frio EXISTE un

vínculo directo e importante entre polímeros de Ichu e impermeabilidad.

Por tanto, en la siguiente tabla se realiza la prueba de hipótesis, aplicando la correlación

Pearson, donde se verifica que el índice de correlación entre la sub variable: Polímero

de Ichu y la impermebilidad es de 0.568**. Asimismo, se verifica que el nivel de

significancia bilateral es de 0.009, valor menor que el nivel d significación o precisión

el cual es menor a la significancia p<0.05.

Tabla 21: Correlación de Pearson de Polímero de Ichu vs Impermeabilidad

74

Variable Indep Depen. Dimen 3	"r" De Pearson	Polímeros de Ichu	Impermeabilidad
	Correlación de Pearson	1	0,568**
Polímero de Ichu	Sig. (Bilateral)		0.009
	N	20	20
	Correlación de Pearson	0,568**	1
Impermeabilidad	Sig. (Bilateral)	0,009	
	N	20	20

Fuente: Reporte del Software SPSS

Entonces se rechaza la hipótesis nula y se acepta la hipótesis alterna.

H1: Se comprueba la relación entre el polímero de Ichu y la impermeabilidad; evidenciando que su nivel de significancia menor a 0,05.

CAPÍTULO VI

ANALISIS Y DISCUSION DE RESULTADOS

Del análisis recabado de la investigación efectuada, se apoya en determinar los cambios o modificaciones con la añadidura de polímeros de Ichu en la combinación asfáltica en frio.

Con referencia a las pruebas generales realzados en gabinete se determinó que se tiene que el diseño patrón que cumple es el de 6.2%, teniéndose en consideración la tabla de criterios de diseño Marshall el cual menciona que para muestras con compactación de 75 golpes su estabilidad debe de ser no menor a los 815 kg y habiéndose realizado las muestras para el diseño patrón con 75 golpes, cumple teniendo como estabilidad 928 kg y un flujo de 13,7 in. Estando este dentro del parámetro de 8 a 14 in.

Respecto a la elaboración de las variantes se determinó las siguientes características que son: la emulsión y Agregado grueso se mantuvieron en todas las variaciones lo que, si vario o cambio fue los pesos de Ichu y el agregado fino, en tal sentido se entiende que el Ichu fue reemplazando al agregado fino y por su tamaño no se pudo considerar como agregado grueso.

6.1. O.E. 1. Determinar la influencia de la adición del polímero de Ichu ante la estabilidad y flujo de la mezcla asfáltica en frio.

Después de obtener los datos de laboratorio se determinó que los resultados referentes a la estabilidad, se puede indicar que según EG-2013 Y CRITERIO DE DISEÑO DE MARSHALL la estabilidad mínima es de 815 kg. Por lo tanto, se tiene que para el 1% de Ichu 845.70 kg, para el 2% de Ichu 760.70 kg, para el 3% de Ichu 647.00 kg. Variación o dosificación con 1% de Ichu. Así mismo

referente al flujo se tiene para el 1% de Ichu 10.31, para el 2% de Ichu 11.18 y por último para el 3% de Ichu 12.27. Cabe indicar también que existe un parámetro referente al flujo el cual indica que debe estar o encontrarse de 8 a 14 según Y CRITERIO DE DISEÑO DE MARSHALL.

De igual forma se encontró en la tesis de Víctor Estrada Escalante (2017) titulada "Estudio y Análisis de desempeño de mezclas asfáltica convencional PEN 85/100 plus y combinación asfáltica modificada con polímero tipo SBS PG 70-28" que la combinación asfáltica modificada con polímero SBS PG 70 -28 nos brindara un mejor nivel de estabilidad", ya que el valor de estabilidad que se obtuvo en la combinación asfáltica 158 modificada con polímero SBS PG 70 -28 (estabilidad igual a 2047 kgf, tabla 4.1) es más elevado que el valor de estabilidad de la mezcla asfáltica convencional PEN 85/100 plus (estabilidad igual a 1382 kgf, tabla 4.1), lo que demuestra una mayor cohesión y adhesividad de la mezcla asfáltica modificada con polímero SBS PG 70 -28, la cual influye posteriormente en el desempeño de la mezcla.

6.2. O.E. 2. Determinar la influencia de la adición de polímero de Ichu en el cambio frente al desgaste de la mezcla asfáltica en frio

En la investigación se determinó que los porcentajes de desgaste tiene cada variación, para el diseño patrón se tiene 12.15% de desgaste, para la variación de 1% de Ichu se tiene un desgaste de 18.23%, para la variación de 2% de Ichu se tiene 24.97%, y por último para la variación de 3% de Ichu se tiene 30.59%.

De la misma manera Guevara, M. y Méndez H.(2010) en su tesis "Diseño de mezclas asfálticas basado en el Método Marshall modificado de la

Universidad de Illinois "indica que la elección final de la fuente de materiales (cantera san Diego), es una contribución significativa para la cualidad final de la combinación ya que los materiales ensayados (grava ¾", arena triturada) satisfacieron con las obligaciones de las disposiciones aplicables en cuanto a dureza, limpieza, desgastes, angulosidad y sanidad.

Por lo que se comprende en que el polímero de ichu influye significativamente en los cambios frente al desgaste de la mezcla asfáltica en frio, esta hipótesis fue comprobada y aceptada como válida, debido a que su valor aumenta significativamente.

6.4. 0.E.3. Determinar la influencia de la adición del polímero de Ichu ante el deslizamiento en la mezcla asfáltica en frio

En la investigación se obtuvo que la muestra de los resultados conseguidos después de realizar el ensayo del círculo, aplicado en una superficie de asfalto en frio con 1% de Ichu, solo se realizó en la variación 1% debido a que es el único que se ajusta a los parámetros, cumpliendo así con la estabilidad superior al mínimo. Por lo tanto, se puede señalar los siguientes resultados el promedio PT da como resultado 0.04, encontrándose en una calificación promedio, para intervalos normales con velocidad moderada de 80 a 120 km/h.

De la misma manera Tingal Limay(2021) en su tesis "Análisis Del Índice De Rugosidad Internacional (Iri) De La Superficie Del Pavimento Flexible De La Vía Cajamarca – Baños Del Inca, Utilizando El Rugosimetro De Merlin". Menciona que después de examinar el método de las deformaciones longitudinales con el equipo Rugosímetro de Merlin comprobando que la serviciabilidad del pavimento flexible se encuentra en un estado aceptable ubicándose entre las

escalas 4 - 5. Por lo que a más grande la rugosidad de la superficie superior es la variabilidad de los desplazamientos. Por lo tanto, se diagnosticó el nivel de prestación mediante la valuación del modo de actuar superficial del pavimento flexible de la vía Cajamarca -Baños el Inca, a través de la rugosidad obtenida en campo medido con el Equipo Merlin, el cual es aceptable por lo que se cumple con la hipótesis.

CONCLUSIONES

- 1. Se comprobó que la adición de Ichu en 1% es el porcentaje óptimo para mejora la rugosidad en el asfalto. Se muestra los resultados conseguidos después de realizar el ensayo del círculo, cumpliendo así con la estabilidad superior al mínimo. Por lo tanto, se puede señalar los siguientes resultados el promedio PT da como resultado 0.04, encontrándose en una calificación media, para intervalos normales con velocidad moderada de 80 a 120 km/h.
- 2. Se concluyó que el polímero de Ichu contribuye la estabilidad y flujo de la combinación asfáltica en frio. Según EG-2013 Y CRITERIO DE DISEÑO DE MARSHALL la estabilidad mínima es de 815 kg. Por lo tanto, se tiene que para el 1% de Ichu 845.70 kg, para el 2% de Ichu 760.70 kg, para el 3% de Ichu 647.00 kg. Variación o dosificación con 1% de Ichu. Así mismo referente al flujo se tiene para el 1% de Ichu 10.31, para el 2% de Ichu 11.18 y por último para el 3% de Ichu 12.27. Cabe indicar también que existe un parámetro referente al flujo el cual indica que debe estar o encontrarse de 8 a 14 según y criterio de diseño de Marshall.
- 3. Se comprobó que la adición del polímero de Ichu evita el desgaste. Considerando que para el diseño patrón se tiene 12.15% de desgaste, para la variación de 1% de Ichu se tiene un desgaste de 18.23%, para la variación de 2% de Ichu se tiene 24.97%, y por último para la variación de 3% de Ichu se tiene 30.59%.
- 4. Se concluyó que la adición de Ichu consolida el asfalto haciendo impermeable la mezcla. Se determinó que presenta los resultados del control de núcleos asfálticos para el diseño patrón con 0% de Ichu se tiene un promedio de 31,67 gr., para la variación con 1% de Ichu se tiene 5.73 gr. para la variación con 2% de Ichu se tiene 6.1 3 gr. para la variación con 3% de Ichu se tiene 7.43 gr.

RECOMENDACIONES

- 1. Actualmente no existe un diseño estipulado para este tipo de mezclas modificadas, ya que los porcentajes óptimos de polímeros que se emplean varían debido a diferentes factores como la compatibilidad con el asfalto a modificar, tipo de agregados, temperaturas para lo cual serán expuestas o las propiedades que se buscan reforzar, entre otros, por ende, se recomienda evaluar particularmente cada diseño que se realice de estas mezclas asfálticas modificadas para obtener su propio porcentaje óptimo de adición de polímero de ichu u otro, teniendo como referencia el rango de 1% a 3%.
- 2. Se recomienda realizar investigaciones donde se realicen aplicaciones con adición de polímeros de ichu en campo, realizando la colocación de mezcla asfáltica en frio en un tramo de carretera en diferentes departamentos con diferentes climas, y que eso sea una puerta para próximas investigaciones de evaluación de vida útil.
- 3. Recomienda que al momento de disgregar el material por criterios de investigación, se realicen diversos muestreos del Ichu, debido a que los lugares de acopio son variados y extensos, de tal manera recoger y recabar datos reales pero sobre todo representativos, es decir muestras de diferentes lugares y compararlos y asumir un promedio de los valores obtenidos.

- 4. Se recomienda que es preferible comparar el polímero de ichu con otros tipos de fibras naturales sometidas a las mismas pruebas para seleccionar la fibra natural que muestre mejores resultados, teniendo en cuenta los parámetros de estabilidad, desgaste ,flujo y estabilidad; de la misma manera evaluar el costo, factor de eficiencia para ser más el evaluar el bajo costo busca mejores beneficios al tiempo que garantiza el cumplimiento de por vida.
- 5. Se recomienda a los próximos tesistas que quieran averiguar acerca de la adición del polímero de ichu generen otros porcentajes de adición de tal manera se pueda verificar mejoras con relación a los ya asumidos y así obtener un enfoque experimental amplío que pueda conducir a optimizaciones significativas en su aplicación práctica.

VI. REFERENCIAS BIBLIOGRÁFICAS

ACOSTA, H y Benson, C. "Estabilización de Suelos y Secado usando Cenizas Volantes". Universidad de Wisconsin, Madison EE.UU. 2003

AGUILAR Elguézabal, A., GARCÍA Medina, I.E. y ORRANTI Borunda, A. "Uso de la escoria de cobre en el proceso de fabricación de Clinker para cemento Portland" Revista Materiales de Construcción, N° 281 España. 2006.

AGUILAR, C., NAZER, A., PAVEZ, O. Y ROJAS, F. "Una revisión de los usos de las escorias de cobre", IBEROMET XI, X CONAMET/SAM, Viña del Mar, Chile. 2010

ALEXANDER Mauricio V. "Capacidad de soporte al estabilizar el suelo de la vía Cascajal con adición de Carbón y Cal a nivel de sub rasante". Universidad San Pedro, Perú. 2018.

BAUZA, D 2003 "Estabilización de suelos con cal". Madrid, España.

CARDENLEY, René y MONDSCHEIN, Susana. "Control de la contaminación atmosférica de las fundiciones estatales de cobre mediante un sistema de apoyo de decisiones". Santiago, Chile. 2000.

CRUZ Carrasco M. "Estudio de la resistencia y reologia de hormigones con adición de escoria de cobre como sustituto del árido fino". Málaga, España. 2014.

MARCOS Adrián M. "Uso de las escorias obtenidas como subproducto de la elaboración de acero de la planta N° 2 de aceros Arequipa – Pisco para fines .de cimentación y pavimentación". Lima, Perú. 2008

NAZER, A "et al". "Uso de las escorias de cobre en la fabricación de adocretos de hormigón". Atacama, Chile. 2013.

MARVIN Jairo López y PINEDO M. "Mejoramiento de las características físico mecánicas de adoquines de cemento para pavimentación, adicionando escoria de horno eléctrico en su proceso de fabricación". Ancash, Perú. 2015.

OYARZÚN Kneer, Iván Alejandro. "Influencia de las escorias de cobre en la fabricación de hormigón". Valdivia, Chile. 2013.

ROJAS F. "Estudio de pre factibilidad técnica del uso de la escoria de cobre en materiales de construcción". Atacama, Chile. 2014.

ANEXOS

Anexo N° 1 – Matriz de Consistencia

PROBLEMAS	OBJETIVOS	HIPOTESIS	VARIABLES	DIMENSIONES	INDICADO R	METODOLOGIA
PROBLEMA GENERAL ¿Cuál es la dosificación optima al incorporar el polímero de Ichu en el desempeño de la mezcla asfáltica en frio?	OBJETIVO GENERAL Determinar la dosificación optima al incorporar el polímero de Ichu en el desempeño de la mezcla asfáltica en frio.	HIPOTESIS GENERAL La adición de polímeros de Ichu es la mejor propuesta para un óptimo desempeño en una mezcla asfáltica en frio	VARIABLE INDEPEND. Polímeros de Ichu	D1 : Dosificación	11:Porcenta je 1%, 2%, 3%	Tipo: Aplicada Como menciona Mejía, Novoa y Villagomez (2014), se dice que la investigación es la aplicada, porque buses solucionar los problemas de la vida productiva de la sociedad. Nivel: Explicativo. Según (Hernández, 2014), El nivel es explicativo. Este nivel establece la causa y efecto del fenómeno estudiado correspondiendo a estudios experimentales. Diseño: Experimental Según Finney (1960) afirma que el diseño de un experimento está constituido por la serie de tratamientos seleccionados para hacer comparaciones; la
PROBLEMAS ESPECIFICOS a. ¿De qué manera influye la adición del polímero de Ichu ante	OBJETIVOS ESPECIFICOS a. Determinar la influencia de la adición del polímero de Ichu	HIPOTESIS ESPECÍFICAS a. El polímero de ichu contribuye a la estabilidad y		D2 : Estabilidad Flujo	I2: Fluencia vacíos	especificación de las unidades a las cuales se aplicarán los tratamientos: las reglas por las cuales se asignarán los tratamientos a las unidades experimentales. El esquema es el siguiente: $\frac{GE:xO_1}{GC:-O_x}$
la estabilidad y flujo de la mezcla asfáltica en frio? b. ¿De qué manera influye la adición de	ante la estabilidad y flujo de la mezcla asfáltica en frio b. Determinar la influencia de la adición	flujo de la mezcla asfáltica en frío. b. El polímero de Ichu disminuye el	VARIABLE DEPENDIENT E	D3: Desgaste	I3: Fricción Erosión	Cuando: GE = Grupo experimental GC = Grupo control O1, O2 = Resultados del post incremento X = Es la variable experimental Población y muestra: Población: Nuestra población estará conformada por 70 ejemplares de asfalto las
polímero de Ichu en el cambio frente al desgaste de la mezcla asfáltica en frio? c. ¿De qué manera influye la adición del polímero de Ichu ante la impermeabilidad en la mezcla asfáltica en frio?	de polímero de Ichu en el cambio frente al desgaste de la mezcla asfáltica en frio c. Determinar la influencia de la adición del polímero de Ichu ante la impermeabilidad en la mezcla asfáltica en frio	desgaste de la mezcla asfáltica en frio. c. El polímero de lchu se consolida con el asfalto haciendo impermeable a la mezcla asfáltica en frio.	Desempeño de la mezcla asfáltica en frío.	D4: Impermeabilid ad		con diferentes dosificaciones con polímero de Ichu y sin polímero de Ichu. Muestra: Nuestras muestras serán 27 de tipo no probabilísticas a decisión del investigador o la circunstancia por tal motivo estará integrada por 9 briquetas para porcentaje de dosificación con polímeros de Ichu y 18 briquetas sin ningún porcentaje de polímeros de Ichu. Técnicas e instrumentos: Inventarios Cuadernos de apuntes Fotografías Entrevistas Técnicas de procesamiento de datos: Excel Word SPSS V 22.0 Simulator

Anexo N° 2 – Matriz de Operacionalización de Variables

VARIABLE DE LA IN	VESTIGACION	DEFINICION CONCEPTUAL	DIMENSIONES	INDICADORES	ESCALA	INSTRUMENTO
VARIABLE INDEPENDIENTE	Polímeros de Ichu	polímeros a los componentes macromoleculares, logrados sobre la base de moléculas más simples por reacción poliméricas. Como consecuencia podemos decir y afirmar que un polímero es una composición con un alto peso molecular y su estructura se simboliza por la sucesión de diminutas unidades.	*Dosificación	*Cantidad de Polímero de Ichu *Porcentaje de Polímero de Ichu	De Intervalo	Balanza
VARIABLE DEPENDIENTE	Diseño de mezcla asfáltica en frio	Es un componente muy impermeable tiene gran cohesividad y tiene mucha adherencia, con gran capacidad de soportar y tolerar grandes esfuerzos instantáneo y discurrir debido a la acción cargas continuas. En su contenido químico esta sustancia o asfalto posee químicamente constituyentes de numerosos hidrocarburos.	* Estabilidad * Flujo * Desgaste *Impermeabilidad	* Fluencia Vacíos * Fricción *Erosión * Porosidad	De intervalo	*Tamices *Máquina de Abrasión los ángeles. * Prensa Marshall. *Moldes

Anexo N° 2 – Instrumento de Investigación y Constancia de Aplicación

CONSTRUCTORA INGENIEROS & ARQUITECTOS Av. Oriente Nº 772 Concepción ASESORES SANTA CRUZ SCRL

975151126 / 912880976 / (064) 581405

Concepción - Junín

ciaasantacruz@gmail.com

RESISTENCIA AL DESGASTE POR ABRASION

Metodo Máguina de los Angeles MTC E 207

SOLICITA / PETICIONARIO:

BACH. ING. CIVIL PINCO LAYME, DAVID MARCELINO

PROYECTO / OBRA

DESEMPEÑO DE LA MEZCLA ASFALTICA EN FRIO CON ADICION DE POLIMEROS DE ICHU

CANTERA Nº / UBICACIÓN :

RIO SECO APATA

MUESTRA

M-01 Distrito

UBICACIÓN DE OBRA :

CONCEPCION

CONCEPCION Provincia

TECNICO: J.Santa Cruz V.

Departamento JUNIN

21/12/2021 FECHA :

	METODO		PESOS Y GRA	PESOS Y GRANULOMETRIAS EMPLEADOS (gr)			
PASA TAMIZ	RETIENE TAMIZ	Α	В	C	D	В	
11/2"	1"	1250+ - 25				0	
1"	3/4"	1250+ - 25				0	
3/4"	1/2"	1250+- 10	2500+10			2510	
1/2"	3/8"	1250+- 10	2500+10			2500	
3/8"	1/4"			2500+10			
1/4"	N°4			2500+10			
N°4	N°8	A. S.			5000+-10		
F	PESO TOTAL	5000+10	5000+10	5000+10	5000+10	5010	
N° de esfe	eras	12	11	8	6		
peso de las esferas		390-445	391-445	392-445	393-445		
Peso Retenido en la Malla N 12 (gr)						3850	
		Peso que Pas	a en la Malla N	l* 12 (gr)		1160	
		% Desgaste		23,15			

PROMEDIO 23,15 %

OBSERVACIONES: MATERIAL TRITURADO

CONSTRUCTORA INGENIEROS & ARQUITECTOS Av. Oriente N° 772 Concepción ASESORES SANTA CRUZ SCRL

975151126 / 912880976 / (064) 581405 Concepción - Junín ciaasantacruz@gmail.com

SOLICITA / PETICIONARIO:

BACH. ING. CIVIL PINCO LAYME, DAVID MARCELINO

PROYECTO / OBRA

DESEMPEÑO DE LA MEZCLA ASFALTICA EN FRIO CON ADICION DE POLIMEROS DE ICHU

TRAMO

CANTERA Nº/UBICACIÓN: MUESTRA

APATA M-01

UBICACIÓN DE OBRA :

CONCEPCION Distrito

CONCEPCION Provincia

TECNICO : J.Santa Cruz V. FECHA : 21/12/2021

			Departamen	n JUNIN			FECHA	: 21/12/2021	
				MU	ESTRA N	° 01			
	TERF	RONES	DE ARC	ILLA EN	AGRE	GADO GE	RUESO I	MTC E 212	2
Pasa	Retiene	peso inicial	peso final	% fraccion	% ret. parcial	M inicial (kg)	M final (kg)	%fracción Terrones	% Parcial Terrones
1"	3/4"	0	0	0	0	0	0	0	0,00
3/4"	3/8"	2810	2810	0	29,33	2.810	2.810	0	0,00
3/8"	4"	1595	1595	0	35,44	1.595	1.595	0	0,00
4"	Base				5			О	0,00

%	
TOTA	0.00.0/
1.	0,00 %

TERRONES DE ARCILLA EN AGREGADO FINO MTC E 212

MASA INICIAL	M	352,52
MASA RETENIDA N	R	351,58

P= % DE TERRONES DE ARCILLA

P = M - R *100M

0,27 %

OBSERVACIONES : MATERIAL/TRITURADO

CONSTRUCTORA INGENIEROS & ARQUITECTOS Av. Oriente Nº 772 Concepción ASESORES SANTA CRUZ SCRL Concepción – Junín

975151126 / 912880976 / (064) 581405 Av. Oriente N° 772 Concepción Concepción – Junín ciaasantacruz@gmail.com

SOLICITA / PETICIONARIO BACH. ING. CIVIL PINCO LAYME, DAVID MARCELINO

PROYECTO / OBRA

DESEMPEÑO DE LA MEZCLA ASFALTICA EN FRIO CON ADICION DE POLIMEROS DE ICHU

CANTERA Nº / UBICACIÓN APATA

MUESTRA

M-01

UBICACIÓN DE OBRA Distrito

CONCEPCION

Provincia CONCEPCION

TECNICO: J.Santa Cruz V.

Departamen JUNIN

FECHA : 21/12/2021

METODO NORMAL PARA DETERMINACION DE CARBON Y LIGNITO EN ARENAS

MTC E 215 2000

REPORTE DE RES	OBSERVACIONES	
DESCRIPCION	PORCENTAJE OBTENIDO	OBSERVACIONES
MUESTRA N°01	0	NO PRESENTA
MUESTRA N°02	0	NO PRESENTA
TOTAL	-	

OBSERVACIONES

STATE OF IT YELD AND UNS INSENSEN OF IT CIP N. NO.126

CONSTRUCTORA INGENIEROS & ARQUITECTOS Av. Oriente Nº 772 Concepción **ASESORES SANTA CRUZ SCRL**

975151126 / 912880976 / (064) 581405

Concepción – Junín ciaasantacruz@gmail.com

SOLICITA / PETICIONARIO BACH. ING. CIVIL PINCO LAYME, DAVID MARCELINO

PROYECTO / OBRA

DESEMPEÑO DE LA MEZCLA ASFALTICA EN FRIO CON ADICION DE POLIMEROS DE ICHU

CANTERA Nº / UBICACIÓN APATA

MUESTRA

M-01 Distrito

UBICACIÓN DE OBRA

CONCEPCION

Provincia CONCEPCION

TECNICO:

J.Santa Cruz V.

Departamen JUNIN

FECHA :

21/12/2021

IMPUREZAS ORGANICAS EN AGREGADO FINO

MTC E 213 2000

DATOS DE LA MUESTRA

N° DE PLACA ORGANICA (1-5)

INTERPRETACION

PRESENCIA CUALITATIVA DE IMPUREZAS ORGANICAS

ACEPTABLE

OBSERVACIONES

MATERIAL TRITURADO

CONSTRUCTORA INGENIEROS & ARQUITECTOS Av. Oriente N° 772 Concepción ASESORES SANTA CRUZ SCRL Concepción – Junín

975151126 / 912880976 / (064) 581405 Av. Oriente N° 772 Concepción Concepción – Junín ciaasantacruz@gmail.com

GRAVEDAD ESPECIFICA Y ABSORCION DE LOS AGREGADOS

SOLICITA / PETICIONARIO: BACH. ING. CIVIL PINCO LAYME, DAVID MARCELINO

PROYECTO / OBRA : DESEMPEÑO DE LA MEZCLA ASFALTICA EN FRIO CON ADICION DE POLIMEROS DE ICHU

CANTERA Nº / UBICACIÓN : RIO SECO APATA

UBICACIÓN DE OBRA Distrito CONCEPCION

Provincia CONCEPCION TECNICO : J.S.C.V
Region JUNIN FFCHA : 21/12/20

Region **FECHA** 21/12/2021 **MUESTRA 1** AGREGADO GRUESO MTC - 206 IDENTIFICACION PROMEDIO Peso de Material satu. Sup. Seca (en aire) 950 980 Peso de Material satu. Sup. Seca (en agua) 610 590 Vol. Masa /Vol. Vacios = A - B 370 360 Peso de Mat seca en estufa (105º c) 973 943 Vol. masa = C-(A-D) 363 353 P.Esp. Bulk (Base seca) = D/C 2,630 2,619 P. Esp. Bulk (Base saturado) = A/C 2,649 2,639 P.Esp. Aparente(Base seca) = D/E 2,680 2,671 % de Absorcion = `((A-D) /D)x 100 0,719 0,742 0,731 Peso Especifico Adoptado

	AGREGA	250 250 250 250 250 250 250 250 260 261 261 262 265.6 265.6 262 26			
N٥	IDENTIFICACION	M1	M-2	PROMEDIO	
Α	Peso de Mat. Satu.Sup. Seca (en aire)	250	250		
В	Peso del frasco + H2O	206,2	205,6		
С	Peso del frasco + H2O + Arena = A+B	456,2	455,6		
D	Peso del mat. + H2O en el frasco	358	359		
E	Vol. de masa + Vol. de vacios = C-D	98,2	96,6		
F	Peso del material seco en estufa (105° c)	246,8	246,5		
G	Volumen de masa = E-(A-F)	95	93,1		
	P. Esp. Bulk (Base seca) = F/E	2,513	2,552		
	P. Esp. Bulk (Base saturada) = A/E	2,546	2,588		
	P.Esp. Aparente (Base seca) = F/G	2,598	2,648		
	% de Absorcion = ((A-F) /F) x100	1,297	1,420	1,358	
di		Peso Especifico Ado	otado	2,567	

C.E.A.A. S.A. of Liovasias

Coda to Control of the Control of th

975151126 / 912880976 / (064) 581405

CONSTRUCTORA INGENIEROS & ARQUITECTOS Av. Oriente Nº 772 Concepción ASESORES SANTA CRUZ SCRL

975151126 / 912880976 / (064) 581405 Concepción - Junín ciaasantacruz@gmail.com

DETERMINACION DE CARAS FRACTURADAS (NORMA ASTM D-5821)

PROYECTO / OBRA : DESEMPEÑO DE LA MEZCLA ASFALTICA EN FRIO CON ADICION DE POLIMEROS DE ICHU

SOLICITA / PETICIONARIO: BACH. ING. CHYL PINCO LAYME, DAVID MARCELINO SECTOR CANTERA Nº / UBICACIÓN: RIO SECO APATA

UBICACIÓN DE OBRA

Distrito CONCEPCION

CONCEPCION

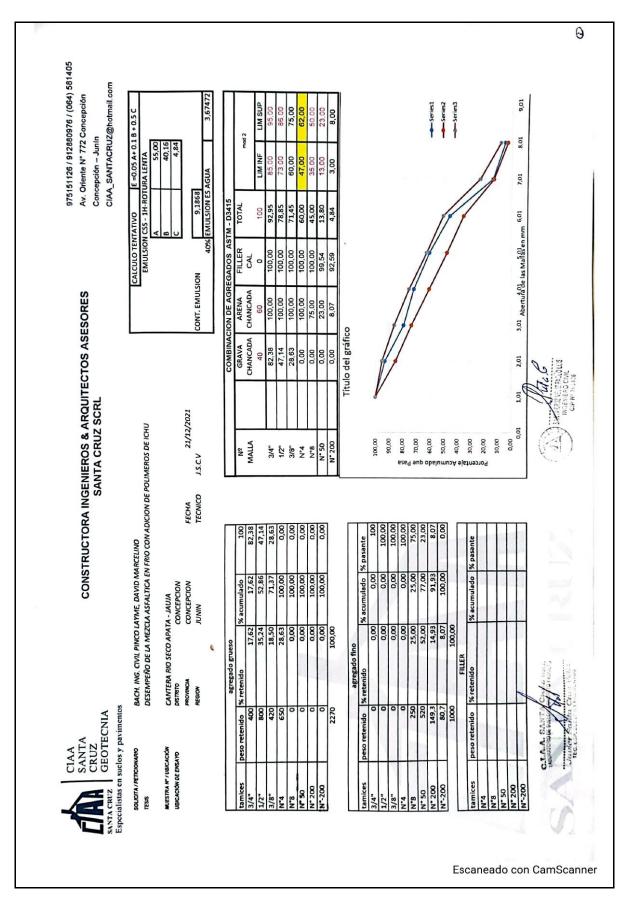
TECNICO : FECHA:

J.S.C.V.

21/12/2021

DETERMINACION DE CARAS FRACTURADAS

(NORMA ASTM D-5821)


A.- CON UNA CARA FRACTURADA

TAMAÑO E	DEL AGREGADO	A	В	C	D	E
PASA TAMIZ	RETENIDO EN TAMIZ	(g)	(g)	((B/A)*100)		C*D
2	1 1/2"					
1 1/2"	1"					
1*	3/4"	250,0	238,0	95,2	22,0	2094,4
3/4"	1/2"	1200,0	1185,0	98,8	13,2	1303,5
1/2"	3/8"	300,0	292,0	97,3	36,8	3581,9
TOTAL		1750,0			72,0	6979,8
POCENTAJE CON UN	NA CARA FRACTURADA =	TOTAL E =	D	96,9 %		

B.- CON DOS O MAS CARAS FRACTURADAS

TAMAÑO D	DEL AGREGADO	A	В	С	D	E
PASA TAMIZ	RETENIDO EN TAMIZ	(g)	(g)	((B/A)*100)		C*D
2	1 1/2"	198				
1 1/2"	1"	1				
1"	3/4"	250,0	212,0	84,8	22,0	1865,6
3/4"	1/2"	1200,0	1057,0	88,1	13,2	1162,
1/2"	3/8"	300,0	279,0	93,0	36,8	3422,4
OTAL		1750,0			72,0	6450,7

Anexo N° 10 – informe de Ensayos Diseño de Asfalto en frio Convencional

CONSTRUCTORA INGENIEROS & ARQUITECTOS ASESORES SANTA CRUZ SCRL Av. Oriente N° 772 Concepción Concepción – Junín

975151126 / 912880976 / (064) 581405 ciaasantacruz@gmail.com

Especialistas en suelos y pavimentos

			ENSAYO: NORMA:					Revisió	n
	Elabor	ido Por:	Revis	ado por:	Aprobed	lo por:	Feche	Págin	
	LABORA	ATORIO DE MEC	ÁNICA I	DE SUELOS,	CONCRET	O Y PAVIM	ENTOS		
TENS	: DESEMPEÑO DE L	MEZCLA ASFALTICA E	N FRIO CON	ADICION DE POLI	MEROS DE ICH	v		H" REGISTRO	DISERO-001
SOLICITANTE		INCO LAYME, DAVID M	RCELINO						JECV
MATERIAL CALICATA	: PIEDRA Y ARENA (HANCADA						ING. RESP. FECHA	: : 21-56-21
MUESTRA	: M-1 - MODIFICADO	3						HECHO POR	: J.S.C.V
PROFUND. CANTERA	: 0 AGREGADO GRUES	SO Y FINO - PLANTA CH	ANCADORA	. PIO SECO APAT	•			10.77	: -
UBICACIÓN	: 0							CARRIL	: 0
DISEN	O DE ASFALTO METOD	O MARSHALI			ODIFICAL	OO ILLING	OIS (MS	14 del Institu	uto del
		(USAR PARA MUEST		sfalto)	O ASSALTO RE	SIDUAL			
	ASFA		io io con o	1	O AGE ACTIONE		EGADO		
	Tipo y grado	CSS - 1h		Identif. Fue	nte			Pist	ta
	Asfalto en emulsión	60	%	Tipo				Agreg	ado
B	Grav, Esp. Asfalto	1,000		Grav. Esp.	Bulk (C)			2,66	
^	Asfalto residual en mezcla	5,7	%	200 House Common	sfaltica (%)			9,5	
	MEZCLA Y CO	1 27.0	~	2		PR	UEBA		
	Agua de la mezcla total	6,6	%	Fecha ensayo muestra seca				15/12/2021	
-	Agua al compactar	2,8	%	Fecha rotación muestra inmersa			15/12/2021		
	Agua ai compuciai	2,0		Fecha ensayo muestra húmeda			18/12/	C. L. C.	
	Fecha de compactación	18/12/20	17	T echia eriae	iyo macana	10.15	Table 1		
	Fecha de compactación	10/12/20	117						
	DATOS MUESTRA COM	PACTADA	2-20-		Seca	-		Humedecida	
	DATOS MOESTRA COM	TAUTADA		1	2	3	4	5	6
	Densidad Bulk			9					
D	Peso en el aire			1066,5	1055,0	1058,8			
E	Peso en el agua			590,0	600,0	588,0			
F	Peso SSD			1095,5	1100,0	1095,0	Marie		
	VOLUMEN DE BRIQUETA			505,50	500,00	507,00			
G	BSG - muestra compacta	D/F-E		2,110	2,110	2,088			
	BSG seco - muestra compa	cta G/(1+K/1	00)	2,081	2,082	2,060			4
	Espesor								
40	Estabilidad	TOTAL		A STATE OF THE PARTY OF THE PAR	A COLUMN		Section 1		
	Carga								
	Estabilidad ajustada			1038,9	994,5	1016,7	697,5	679,8	715,2
	Flujo (in)		76	13,0	12,0	12,0	14,0	15,0	14,0
		/3)-(L ₄ +L ₅ +L ₆ /3)	x100				31,4		
		+L2+L3/3					31,4		
	Contenido humedad								
4	Peso muestra fallada (H)			565,8	556,5	565,2	525,5	562,2	548,9
	Peso muestra seca estufa (l			558,0	549,0	557,5	498,0	532,0	520,0
,				7,8	7,5	7,7	27,5	30,2	28,9
<	Contenido humedad (K)			1,4	1,4	1,4	5,5	5,7	5,6
		K2+K3/3-K4+K5+	K ₆ /3				8	4,2	
			*	A CONTRACTOR	A DESCRIPTION OF	15,67	MANNESS	P A RONNINGENOUSE	_

CONSTRUCTORA INGENIEROS & ARQUITECTOS Av. Oriente Nº 772 Concepción ASESORES SANTA CRUZ SCRL Concepción – Junín

975151126 / 912880976 / (064) 581405 ciaasantacruz@gmail.com

	ENSAYO: NORMA:						Revi	slón
	Elaborado Por:	Revi	sado por:	Aprobed	o por:	Fecha	Pág	ine
	LABORATORIO	DE MECÁNIC	A DE SUELO	S, CONCRE	ETO Y PAV	IMENTOS		
SOLICITANTE : BU MATERIAL : PII CALICATA : MUESTRA : M PROFUND : CANTERA : AG UBICACIÓN : AF	SEMPERO DE LA MEZCLA ASF, ICH, ING. CIVIL PINCO LAYME, EDRA. Y ARENA CHANCADA 1 - MODIFICADO 3 IREGADO GRUESO Y FINO - PL ATA JAUJA JUNIN	DAVID MARCELINO	ta - Rio Seco apa	.TA			TÉCNICO ING. RESP. FECHA HECHO POR DEL KM AL KM CARRIL	: DISERO-001 : J.S.C.V : 21-do-21 : J.S.C.V : .
DISENO DE ASFA	LTO METODO MA	RSHALL A	STM-D 155 Asfalto)	9 MODIFIC	CADO ILL	N) SIONI.	IS-14 del In	stituto del
	(USAR	PARA MUESTRAS		ITENIDO ASFALT	TO RESIDUAL)			
	ASFALTO	Art management			AGF	REGADO		
Tipo y grado	CSS -	1h	Identif. Fue	nte			Pi	sta
Asfalto en emulsión	60	%	Tipo					gado
B Grav. Esp. Asfalto	0,950		Grav. Esp.					564
A Asfalto residual en	-1-	%	Emulsión Asfaltica (%)				8	3.7
	CLA Y COMPACTACIO	10000				RUEBA		
Agua de la mezcla l		%	Fecha ensayo muestra seca				15/12/2021	
Agua al compactar	2,8	%	Fecha rotación muestra inmersa				15/12/2021	
			Fecha ensayo muestra húmeda				18/1	2/2021
Fecha de compacta	ción 18	V12/2017						
	UFATRA ACURACE	DA.		Seca			Humedecid	la
DATOS M	UESTRA COMPACTA	IDA .	1	2	3	4	5	6
Densidad Bulk		N. EURO						
Peso en el aire			1065,5	1055,9	1065,2			
Peso en el agua			585,0	588,8	590,0			
Peso SSD			1100,0	1098,0	1102,0			12/2
VOLUMEN DE BRI	QUETA		515,00	509,20	512,00	(and the		
BSG - muestra con	npacta D/F-	E	2,069	2,074	2,080			
BSG seco - muest	ra compacta G/(1	+K/100)	2,043	2,041	2,052		1	
Espesor	THE HOLD VICE							
Estabilidad								
Carga								
Estabilidad ajusta	da	AL THE	972,3	1136,7	1038,9	719,6	693,1	706,4
Flujo (in)			11,0	11,0	12,0	12,0	13,0	13,0
Perdida de Estabilidad, %	(La+L2+L3/3)-(La+L4+1 L1+L2+L3/3	_a/3) ×100		N.		32,7		
Contenido hume	edad	- holiza						100
Peso muestra falla	da (H)		520,5	525,2	502,6	485,5	478,5	495,5
Peso muestra seca	estufa (I)		514,0	517,0	495,8	459,2	450,0	466,0
	Towns to		6,5	8,2	6,8	26,3	28,5	29,5
Contenido humeda	id (K)		1,3	1,6	1,4	5,7	6,3	6,3
Humedad absorble	la K1+K2+K3/3-K4+	K5+K6/3					4,7	Concrete Con
VACIOS TOTALES		7	16,41	16,47	16,03	-		ON STREET

CONSTRUCTORA INGENIEROS & ARQUITECTOS Av. Oriente Nº 772 Concepción

AL KM

ASESORES SANTA CRUZ SCRL GEOTECNIA santacruz@gmail.com NORMA: cialistas en sue os y paviment@borado Por: Fecha LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS DESEMPEÑO DE LA MEZCLA ASFALTICA EN FRIO CON ADICION DE POLIMEROS DE ICHU Nº REGISTRO : DISEÑO-001 TÉCNICO : JSCV MATERIAL PIEDRA Y ARENA CHANCADA FECHA HECHO POR DEL KM : 21-dic-21 M-1-MODIFICADOS => ATRON MUESTRA PROFUND. CANTERA : J.SC.V

DISEÑO DE ASFALTO METODO MARSHALL ASTM-D 1559 MODIFICADO ILLINOIS (MS-14 del Instituto del Asfalto)

AGREGADO GRUESO Y FINO - PLANTA CHANCADORA - RIO SECO APATA

		(USAR PARA MUE	ESTRAS CON U	N SOLO CONTENIDO ASFALTO RESIDUAL)			
ASFALTO				AGREGADO			
	Tipo y grado	CSS - 1h		Identif. Fuente	Pista		
	Asfalto en emulsión	60	%	Tipo	Agregado		
3	Grav. Esp. Asfalto	1,000		Grav. Esp. Bulk (C)	2,664		

A	Asfalto residual en mezcla	6,2	%	Emulsión Asfaltica (%)	10,3
	MEZCLA Y COM	PACTACIÓN		PRUEBA	
*/	Agua de la mezcla total	6,9	%	Fecha ensayo muestra seca	15/12/2021
	Agua al compactar	2,8	%	Fecha rotación muestra inmersa	15/12/2021
				Fecha ensayo muestra húmeda	18/12/2021
	Fecha de compactación	18/12	/2017		

	DATOS MUESTRA COMPACTADA	Seca			Humedecida		
	DATOS MUESTRA COMPACTADA	1	2	3	4	5	6
Links .	Densidad Bulk						
D	Peso en el aire	1070,2	1065,0	1055,8			
E	Peso en el agua	593,8	595,0	595,0			
F	Peso SSD	1100,0	1098,0	1088,0			
_	VOLUMEN DE BRIQUETA	506,20	503,00	493,00			
G	BSG - muestra compacta D/F-E	2,114	2,117	2,142			
	BSG seco - muestra compacta G/(1+K/100)	2,086	2,087	2,111			
	Espesor						
	Estabilidad					4	
	Carga						
	Estabilidad ajustada	919,1	936,8	928,0	640,0	644,4	653,2
	Flujo (in)	14,0	13,0	14,0	15,0	15,0	16,0
	Perdida de $(\underline{L_1+L_2+L_3/3})\cdot(\underline{L_4+L_5+L_6/3})$ $\times 100$ Establidad, % $\underline{L_1+L_2+L_3/3}$		30,4				
	Contenido humedad	916					
н	Peso muestra fallada (H)	565,5	554,9	565,3	456,5	485,5	475,6
	Peso muestra seca estufa (I)	558,0	547,0	557,2	432,0	458,0	450,0

7,5

1,3

14,01

7,9

1.4

13,96

8,1

1,5

12,98

24,5

5,7

VACIOS TOTALES

Humedad absorbida $K_1+K_2+K_3/3$ ₄ $K_4+K_5+K_6/3$

Contenido humedad (K)

CIP Nº 281420

27,5

6,0

4,4

25,6

5,7

CONSTRUCTORA INGENIEROS & ARQUITECTOS Av. Oriente Nº 772 Concepción ASESORES SANTA CRUZ SCRL

975151126 / 912880976 / (064) 581405 Concepción - Junín ciaasantacruz@gmail.com

Especialistas en suelos y pavimentos Págine LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS DESEMPEÑO DE LA MEZCLA ASFALTICA EN FRIO CON ADICION DE POLIMEROS DE ICHU : JSCV : 21-do-21 : J.S.C.V AGREGADO GRUESO Y FINO - PLANTA CHANCADORA - RIO SECO APATA DISEÑO DE ASFALTO METODO MARSHALL ASTM-D 1559 MODIFICADO ILLINOIS (MS-14 del Instituto del Asfalto) ASFALTO AGREGADO Identif. Fuente Tipo y grado CSS - 1h Asfalto en emulsión 60 % Tipo Agregado 2,664 Grav. Esp. Asfalto 1,000 Grav. Esp. Bulk (C) 11.2 Asfalto residual en mezcla % Emulsión Asfaltica (%) PRUEBA MEZCLA Y COMPACTACIÓN Fecha ensayo muestra seca 15/12/2021 Agua de la mezcla total 7,3 Fecha rotación muestra inmersa 15/12/2021 2,8 Agua al compactar 18/12/2021 Fecha ensayo muestra húmeda 18/12/2017 Fecha de compactación Humedecida Seca DATOS MUESTRA COMPACTADA 2 3 Densidad Bulk Peso en el aire 1052.5 1065,2 1057.8 Peso en el agua 600,0 606,0 605,0 Peso SSD 1095,5 1105,0 1100,0 VOLUMEN DE BRIQUETA 495,50 499,00 495.00 BSG - muestra compacta 2,124 2,135 2,137 G/(1+K/100) BSG seco - muestra compacta 2.096 2,106 2,106 Espesor Estabilidad Carga Estabilidad ajustada 874,7 928,0 928.0 650.0 685,0 665.0 Flujo (in) 16,0 16,0 15,0 17,0 17,0 18,0 (L1+L2+L1/3)-(L4+L1+L1/3) x100 Establlidad. % L1+L2+L1/3 Contenido humedad Peso muestra fallada (H) 554,3 552,5 562,2 556,5 585,5 Peso muestra seca estufa (I) 547,0 545,0 554,0 530,0 520.0 556,0 7.3 7,5 8,2 26,5 28,5 29,5 Contenido humedad (K) 1,3 1,4 1,5 5,0 5,5 5,3 Humedad absorbida K₁+K₂+K₃/3-K₄+K₅+K₆/3 3,9 VACIOS TOTALES

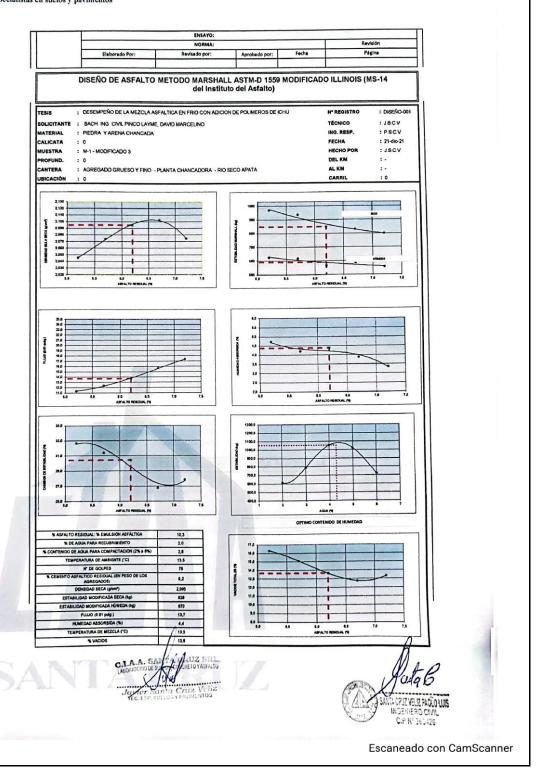
13,01

12,62

12,61

CONSTRUCTORA INGENIEROS & ARQUITECTOS Av. Oriente Nº 772 Concepción ASESORES SANTA CRUZ SCRL Concepción – Junín

975151126 / 912880976 / (064) 581405 Av. Oriente N° 772 Concepción Concepción – Junín ciaasantacruz@gmail.com


Especialistas en suelos y pavimentos

	ENSAYO:						Revisión		
Elaborado Por:				Aprobad	o por:	Feche	Página		
LABORA	TORIO DE MEC	ÁNICA DE	SUELOS, C	ONCRETO	Y PAVIME	NTOS			
DESEMPEÑO DE LA MEZCLA ASFAL	TICA EN FRIO CON AD	ICION DE POLI	MEROS DE ICHU				Nº REGISTRO :	DISEAC-001	
	VID MARCELINO							SCV	
								11-dic-21	
: M-1 - MODIFICADO 3								SCV	
: 0									
: AGREGADO GRUESO Y FINO - PLAN : 0	ITA CHANCADORA - F	IO SECO APAT	TA .						
ÑO DE ASFALTO METOD	O MARSHAL			DIFICAD	O ILLINO	IS (MS-			
	(USAR PARA MUES	TRAS CON UN	SOLO CONTENIDO	ASFALTO RESI	DUAL)				
ASF	ALTO				AGR	EGADO			
Tipo y grado	CSS - 1h		Identif. Fue	nte			Pista	1	
Asfalto en emulsión	60	%	Tipo	· Maria Parina	THE PERSON		Agrega	ido	
Grav. Esp. Asfalto	1,000		Grav. Esp.	Bulk (C)			2,66	4	
Asfalto residual en mezcla	7,2	%	Emulsión Asfaltica (%)			12,0			
	MPACTACIÓN				PR	UEBA			
Agua de la mezcia total	7,6	%	Fecha ensayo muestra seca			15/12/2021			
Agua al compactar	2,8	%	Fecha rotación muestra inmersa			15/12/2021			
			Fecha ensayo muestra húmeda				18/12/2	2021	
Fecha de compactación 18/12/2017									
		-		Seca			Humedecida		
DATOS MUESTRA COI	MPACTADA		1	2	3	4	5 6		
Densidad Bulk				182 M					
Peso en el aire			1050,0	1065,5	1056,8				
Peso en el agua		400	589,0	585,0	587,0				
Peso SSD			1085,8	1095,5	1085,5				
					-				
Annual Control		1						11	
	icta G/(1+K	J/100)	2,081	2,057	2,086	10.000			
- Vicing State and Conference	Total Land	- ALL			100001				
	200			-			-	040.0	
	100	Ele_						640,0	
Flujo (in) Perdida de (L+L++1	m. a		17,0	18,0	17,0	20,0	21,0	20,0	
vernida de (1.+1.+1	J3)-(L1+L+Ld	3) x100	ii b.			27,8			
Estabilidad, % L	+L2+L3/3								
Estabilidad, % L. Contenido humedad			400 5	495.0	E0E 2	450	485 F	505	
Estabilidad, % L. Contenido humedad Peso muestra fallada (H)	+L ₂ +L ₃ /3		489,5	485,9	505,2	456,8		-	
Estabilidad, % L. Contenido humedad	+L ₂ +L ₃ /3		482,0	478,8	497,0	435,9	462,0	482,	
Estabilidad, % L, Contenido humedad Peso muestra fallada (H) Peso muestra seca estufa (+L ₂ +L ₃ /3		482,0 7,5	478,8 7,1	497,0 8,2	435,9	9 462,0 23,5	482,6	
Estabilidad, % Contenido humedad Peso muestra fallada (H) Peso muestra seca estufa (Contenido humedad (K)	+L ₂ +L ₃ /3		482,0	478,8	497,0	435,9	462,0	505,5 482,0 23,5 4,9	
	LABORA DESEMPEÑO DE LA MEZCIA ASPAL SE BACH, ING CIVIL PRICO LAYNE, DM M1 - MODIFICADO 3 M1 - MODIFICADO 3 ASPAL TIPO Y GRADO ASFALTO METOD ASFALTO METOD ASFALTO METOD ASFALTO E ASFALTO METOD ASFALTO E ASFALTO METOD MEZCIA Y CO Agua de la mezcia total Agua al compactar Fecha de compactación DATOS MUESTRA COI Densidad Bulk Peso en el aire Peso en el agua Peso SSD VOLUMEN DE BRIQUETA BSG - muestra compacta	LABORATORIO DE MEC LABORATORIO DE MEC LABORATORIO DE MEC LE BACH. ING. CONA. PINCO LAYME, DAVID MARCELINO PIEDNA Y ARENA CHANCADA M. M. 1. MODIFICADO M. M. 1. MODIFICADO M. CUBAR PARA MUES ASFALTO Tipo y grado Grav. Esp. Asfalto Grav. Esp. Asfalto MEZCLA Y COMPACTACIÓN Agua de la mezcla total Agua al compactar DATOS MUESTRA COMPACTADA Densidad Bulk Peso en el aire Peso en el aire Peso SSD VOLUMEN DE BRIQUETA BSG - muestra compacta BSG seco - muestra compacta G/(1+K) Espesor Estabilidad Carga	LABORATORIO DE MECÂNICA DI LABORATORIO DE POLICIA DE PROPERTO LA PROP	Elaborado Por: Revisado por: LABORATORIO DE MECÂNICA DE SUELOS, CO LABORATORIO DE MECÂNICA DE POLIMEROS DE ICHU LE SACHI INGI CANDI PRODU LAMAS DANAGELINO PIEDRA Y ARRIA CHIANCADA LO MATERIA DE ASPALTO METODO MARSHALL ASTM-D 1559 MC Asfalto (USAR PARA MUESTRAS CON UN SOLO CONTENIOS ASFALTO TIPO Y grado ASFALTO TIPO Y grado CSS - 1h Identif. Fue Asfalto en emulsión GO % TIPO Grav. Esp. Asfalto MEZCLA Y COMPACTACIÓN Agua de la mezcia total 7,2 % Emulsión A MEZCLA Y COMPACTACIÓN Agua al compactar 2,8 % Fecha ense Fecha de compactación 18/12/2017 DATOS MUESTRA COMPACTADA Densidad Bulk Peso en el aire Peso en el aire 1050,0 Peso SSD 1085,8 VOLUMEN DE BRIQUETA BSG seco - muestra compacta G/(1+K/100) 2,081 Espesor Estabilidad Carga	NORMA: Revisedo por: Aprobad	LABORATORIO DE MECÂNICA DE SUELOS, CONCRETO Y PAVIMEN LABORATORIO DE MECANORIO DE ICHU LABORATORIO DE ICHU LABORATOR	LABORATORIO DE MEGÂNICA DE SUELOS, CONCRETO Y PAVIMENTOS LABORATORIO DE MEGÂNICA DE SUELOS, CONCRETO Y PAVIMENTOS LABORATORIO DE MEGÂNICA DE SUELOS, CONCRETO Y PAVIMENTOS LABORATORIO DE LA MEZCIA ASPALTICA EN FRIO CON ADICION DE POLIMEROS DE ICHU	NORMAN: Aprobado por: Aprobado por: Facha Flagina	

CONSTRUCTORA INGENIEROS & ARQUITECTOS Av. Oriente Nº 772 Concepción ASESORES SANTA CRUZ SCRL

975151126 / 912880976 / (064) 581405 Concepción - Junín ciaasantacruz@gmail.com

Anexo N° 11 – informe de Ensayos de Control de Núcleos Asfalticos

CONSTRUCTORA INGENIEROS & ARQUITECTOS Av. Oriente Nº 772 Concepción ASESORES SANTA CRUZ SCRL

975151126 / 912880976 / (064) 581405 Concepción – Junín ciaasantacruz@gmail.com

CONTROL DE NÚCLEOS ASFÁLTICOS

SOLICITA / PETICIONARIO

BACH. ING. CIVIL PINCO LAYME, DAVID MARCELINO

PROYECTO / OBRA

: DESEMPEÑO DE LA MEZCLA ASFALTICA EN FRIO CON ADICION DE POLIMEROS DE ICHU

MUESTRA Nº / UBICACIÓN

: MUESTRAS DISEÑO PATRON 6,2%

UBICACIÓN DE OBRA

BRIQUETA (g/cm²)

CONCEPCION

: Distrito : Provincia

CONCEPCION TÉCNICO: J.S.C.V

: Región

JUNIN

FECHA : 21/12/2021

IDENTIFICACIÓN	M-1	M-2	M-3	
MUESTRA	patron 6,2%,	patron 6,2%,	patron 6,2%,	
ALTURA PROMEDIO DE LA BRIQUETA (cm)	6,50	6,50	6,50	
PESO DE LA BRIQUETA SECA AL AIRE (g)	1070,2	1065,0	1055,8	
PESO DE LA BRIQUETA SATURADA SUPERFICIALMENTE SECA EN AIRE (g)	1100,0	1098,0	1088,0	
PESO DE LA BRIQUETA SATURADA SUPERFICIALMENTE SECA EN AGUA (g)	593,8	595,0	595,0	
PESO DEL AGUA ABSORBIDA (g)	29,8	33,0	32,2	
VOLUMEN DE LA BRIQUETA SATURADA SUPERFICIALMENTE SECA (cm²)	506,2	503,0	493,0	
PESO ESPECÍFICO BULK DE LA	2,114	2,117	2,142	

2,124

PESO ESPECÍFICO BULK DE MEZCLAS ASFÁLTICAS (ASTM D2726 / MTC E514)

ESTABILIDAD MARSHALL (ASTM D1559 / MTC E504)							
FLUJO (mm)	3,56	3,30	3,56				
ESTABILIDAD SIN CORREGIR (kg)	884,0	901,0	851,0		-		
FACTOR DE ESTABILIDAD	1,04	1,04	1,09				
ESTABILIDAD CORREGIDA (kg)	919,0	937,0	928,0				
PROMEDIO DE ESTABILIDAD		928,0					

ESTABILIDAD 815 KG MINIMO SEGÚN EG-2013

CONSTRUCTORA INGENIEROS & ARQUITECTOS Av. Oriente N° 772 Concepción ASESORES SANTA CRUZ SCRL Concepción – Junín

975151126 / 912880976 / (064) 581405 Av. Oriente N* 772 Concepción Concepción – Junín ciaasantacruz@gmail.com

CONTROL DE NÚCLEOS ASFÁLTICOS

SOLICITA / PETICIONARIO

: BACH. ING. CIVIL PINCO LAYME, DAVID MARCELINO

PROYECTO / OBRA

: DESEMPEÑO DE LA MEZCLA ASFALTICA EN FRIO CON ADICION DE POLIMEROS DE ICHU

MUESTRA Nº / UBICACIÓN

: MUESTRAS MODIFICADAS CON POLIMEROS DE ICHU

UBICACIÓN DE OBRA

CONCEPCION

CONCEPCION

TÉCNICO: J.S.C.V

: Distrito : Provincia : Región

JUNIN

FECHA : 21/12/2021

PESO ESPECÍFICO BULK DE MEZCLAS ASFÁLTICAS (ASTM D2726 / MTC E514)

IDENTIFICACIÓN	M-1	M-2	M-3		
MUESTRA	1% ICHU	1% ICHU	1% ICHU		
ALTURA PROMEDIO DE LA BRIQUETA (cm)	6,50	6,50	6,50		
PESO DE LA BRIQUETA SECA AL AIRE (g)	1150,0	1148,8	1152,8	1-1-	
PESO DE LA BRIQUETA SATURADA SUPERFICIALMENTE SECA EN AIRE (g)	1155,8	1154,5	1158,5		
PESO DE LA BRIQUETA SATURADA SUPERFICIALMENTE SECA EN AGUA (g)	600,5	605,9	605,2		
PESO DEL AGUA ABSORBIDA (g)	5,8	5,7	5,7		
VOLUMEN DE LA BRIQUETA SATURADA SUPERFICIALMENTE SECA (cm²)	555,3	548,6	553,3		
PESO ESPECÍFICO BULK DE LA BRIQUETA (g/cm²)	2,071	2,094	2,083		
		2,083			

ESTABILIDAD MARSHALL (ASTM D1559 / MTC E504)							
FLUJO (mm)	4,06	4,06	4,06				
ESTABILIDAD SIN CORREGIR (kg)	950,0	985,0	915,0		-		
FACTOR DE ESTABILIDAD	0,89	0,89	0,89				
ESTABILIDAD CORREGIDA (kg)	846,0	877,0	814,0				
PROMEDIO DE ESTABILIDAD		845,7					

SEGÚN EG-2013	ESTABILIDAD	815 KG MINIMO		
520014 20-2013		757 1 658		

JANE ZANTA JUL BRID

SOTACRIZ VEIZ MOLOLUK INGENIERO CIVIL CIP N° 263426

CONSTRUCTORA INGENIEROS & ARQUITECTOS Av. Oriente Nº 772 Concepción ASESORES SANTA CRUZ SCRL

975151126 / 912880976 / (064) 581405 Concepción - Junín ciaasantacruz@gmail.com

CONTROL DE NÚCLEOS ASFÁLTICOS

SOLICITA / PETICIONARIO

BACH. ING. CIVIL PINCO LAYME, DAVID MARCELINO

PROYECTO / OBRA

: DESEMPEÑO DE LA MEZCLA ASFALTICA EN FRIO CON ADICION DE POLIMEROS DE ICHU

MUESTRA Nº / UBICACIÓN

: MUESTRAS MODIFICADAS CON POLIMEROS DE ICHU

UBICACIÓN DE OBRA

: Distrito CONCEPCION CONCEPCION

: Provincia

TÉCNICO: J.S.C.V

: Región

JUNIN

FECHA : 21/12/2021

PESO ESPECÍFICO BULK DE MEZCLAS ASFÁLTICAS (ASTM D2726 / MTC E514)

IDENTIFICACIÓN	M-1	M-2	M-3		
MUESTRA	2% ICHU	2% ICHU	2% ICHU		
ALTURA PROMEDIO DE LA BRIQUETA (cm)	6,70	6,80	6,80		
PESO DE LA BRIQUETA SECA AL AIRE (g)	1148,2	1140,6	1145,5		
PESO DE LA BRIQUETA SATURADA SUPERFICIALMENTE SECA EN AIRE (g)	1154,3	1146,9	1151,5		
PESO DE LA BRIQUETA SATURADA SUPERFICIALMENTE SECA EN AGUA (g)	598,8	595,5	596,6		
PESO DEL AGUA ABSORBIDA (g)	6,1	6,3	6,0		
VOLUMEN DE LA BRIQUETA SATURADA SUPERFICIALMENTE SECA (cm²)	555,5	551,4	554,9		
PESO ESPECÍFICO BULK DE LA BRIQUETA (g/cm²)	2,067	2,069	2,064		
I am		2,067			
ESTABILII	DAD MARSHA	LL (ASTM	01559 / MTC E50	4)	
E IIIO (mm)	422	422	4.57		

ESTABILIDAD MARSHALL (ASTM D1559 / MTC E504)							
FLUJO (mm)	4,32	4,32	4,57				
ESTABILIDAD SIN CORREGIR (kg)	885,0	890,0	789,0				
FACTOR DE ESTABILIDAD	0,89	0,89	0,89				
ESTABILIDAD CORREGIDA (kg)	788,0	792,0	702,0				
PROMEDIO DE ESTABILIDAD		760,7					

SEGÚN EG-2013	ESTABILIDAD	815 KG MINIMO			
3EGON EG-2013					

CONSTRUCTORA INGENIEROS & ARQUITECTOS Av. Oriente N° 772 Concepción ASESORES SANTA CRUZ SCRL

975151126 / 912880976 / (064) 581405 Concepción - Junín claasantacruz@gmail.com

CONTROL DE NÚCLEOS ASFÁLTICOS

SOLICITA / PETICIONARIO

BACH. ING. CIVIL PINCO LAYME, DAVID MARCELINO

PROYECTO / OBRA

: DESEMPEÑO DE LA MEZCLA ASFALTICA EN FRIO CON ADICION DE POLIMEROS DE ICHU

MUESTRA Nº / UBICACIÓN

ESTABILIDAD CORREGIDA (kg)

PROMEDIO DE ESTABILIDAD

: MUESTRAS MODIFICADAS CON POLÍMEROS DE ICHU

UBICACIÓN DE OBRA

CONCEPCION

JUNIN

: Provincia

CONCEPCION

: Región

TÉCNICO: J.S.C.V FECHA: 21/12/2021

ATA CRUZ

PESO ESPECÍFICO BU	LK DE MEZCL	AS ASFÁLT	ICAS (ASTM I	02726 / MT	C E514)	
IDENTIFICACIÓN	M-1	M-2	M-3			
MUESTRA	3% ICHU	3% ICHU	3% ICHU			
ALTURA PROMEDIO DE LA BRIQUETA (cm)	6,90	6,80	6,90			
PESO DE LA BRIQUETA SECA AL AIRE (g)	1150,5	1140,9	1145,9		agency 2 per	
PESO DE LA BRIQUETA SATURADA SUPERFICIALMENTE SECA EN AIRE (g)	1157,9	1148,1	1153,6			
PESO DE LA BRIQUETA SATURADA SUPERFICIALMENTE SECA EN AGUA (g)	600,5	593,8	596,5			
PESO DEL AGUA ABSORBIDA (g)	7,4	7,2	7,7			
VOLUMEN DE LA BRIQUETA SATURADA SUPERFICIALMENTE SECA (cm²)	557,4	554,3	557,1			
PESO ESPECÍFICO BULK DE LA BRIQUETA (g/cm²)	2,064	2,058	2,057			
		2,060				
ESTABIL	IDAD MARSHA	LL (ASTM	01559 / MTC E	504)		
FLUJO (mm)	4,83	4,83	4,83			
ESTABILIDAD SIN CORREGIR (kg)	750,0	695,0	735,0	7777	71000	
FACTOR DE ESTABILIDAD	0,89	0,89	0,89		7504	

SEGÚN EG-2013	ESTABILIDAD	815 KG MINIMO
3EGUN EG-2013	Michigan Marchaella	

668,0

619,0

647,0

654,0

Anexo Nº 12 – informe de Ensayos de Cántabro

CONSTRUCTORA INGENIEROS & ARQUITECTOS Av. Oriente N° 772 Concepción ASESORES SANTA CRUZ SCRL

975151126 / 912880976 / (064) 581405

Concepción - Junín ciaasantacruz@gmail.com

ENSAYO CANTABRO

Metodo Máquina de los Angeles MTC E 515

SOLICITA / PETICIONARIO: BACH. ING. CIVIL PINCO LAYME, DAVID MARCELINO

PROYECTO / OBRA

DESEMPEÑO DE LA MEZCLA ASFALTICA EN FRIO CON ADICION DE POLIMEROS DE ICHU

CANTERA Nº / UBICACIÓN : RIO SECO - APATA

UBICACIÓN DE OBRA : Distrito

CONCEPCION

Provincia CONCEPCION

TECNICO J.Santa Cruz V.

Departamen JUNIN

21/12/2021 **FECHA**

MARSHALL AL 3% DEICHU

% OPTIMO DE EMULSION	6,20%	6,20%	6,20%				
ICHU %	3,00%	3,00%	3,00%				
PESO INICIAL	1048,4	1055,4	1047,8				
PESO FINAL	735,6	725,9	725,9				
PERDINA	312,8	329,5	321,9				
DESGASTE	29,83594	31,22039	30,721512			ALC:	
PROMEDIO	Zu	30,59		19			

CONSTRUCTORA INGENIEROS & ARQUITECTOS Av. Oriente Nº 772 Concepción ASESORES SANTA CRUZ SCRL

975151126 / 912880976 / (064) 581405 Concepción - Junín ciaasantacruz@gmail.com

0

ENSAYO CANTABRO

Metodo Máquina de los Angeles MTC E 515

SOLICITA / PETICIONARIO: BACH. ING. CIVIL PINCO LAYME, DAVID MARCELINO

DESEMPEÑO DE LA MEZCLA ASFALTICA EN FRIO CON ADICION DE POLIMEROS DE ICHU PROYECTO / OBRA

CANTERA Nº / UBICACIÓN : RIO SECO - APATA

UBICACIÓN DE OBRA

: Distrito Provincia CONCEPCION

CONCEPCION

TECNICO: J.Santa Cruz V.

Departamento JUNIN

FECHA :

21/12/2021

MEZCLA CONVENCIONAL

	MEZCLA CON	VENCIONAL				
	6,2%	6,20%	6,20%			
PESO INICIAL	1150	1140	1148			
PESO FINAL	1010	1000	1010			
PERDINA	140	140	138			
DESGASTE	12,17391304	12,28070175	12,02090592			
PROMEDIO		12,158	350691	1	_	+

CONSTRUCTORA INGENIEROS & ARQUITECTOS Av. Oriente N° 772 Concepción ASESORES SANTA CRUZ SCRL Concepción – Junín

975151126 / 912880976 / (064) 581405 Av. Oriente N° 772 Concepción Concepción – Junín ciaasantacruz@gmail.com

ENSAYO CANTABRO

Metodo Máquina de los Angeles MTC E 515

SOLICITA / PETICIONARIO: BACH. ING. CIVIL PINCO LAYME, DAVID MARCELINO

PROYECTO / OBRA

DESEMPEÑO DE LA MEZCLA ASFALTICA EN FRIO CON ADICION DE POLIMEROS DE ICHU

CANTERA Nº / UBICACIÓN : RIO SECO - APATA

UBICACIÓN DE OBRA : Distrito

ito CONCEPCION

Provincia CONCEPCION

TECNICO J.Santa Cruz V.

Departamen JUNIN

FECHA 21/12/2021

MARSHALL AL 1% DE ICHU

	MANOTIALL	L IN DE	,,,,			
% OPTIMO DE EMULS	ION 6,2%	6,20%	6,20%			
ICHU %	1,0%	1,00%	1,00%			
PESO INICIAL	1035,5	1045,8	1036,7			
PESO FINAL	850,2	848,9	850,5			
PERDINA	185,3	196,9	186,2			
DESGASTE	17,894737	18,827692	17,960837	PERMIT	I Live	-101
PROMEDIO	E. Carriero	18,23				

SANTA CRIZ VELIZ PRODOLIN INCENIERO CIVIL CIP N° 263426

CONSTRUCTORA INGENIEROS & ARQUITECTOS Av. Oriente Nº 772 Concepción ASESORES SANTA CRUZ SCRL

975151126 / 912880976 / (064) 581405 Concepción - Junín ciaasantacruz@gmail.com

ENSAYO CANTABRO

Metodo Máquina de los Angeles MTC E 515

SOLICITA / PETICIONARIO: BACH. ING. CIVIL PINCO LAYME, DAVID MARCELINO

PROYECTO / OBRA

DESEMPEÑO DE LA MEZCLA ASFALTICA EN FRIO CON ADICION DE POLIMEROS DE ICHU

CANTERA Nº / UBICACIÓN : RIO SECO - APATA

UBICACIÓN DE OBRA

: Distrito

CONCEPCION Provincia CONCEPCION

TECNICO J.Santa Cruz V.

Departamen JUNIN

21/12/2021 **FECHA**

MARSHALL AL 2% DE ICHU

		MANOTIALL	L Z/O DE IC	,,,,			
% OPTIMO DE	EMULSION	6,20%	6,20%	6,20%		Lymon	
10	CHU %	2,00%	2,00%	2,00%			
PESO IN	IICIAL	1045,5	1036,2	1039,9			
PESO FINAL		785,2	780,9	775,9			
PERDINA		260,3	255,3	264			
DESGASTE		24,897178	24,638101	25,387056	L		
PROMEDIO			24,97				

Confiabilidad y Validez del Instrumento

VALIDEZ DEL INSTRUMENTO

Ermonto				FICH	A DE OB	SERVA	CIÓN				Total
Experto	1	2	3	4	5	6	7	8	9	10	Fila
Ing. Lorenzo Homero Paredes Ycochea	96	92	96	92	92	94	91	96	98	98	945.00
Ing. Alexander Jhonatan Guardia Supanta	96	91	91	91	96	97	97	97	98	98	952.00
Ing. Omar Pablo Flores Ramos	91	92	91	95	96	95	95	95	95	98	943.00
Ing. Orlando Solorzano Laureno	91	96	96	97	98	96	96	96	96	98	960.00
Ing. Lizardo Gerardo Roque Valle	91	91	96	96	91	91	91	91	96	96	930.00
Total Columna	465.00	462.00	470.00	471.00	473.00	473.00	470.00	475.00	483.00	488.00	4730.00
Promedio	93.00	92.40	94.00	94.20	94.60	94.60	94.00	95.00	96.60	97.60	946.00
Desv.Standard	2.74	2.07	2.74	2.59	2.97	2.30	2.83	2.35	1.34	0.89	11.16

Aplicando la siguiente fórmula para calcular el alfa de Cronbach:

$$S_{i}^{2} = 56.20$$

$$S_{i}^{2} = 124.50$$

$$\alpha = \left[\frac{K}{K-1}\right]\left[1 - \frac{\sum_{i=1}^{k} S_{i}^{2}}{S_{i}^{2}}\right] = \boxed{0.8240}$$

$$K = 10$$

0,53 a menos	Validez nula
0,54 a 0,59	Validez baja
0,60 a 0,65	Valida
0,66 a 0,71	Muy valida
0,72 a 0,99	Excelente validez
1.0	Validez perfecta

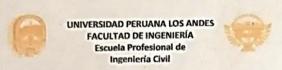
FICHAS DE VALIDACIÓN INFORME DE OPINIÓN DEL JUICIO DE EXPERTO

DATOS GENERALES

- 1.1. Título de la Investigación: EL DESEMPEÑO DE LA MEZCLA ASFÁLTICA EN FRIO CON ADICION DE POLÍMEROS DE ICHU.
- 1.2. Nombre de los instrumentos motivo de Evaluación: Cuestionarios de encuesta sobre EL DESEMPEÑO DE LA MEZCLA ASFÁLTICA EN FRIO CON ADICION DE POLÍMEROS DE ICHU.

ASPECTOS DE VALIDACIÓN

	1	M	uy de	ficie	nte	1	Defic	ient	6	809	Reg	ular	degree I	Section 1	Bu	ena	W. Sala	Mu	y bu	ena	
Indicadores	Criterios	0	6	71	16	21	26	31	36	41	46	51	56	61	86	71	76	81	86	91	98
macadoros		5	10	15	20	25	30	35	40	45	50	55	80	65	70	75	80	85	90	95	100
1. Claridad	Està formulado con lenguaje apropiado																			X	
2. Objetividad	Está expresado en conductas observables									9799										X	
3. Actualidad	Adecuado el evence de la ciencia pedagrigica																				*
4. Organización	Existe una organización tógica.																			X	
5. Suficiencia	Comprende los aspectos en cardidad y calidad																			X	
6. Intencionalidad	Adecuado para valorar los instrumentos de investigación																			X	
7. Consistencia	Basado en aspectos teóricos científicos																				X
8. Coherencia	Entre los indices, indicadores			1						William											X
9. Metodología	La estrategia responde al propósito del diagnóstico.		,																	X	
10. Pertinencia	Es util y adecuado para la investigación									(dis									1		X


PROMEDIO DE VALORACIÓN: 96

OPINIÓN DE APLICABILIDAD: a) Muy deficiente b) Deficiente c) Regular d) Buena e) Muy buena

Nombres y Apellidos:	Lizardo Generalo Roque Valle DNI Nº	40725204
Dirección domiciliaria:	Proceses de la tradepardencia S.J. L. Teléfono/Celula	r: 927632821
Grado Académico:	Ingeniero Civil	
Mención:		104
		decilet a

ROQUE VALLE
INGENIERO CIVIL
Reg. CIP Nº 184731

Lugary fecha: Firma, 8/01/2022

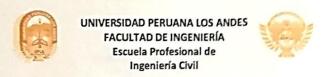
FICHAS DE VALIDACIÓN INFORME DE OPINIÓN DEL JUICIO DE EXPERTO

DATOS GENERALES

- 1.1. Título de la Investigación: EL DESEMPEÑO DE LA MEZCLA ASFÁLTICA EN FRIO CON ADICION DE POLÍMEROS DE ICHU.
 1.2. Nombre de los instrumentos motivo de Evaluación: Cuestionarios de encuesta sobre EL DESEMPEÑO DE LA MEZCLA ASFÁLTICA EN FRIO CON ADICION DE POLÍMEROS DE ICHU.

ASPECTOS DE VALIDACIÓN

	1	M	uv de	ficie	nte		Defic	ient	6	SOME	Reg	ular	Control of	A CREE	Bu	ena		Mu	y bu	ena	
Indicadores	Criterios	0	6	71	16	21	28	31	36	41	46	51	56	61	66	71	76	81	86	91	98
macanores	- Commission	5	10	15	20	25	30	35	40	45	50	55	80	65	70	75	80	85	90	95	100
1. Claridad	Està formulado con lengueje apropiado												1							X	
2. Objetividad	Está expresado en conductas observablos																			X	
3. Actualidad	Adecuado el everce de la ciencia pedagógica																				*
4. Organización	Existe una organización lógica.					100		曹	100						-					X	
5. Suficiencia	Comprende los aspectos en cardidad y calidad																			X	
6. Intencionalidad	Adequado para valorar los instrumentos de investigación																			X	
7. Consistencia	Basado en aspectos teóricos científicos															1					X
8. Coherencia	Entre los indices, indicadores					-								-							X
9. Metodología	La estratogia responde al propósito del diagnóstico.																			X	
10. Pertinencia	Es util y adecuado para la investigación							124		133											X


PROMEDIO DE VALORACIÓN:

OPINIÓN DE APLICABILIDAD: a) Muy deficiente b) Deficiente c) Regular d) Buena e) Muy buena

Nombres y Apellidos:	Lizendo Generale Roque Valle DNI Nº	40725204
Dirección domiciliaria:	Processes de la Tradepardenain S.J. L. Teléfono/Cel	lular: 927632821
Grado Académico:	Ingeniero Gul	
Mención:		704

ROQUE VALLE INGENIERO CIVIL Reg. CIP Nº 184731

Firma, 8/01/2022 Lugar y fecha: ...

FICHAS DE VALIDACIÓN

INFORME DE OPINIÓN DEL JUICIO DE EXPERTO

DATOS GENERALES

- 1.1. Título de la Investigación: EL DESEMPEÑO DE LA MEZCLA ASFÁLTICA EN FRIO CON ADICION DE POLÍMEROS DE ICHU.
- 1.2. Nombre de los instrumentos motivo de Evaluación: Cuestionarios de encuesta sobre EL DESEMPEÑO DE LA MEZCLA ASFÁLTICA EN FRIO CON ADICION DE POLÍMEROS DE ICHU.

ASPECTOS DE VALIDACIÓN

		M	uy de	eficie	nte		Defic	ient	9		Reg	ular			Bu	ena		Mu	y bu	ena	
Indicadores	Criterios	0	6	11	16	21	25	31	36	41	46	51	56	61	66	71	75	81	86	91	96
		5	10	15	20	25	30	35	40	45	50	55	50	65	70	75	80	85	90	95	100
1. Claridad	Está formulado con lenguaje apropiado																			7	
2. Objetividad	Está expresado en conductas observables																				×
3. Actualidad	Adecuado al avance de la ciencia pedagógica																				P
4. Organización	Existe una organización lógica.			****																	×
5. Suficiencia	Comprende los aspectos en cantidad y calidad																				>
6. Intencionalidad	Adecuado para valorar los instrumentos de investigación																				>
7. Consistencia	Basado en aspectos teóricos científicos		60																	×	
8. Coherencia	Entre los indices, indicedores																				>
9. Metodología	La estralega responde al propósito del diagnóstico.																				X
10, Pertinencia	Es útil y adecuado para la investigación					100				55											>

PROMEDIO DE VALORACIÓN:

96

Firma / Lugar y fecha: 26 - 17 -2021

OPINIÓN DE APLICABILIDAD: a) Muy deficiente b) Deficiente c) Regular d) Buena e) Muy buena

Nombres y Apellidos:	ORLANDO SOLORZANO LAUREANO	DNI N°	19966246
Dirección domiciliaria:	AV. AREQUIRA Nº 949-SAN JEDONIANO	Teléfono/Celular:	954 837637
Grado Académico:	INGENERO MECANICA		
Mención:			

FICHAS DE VALIDACIÓN INFORME DE OPINIÓN DEL JUICIO DE EXPERTO

DATOS GENERALES

- 1.1. Título de la Investigación: EL DESEMPEÑO DE LA MEZCLA ASFÁLTICA EN FRIO CON ADICION DE POLÍMEROS DE ICHU.
- 1.2. Nombre de los instrumentos motivo de Evaluación: Cuestionarios de encuesta sobre EL DESEMPEÑO DE LA MEZCLA ASFÁLTICA EN FRIO CON ADICION DE POLÍMEROS DE ICHU.

ASPECTOS DE VALIDACIÓN

		M	uy de	ficie	nte		Defic	ient	9		Reg	ular			Bu	ena		Mu	y bu	ena	
Indicadores	Criterios	0	6	11	16	21	26	31	36	41	46	51	56	61	66	71	76	81	86	91	96
		5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
1. Claridad	Está formulado con lenguaje apropiado																		×		
2. Objetividad	Está expresado en conductas observables																		,	×	
3. Actualidad	Adecuado al avance de la ciencia pedagógica																		×		
4. Organización	Existe una organización lógica.																			d	
5. Suficiencia	Comprende los aspectos en cantidad y calidad																				X
6. Intencionalidad	Adecuado para valorar los instrumentos de investigación																			×	
7. Consistencia	Basado en aspectos teóricos científicos																			×	
8. Coherencia	Entre los indices, indicadores																			×	
9. Metodología	La estrategia responde al propósito del diagnóstico.																			×	
10. Pertinencia	Es útil y adecuado para la investigación																				X

PROMEDIO DE VALORACIÓN: 95

OPINIÓN DE APLICABILIDAD: a) Muy deficiente b) Deficiente c) Regular d) Buena e) Muy buena

Nombres y Apellidos:	Omar Pablo Flores Rames	DNI N°	19811187
Dirección domiciliaria:	Prok. Lina 135- San Tomarino	Teléfono/Celular:	964 03/816
Grado Académico:	Dector of Science		
Mención:	Insenieria Hecanica		

Firma

Lugar y fecha: ...03 _ 01 - 2027

FICHAS DE VALIDACIÓN INFORME DE OPINIÓN DEL JUICIO DE EXPERTO

DATOS GENERALES

- 1.1. Título de la Investigación: EL DESEMPEÑO DE LA MEZCLA ASFÁLTICA EN FRIO CON ADICION DE POLÍMEROS DE ICHU.
- 1.2. Nombre de los instrumentos motivo de Evaluación: Cuestionarios de encuesta sobre EL DESEMPEÑO DE LA MEZCLA ASFÁLTICA EN FRIO CON ADICION DE POLÍMEROS DE ICHU.

ASPECTOS DE VALIDACIÓN

		L	uy de	fich	nte		Defic	lente	•		Reg	ular			Bu	ena		Mu	y bu	ena	
	Criterios	0	6	11	16	21	26	31	36	41	46	51	56	61	66	71	76	81	86	91	96
Indicadores	Criterios	5	10	15	28	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	10
1. Claridad	Está formulado con languaje apropiado																_				X
2. Objetividad	Esta expresado en conductas observables																	-		X	_
3. Actualidad	Adecuado si avance de la ciencia pedagógica																	_	×		L
4. Organización	Existe una organización lógica.													_		-	_	-	-	X	
5. Suficiencia	Comprende los aspectos en cantidad y calidad															_		-			
6. Intencionalidad	Adecuado para valorar los instrumentos de investigación																				
7. Consistencia	Bassado en aspectos teóricos científicos												_	_		_		-	_		1
8. Coherencia	Entre los indices, indicadores												_	_	_	_			-		-
9. Metodología	La astrategia responde al proposito del degnóstico																				
10. Pertinencia	Es útil y adecuado para la investigación																				

PROMEDIO DE VALORACIÓN: 98

OPINIÓN DE APLICABILIDAD: a) Muy deficiente b) Deficiente c) Regular d) Buena e) Muy buena

Nombres y Apellidos:	ALEXANDER JHONATAN GUARDIA SUPANTA	DNI N°	45720349
	Av. Sun Juan #324 . Sanda Anika	Teléfono/Celular:	930207204
Grado Académico:	INGENIERO CIVIL.		
Mención:			

Firma
Lugar y fecha: 12 -01 - 2027

FICHAS DE VALIDACIÓN INFORME DE OPINIÓN DEL JUICIO DE EXPERTO

DATOS GENERALES

- 1.1. Título de la Investigación: EL DESEMPEÑO DE LA MEZCLA ASFÁLTICA EN FRIO CON ADICION DE POLÍMEROS DE ICHU.
- 1.2. Nombre de los instrumentos motivo de Evaluación: Cuestionarios de encuesta sobre EL DESEMPEÑO DE LA MEZCLA ASFÁLTICA EN FRIO CON ADICION DE POLÍMEROS DE ICHU.

ASPECTOS DE VALIDACIÓN

		M	uy de	ficle	nte		Defic	lent		Regular			Buena			Muy buena					
	Criteries	0	6	11	16	21	26	31	36	41	46	51	56	61	66	71	76	81	86	91	96
Indicadores	Citimics	5	10	15	20	25	30	35	40	45	50	55	60	65	70	75	80	85	90	95	100
1. Claridad	Está formulado con lenguaje apropiado																	-			1
2. Objetividad	Está expresado en conductes observables																			7	
3. Actualidad	Adecuado al avance de la ciencia pedagógica																				1
4. Organización	Existe una organización lógica.														_	-		-		X	-
5. Suficiencia	Comprende los aspectos en carridad y calidad																			X	
6. Intencionalidad	Adecuado para valorar los instrumentos de investigación																			X	
7. Consistencia	Basado en aspectos teóricos científicos											-			-	_	_			7	-
8. Coherencia	Entre los indices, indicadores												-		_	-	_	-	-	-	12
9. Metodología	La estrategia responde al propósito del diagnóstico							-													1
10. Pertinencia	Es útil y adecuado para la investigación																				1/

PROMEDIO DE VALORACIÓN:

OPINIÓN DE APLICABILIDAD: a) Muy deficiente b) Deficiente c) Regular d) Buena e) Muy buena

Nombres y Apellidos:	LORENZO HOMERO PAREDES YCOCHEA	DNI N°	80137516
Dirección domiciliaria:	Av.LAS GAVOTAS Nº 284/310 Int. 118- Chorrillos	Teléfono/Celular:	945527410
Grado Académico:	INGENIERO CIVIL		
Mención:			

Tesista: : Bach. PINCO LAYME, David Marcelino

Lugar y fecha: Chorrillos 10 de enero 2022

CONSTRUCTORA INGENIEROS & ARQUITECTOS Av. Oriente N° 772 Concepción ASESORES SANTA CRUZ SCRL

975151126 / 912880976 / (064) 581405

Concepción – Junín ciaasantacruz@gmail.com

RESISTENCIA AL DESGASTE POR ABRASION

Metodo Máquina de los Angeles MTC E 207

SOLICITA / PETICIONARIO:

BACH. ING. CIVIL PINCO LAYME, DAVID MARCELINO

PROYECTO / OBRA

DESEMPEÑO DE LA MEZCLA ASFALTICA EN FRIO CON ADICION DE POLIMEROS DE ICHU

CANTERA Nº / UBICACIÓN :

RIO SECO APATA

MUESTRA

M-01 Distrito

UBICACIÓN DE OBRA :

CONCEPCION

Provincia CONCEPCION TECNICO: J.Santa Cruz V.

Departamento JUNIN

FECHA : 21/12/2021

METODO			PESOS Y GRA	PESOS Y GRANULOMETRIAS EMPLEADOS (gr)					
PASA TAMIZ	RETIENE TAMIZ	А	В	С	D	В			
11/2"	1"	1250+-25				0			
1"	3/4"	1250+-25				0			
3/4"	1/2"	1250+- 10	2500+10			2510			
1/2"	3/8"	1250+- 10	2500+-10			2500			
3/8"	1/4"			2500+10					
1/4"	N°4			2500+10					
N°4	N°8	Lead			5000+10				
F	PESO TOTAL	5000+10	5000+10	5000+10	5000+10	5010			
N° de esfe	ras	12	11	8	6				
peso de las esferas		390-445	391-445	392-445	393-445				
		Peso Retenid	o en la Malla N	3850					
		Peso que Pas	a en la Malla N	l* 12 (gr)		1160			
		% Desgaste							

PROMEDIO 23,15 %

OBSERVACIONES: MATERIAL TRITURADO

CONSTRUCTORA INGENIEROS & ARQUITECTOS Av. Oriente Nº 772 Concepción ASESORES SANTA CRUZ SCRL

975151126 / 912880976 / (064) 581405

Concepción - Junín ciaasantacruz@gmail.com

SOLICITA / PETICIONARIO:

BACH. ING. CIVIL PINCO LAYME, DAVID MARCELINO

PROYECTO / OBRA

DESEMPEÑO DE LA MEZCLA ASFALTICA EN FRIO CON ADICION DE POLIMEROS DE ICHU

TRAMO

CANTERA Nº / UBICACIÓN : MUESTRA

APATA M-01

UBICACIÓN DE OBRA :

CONCEPCION Distrito

Provincia CONCEPCION

TECNICO : J.Santa Cruz V.

Departamen JUNIN FECHA : 21/12/2021

				MU	ESTRA N	° 01			
	TERF	RONES	DE ARC	ILLA EN	AGRE	GADO GE	RUESO I	MTC E 212	2
		peso	peso	%	% ret.	M inicial	M final	%fracción	% Parcial
Pasa	Retiene	inicial	final	fraccion		(kg)	(kg)	Terrones	Terrones
1"	3/4"	0	0	0	0	0	0	0	0,00
3/4"	3/8"	2810	2810	0	29,33	2.810	2.810	0	0,00
3/8"	4"	1595	1595	0	35,44	1.595	1.595	0	0,00
4"	Base				5			0	0,00

%	
TOTA	0.00.0/
L	0,00 %

TERRONES DE ARCILLA EN AGREGADO FINO MTC E 212

MASA INICIAL	М	352,52
MASA RETENIDA N	R	351,58

P= % DE TERRONES DE ARCILLA

P = M - R *100

М

0,27 %

OBSERVACIONES : MATERIAL/TRITURADO

CONSTRUCTORA INGENIEROS & ARQUITECTOS AV. Oriente Nº 772 Concepción ASESORES SANTA CRUZ SCRL Concepción – Junín

975151126 / 912880976 / (064) 581405 Av. Oriente N° 772 Concepción Concepción – Junín ciaasantacruz@gmail.com

SOLICITA / PETICIONARIO BACH. ING. CIVIL PINCO LAYME, DAVID MARCELINO

PROYECTO / OBRA

DESEMPEÑO DE LA MEZCLA ASFALTICA EN FRIO CON ADICION DE POLIMEROS DE ICHU

CANTERA Nº / UBICACIÓN APATA

MUESTRA

M-01 Distrito

UBICACIÓN DE OBRA

CONCEPCION

Provincia CONCEPCION

Departamen JUNIN

TECNICO: J.Santa Cruz V.

FECHA : 21/12/2021

METODO NORMAL PARA DETERMINACION DE CARBON Y LIGNITO EN ARENAS

MTC E 215 2000

REPORTE DE RE	ORSERVACIONES			
DESCRIPCION	PORCENTAJE OBTENIDO	OBSERVACIONES		
MUESTRA N°01	0	NO PRESENTA		
MUESTRA N°02	0	NO PRESENTA		
TOTAL	-			

OBSERVACIONES

MOENERO CML CPN 181428

CONSTRUCTORA INGENIEROS & ARQUITECTOS Av. Oriente N° 772 Concepción ASESORES SANTA CRUZ SCRL

975151126 / 912880976 / (064) 581405 Concepción - Junín ciaasantacruz@gmail.com

SOLICITA / PETICIONARIO BACH. ING. CIVIL PINCO LAYME, DAVID MARCELINO

PROYECTO / OBRA

DESEMPEÑO DE LA MEZCLA ASFALTICA EN FRIO CON ADICION DE POLIMEROS DE ICHU

CANTERA Nº / UBICACIÓN APATA MUESTRA

UBICACIÓN DE OBRA Distrito

CONCEPCION

Provincia CONCEPCION

Departamen JUNIN

TECNICO: J.Santa Cruz V. FECHA : 21/12/2021

IMPUREZAS ORGANICAS EN AGREGADO FINO

MTC E 213 2000

DATOS DE LA MUESTRA

N° DE PLACA ORGANICA (1-5)

INTERPRETACION

PRESENCIA CUALITATIVA DE IMPUREZAS ORGANICAS

ACEPTABLE

OBSERVACIONES

MATERIAL TRITURADO

CONSTRUCTORA INGENIEROS & ARQUITECTOS Av. Oriente N° 772 Concepción ASESORES SANTA CRUZ SCRL Concepción – Junín

975151126 / 912880976 / (064) 581405 Av. Oriente N° 772 Concepción Concepción – Junín ciaasantacruz@gmail.com

GRAVEDAD ESPECIFICA Y ABSORCION DE LOS AGREGADOS

SOLICITA / PETICIONARIO: BACH. ING. CIVIL PINCO LAYME, DAVID MARCELINO

PROYECTO / OBRA : DESEMPEÑO DE LA MEZCLA ASFALTICA EN FRIO CON ADICION DE POLIMEROS DE ICHU

CANTERA Nº / UBICACIÓN : RIO SECO APATA
UBICACIÓN DE OBRA DIstrito CONCEPCION

 Provincia
 CONCEPCION
 TECNICO
 :
 J.S.C.V

 Region
 JUNIN
 FECHA
 :
 21/12/2021

	MUI	ESTRA 1								
	AGREGADO GRUESO MTC - 206									
N٥	IDENTIFICACION	M-1	M-2	PROMEDIO						
Α	Peso de Material satu. Sup. Seca (en aire)	980	950							
В	Peso de Material satu. Sup. Seca (en agua)	610	590							
С	Vol. Masa /Vol. Vacios = A - B	370	360							
D	Peso de Mat seca en estufa (105º c)	973	943							
E	Vol. masa = C-(A-D)	363	353							
	P.Esp. Bulk (Base seca) = D/C	2,630	2,619							
	P. Esp. Bulk (Base saturado) = A/C	2,649	2,639							
	P.Esp. Aparente(Base seca) = D/E	2,680	2,671							
	% de Absorcion = `((A-D) /D)x 100	0,719	0,742	0,731						
		Peso Especifico Ador	otado	2,644						

AGREGADO FINO MTC - 205									
Ν°	IDENTIFICACION	M1	M-2	PROMEDIO					
Α	Peso de Mat. Satu.Sup. Seca (en aire)	250	250						
В	Peso del frasco + H2O	206,2	205,6						
С	Peso del frasco + H2O + Arena = A+B	456,2	455,6						
D	Peso del mat. + H2O en el frasco	358	359						
E	Vol. de masa + Vol. de vacios = C-D	98,2	96,6						
F	Peso del material seco en estufa (105° c)	246.8	246,5						
G	Volumen de masa = E-(A-F)	95	93,1						
	P. Esp. Bulk (Base seca) = F/E	2,513	2,552						
	P. Esp. Bulk (Base saturada) = A/E	2,546	2,588						
	P.Esp. Aparente (Base seca) = F/G	2,598	2,648						
	% de Absorcion = ((A-F) /F) x100	1,297	1,420	1,358					
	The second second second second second	Peso Especifico Ador	ntado	2 567					

C.I.A.A. S.A. JA OVASPAN JUNE VALLE VALLE

CUTA L

975151126 / 912880976 / (064) 581405

CONSTRUCTORA INGENIEROS & ARQUITECTOS Av. Oriente Nº 772 Concepción ASESORES SANTA CRUZ SCRL

975151126 / 912880976 / (064) 581405 Concepción – Junín ciaasantacruz@gmail.com

DETERMINACION DE CARAS FRACTURADAS (NORMA ASTM D-5021)

PROYECTO / OBRA

SOLICITA / PETICIONARIO: BACH. ING. CHYLL PINCO LAYME, DAVID MARCELINO SECTOR CANTERA N°/UBICACIÓN: RIO SECO APATA

Distrito

UBICACIÓN DE OBRA

CONCEPCION

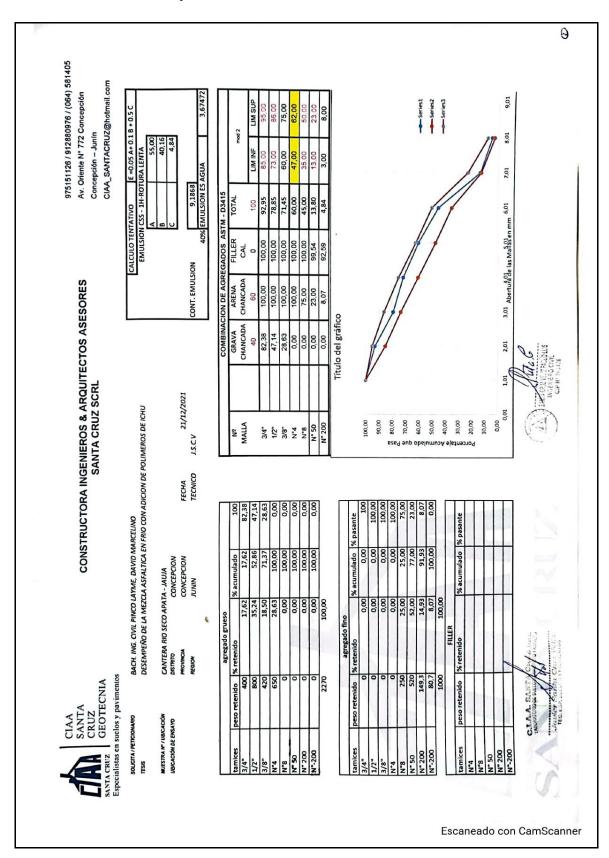
CONCEPCION

TECNICO : J.S.C.V.

FECHA: 21/12/2021

DETERMINACION DE CARAS FRACTURADAS

(NORMA ASTM D-5821)


A.- CON UNA CARA FRACTURADA

TAMAÑO I	DEL AGREGADO	A	B	C	D	E
PASA TAMIZ	RETENIDO EN TAMIZ	(g)	(g)	((B/A)*100)		C*D
2"	1 1/2"					
1 1/2"	1"					
1"	3/4"	250,0	238,0	95,2	22,0	2094,4
3/4"	1/2"	1200,0	1185,0	98,8	13,2	1303,5
1/2"	3/8"	300,0	292,0	97,3	36,8	3581,9
TOTAL		1750,0			72,0	6979,8
POCENTAJE CON UI	NA CARA FRACTURADA =	TOTAL E =		96,9 %		
		TOTAL	D			

B.- CON DOS O MAS CARAS FRACTURADAS

TAMAÑO D	TAMAÑO DEL AGREGADO		В	С	D	E
PASA TAMIZ	RETENIDO EN TAMIZ	(g)	(g)	((B/A)*100)		C*D
2	1 1/2"	196				
1 1/2"	1"					
1"	3/4"	250,0	212,0	84,8	22,0	1865,6
3/4"	1/2"	1200,0	1057,0	88,1	13,2	1162,7
1/2"	3/8"	300,0	279,0	93,0	36,8	3422,4
TOTAL		1750,0			72,0	6450,7
POCENTAJE CON UI	NA CARA FRACTURADA =	TOTAL E =		89,6 %		

Ensayos Diseño de Asfalto en frio Convencional

CONSTRUCTORA INGENIEROS & ARQUITECTOS ASESORES SANTA CRUZ SCRL Av. Oriente N° 772 Concepción Concepción – Junín

975151126 / 912880976 / (064) 581405 ciaasantacruz@gmail.com

				INSAYO: NORMA:				Revisió	n
	Elaborac	lo Por:		ado por:	Aprobed	o por:	Feche	Págin	•
					595				
	LABORA	TORIO DE ME	CÁNICA	DE SUELOS,	CONCRET	O Y PAVIM	ENTOS		
TENS :	DESEMPEÑO DE LA	MEZCLA ASFALTICA	EN FRIO COI	ADICION DE POLI	MEROS DE ICHI	ı		H* REGISTRO	DISERO-001
BOLICITANTE :	BACH ING CIVIL PIN		ARCELINO						
MATERIAL : CALICATA :	PIEDRA Y ARENA CH	AANCADA						ING. RESP. FECHA	: : 21-dic-21
MUESTRA :	M-1 - MODIFICADO 3							HECHO POR	: J.S.C.V
PROFUND. :	0 AGREGADO GRUESO	Y FINO - PLANTA C	HANCADOR	A . PIO SECO APAT					: • : •
UBICACIÓN :	0						10 /110	CARRIL	: 0
DISEÑO DE ASFA	LIO METODO		-	Asfalto)			is (MS-	14 del Institi	uto dei
	ASFAL	(USAR PARA MUES	TRAS CON L	IN SOLO CONTENID	O ASFALTO RE		EGADO		_
Tipo y grado	ASFAL	CSS - 1h		Identif, Fuer	nte	AGR	LUADU	Pist	ta
Asfalto en emi	ulsión	60	%	Tipo			Agreg		
B Grav, Esp. As		1,000		Grav. Esp. Bulk (C)				2,664	
A Asfalto residua	6290AB	5,7	%	Emulsión A				9,5	_
	EZCLA Y COM	7.5				PR	UEBA		
Agua de la me	zcia total	6,6	%	Fecha ensa	yo muestra	seca		15/12/	2021
Agua al compa	ectar	2,8	%	Fecha rotac	ión muestra	inmersa		15/12/	2021
				Fecha ensa	yo muestra	húmeda		18/12/	2021
Fecha de com	pactación	18/12/2	2017						
					Seca	-		Humedecida	
DATOS M	UESTRA COMP	PACTADA		1	2	3	4	5	6
Densidad E	Bulk			W 19					
Peso en el air	e			1066,5	1055,0	1058,8	7		
Peso en el ag	ua			590,0	600,0	588,0			
Peso SSD				1095,5	1100,0	1095,0			
WOLLING THE PER	PRIOUETA			505.50	500,00	507,00			
VOLUMEN DE	-	D/F-E		505,50 2,110	2,110	2,088			
			100)	2,110	2,082	2,060			
	uestra compac	- O(1110	.001	2,001	2,002	2,000		-	
Espesor Estabilidad		TO SHOW			1		10 m	1	
Carga				1				T	
Estabilidad aj	ustada			1038,9	994,5	1016,7	697,5	679,8	715,2
Flujo (in)			7	13,0	12,0	12,0	14,0	15,0	14,0
Perdida de (L+L+L√3)-(L+L+La/3) x100		10,0	.=,-		31,4				
Estabilidad, %	L ₁ +	L ₂ +L ₃ /3					51,4		
Contenido	The second second	A Care		1	650.5	Eer o	525.5	562,2	548.9
Peso muestra		-		565,8	556,5	565,2	525,5	532.0	520,
Peso muestra	seca estufa (I)	Lastra		558,0	549,0	557,5	498,0	30,2	28,9
	-			7,8	7,5	7,7	27,5 5,5	5,7	5,6
Contenido hu		(2+K3/3-K4+K5	. 14.19	1,4	1,4	100000000	0,0	4.2	-,-

CONSTRUCTORA INGENIEROS & ARQUITECTOS Av. Oriente Nº 772 Concepción ASESORES SANTA CRUZ SCRL Concepción – Junín

975151126 / 912880976 / (064) 581405 Av. Oriente N° 772 Concepción Concepción – Junín claasantacruz@gmail.com

Revisión Elaborado Por Revisado por Página LABORATORIO DE MECÁNICA DE SUELOS, CONCRETO Y PAVIMENTOS DESEMPEÑO DE LA MEZCLA ASFALTICA EN FRIO CON ADICION DE POLIMEROS DE ICHU : J.B.C.V : APATA JAUJA JUNIN DISENO DE ASFALTO METODO MARSHALL ASTM-D 1559 MODIFICADO ILLINOIS (MS-14 del Instituto del Asfalto) (USAR F ASFALTO AGREGADO Tipo y grado Identif. Fuente CSS - 1h Asfalto en emulsión Agregado 60 Tipo Grav. Esp. Asfalto Grav. Esp. Bulk (C) 0,950 Asfalto residual en mezcla 8,7 Emulsión Asfaltica (%) 5.2 MEZCLA Y COMPACTACIÓN PRUEBA 15/12/2021 Agua de la mezcia total 6.3 % Fecha ensayo muestra seca 15/12/2021 Agua al compactar 2,8 % Fecha rotación muestra inmersa 18/12/2021 Fecha ensayo muestra húmeda Fecha de compactación 18/12/2017 Seca Humedecida DATOS MUESTRA COMPACTADA 1 2 3 4 5 Densidad Bulk Peso en el aire 1065,5 1055,9 1065,2 Peso en el agua 585,0 588,8 590,0 Peso SSD 1100,0 1098,0 1102,0 VOLUMEN DE BRIQUETA 515.00 509.20 512.00 G BSG - muestra compacta D/F-E 2,069 2,074 2,080 BSG seco - muestra compacta G/(1+K/100) 2,043 2,041 2,052 Espesor Estabilidad Carga Estabilidad ajustada 972,3 1136,7 1038.9 719.6 693.1 706.4 Flujo (in) 11,0 11,0 12,0 12,0 13,0 13,0 Perdida de (L1+L2+L4/3)-(L4+L4+L6/3) x100 Estabilidad, % L1+L2+L3/3 Contenido humedad Peso muestra fallada (H) 502,6 485,5 495,5 520,5 525,2 Peso muestra seca estufa (I) 514,0 517,0 495,8 459,2 450,0 466,0 29.5 6,5 8,2 6.8 26.3 28.5 Contenido humedad (K) 1,3 1,6 1,4 5,7 6,3 6,3 Humedad absorbida K1+K2+K3/3-K4+K5+K6/3 4,7

16,47

16,41

16,03

C.I.A.A. SANTA C.J.UZ JERL, IMPORTORO DE SELOS, COMPETO JERLA, JANIER SANYA CRUS VE LES ESES SUZOS Y PAVIMENTOS

VACIOS TOTALES

Mila CHI VEU PAGO UN MOSTRESO CANA CE HI 280476

CIAA SANTA 975151126 / 912880976 / (064) 581405

CONSTRUCTORA INGENIEROS & ARQUITECTOS Av. Oriente Nº 772 Concepción

ASESORES SANTA GRUZ SCRL

Concepción Junin
Rediction ... CRUZ GEOTECNIA cia asantacru2@gmail.com a Página alistas en sue os y pavimentosborado Por

	DESEMPEÑO DE LA MEZCLA ASFALTIC	A EN FRIO CON ADI	CION DE POL	MEROS DE ICHU				H* REGISTRO	: DISEÑO-O
SOLICITANTE	BACH ING CIVIL PINCO LAYME, DAVID	MARCELINO						TÉCNICO	: JSCV
MATERIAL	: PIEDRA Y ARENA CHANCADA							ING. RESP.	:
CALICATA	: 0							FECHA	: 21-dic-21
MUESTRA PROFUND.	: M-1 - MODIFICADO 3 => A	(ROM						HECHO POR	: JSCV
CANTERA	: AGREGADO GRUESO Y FINO - PLANTA CHANCADORA - RIO SECO APATA				DEL KM AL KM	: .			
UBICACIÓN	: 0							CARRIL	: 0
DISEÑO	DE ASFALTO METODO MA	ARSHALL A	STM-D 1	1559 MODIF	ICADO II	LLINOIS (MS-14 de	el Instituto d	el Asfal
		(USAR PARA MUES						-	
	ASFAL	то				AGF	REGADO		
	Tipo y grado	CSS - 1h		Identif. Fue	ente			Pis	ta
	Asfalto en emulsión 60 %		Tipo				Agreg	gado	
В	Grav. Esp. Asfalto 1,000		Grav. Esp.	Bulk (C)			2,6	64	
4	Asfalto residual en mezcla 6,2 %		Emulsión A	Asfaltica (%)		10	,3	
	MEZCLA Y COM	PACTACIÓN				PF	RUEBA		
	Agua de la mezcla total	6,9	%	Fecha ensayo muestra seca				15/12/2021	
	Agua al compactar	2,8	%	Fecha rotación muestra inmersa				15/12/2021	
				Fecha ensa	ayo muestr	a húmeda		18/12/2021	
	Fecha de compactación	18/12/2	2017						
	DATOS MUESTRA COMO	ACTADA			Seca			Humedecida	1
	DATOS MUESTRA COMPACTADA		1	2	3	4	5	6	
P UE	Densidad Bulk								
)	Peso en el aire			1070,2	1065,0	1055,8			
	Peso en el agua			593,8	595,0	595,0			
	Peso SSD			1100,0	1098,0	1088,0			
	VOLUMEN DE BRIQUETA			506,20	503,00	493,00			
		D/F-E		2,114	2,117	2,142	-		
3	BSG - muestra compacta		/100)	2,114	2,117	2,142			
	BSG seco - muestra compact	a 5/(1+1)	, 1001	2,000	2,007	2,111			
	Espesor	CONTRACT SEA	-	-	70.000	100			1
	Estabilidad							1	
	Carga	-	-	919,1	936.8	928.0	640.0	644,4	653,2
- Marie Land	Estabilidad ajustada	1	7		13.0	14,0	15,0	15.0	16.0
	Flujo (in)			14,0	13,0		100.00	10,0	10,0
	Perdida de $(L_1+L_2+L_4/3)$, $L_1+L_2+L_4/3$ $\times 100$ Establidad, % $L_1+L_2+L_4/3$			-		30,4			
	Contenido humedad			1 1			450.5	105.5	475.5
	Peso muestra fallada (H)			565,5	554,9	565,3	456,5	485,5	475,6
	Peso muestra seca estufa (I)			558,0	547,0	557,2	432,0	458,0	450,0
	Lord Control of the		7,5	7,9	8,1	24,5	27,5	25,6	
			Contenido humedad (K)						
	Contenido humedad (K) Humedad absorbida K ₁ +K	₂ +K ₃ /3 ₄ K ₄ +K ₅ +	у п	1,3	1,4	1,5	5,7	6,0	5,7

CONSTRUCTORA INGENIEROS & ARQUITECTOS Av. Oriente Nº 772 Concepción ASESORES SANTA CRUZ SCRL Concepción – Junín

975151126 / 912880976 / (064) 581405 Av. Oriente N° 772 Concepción Concepción – Junín ciaasantacruz@gmail.com

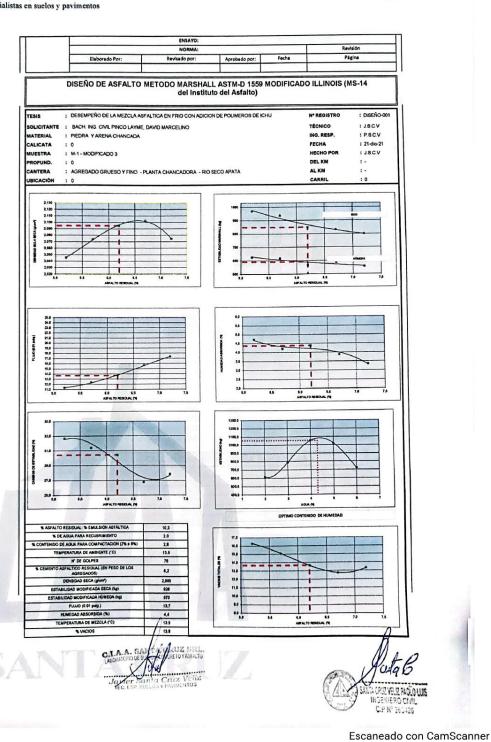
		ENSA						Revisión		
	Eleborado Por:	NOR	MA: rviseco por:	Aprobi	ado por:	Fecha	Pági	ne		
	LABORA	TORIO DE MECÂNICA	DE SUELOS, O	CONCRETO	Y PAVIME	NTOS				
ESIS	: DESEMPEÑO DE LA MEZCLA ASFAL	TICA EN FRIO CON ADICION DE F	OLIMEROS DE ICHU				Nº REGISTRO	: DISEÃO-001		
	TE : BACH ING CIVIL PINCO LAYME, DAY : PIEDRA Y ARENA CHANCADA	AD MARCELINO						: JSCV		
MATERIAL	: 0						FECHA	: 21-dio-21		
MUESTRA PROFUND	: N-1 - MODIFICADO 3 : 0						HECHO POR	: JACV		
CANTERA	: AGREGADO GRUESO Y FINO - PLAN	TA CHANCADORA - RIO BECO A	PATA				AL KM	: •		
UBICACIÓN	EÑO DE ASFALTO METOL	O MARCHALL ACT	TM D 4550 N	ODIFICA	DO ILLIN	OIC (MC	0741100	: 0		
DIS	ENO DE ASPALTO METOL	O MAKSHALL AS	Asfalto)	ODIFICA	DO ILLIN	OIS (MS	-14 001 111501	uto dei		
		(USAR PARA MUESTRAS CO		IIDO ASFALTO F	RESIDUAL)					
	ASFA	LTO			AGF	REGADO				
	Tipo y grado CSS - 1h		Identif. Fu	ente			Pis	ita		
	Asfalto en emulsión	60 %	Tipo	Tipo		Agre	gado			
В	Grav. Esp. Asfalto	1,000	Grav. Esp.	Grav. Esp. Bulk (C)		2,664				
A	Asfalto residual en mezcla	6,7 %	Emulsión /	Emulsión Asfaltica (%)		11,2				
	MEZCLA Y CO	MPACTACIÓN			PF	RUEBA				
	Agua de la mezcla total	7,3 %	Fecha ens	ayo muestra	seca		15/12	100 May 1		
	Agua al compactar	2,8 %	Fecha rota	ción muestr	a inmersa		15/12/2021			
			Fecha ens	Fecha ensayo muestra húmeda			18/12	2021		
	Fecha de compactación	18/12/2017								
			-	Seca			Humedecida			
	DATOS MUESTRA CO	MPACTADA	1	2	3	4	5	6		
1000	Densidad Bulk				Billian.					
D	Peso en el aire		1052,5	1065,2	1057,8					
E	Peso en el agua		600,0	606,0	605,0		No.			
F	Peso SSD		1095,5	1105,0	1100,0					
	VOLUMEN DE BRIQUETA		495,50	499,00	495,00					
G	BSG - muestra compacta	D/F-E	2,124	2,135	2,137					
	BSG seco - muestra compac	ta G/(1+K/100)	2,096	2,106	2,106					
	Espesor									
STUDE.	Estabilidad	90a			X	in the same of				
	Carga							1		
10	Estabilidad ajustada		874,7	928,0	928,0	650,0	685,0	665,0		
	Flujo (in)		16,0	16,0	15,0	17,0	17,0	18,0		
	Perdida de $\frac{(L_1+L_2+L_3/3)-(L_2+L_3+L_3/3)}{(L_1+L_2+L_3/3)} \times 100$ Estabilidad, % $L_1+L_2+L_3/3$					26,8				
	Contenido humedad	110								
1	Peso muestra fallada (H)		554,3	552,5	562,2	556,5	548,5	585,5		
	Peso muestra seca estufa (I)		547,0	545,0	554,0	530,0	520,0	556,0		
ı			7,3	7,5	8,2	26,5	28,5	29,5		
к	Contenido humedad (K)		1,3	1,4	1,5	5,0	5,5	5,3		
	Humedad absorbida K ₁ +l	C2+K3/3-K4+K5+K6/3					3,9			
-	VACIOS TOTALES									

C.I.A.A. SANT CON A SELL.

(DE TOUR DOES DATED CONTACT OF THE PROPERTY OF THE

MA C PURA CONTROLLE MIGHINGO CIVIL CIP Nº 25-1428

CONSTRUCTORA INGENIEROS & ARQUITECTOS Av. Oriente N° 772 Concepción ASESORES SANTA CRUZ SCRL Av. Oriente N° 772 Concepción Concepción – Junín


975151126 / 912880976 / (064) 581405 Av. Oriente N° 772 Concepción Concepción – Junín ciaasantacruz@gmail.com

			NORMA:					Revisión	
	Elaborado Por:			do por:	Aprobad	o por:	Feche	Página	
	LABORATO	ORIO DE MEGÁ	NICA DE	SUELOS, CO	ONCRETO	Y PAVIMEN	itos		
TESIS	: DESEMPEÑO DE LA MEZCLA ASFALTIK	CA EN FRIO CON ADICK	ON DE POLI	MEROS DE ICHU				Nº REGISTRO : DI	SEAO-001
	TE : BACH, ING. CIVIL PINCO LAYME, DAVID	MARCELINO							9.C.V
MATERIAL CALICATA	: PIEDRA Y ARENA CHANCADA : 0							ING. RESP. : FECHA : 21	-dc-21
MUESTRA PROFUND.	: M-1 - MODIFICADO 3 : 0							HECHO POR : JI	BCV
CANTERA	: AGREGADO GRUESO Y FINO - PLANTA	CHANCADORA - RIO	BECO APAT	TA .				ALKM :-	
UBICACIÓN	EÑO DE ASFALTO METODO	MARCHALL	ACTM	D 4550 MO	DIEICAD	2 II I INO	e (Me 1	CARRIL : 0	a dal
DIS	ENO DE ASPACTO METODO	NARSHALL		sfalto)	DIFICADO	JILLINO	13 (M3-1	4 dei institut	o dei
		(USAR PARA MUESTR	AS CON UN	BOLO CONTENIDO	ASFALTO RESI				
	ASFAL	2012				AGR	EGADO		
	Tipo y grado	CSS - 1h		Identif. Fue	nte			Pista	
	Asfalto en emulsión	60	%	Tipo				Agregad	
В	Grav. Esp. Asfalto	1,000		Grav. Esp. Bulk (C) Emulsión Asfaltica (%)				2,664	
	Asfalto residual en mezcla	7,2	%	Emulsion A	sfaltica (%)			12,0	
	MEZCLA Y COM	ENG-N- N-11/10/VARMIN BI					UEBA	1	
_	Agua de la mezcla total	7,6	%		yo muestra			15/12/20	35.7
	Agua al compactar	2,8	%		ión muestra			15/12/20	
	Forbs de compostación	40/40/00		Fecha ensa	yo muestra	numeda		18/12/20	J21
	Fecha de compactación	18/12/20	17						
	DATOS MUESTRA COM	PACTADA		Table 1	Seca			Humedecida	
	Densidad Bulk		Accessed to	1	2	3	4	6	6
			-		*****	40000		T T	-
D	Peso en el aire			1050,0	1065,5	1056,8			
D E	Peso en el aire Peso en el agua			589,0	585,0	587,0			
D E	Peso en el aire								
D	Peso en el aire Peso en el agua Peso SSD			589,0 1085,8	585,0 1095,5	587,0 1085,5			
D E F	Peso en el aire Peso en el agua Peso SSD VOLUMEN DE BRIQUETA	D/F-E		589,0 1085,8 496,80	585,0 1095,5 510,50	587,0 1085,5 498,50			
D E F	Peso en el aire Peso en el agua Peso SSD VOLUMEN DE BRIQUETA BSG - muestra compacta	D/F-E	00)	589,0 1085,8 496,80 2,114	585,0 1095,5 510,50 2,087	587,0 1085,5 498,50 2,120			
D E F 33	Peso en el aire Peso en el agua Peso SSD VOLUMEN DE BRIQUETA BSG - muestra compacta BSG seco - muestra compac		000)	589,0 1085,8 496,80	585,0 1095,5 510,50	587,0 1085,5 498,50			
D E F 33	Peso en el aire Peso en el agua Peso SSD VOLUMEN DE BRIQUETA BSG - muestra compacta BSG seco - muestra compac	27 09 0 1020	000)	589,0 1085,8 496,80 2,114	585,0 1095,5 510,50 2,087	587,0 1085,5 498,50 2,120			
D E F 3	Peso en el aire Peso en el agua Peso SSD VOLUMEN DE BRIQUETA BSG - muestra compacta BSG seco - muestra compac Espesor Estabilidad	27 09 0 1020	000)	589,0 1085,8 496,80 2,114	585,0 1095,5 510,50 2,087	587,0 1085,5 498,50 2,120			
D E F	Peso en el aire Peso en el agua Peso SSD VOLUMEN DE BRIQUETA BSG - muestra compacta BSG seco - muestra compac Espesor Estabilidad Carga	27 09 0 1020	00)	589,0 1085,8 496,80 2,114 2,081	585,0 1095,5 510,50 2,087 2,057	587,0 1085,5 498,50 2,120	635,5	631,1	640,6
D E E F	Peso en el aire Peso en el agua Peso SSD VOLUMEN DE BRIQUETA BSG - muestra compacta BSG seco - muestra compact Espesor Estabilidad Carga Estabilidad ajustada	27 09 0 1020	000)	589,0 1085,8 496,80 2,114 2,081	\$85,0 1095,5 510,50 2,087 2,057	587,0 1085,5 498,50 2,120 2,086	635,5	631,1	640,¢
D E F	Peso en el aire Peso en el agua Peso SSD VOLUMEN DE BRIQUETA BSG - muestra compacta BSG seco - muestra compac Espesor Estabilidad Carga Estabilidad ajustada Flujo (in)	27 09 0 1020		589,0 1085,8 496,80 2,114 2,081	585,0 1095,5 510,50 2,087 2,057	587,0 1085,6 498,50 2,120 2,086	20,0		
D E F 3	Peso en el aire Peso en el agua Peso SSD VOLUMEN DE BRIQUETA BSG - muestra compacta BSG seco - muestra compact Espesor Estabilidad Carga Estabilidad ajustada Flujo (in) Perdida de (L+L+L+L) Estabilidad, % L+	ta G/(1+K/1		589,0 1085,8 496,80 2,114 2,081	\$85,0 1095,5 510,50 2,087 2,057	587,0 1085,5 498,50 2,120 2,086	200000		
D E F 3	Peso en el aire Peso en el agua Peso SSD VOLUMEN DE BRIQUETA BSG - muestra compacta BSG seco - muestra compact Espesor Estabilidad Carga Estabilidad ajustada Flujo (in) Perdida de (L+L+L+L+L+L+L+L+L+L+L+L+L+L+L+L+L+L+L+	ta G/(1+K/1		589,0 1085,8 496,80 2,114 2,081 874,7 17,0	585,0 1095,5 510,50 2,087 2,057 883,6 18,0	587,0 1085,5 498,50 2,120 2,086 883,6 17,0	20,0	21,0	20,0
D E F 3	Peso en el aire Peso en el agua Peso SSD VOLUMEN DE BRIQUETA BSG - muestra compacta BSG seco - muestra compact Espesor Estabilidad Carga Estabilidad ajustada Flujo (in) Perdida de (L+L+L+L) Estabilidad, % L+	ta G/(1+K/1		589,0 1085,8 496,80 2,114 2,081 874,7 17,0	585,0 1095,5 510,50 2,087 2,057 883,6 18,0	587,0 1085,5 498,50 2,120 2,086 883,6 17,0	20,0 27,8 456,8	21,0	20,0
3 3	Peso en el aire Peso en el agua Peso SSD VOLUMEN DE BRIQUETA BSG - muestra compacta BSG seco - muestra compact Espesor Estabilidad Carga Estabilidad ajustada Flujo (in) Perdida de (L+L+L+L+L+L+L+L+L+L+L+L+L+L+L+L+L+L+L+	ta G/(1+K/1		874,7 17,0 489,5 489,5 489,5 482,0	585,0 1095,5 510,50 2,087 2,057 2,057 883,6 18,0	587,0 1085,5 498,50 2,120 2,086 883,6 17,0 505,2 497,0	20,0 27,8 456,8 435,9	21,0 485,5 462,0	20,0 505,5 482,6
D E E F F F F F F F F F F F F F F F F F	Peso en el aire Peso en el agua Peso SSD VOLUMEN DE BRIQUETA BSG - muestra compacta BSG seco - muestra compact Espesor Estabilidad Carga Estabilidad ajustada Flujo (in) Perdida de (L±+L±+L±+L±+L±+L±+L±+L±+L±+L±+L±+L±+L±+L	ta G/(1+K/1		589,0 1085,8 496,80 2,114 2,081 874,7 17,0	585,0 1095,5 510,50 2,087 2,057 883,6 18,0	587,0 1085,5 498,50 2,120 2,086 883,6 17,0	20,0 27,8 456,8	21,0	20,0 505,5 482,0 23,5
D E E F F G G	Peso en el aire Peso en el agua Peso SSD VOLUMEN DE BRIQUETA BSG - muestra compacta BSG seco - muestra compact Espesor Estabilidad Carga Estabilidad ajustada Flujo (in) Perdida de (L±+L±+L±+L±+L±+L±+L±+L±+L±+L±+L±+L±+L±+L	ta G/(1+K/1		874,7 17,0 489,5 489,5 489,5 482,0	585,0 1095,5 510,50 2,087 2,057 2,057 883,6 18,0	587,0 1085,5 498,50 2,120 2,086 883,6 17,0 505,2 497,0	20,0 27,8 456,8 435,9	21,0 485,5 462,0	20,0 505,5 482,6

CONSTRUCTORA INGENIEROS & ARQUITECTOS Av. Oriente Nº 772 Concepción ASESORES SANTA CRUZ SCRL Concepción – Junín

975151126 / 912880976 / (064) 581405 Av. Oriente N° 772 Concepción Concepción – Junín ciaasantacruz@gmail.com

Anexo Nº 11 - informe de Ensayos de Control de Núcleos Asfalticos

CONSTRUCTORA INGENIEROS & ARQUITECTOS Av. Oriente Nº 772 Concepción ASESORES SANTA CRUZ SCRL

975151126 / 912880976 / (064) 581405

Concepción – Junín ciaasantacruz@gmail.com

CONTROL DE NÚCLEOS ASFÁLTICOS

SOLICITA / PETICIONARIO

: BACH, ING. CIVIL PINCO LAYME, DAVID MARCELINO

PROYECTO / OBRA

: DESEMPEÑO DE LA MEZCLA ASFALTICA EN FRIO CON ADICION DE POLIMEROS DE ICHU

MUESTRA Nº / UBICACIÓN

: MUESTRAS DISEÑO PATRON 6,2%

UBICACIÓN DE OBRA

: Distrito CONCEPCION

: Provincia CONCEPCION

: Región JUNIN

TÉCNICO: J.S.C.V FECHA: 21/12/2021

PESO ESPECÍFICO BULK DE MEZCLAS ASFÁLTICAS (ASTM D2726 / MTC E514)

IDENTIFICACIÓN	M-1	M-2	M-3		
MUESTRA	patron 6,2%,	patron 6,2%,	patron 6,2%,		
ALTURA PROMEDIO DE LA BRIQUETA (cm)	6,50	6,50	6,50		0.000
PESO DE LA BRIQUETA SECA AL AIRE (g)	1070,2	1065,0	1055,8		
PESO DE LA BRIQUETA SATURADA SUPERFICIALMENTE SECA EN AIRE (g)	1100,0	1098,0	1088,0		
PESO DE LA BRIQUETA SATURADA SUPERFICIALMENTE SECA EN AGUA (g)	593,8	595,0	595,0		
PESO DEL AGUA ABSORBIDA (g)	29,8	33,0	32,2		
VOLUMEN DE LA BRIQUETA SATURADA SUPERFICIALMENTE SECA (cm²)	506,2	503,0	493,0		-
PESO ESPECÍFICO BULK DE LA BRIQUETA (g/cm²)	2,114	2,117	2,142		
		2,124		and the second	

	Contract to the second	-,			
ESTABI	LIDAD MARSHAL	L (ASTM D	1559 / MTC E50	4)	
FLUJO (mm)	3,56	3,30	3,56		
ESTABILIDAD SIN CORREGIR (kg)	884,0	901,0	851,0		-
FACTOR DE ESTABILIDAD	1,04	1,04	1,09		
ESTABILIDAD CORREGIDA (kg)	919,0	937,0	928,0		
PROMEDIO DE ESTABILIDAD	12 12	928,0			

815 KG MINIMO **ESTABILIDAD** SEGÚN EG-2013

CONSTRUCTORA INGENIEROS & ARQUITECTOS Av. Oriente Nº 772 Concepción ASESORES SANTA CRUZ SCRL

975151126 / 912880976 / (064) 581405

Concepción - Junín ciaasantacruz@gmail.com

CONTROL DE NÚCLEOS ASFÁLTICOS

SOLICITA / PETICIONARIO

: BACH, ING. CIVIL PINCO LAYME, DAVID MARCELINO

PROYECTO / OBRA

: DESEMPEÑO DE LA MEZCLA ASFALTICA EN FRIO CON ADICION DE POLIMEROS DE ICHU

MUESTRA Nº / UBICACIÓN

: MUESTRAS MODIFICADAS CON POLIMEROS DE ICHU

UBICACIÓN DE OBRA

CONCEPCION

CONCEPCION

TÉCNICO: J.S.C.V

: Distrito : Provincia : Región

JUNIN

FECHA : 21/12/2021

PESO ESPECÍFICO BULK DE MEZCLAS ASFÁLTICAS (ASTM D2726 / MTC E514)

IDENTIFICACIÓN	M-1	M-2	M-3		
MUESTRA	1% ICHU	1% ICHU	1% ICHU		
ALTURA PROMEDIO DE LA BRIQUETA (cm)	6,50	6,50	6,50		
PESO DE LA BRIQUETA SECA AL AIRE (g)	1150,0	1148,8	1152,8		1
PESO DE LA BRIQUETA SATURADA SUPERFICIALMENTE SECA EN AIRE (g)	1155,8	1154,5	1158,5		
PESO DE LA BRIQUETA SATURADA SUPERFICIALMENTE SECA EN AGUA (g)	600,5	605,9	605,2		
PESO DEL AGUA ABSORBIDA (g)	5,8	5,7	5,7		
VOLUMEN DE LA BRIQUETA SATURADA SUPERFICIALMENTE SECA (cm²)	555,3	548,6	553,3		1
PESO ESPECÍFICO BULK DE LA BRIQUETA (g/cm²)	2,071	2,094	2,083		-
(2000)		2,083			

ESTABI	LIDAD MARSHAL	L (ASTM D1	1559 / MTC E504	1)	
FLUJO (mm)	4,06	4,06	4,06		-
ESTABILIDAD SIN CORREGIR (kg)	950,0	985,0	915,0		-
FACTOR DE ESTABILIDAD	0,89	0,89	0,89		
ESTABILIDAD CORREGIDA (kg)	846,0	877,0	814,0		
PROMEDIO DE ESTABILIDAD		845,7			

	SEGÚN EG-2013	ESTABILIDAD	815 KG MINIMO
--	---------------	-------------	---------------

CONSTRUCTORA INGENIEROS & ARQUITECTOS AV. Oriente Nº 772 Concepción ASESORES SANTA CRUZ SCRL Concepción – Junín

975151126 / 912880976 / (064) 581405 Av. Oriente N° 772 Concepción Concepción – Junín ciaasantacruz@gmail.com

CONTROL DE NÚCLEOS ASFÁLTICOS

SOLICITA / PETICIONARIO

BACH. ING. CIVIL PINCO LAYME, DAVID MARCELINO

PROYECTO / OBRA

: DESEMPEÑO DE LA MEZCLA ASFALTICA EN FRIO CON ADICION DE POLIMEROS DE ICHU

MUESTRA Nº / UBICACIÓN

: MUESTRAS MODIFICADAS CON POLIMEROS DE ICHU

UBICACIÓN DE OBRA

CONCEPCION

: Distrito : Provincia

CONCEPCION TÉCNICO: J.S.C.V

: Región JUN

FECHA: 21/12/2021

PESO ESPECÍFICO BULK DE MEZCLAS ASFÁLTICAS (ASTM D2726 / MTC E514)

IDENTIFICACIÓN	M-1	M-2	M-3	
MUESTRA	2% ICHU	2% ICHU	2% ICHU	
ALTURA PROMEDIO DE LA BRIQUETA (cm)	6,70	6,80	6,80	
PESO DE LA BRIQUETA SECA AL AIRE (g)	1148,2	1140,6	1145,5	
PESO DE LA BRIQUETA SATURADA SUPERFICIALMENTE SECA EN AIRE (g)	1154,3	1146,9	1151,5	
PESO DE LA BRIQUETA SATURADA SUPERFICIALMENTE SECA EN AGUA (g)	598,8	595,5	596,6	
PESO DEL AGUA ABSORBIDA (g)	6,1	6,3	6,0	
VOLUMEN DE LA BRIQUETA SATURADA SUPERFICIALMENTE SECA (cm²)	555,5	551,4	554,9	
PESO ESPECÍFICO BULK DE LA BRIQUETA (g/cm²)	2,067	2,069	2,064	
		2,067	1	

ESTABILIDAD MARSHALL (ASTM D1559 / MTC E504)						
FLUJO (mm)	4,32	4,32	4,57			
ESTABILIDAD SIN CORREGIR (kg)	885,0	890,0	789,0			
FACTOR DE ESTABILIDAD	0,89	0,89	0,89			
ESTABILIDAD CORREGIDA (kg)	788,0	792,0	702,0			
PROMEDIO DE ESTABILIDAD		760,7				

SEGÚN EG-2013	ESTABILIDAD	815 KG MINIMO
3EGUN EG-2013		But the 1

James Anta Criz V. liz

July C SAMA CRIZ YELZ PROZOLUS MOENIERO CIVIL CIP N° 253425

CONSTRUCTORA INGENIEROS & ARQUITECTOS Av. Oriente N° 772 Concepción ASESORES SANTA CRUZ SCRL Concepción – Junín

975151126 / 912880976 / (064) 581405 claasantacruz@gmail.com

CONTROL DE NÚCLEOS ASFÁLTICOS

SOLICITA / PETICIONARIO

BACH. ING. CIVIL PINCO LAYME, DAVID MARCELINO

PROYECTO / OBRA

: DESEMPEÑO DE LA MEZCLA ASFALTICA EN FRIO CON ADICION DE POLIMEROS DE ICHU

MUESTRA Nº / UBICACIÓN

: MUESTRAS MODIFICADAS CON POLIMEROS DE ICHU

UBICACIÓN DE OBRA

CONCEPCION CONCEPCION

JUNIN

: Distrito : Provincia : Región

TÉCNICO: J.S.C.V

FECHA : 21/12/2021

IDENTIFICACIÓN	M-1	M-2	M-3	
MUESTRA	3% ICHU	3% ICHU	3% ICHU	
ALTURA PROMEDIO DE LA BRIQUETA (cm)	6,90	6,80	6,90	
PESO DE LA BRIQUETA SECA AL AIRE (g)	1150,5	1140,9	1145,9	
PESO DE LA BRIQUETA SATURADA SUPERFICIALMENTE SECA EN AIRE (g)	1157,9	1148,1	1153,6	
PESO DE LA BRIQUETA SATURADA SUPERFICIALMENTE SECA EN AGUA (g)	600,5	593,8	596,5	
PESO DEL AGUA ABSORBIDA (g)	7,4	7,2	7,7	
VOLUMEN DE LA BRIQUETA SATURADA SUPERFICIALMENTE SECA (cm²)	557,4	554,3	557,1	
PESO ESPECÍFICO BULK DE LA BRIQUETA (g/cm²)	2,064	2,058	2,057	
23.000 7		2,060		

ESTABILIDAD MARSHALL (ASTM D1559 / MTC E504)									
FLUJO (mm)	4,83	4,83	4,83						
ESTABILIDAD SIN CORREGIR (kg)	750,0	695,0	735,0						
FACTOR DE ESTABILIDAD	0,89	0,89	0,89	A Process	SEM ST.				
ESTABILIDAD CORREGIDA (kg)	668,0	619,0	654,0						
PROMEDIO DE ESTABILIDAD		647,0	the						

SEGÚN EG-2013	ESTABILIDAD	815 KG MINIMO
3EGUN EG-2013	States (Section)	(46) 103.2

Anexo Nº 12 – informe de Ensayos de Cántabro

CONSTRUCTORA INGENIEROS & ARQUITECTOS Av. Oriente N° 772 Concepción ASESORES SANTA CRUZ SCRL Concepción – Junín

975151126 / 912880976 / (064) 581405 Av. Oriente N° 772 Concepción Concepción – Junín ciaasantacruz@gmail.com

ENSAYO CANTABRO

Metodo Máquina de los Angeles MTC E 515

SOLICITA / PETICIONARIO: BACH. ING. CIVIL PINCO LAYME, DAVID MARCELINO

PROYECTO / OBRA

DESEMPEÑO DE LA MEZCLA ASFALTICA EN FRIO CON ADICION DE POLIMEROS DE ICHU

CANTERA Nº / UBICACIÓN : RIO SECO - APATA

UBICACIÓN DE OBRA : Distrito

Distrito CONCEPCION

Provincia CONCEPCION

TECNICO J.Santa Cruz V.

Departamen JUNIN

FECHA 21/12/2021

MARSHALL AL 3% DEICHU

6 200/		The second second second					
6,20%	6,20%	6,20%					
3,00%	3,00%	3,00%			117.00		
1048,4	1055,4	1047,8					
735,6	725,9	725,9					
312,8	329,5	321,9					
29,83594	31,22039	30,721512				774	
Z	30,59						
	3,00% 1048,4 735,6 312,8	3,00% 3,00% 1048,4 1055,4 735,6 725,9 312,8 329,5 29,83594 31,22039	3,00% 3,00% 3,00% 1048,4 1055,4 1047,8 735,6 725,9 725,9 312,8 329,5 321,9 29,83594 31,22039 30,721512	3,00% 3,00% 3,00% 1048,4 1055,4 1047,8 735,6 725,9 725,9 312,8 329,5 321,9 29,83594 31,22039 30,721512	3,00% 3,00% 3,00% 1048,4 1055,4 1047,8 735,6 725,9 725,9 312,8 329,5 321,9 29,83594 31,22039 30,721512	3,00% 3,00% 3,00% 1048,4 1055,4 1047,8 735,6 725,9 725,9 312,8 329,5 321,9 29,83594 31,22039 30,721512	3,00% 3,00% 3,00% 1048,4 1055,4 1047,8 735,6 725,9 725,9 312,8 329,5 321,9 29,83594 31,22039 30,721512

Jula C

CONSTRUCTORA INGENIEROS & ARQUITECTOS Av. Oriente Nº 772 Concepción ASESORES SANTA CRUZ SCRL

975151126 / 912880976 / (064) 581405 Concepción - Junín

0

ciaasantacruz@gmail.com

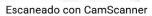
ENSAYO CANTABRO

Metodo Máquina de los Angeles MTC E 515

SOLICITA / PETICIONARIO: BACH. ING. CIVIL PINCO LAYME, DAVID MARCELINO

DESEMPEÑO DE LA MEZCLA ASFALTICA EN FRIO CON ADICION DE POLIMEROS DE ICHU PROYECTO / OBRA

CANTERA Nº / UBICACIÓN : RIO SECO - APATA


UBICACIÓN DE OBRA : Distrito CONCEPCION

CONCEPCION TECNICO: J.Santa Cruz V. Provincia 21/12/2021

Departamento JUNIN FECHA :

MEZCLA CONVENCIONAL

	INICEOUT CON	LITOIOITAL				
	6,2%	6,20%	6,20%			
PESO INICIAL	1150	1140	1148			
PESO FINAL	1010	1000	1010			
PERDINA	140	140	138			
DESGASTE	12,17391304	12,28070175	12,02090592			
PROMEDIO	+	12,158	350691		_	

CONSTRUCTORA INGENIEROS & ARQUITECTOS Av. Oriente Nº 772 Concepción ASESORES SANTA CRUZ SCRL Concepción – Junín

975151126 / 912880976 / (064) 581405 Av. Oriente N° 772 Concepción Concepción – Junín ciaasantacruz@gmail.com

ENSAYO CANTABRO

Metodo Máquina de los Angeles MTC E 515

SOLICITA / PETICIONARIO: BACH. ING. CIVIL PINCO LAYME, DAVID MARCELINO

PROYECTO / OBRA

DESEMPEÑO DE LA MEZCLA ASFALTICA EN FRIO CON ADICION DE POLIMEROS DE ICHU

CANTERA Nº / UBICACIÓN : RIO SECO - APATA

UBICACIÓN DE OBRA : Distrito

CONCEPCION

Provincia CONCEPCION

TECNICO J.Santa Cruz V.

Departamen JUNIN

FECHA 21/12/2021

MARSHALL AL 1% DE ICHU

% OPTIMO DE	EMULSION	6,2%	6,20%	6,20%			5 120	
	ICHU %	1,0%	1,00%	1,00%				
PESO	INICIAL	1035,5	1045,8	1036,7				
PESO FINAL		850,2	848,9	850,5				
PERDINA		185,3	196,9	186,2				
DESGASTE		17,894737	18,827692	17,960837		PELL		
PROMEDIO			18,23		-24 /			

SANTA CRIZ VELT PROJOURS INCENIERO CIVIL CIP N° 26.3436

SANTA CRUZ

CONSTRUCTORA INGENIEROS & ARQUITECTOS Av. Oriente Nº 772 Concepción ASESORES SANTA CRUZ SCRL Concepción – Junín

975151126 / 912880976 / (064) 581405 Av. Oriente N° 772 Concepción Concepción – Junín ciaasantacruz@gmail.com

ENSAYO CANTABRO

Metodo Máquina de los Angeles MTC E 515

SOLICITA / PETICIONARIO: BACH. ING. CIVIL PINCO LAYME, DAVID MARCELINO

PROYECTO / OBRA

DESEMPEÑO DE LA MEZCLA ASFALTICA EN FRIO CON ADICION DE POLIMEROS DE ICHU

CANTERA Nº / UBICACIÓN : RIO SECO - APATA

UBICACIÓN DE OBRA : Distrito

strito CONCEPCION

Provincia CONCEPCION

TECNICO J.Santa Cruz V.

Departamen JUNIN

FECHA 21/12/2021

MARSHALL AL 2% DE ICHU

	MAROTIALL	TE Z/O DE I				
% OPTIMO DE EMULSION	6,20%	6,20%	6,20%			
ICHU %	2,00%	2,00%	2,00%			
PESO INICIAL	1045,5	1036,2	1039,9			
PESO FINAL	785,2	780,9	775,9			1
PERDINA	260,3	255,3	264			
DESGASTE	24,897178	24,638101	25,387056			1
PROMEDIO		24,97				

C.I.A.A. SANTA
LABORATORIO DE SUELOS, ORICHE LA VASFALTO
LABORATORIO DE SUELOS, ORICHE LA VASFALTO
LA VICTORIO DE SUELOS, ORICHE LA VASFALTO
LA VASFALTORIO DE SUELOS, ORICHE LA VASFALTO
LA VASFALTORIO DE SUELOS, ORICHE LA VASFALTORIO DE

SAMTA CÂUT VELZ PACION INGENIERO CIVIL C.P Nº 262428

Anexo N° 13 – Panel fotográfico

RECOLECCIÓN
Y
TRATAMIENTO
DEL ICHU

<u>DISEÑO</u>
CONVENCIONAL
DE LA MEZCLA
ASFALTICA EN
FRIO

ENSAYO
MARSHALL
PARA OBTENER
DISEÑO PATRON

ENSAYO MARSHALL

ENSAYO
MARSHALL
CON VARIACON
DE ICHU

Ensayo Cántabro

- Método

Maquina de los

Ángeles MTC

E515

ENSAYO DEL CIRCULO DE ARENA

